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Charge traps in the semiconductor bulk (bulk charge traps) make it difficult to predict the electric field within
wide band gap semiconductors. The issue is the daunting number of bulk charge-trap candidates which means
the treatment of bulk charge traps is generally qualitative or uses generalized models that do not consider the
trap’s particular electronic structure. The electric field within a wide band gap semiconductor is nonetheless
a crucial quantity in determining the operation of semiconductor devices and the performance of solid-state
single-photon emitters embedded within the semiconductor devices. In this work we accurately compute the
average electric field measured at the location of NV − charged defects for the substitutional N (NC) concentration
of nNC ≈ 1.41 × 1018 cm−3 for the commonly used oxygen-terminated diamond [see D. A. Broadway et al.,
Nature Electron. 1, 502 (2018)]. We achieve this result by evaluating the leading-order contribution to the electric
field far away from the surface, which comes from the NC defects that induce the ionization of the NV −. Our
results use density-functional theory (DFT) and the principle of band bending. Our work has the potential to aid
both in the prediction of the functioning of semiconductor devices and in the prediction and correction of the
spectral diffusion that often plagues the optical frequencies of solid-state single-photon emitters upon repeated
photoexcitation measurements. Our results for the timescales involved in thermally driven charge transfer also
have the potential to aid in investigations of charge dynamics.

DOI: 10.1103/PhysRevB.107.125305

I. INTRODUCTION

The ability to set the electric field within a semiconductor
device to very precise values is essential for the functioning of
the device [1–9]. This ability is impeded by inhomogeneities
in the semiconductor device, such as those due to charge traps
in the semiconductor bulk (bulk charge traps) [2], which can
lead to failure of the semiconductor device [3]. In the con-
text of next-generation semiconductor devices incorporating
point-defect qubit candidates, bulk charge traps can cause
spectral diffusion of the optical frequencies of the point-defect
qubit candidates upon repeated photoexcitation measurements
[10–12], limiting the ability to achieve long-distance entangle-
ment of photons for which indistinguishability of the photons
is needed [13]. Due to the significant number of potential
bulk charge-trap candidates, the treatment of the effect of bulk
charge traps on the electric field within semiconductor de-
vices has largely been qualitative or has employed generalized
models that do not consider the trap’s particular electronic
structure [14]. A consequence of the difficulty associated with
accurately simulating the electric field within semiconductor
devices has been interest in monitoring of the electric field
in situ, using, for example, the optical frequencies of NV −
single-photon emitters in diamond [1–3,11]. Given that the
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NV − is being used as an in situ sensor to measure a critically
important quantity in the wide band gap semiconductor that
is diamond and that bulk charge traps demonstrably affect
the optical frequencies through which this measurement is
performed, it is necessary to gain some theoretical insight into
the exact extent to which the measured field is influenced by
bulk charge traps.

Based on density-functional theory (DFT) [15–20] and the
principle of band bending [2,4], we elucidate the experimen-
tal measurement using optically detected magnetic resonance
(ODMR) spectroscopy of NV centers of an average electric
field of 291 ± 5 kV cm−1 for the substitutional N (NC) con-
centration of nNC ≈ 1.41 × 1018 cm−3 for the commonly used
oxygen-terminated diamond [2]. Our results could ultimately
help predict the functioning of semiconductor devices as rec-
tifiers and switching devices, where built-in defect-induced
fields would lead to losses. Additionally, our results could be
useful in predicting and in correcting the spectral diffusion of
the optical frequencies of solid-state single-photon emitters as
relates to their use for applications in quantum information
and computation.

This work is organized as follows. The computational tools
used in this work will be presented in Sec. II. Next, Sec. III
will provide details regarding the theoretical formalism em-
ployed in this work. We will devote Sec. IV to a discussion
of the Broadway et al. experiment [2] and to our elucidation
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of their experimental measurement of an average electric
field of 291 ± 5 kV cm−1 for the NC concentration of nNC ≈
1.41 × 1018 cm−3 due to band bending for the commonly used
oxygen-terminated diamond [2]. Finally, our conclusions will
be presented in Sec. V.

II. COMPUTATIONAL METHODS

Our band structure calculations used VASP [16–18] with the
screened hybrid functional of Heyd, Scuseria, and Ernzerhof
(HSE06) [19,20]. We performed atomic-position relaxations
for the primitive fcc unit cell of diamond, which were
terminated when the forces dropped below a threshold of
10−2 eVÅ−1. The wave functions for the primitive unit cell
were expanded in a plane wave basis with a cutoff energy
of 500 eV. The primitive unit cell of diamond contains two
atoms and was relaxed using a �-centered grid of 7 × 7 × 7 k
points. Band structures were calculated for the primitive unit
cell applying spin polarization with 20, 50, 100, and 200 re-
ciprocal lattice points along the lines connecting consecutive
high-symmetry points in the band structure path.

Our formation energy calculations also used VASP with the
screened hybrid functional of Heyd, Scuseria, and Ernzerhof
(HSE06). Our calculations were terminated when the forces
in the atomic-position relaxations dropped below a thresh-
old of 10−2 eV Å−1. The wavefunctions were expanded in
a plane wave basis with a cutoff energy of 430 eV, the size
of the supercell was 512 atoms (4 × 4 × 4 multiple of the
conventional unit cell), and �-point integration was used. The
elements used in our calculations and the associated ground-
state structures and values of their chemical potentials are: N
(β hexagonal close-packed structure, −11.39 eV/atom) and
C (diamond structure, −11.28 eV/atom). We note that all of
the formation energies used in this work were computed for
defects in their ground state.

III. THEORETICAL APPROACH AND DISCUSSION

A. Overview of the investigated species and of the
thermodynamically relevant quantities

Before proceeding to motivate our approach, we will
briefly describe the defect species investigated in this work
and define the thermodynamic quantities that are relevant for
our investigation. The defect species investigated in this work
included the nitrogen-vacancy center (NV ) in diamond in the
singly negatively charged (NV −) and neutral (NV 0) charge
states. In diamond, the nitrogen-vacancy center consists of
a single N atom adjacent to a single C vacancy. In both the
negative and neutral charge states, the defect has C3v symme-
try due to breaking of tetrahedral symmetry as a result of the
presence of the single C vacancy adjacent to the N atom. The
substitutional N defect (NC) was also investigated, which con-
sists of a single N atom in a C position in diamond. As found
in previous theoretical work [21–26] and experimental work
[27–29], the neutral state (N0

C) exhibits C3v symmetry due to
elongation of a single N-C bond relative to the other three

FIG. 1. Structure of (a) NV −, (b) NV 0, (c) N0
C, and (d) N+

C .
Carbon atoms are shown in brown and nitrogen atoms in purple.
Carbon vacancies are shown as dashed circles. The distance between
the C vacancy (V ) and the N atom in the NV defects was obtained
as described in previous work [21]. All defects have the orientation
indicated in (a).

N-C bonds, while the singly positively charged state (N+
C )

exhibits tetrahedral symmetry. The structures of the defects
are depicted in Fig. 1.

We now turn to a discussion of the thermodynamic quan-
tities that are relevant for our investigation. The equilibrium
concentration of a charged defect species, nXq , in a semicon-
ductor crystal is given by [30]

nXq = NXgXq exp
(−�Hf

(
Xq,

{
μX

i

}
, EF

)
/kBT

)
, (1)

where X is the defect species, q is the charge of X, NX is the
concentration of crystal sites on which X can form, gXq is the
degeneracy arising from the symmetry of Xq, {μX

i } denotes
the set of chemical potentials for the constituent atoms of
the defect X, EF is Fermi level, kB is Boltzmann’s constant,
and T denotes temperature. The formation energy of Xq is
�Hf (Xq {μX

i }, EF), which is given by [21,31–38]

�Hf
(
Xq,

{
μX

i

}
, EF

) = Edef(X
q) − E0 −

∑
i

μX
i ni

+ q EF + Ecorr(X
q), (2)

where Edef(Xq) is the energy of the charged supercell with
the Xq species, E0 is the energy of the stoichiometric neu-
tral supercell, μX

i is the chemical potential of the ith atomic
constituent that was removed from or added to the stoichio-
metric supercell to produce the supercell with X (as above,
{μX

i } denotes the set of all such chemical potentials), ni is
a positive (negative) integer representing the number of the
ith constituent that was added (removed) to produce X, EF is
again the Fermi level and is treated as a parameter, and Ecorr(q)
is an electrostatic correction term.

The importance of the term Ecorr(q), which is introduced as
a correction to account for a finite supercell when performing
a calculation for a charged defect, and the method for calcu-
lating it has been outlined by previous authors [39–44]. To
briefly motivate the importance of the calculation of Ecorr(q),
the use of a periodic supercell to calculate the total energy of a
charged defect naturally leads to divergence of the total energy
due to infinitely many uncompensated charges. In order to
remedy the issue, a neutralizing background charge is ap-
plied, which causes spurious terms to arise in the total energy
[39–42,45–49]. The energy, Ecorr(q), is designed precisely to
correct these spurious terms.

The formation energy �Hf (Xq, {μX
i }, EF) depends on the

parameterized Fermi level, EF, and for every charge state there
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will be a single range of EF where that charge state has the
minimum formation energy. This fact allows us to define an
adiabatic charge-transition level (ACTL) εX(q/q′), which is
the value of the Fermi level E∗

F for which Xq and Xq′
have

equal formation energies,

�Hf
(
Xq,

{
μX

i

}
, E∗

F

) = �Hf
(
Xq′

,
{
μX

i

}
, E∗

F

)
. (3)

Using Eq. (2), we observe that

�Hf
(
Xq,

{
μX

i

}
, EF

) = �Hf
(
Xq,

{
μX

i

}
, 0

) + q EF. (4)

Given Eq. (3) we can then employ Eq. (4) to solve for E∗
F ,

which yields

εX(q/q′) ≡ E∗
F = �Hf

(
Xq,

{
μX

i

}
, 0

) − �Hf
(
Xq′

,
{
μX

i

}
, 0

)
q′ − q

.

(5)

Upon using Eq. (2) we can find an explicit expression for our
ACTL [32],

εX(q/q′) = [Edef(Xq) + Ecorr(Xq)] − [Edef(Xq′
) + Ecorr(Xq′

)]

q′ − q
.

(6)

Here adiabatic simply reflects the fact that all formation en-
ergies that enter into the calculation of the charge-transition
level are computed for defects that have been relaxed to their
ground state.

B. Motivation for our theoretical formalism

Broadway et al. [2] determined the average electric field
measured at the location of NV − defects within their sample
by assuming the existence of a single equilibrium value for
the Fermi level, EF(z), at every depth z within the sample. We
argue that the assumption of a single equilibrium value for EF

throughout constant-z planes in the theoretical formalism of
Broadway et al. [2] may not hold. Specifically, we argue that
over the duration of each measurement in the experiment of
Broadway et al. EF will only have time to equilibrate between
no more than two defects, similar to an argument made by
Collins [50]. We make this statement rigorous by determining
the timescale for at least one acceptor to receive charge from at
least one donor, which will set a lower bound on the timescale
for EF to equilibrate in the sample. Ultimately, for EF to
be at some constant equilibrium value over some region of
the sample over the course of an experimental measure-
ment, the timescale over which the charge in that region
of the sample equilibrates must be much shorter than
the timescale over which the experimental measurement is
performed.

Suppose we start from a time immediately after some per-
turbation to the sample has occurred such that an equilibrium
value of EF must be reestablished. If we are at the location of
a donor at precisely that time and the donor is on the verge
of transferring charge, EF will be pinned at the donor charge-
transition level since the donor has not had time to interact
with the rest of the sample. In general, a dopant can only
contribute to charge equilibration in the sample if charge from
the dopant has time to enter the conduction or valence band

and travel to another defect. In the case of a donor, an electron
from the donor must have time to reach the conduction band
and travel to another defect.

The calculation of the amount of time necessary for the
transfer of charge proceeds as follows. The expectation value
for the speed at which an electron can travel in the crystal
once in the conduction band is given by [15]

〈sk〉 = 1

h̄

∣∣∇kε
C
k,s

∣∣. (7)

Above, |∇kε
C
k,s| denotes the norm of the gradient with respect

to the wave-vector k of some conduction-band eigenvalue
with spin s evaluated at k and h̄ is the reduced Planck
constant.

If EF lies below εC
k,s for all k, the band will only be

occupied by a donor electron a fraction of the time given
by the Fermi-Dirac distribution with local Fermi level EF,
which will be reflected in the expectation value for the speed.
After the electron has traveled for a time t − t0 starting at a
time t0, the acceptor will only be able to receive an electron
from the conduction band state at wave vector k′ given by
k′ = k(t0) + 1

h̄

∫ t
t0

Fe(t̃ ′)dt̃ ′ a fraction of the time given by 1
minus the Fermi-Dirac distribution with the acceptor’s local
Fermi level E ′

F. Above, Fe(t̃ ′) is the external force acting on
the electron. As a result of the external force Fe(t̃ ′), we must
introduce a time dependence to k. Explicitly, averaging over
time, 〈sk〉 = 〈sk,k′ 〉 becomes

〈sk,k′ 〉 = 1

t − t0

∫ t

t0

dt ′ 1

h̄

∣∣∇kε
C
k(t ′ ),s

∣∣

× 1

exp
[(

εC
k(t0 ),s − EF

)
/kBT

] + 1

×
δk′,k(t0 )+ 1

h̄

∫ t
t0

Fe(t̃ ′ )dt̃ ′

exp
[(

E ′
F − εC

k′,s

)
/kBT

] + 1
. (8)

The expected rate at which a donor can transfer an electron
from its location to an acceptor at another location is then
given by

〈�k,k′ 〉 =
∫ ∞

t0

dt
1

t − t0

∫ t

t0

dt ′ 1

h̄

∇kε
C
k(t ′ ),s · �r

|�r|2

×
δ
(∣∣�r − ∫ t

t0
dt̃ 1

h̄∇kε
C
k(t̃ ),s

∣∣)
exp

[(
εC

k(t0 ),s − EF
)
/kBT

] + 1

×
δk′,k(t0 )+ 1

h̄

∫ t
t0

Fe(t̃ ′ )dt̃ ′

exp
[(

E ′
F − εC

k′,s

)
/kBT

] + 1
, (9)

where EF is pinned at the donor level, E ′
F is pinned at the

acceptor level, and �r is the displacement from the donor to
the acceptor.

Assuming interactions between acceptors and donors in
the sample occur randomly and independently, summing such
expressions over all donors and all acceptors in the sample and
over k′ and averaging over all displacements between defects
as well as over k(t0) and s gives the effective rate for the
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transfer of electrons, which takes the form

�̄e = 1

h̄

∑
D ∈ Donors

ND

∫
VD

drρD(r)
∑

A ∈ Acceptors

NA

∫
VA

dr′ρA(r′)
1

Ns

∑
s

�PUC

∫
dk(t0)

(2π )3

∫
dk′

(2π )3

×
∫ ∞

t0

dt
1

t − t0

∫ t

t0

dt ′ ∇kε
C
k(t ′ ),s · (r′ − r)

|r′ − r|2
δ
(∣∣(r′ − r) − ∫ t

t0
dt̃ 1

h̄∇kε
C
k(t̃ ),s

∣∣)
exp

[(
εC

k(t0 ),s − EF
)
/kBT

] + 1

δ
(
k′ − k(t0) − 1

h̄

∫ t
t0

Fe(t̃ ′)dt̃ ′)
exp

[(
E ′

F − εC
k′,s

)
/kBT

] + 1
. (10)

In Eq. (10), ND and NA are the total numbers of D and A defects in the entire crystal. In order to avoid artificially reducing the
defect concentrations, the integration with respect to r is performed over a region containing one donor on average (VD = 1/nD)
and the integration with respect to r′ is performed over a region containing one acceptor on average (VA = 1/nA). We employ
cubes with centers at zero for the integrations. The quantities ρD(r) and ρA(r′) are the concentrations of species D and A as
functions of position. The integer Ns represents the number of spin states and �PUC represents the volume of the primitive unit
cell of the fcc lattice of diamond. Averaging over displacements as well as over k(t0) and s is performed due to the fact that
a single defect cannot be measured as simultaneously having multiple positions and a single charge cannot be measured as
simultaneously having multiple speeds or spins.

Equivalently, for the transfer of holes we have the effective rate

�̄h = 1

h̄

∑
D ∈ Donors

ND

∫
VD

drρD(r)
∑

A ∈ Acceptors

NA

∫
VA

dr′ρA(r′)
1

Ns

∑
s

�PUC

∫
dk(t0)

(2π )3

∫
dk′

(2π )3

×
∫ ∞

t0

dt
1

t − t0

∫ t

t0

dt ′ ∇kε
V
k(t ′ ),s · (r − r′)

|r − r′|2
δ
(∣∣(r − r′) − ∫ t

t0
dt̃ 1

h̄∇kε
V
k(t̃ ),s

∣∣)
exp

[(
εV

k(t0 ),s − EF
)
/kBT

] + 1

δ
(
k′ − k(t0) − 1

h̄

∫ t
t0

Fe(t̃ ′)dt̃ ′)
exp

[(
E ′

F − εV
k′,s

)
/kBT

] + 1
, (11)

where εV
k,s denotes some valence-band eigenvalue with wave

vector k and spin s and Fh is the external force acting on the
holes. The desired total effective rate is simply

�̄ = �̄e + �̄h. (12)

The reciprocal of the effective rate gives the desired timescale
for the equilibration of EF. Below, we will consider that
the defects being measured are sufficiently deep in the bulk
that the forces from the randomly distributed charged defects
surrounding them average to zero. We also note that for an
equilibrium reaction the rates of the forward and reverse re-
actions must be equal. Therefore, whether we calculate the
charge transfer rate for the case where a defect pair is initially
neutral and becomes ionized or for the case where a defect
pair is initially ionized and becomes neutral does not affect
the final result. For ease of calculation, we consider the case
where the defect pair being measured is initially neutral and
becomes ionized.

We now turn to the computational evaluation of Eq. (12).
We make the approximation that the external forces on the
electrons and on the holes are random and integrate to zero
between any two times t0 and t and we use the fact that for
the NV acceptor and NC donor (E ′

F − εV
k′,s) − (εC

k,s − EF) 

kBT, EF − E ′

F 
 kBT ∀ k, k′. We further assume an isotropic
distribution of defects. In our isotropic model, at every dis-
tance r from some origin, the concentration of X defects
between that distance and a distance infinitesimally farther
will be ÑX

4πr2dr , given ÑX defects in the spherical shell of
interest. Since ÑX = 4πr2dr · nX, the expression for the con-
centration in a shell ensures that isotropy is satisfied. As
alluded to above, we must integrate to a distance such that
one defect is enclosed in the entire region. For the species X,

dr ≈ [3VX/(4π )]1/3. We then have

�̄e ≈ 1

h̄

∑
D ∈ Donors

ND

[3VD/(4π )]1/3

∫
VD

dr
1

4πr2

∑
A ∈ Acceptors

× NA

[3VA/(4π )]1/3

∫
VA

dr′ 1

4πr′2
1

Ns

∑
s

�PUC

×
∫

dk
(2π )3

∣∣∇kε
C
k,s

∣∣
|r′ − r|

1

exp
[(

εC
k,s − EF

)/
kBT

] + 1
(13)

and

�̄h ≈ 0. (14)

The increment in k in the integral over k is constrained by the
size of the crystal. Given our desire to capture only leading-
order contributions, we considered only the NC donor and the
NV acceptor in our rate calculations. Due to the exponential
suppression of the corresponding contribution to the rate if
εC

k,s − EF 
 kBT , for our computations we iteratively consid-
ered εC

k,s � EC + mkBT for increasing integers m, where EC

is the energy of the conduction band minimum. We found that
the change in the rate was less than 3% between m = 7 and
m = 8 for all k-point resolutions at T = 300 K and less than
1% between m = 7 and m = 8 for the three highest k-point
resolutions at that temperature. We also observed convergence
of the rate to within 3% between the two highest k-point
resolutions. We therefore did not investigate m > 8 or a k-
point resolution higher than 200 k points between consecutive
high-symmetry points. In order to integrate over the volume
surrounding the location of the conduction band minimum in
the Brillouin zone, we have assumed isotropic dispersion near
the conduction band minimum.

As alluded to above, we considered only the NC donor
and the NV acceptor in our rate calculations. Therefore,
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FIG. 2. Spin-polarized band structure for the primitive fcc unit
cell of diamond at a resolution of 200 k points along the lines
connecting consecutive high-symmetry points in the band structure
path. The position of the conduction band minimum with energy EC

is indicated. The calculated band gap is EC − EV ≈ 5.3 eV, where
EV is the energy of the valence band maximum. The first fcc Bril-
louin zone is depicted in the top-right quarter of the figure along
with its high-symmetry points and the primitive vectors of the re-
ciprocal lattice b1 = 2π

a (−k̂x + k̂y + k̂z ), b2 = 2π

a (k̂x − k̂y + k̂z ), and
b3 = 2π

a (k̂x + k̂y − k̂z ).

VD = VNC = 1/nNC and VA = VNV = 1/nNV . The converged
lattice constant for the primitive fcc unit cell of diamond
was a = 3.549 Å. This value is in good agreement with a
previous theoretical calculation of a = 3.545 Å [51]. Thus,
the number of reciprocal lattice points along a line connect-
ing two high-symmetry points that is physically needed to
resolve the increment in k is approximately 200. At the
highest k-point resolution, we found an electronic band gap
of 5.3 eV, also in good agreement with previous exper-
imental [52] and theoretical [51] results. Given the high
nitrogen fluence used in the Broadway et al. experiment,
we employed χ = 0.01 for the NV yield with nD = nNC ≈
1.41 × 1018 cm−3 so that nA = nNV ≈ 1.43 × 1016 cm−3

using χnNC = (1 − χ )nNV [2]. The band structure for the
highest k-point resolution with the position of the conduction
band minimum indicated is depicted in Fig. 2. For various
m, the quantity 1/�̄ as a function of the number of k points
along the lines connecting consecutive high-symmetry points
in the band structure path is provided in Fig. 3. As shown
in Fig. 3, the rate converges to a value corresponding to a
minimum timescale for the equilibration of EF that is approx-
imately equal to 1.8 ns. By comparison, the timescale over
which the measurements in the experiment of Broadway et al.
were performed was approximately 11 microseconds [2]. For
nNV ≈ 1.43 × 1016 cm−3, there exist approximately 4 × 109

NV defects in the 2 mm × 2 mm × 70 nm portion of the
sample. Therefore, the probability that a defect would not
have reached equilibrium with more than a single other defect
after 11 microseconds is greater than (1 − 1

4×109 )11 μs/1.8 ns ≈
0.9999985. As a consequence, the vast majority of NV defects
in the sample will not have reached equilibrium with more
than a single other defect after 11 microseconds. Considering
contributions to the rate from the entire sample of size 2 mm
× 2 mm × 50 µm leads to no appreciable change in the rate
using the fact that nNC < 1 ppb in the rest of the sample [2]
and keeping χ = 0.01. If 1.8 ns is the shortest duration for

FIG. 3. Minimum timescale in nanoseconds for the equilibration
of EF for various cutoffs εC

k � EC + mkBT as a function of the num-
ber of k points along the lines connecting consecutive high-symmetry
points in the band structure path (see Fig. 2). Timescales were com-
puted for 20, 50, 100, and 200 k points along the lines connecting
consecutive high-symmetry points in the band structure path.

equilibration between any pair of NC and NV defects in the
entire sample, we must conclude that in the vast majority of
cases EF will at most be in equilibrium between pairs of NC

and NV defects in each 11 microsecond measurement in the
experiment of Broadway et al.

Given the relatively long timescales required for the equi-
librium transfer of charge between the ground-state defect
levels, photoexcitation or photoionization would be necessary
in order to perform experiments with charged defects on rea-
sonable timescales [2]. Nonetheless, as the time required for
the charge to equilibrate thermally would still be dictated by
our formalism and since thermal equilibrium is required for
the applicability of the concept of a uniform Fermi level, our
analysis should not be affected by the use of optical illumi-
nation. Our results could also help explain the need for the
trap-filling procedure by photoexcitation used in highly pure
radiation detectors [53]. Additionally, our formalism could
help quantify charge-transfer rates resulting from the place-
ment of electrons in excited states as a result of laser-induced
perturbation for charge transport between individual fluores-
cent defects [54].

C. Overview of our theoretical formalism

Given the conclusion that EF could at most be in
equilibrium between NC and NV defect pairs in the
experiment of Broadway et al., consider the case where
in some subregion of the crystal sample the total defect
concentrations nD = nA = C for some constant C such
that the subregion can be considered to consist of a single
donor equilibrating with a single acceptor. We assume
that the donor and acceptor are initially neutral before
they exchange charge to equilibrate with one another
so that nD0 = nA0 , which is achieved mathematically by
appropriately setting {μD

i } and {μA
i } in Eq. (1). We make the

additional assumption that the concentrations of the charge
states other than D0, D+, A0, and A− are suppressed
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in thermal equilibrium. This additional assumption
implies that [εD(0/qD) − εA(0/−)] 
 kBT , [εD(0/+) −
εA(0/qA)] 
 kBT , [εA(0/q′

A) − εA(0/−)] 
 kBT , and
[εD(0/+) − εD(0/q′

D)] 
 kBT ∀qD, qA, q′
A, q′

D, s.t. qD < 0,

qA > 0, q′
A < −1, and q′

D > +1. Physically, the conditions
mean that the value of EF required to transition to any charge
state of D or A other than D0, D+, A0, and A− must be
much higher (lower) than the value of EF that maximizes
the minimum of nD+ and nA− when the other charge state
is negative (positive) and when nD0 = nA0 , which implies
that the other charge state will be suppressed if EF is indeed
chosen to maximize the minimum of nD+ and nA− when
nD0 = nA0 . We further assume that the defect levels are
separated from the band edges by an amount much greater
than kBT so that the electron and hole concentrations (n and
p, respectively) satisfy n ≈ 0 and p ≈ 0. Therefore, allowing
the total concentration of donors to be equal to the total
concentration of acceptors and imposing charge conservation
we can then write to a good approximation

nD+ + nD0 = nA− + nA0 = C, (15)

nD+ = nA− . (16)

We now proceed to determine the equilibrium value of EF

in this system of two defects. Starting from Eq. (16), we can
use Eq. (1) to obtain

NDgD+ exp
( − �Hf

(
D+,

{
μD

i

}
, EF

)
/kBT

)
= NAgA− exp

( − �Hf
(
A−,

{
μA

i

}
, EF

)
/kBT

)
. (17)

Therefore, using Eq. (4), Eq. (17) becomes

NDgD+ exp
( − �Hf

(
D+,

{
μD

i

}
, 0

)
/kBT

)
exp(−EF/kBT )

= NAgA− exp
( − �Hf

(
A−,

{
μA

i

}
, 0

)
/kBT

)
exp(EF/kBT ).

(18)

Solving for EF we have

EF = [
�Hf

(
A−,

{
μA

i

}
, 0

) − �Hf
(
D+,

{
μD

i

}
, 0

)]
/2

+ kBT

2
ln

(
NDgD+

NAgA−

)
. (19)

Next, we use Eq. (16) to eliminate nD+ and nA− from Eq. (15),
which recovers

nD0 = nA0 . (20)

We can again use Eq. (1) to obtain

NDgD0 exp
[ − �Hf

(
D0,

{
μD

i

}
, EF

)
/kBT

]
= NAgA0 exp

[ − �Hf
(
A0,

{
μA

i

}
, EF

)
/kBT

]
. (21)

Using Eq. (4), this expression becomes

NDgD0 exp
[ − �Hf

(
D0,

{
μD

i

}
, 0

)
/kBT

]
= NAgA0 exp

[ − �Hf
(
A0,

{
μA

i

}
, 0

)
/kBT

]
, (22)

which can be rearranged to give

�Hf
(
A0,

{
μA

i

}
, 0

) − �Hf
(
D0,

{
μD

i

}
, 0

)

+ kBT ln

(
NDgD0

NAgA0

)
= 0. (23)

If we divide Eq. (23) by a factor of 2 and combine the result
with Eq. (19) we obtain

EF = [
�Hf

(
A−,

{
μA

i

}
, 0

) − �Hf
(
A0,

{
μA

i

}
, 0

)]
/2

+ [
�Hf

(
D0,

{
μA

i

}
, 0

) − �Hf
(
D+,

{
μD

i

}
, 0

)]
/2

+ kBT

2
ln

(
gD+gA0

gD0 gA−

)
. (24)

Using Eq. (5) we obtain

EF = εD(0/+) + εA(0/−)

2
+ kBT

2
ln

(
gD+gA0

gD0 gA−

)
. (25)

Dropping the contribution from the configurational entropy,
we therefore define an ACTL for one defect in the presence of
another given by

εD,A(0/+, 0/−) ≡ εD(0/+) + εA(0/−)

2
. (26)

A benefit of the form of Eq. (26) is that it is manifestly
independent of the choice of {μD

i } and {μA
i }. Also, we readily

see that if {μD
i } and {μA

i } are chosen such that nD0 = nA0 ,
EF = εD,A(0/+, 0/−) with the addition of a term of order
kBT will indeed maximize the minimum of nD+ and nA− .
To give some intuition for the expression in Eq. (25), we
note that Broadway et al. [2] investigated the situation after
the donor (NC) has lost its electron to the acceptor (NV ) so
that the donor and acceptor roles are reversed. Therefore,
the value EF ≈ [εNC (0/+) + εNV (0/−)]/2 parallels the re-
sult from solid-state theory that EF lies halfway between the
electron accepting conduction band and the electron donating
valence band for equal band curvatures.

From the energetics of the charge transfer, we determine
the total amount of band bending. Using a generalization
of the complex binding energy [32], we had previously shown
that the error associated with assuming the dilute limit when
taking the average of the ACTLs is negligible compared to the
averaged transition energy [21]. Therefore, to a good approxi-
mation the energy required to ionize the system of two defects
can be taken to be equal to the average of the dilute-limit
ACTLs for the two defects. Such a result is consistent with
the electronic structure of the semiconductor being modulated
by the presence of the two defects in such a manner as to result
in a band-bending profile along the line connecting them. We
demonstrate this consistency by first noting that EF must be
pinned at the acceptor and donor levels in the respective parts
of the sample if A gains a single electron and D loses a single
electron when they are sufficiently far apart that the dilute
limit can be applied. In equilibrium, however, EF is constant
throughout the subregion of the sample containing the two
defects. Thus, the conduction band minimum (EC) and the
valence band maximum (EV) must be shifted at the positions
rA and rD of the respective defects,

�EC(rA) = 1
2 [εD(0/+) − εA(0/−)] = �EV(rA) (27)

and

�EC(rD) = 1
2 [εA(0/−) − εD(0/+)] = �EV(rD). (28)

125305-6



THEORETICAL INVESTIGATION OF CHARGE TRANSFER … PHYSICAL REVIEW B 107, 125305 (2023)

In traveling from the location of the donor defect to the loca-
tion of the acceptor defect, we obtain the result for the total
bending of the conduction and valence band extrema,

EC(rA) − EC(rD) = �EC(rA) − �EC(rD)

= [εD(0/+) − εA(0/−)], (29)

EV(rA) − EV(rD) = �EV(rA) − �EV(rD)

= [εD(0/+) − εA(0/−)]. (30)

The electric field associated with the bending of the con-
duction and valence bands due to the presence of the defects
is then given by [2,4,55]

�E = − 1

(−e)
∇[EV(r)] ≈ 1

e

[EV(rA) − EV(rD)]

|�r|
�r
|�r| , (31)

where, as above, EV is the valence band maximum, e is the
elementary charge, rA is the position of defect A, rD is the
position of defect D, and �r = rA − rD. Considering the case
of NV defects in the presence of NC defects in diamond, we
note that a diamond crystal containing NV and NC defects sat-
isfies the conditions required for the applicability of Eqs. (15)
and (16) [21,51]. Thus, Eq. (31) applies to NV defects in the
presence of NC defects in diamond.

IV. DISCUSSION AND ELUCIDATION OF THE
EXPERIMENT OF BROADWAY ET AL.

A. Details of the Broadway et al. experiment

The details of the experiment of Broadway et al. [2]
investigating band bending in the commonly used oxygen-
terminated diamond are as follows. In that experiment, they
performed ODMR spectroscopy on NV centers. They com-
pared the eight resonance frequencies of the NV − ODMR
spectrum to the standard NV spin Hamiltonian including
the Zeeman and Stark effects to extract the electric field
[1,56]. They found an average electric field in the z direc-
tion of 〈Ez〉 = 291 ± 5 kV cm−1 for the NC concentration
of nNC ≈ 1.41 × 1018 cm−3. Only at this value of nNC was
the average electric field not significantly different from
the value they obtained in a comparison with NV cen-
ters in hydrogen-terminated diamond at the same value for
nNC . The result suggests that the concentration nNC ≈ 1.41 ×
1018 cm−3 yields defects placed sufficiently far apart that a
typical measured defect will be negligibly influenced by the
surface. The implanted ion was 15N+ at energies ranging from
4–20 keV. The ion dose was 1013 ions cm−2. The nitrogen ions
were implanted to form NV centers following a spatial distri-
bution that could be approximated as uniform over the depth
range 0 − 2〈d〉 where 〈d〉 is the average implantation depth.
The diamond was electronic grade with an intrinsic substitu-
tional N (NC) concentration less than 1 ppb. They modeled
the electric field as being induced by surface defects with
concentrations as high as 1 nm−2, which predicts a maximum
electric field value at the surface of Ez ≈ 1.6 MV cm−1 with
a characteristic decay length of approximately 15 nm. They
further argued that a positive space charge density exists near
the surface such that only NV s deeper than approximately
7 nm for 〈d〉 = 10 nm exist in the negative charge state usable

for sensing. Therefore, averaging over the NV − distribution,
they estimated a maximum average electric field of 〈Ez〉 ≈∫ 20

7 1.6 MV cm−1e−z/15dz/
∫ 20

7 dz ≈ 600 kV cm−1 for 〈d〉 =
10 nm. By contrast, for 〈d〉 = 35 nm, their prediction for the
maximum average electric field was 〈Ez〉 ≈ 200 kV cm−1.

B. Explanation of the bulk value of 〈Ez〉
in the Broadway et al. experiment

We argue that the Broadway et al. [2] experiment also
captures the band bending due to the built-in electric field
between N+

C and NV −. For the NC concentration of nNC ≈
1.41 × 1018 cm−3, the average electric field measured at the
location of NV − defects should be predominantly due to the
built-in electric field between N+

C and NV − rather than due to
the surface since hydrogen-terminated and oxygen-terminated
samples show little difference between their average electric
fields for that concentration of nNC [2]. Given an implantation
dose of 1013 ions cm−2, the concentration of NC is anywhere
from 1.29 × 1018 cm−3 to 1.42 × 1018 cm−3 for 〈d〉 = 35 nm,
using χ ranging from 0.1–0.004 and nNC = (1 − χ ) 1013 cm−2

2〈d〉
[2]. Therefore, if the implanted diamond region is partitioned
into cubes of equal volume each containing on average a
single NC, the side length of one of these cubes will be
anywhere from lNC = 9.20 nm to lNC = 8.89 nm. The aver-
age distance between the NC will be an upper bound to the
average distance between the NC defects and the NV defects
since the concentration of NV defects produced by the N+
implantation is approximately 0.4–10 % of the concentration
of NC defects produced by the implantation [2,57]. Without
knowing a priori the cutoff distance beyond which charge
transfer cannot occur between the species, we assume that
charge transfer can occur for any possible separation between
the NV and the NC within one of the cubes. Thus, averaging
over the possible displacements r between the positions rNV

and rNC of the respective NV − and N+
C defects within one of

the cubes we have

〈Ez〉〈d〉=35 nm

= 1

e

〈
∂EV

∂z

〉
〈d〉=35 nm

(32)

≈ 1

e

〈
(EV(rNV ) − EV(rNC ))

|r| · z

|r|
〉
〈d〉=35 nm

(33)

≈ 1

e

(∫ lNC /2

x=0

∫ lNC /2

y=0

∫ lNC /2

z=0

(EV(rNV ) − EV(rNC ))

(x2 + y2 + z2)1/2
·

× z

(x2 + y2 + z2)1/2
dzdydx

/(
l3
NC

/2
))

(34)

≈ 0.304 · 1

e

(EV(rNV ) − EV(rNC ))

lNC

(35)

≈ 300 kV cm−1. (36)

We note that the factor of 0.304 would change de-
pending on the shape and dimensionality of the supercell
containing the two defects. Generally, the integration should
proceed over the appropriate Wigner-Seitz cell. As alluded
to above, Broadway et al. [2] provided 〈Ez〉〈d〉=35 nm =
291 ± 5 kV cm−1, which is in good agreement with our

125305-7



RODRICK KUATE DEFO et al. PHYSICAL REVIEW B 107, 125305 (2023)

FIG. 4. Comparison of our theory and the Broadway et al. [2]
experimental results for |〈Ez〉| for oxygen-terminated diamond. Our
theory predicts |〈Ez〉| ≈ 4.30 kV cm−2/3/〈d〉1/3 for χ = 0.004 (upper
solid black curve) and |〈Ez〉| ≈ 4.16 kV cm−2/3/〈d〉1/3 for χ = 0.1
(lower solid black curve), neglecting the effect of the surface. The
shaded grey region indicates predictions for the range χ = 0.1 −
0.004. Concentrations for NC can be obtained from the abscissae of
the plot using nNC = (1 − χ ) · 1013 cm−2

2〈d〉 .

calculated value. Keeping additional significant digits in our
calculation, the difference between the absolute values of
the results is anywhere from less than 3% for χ = 0.004
to less than 6% for χ = 0.1. The high nitrogen fluence
used in the Broadway et al. experiment suggests χ ≈ 0.01
[2], corresponding to a difference between our calculated
result and experiment of less than 3%. By contrast, our
application of the same formalism for 〈d〉 = 7 nm yields
〈Ez〉〈d〉=7 nm ≈ 500 kV cm−1 in comparison with 〈Ez〉〈d〉=7 nm =
432 ± 10 kV cm−1 from experiment [2]. Keeping additional
significant digits, the difference between the absolute val-
ues of the results is anywhere from approximately 12% for
χ = 0.004 to approximately 8% for χ = 0.1. A complete
comparison of our theory and the Broadway et al. [2] ex-
perimental results for |〈Ez〉| for oxygen-terminated diamond
is depicted in Fig. 4. We find that for the smaller NC con-
centrations, nNC � 2.1 × 1018 cm−3, the band bending due to
the built-in field between N+

C and NV − appears to determine
the average electric field measured at the location of NV −
centers.

We now turn to a discussion of our derivation. In moving
from Eq. (33) to Eq. (34), we have used the fact that there
are four possible NV − orientations in the diamond crystal.
Only one of these contributes to an appreciable measured field
in the z direction since Ex and Ey were set to zero in the
reference frame of each NV − in fitting the measured spectra

in the work of Broadway et al. [2]. To arrive at our results, we
have also used [εNC (0/+) − εNV (0/−)] ≈ 0.8 eV from our
calculations. Finally, we have used the fact that the Broadway
et al. [2] measurements were insensitive to the sign of the
electric field so that the contribution from integrating over
negative z does not cancel the contribution from integrating
over positive z and we need only consider the absolute value
of our calculated result. We also note that our explanation
requires no fitted parameters as long as nNC is known and that
our results would be generally applicable to defects in any
wide band gap semiconductor, such as defects in the various
widely studied polytypes of SiC and other defects in diamond
[33,58–82].

We now comment on the validity of the neglect of
second-nearest neighbors. We first note that due to charge
conservation, most of the NC defects that are nearest neigh-
bors to the NV will be neutral and will not contribute to
the field at the NV . Furthermore, the charged NV -NC de-
fect pairs surrounding the NV -NC pair of interest will be
randomly positioned. As we have shown in the Sec. III B,
the timescale for the equilibration of EF is not sufficient for
equilibration between more than on average a single pair of
defects. Therefore, the charge states of other NV -NC pairs will
be uncorrelated with the charge states of the pair of interest
so that simply measuring the system at different points as it
evolves forward in time will result in fluctuations of the field
in time. These fluctuations will cancel averaged over time for
defect pairs that are sufficiently deep in the bulk and yield
the value obtained by integrating Eq. (31) over a supercell
containing on average a single defect pair normalized by vol-
ume. Thus, our model applies to a system containing arbitrary
concentrations nNV and nNC , as long as these are in the dilute
limit and as long as the NV is measured sufficiently deep in
the bulk. We further clarify that Eq. (15) is a local statement
that is automatically satisfied if 1/�̄ is much longer than the
timescale of experimental measurements. The equation does
not require that there be one NV for every NC in the entire
sample. The existence of a positive space charge density near
the surface in the experiment of Broadway et al. [2] could
explain the discrepancy between our theory and experiment at
the larger NC concentrations. We also note that in the moment
of measurement the wave function of the electron collapses so
that the value obtained by integrating Eq. (31) over a super-
cell containing on average a single defect pair normalized by
volume does indeed represents the value of the field that will
be measured at the NV .

We now turn to a discussion of the implications of our
results for the phenomenon of spectral diffusion. Formally, we
can consider neighboring NV -NC pairs in an infinite crystal so
that we have

〈Ez〉 ≈ 1

e

( ∑
nx,ny,nz∈Z

∫ lNC /2

x=−lNC /2

∫ lNC /2

y=−lNC /2

∫ lNC /2

z=−−lNC /2

[
EV(rNV ) − EV

(
rNC

)]
((x + nxlNV )2 + (y + nylNV )2 + (z + nzlNV )2)1/2

× (z + nzlNV )

[(x + nxlNV )2 + (y + nylNV )2 + (z + nzlNV )2]1/2
dzdydx

/(
l3
NC

))
. (37)
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Above, lNV = n−1/3
NV . By symmetry, 〈Ez〉 is zero. If, however,

we partition the infinite crystal into two half-spaces, nz � 0
and nz < 0, for any NV in either half-space the infinite sum
diverges. Therefore, a NV belonging to a defect pair that
is sufficiently deep in the bulk will show negligible spectral
diffusion, which is not true for a NV belonging to a defect
pair near the surface. We therefore estimate the maximum
spectral diffusion for a NV at the surface in the experiment
of Ruf et al. [83]. In that experiment, they used a sample
that was 2 mm × 2 mm × 50 µm. The highest estimate for
nNV was nNV = 0.1 µm−3 corresponding to lNV = 2 µm. The
highest estimate for nNC was nNC = 885 µm−3 correspond-
ing to lNC = 0.104 µm. Thus, to calculate the electric field
at a surface NV , nz ranges from 0–23 and nx and ny both
range from −464 to 464. Except for (nx, ny, nz ) = (0, 0, 0),
we drop the integral over x, y, and z (setting the variables
x, y, and z to zero) and drop the normalizing volume factor
of l3

NC
in evaluating the contributions. We obtain a field of

approximately 24000 kV cm−1, corresponding to a spectral
diffusion of approximately 400 MHz [1,2]. The experiment
of Ruf et al. [83] produced a confidence interval for spectral
diffusion of 189 ± 117 MHz whose upper end is in reason-
able agreement with our maximum estimate. We would also
like to emphasize the utility of our formalism for estimating
average defect concentrations or average distances between
defects.

V. CONCLUSION

In conclusion, based purely on ab initio calculations, we
have succeeded in providing an explanation for the value of
the average electric field of 291 ± 5 kV cm−1 for the NC con-
centration of nNC ≈ 1.41 × 1018 cm−3 for the commonly used
oxygen-terminated diamond. Such a result would be useful for
predicting the functioning of semiconductor devices as recti-
fiers and switching devices, where the built-in defect-induced
fields would lead to losses. Our results could also be useful for
predicting and correcting the spectral diffusion of the optical
frequencies of the solid-state single-photon sources used for
applications in quantum information and computation. Fur-
thermore, our formalism for thermally driven charge transfer
could aid in investigations of charge dynamics [84–86].
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