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Side-surface-mediated hybridization in axion insulators
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The axion insulator is believed to host half-quantized chiral currents running antiparallelly on its top and
bottom surfaces. However, the experimental detection of the half quantization in axion insulators remains elusive.
In this paper, we propose a mechanism to explain why the half quantization is hard to be probed by showing
that the half-quantized counterpropagating currents in axion insulator thin films are strongly suppressed due to
the hybridization mediated by the massless side-surface states. This side-surface-mediated hybridization leads
to a different type of finite-size effect, which features a power-law decay with the increasing film thickness,
different from the exponential decay in topological insulators. Moreover, we show that the half quantization can
be extracted in the axion insulator phase by adopting the nonlocal transport measurement.
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I. INTRODUCTION

The axion insulator is characterized by a symmetry-
protected quantized axion coupling coefficient [1–5], which
shares the half-quantized surface Hall conductance [6–9]
and a unique topological magnetoelectric effect [10–15].
The bulk-boundary correspondence implies the existence of
topologically protected half-quantized hinge currents in the
axion insulator. Many efforts have been devoted towards the
search for half quantization in the axion insulator in various
magnetic topological materials, including magnetically doped
topological insulators [16–25] and intrinsic antiferromagnetic
topological insulators [26–32]. The detection of half quanti-
zation is important because it provides evidence for not only
the surface Hall effect but also the long-sought axion insulator
phase.

The heterostructures of a magnetically doped topological
insulator and intrinsic antiferromagnetic topological insula-
tor have been proposed to host an axion insulator phase
[19–21,29,30], which is characterized by an intermediate zero
Hall conductance plateau. Nevertheless, this is still in debate
[17,28,33], since a normal insulator also manifests the zero
Hall conductance plateau [5]. So far, there is no transport
signature for a half-quantized counterpropagating current in
the axion insulator phase. Therefore, the search for transport
signatures of half quantization in the axion insulator phase is
still an open problem.

In this paper, we investigate the transport in magnetic topo-
logical insulators by adopting a four-terminal Hall-bar setup.
We reveal the existence of half-quantized counterpropagating
currents in the axion insulator phase. Surprisingly, we find that
the half-quantized counterpropagating currents are strongly
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suppressed in thin films. This can be attributed to the massless
side-surface states that bridge the counterpropagating currents
on the top and bottom surfaces. Moreover, this strong effect is
characterized by a power-law decay of the hybridization gap
as the film thickness increases. This scenario is distinct from
the finite-size effect in other topological materials [34–37],
where the boundary states are hybridized via a fully gapped
bulk and the hybridization gap exhibits an exponential decay
while increasing the system size.

This paper is organized as follows. In Sec. II, we present
a tight-binding Hamiltonian for a three-dimensional magnetic
topological insulator. In Sec. III, the method of extracting half
quantization from the nonlocal transport and the influence of
the hybridization on transport properties are demonstrated. In
Sec. IV, the power-law decay behavior of the hybridization
is studied by numerical calculations. In Sec. V, the physical
picture of the hybridization is revealed by an effective model
analysis. Finally, the conclusion and discussion are given in
Sec. VI.

II. MODEL

To carry out numerical studies on the magnetic topological
insulator, we consider a tight-binding Hamiltonian on a cubic
lattice for an isotropic three-dimensional magnetic topological
insulator [16,17,38,39],

H =
∑

i

c†
i M0ci +

∑
i,α=x,y,z

(c†
i Tαci+α + c†

i+αT †
α ci ), (1)

where Tα = Bσ0τz − i A
2 σατx and M0 = (M − 6B)σ0τz +

m(z)σzτ0 with the lattice space taken to be unity. Near the
k = 0 point in the momentum space (i.e., the low-energy
regime), this model is reduced to a Dirac-like model in the
absence of magnetization [m(z) = 0]. When magnetization
is introduced to a certain surface, its massless Dirac cone
opens an energy gap characterized by half-quantized Hall
conductance with its sign depending on the magnetization
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FIG. 1. (a) Schematic illustration of the Chern insulator phase in a magnetic topological insulator. Each of the magnetic top and
bottom surfaces hosts a gapped Dirac cone characterized by a half-quantized Hall conductance. (b), (c) Numerically calculated transmission
coefficients as functions of (b) the thickness nz with EF = 0.01 and (c) Fermi energy EF with different film thicknesses nz. The system size
is taken as nx = ny = 30. The magnetization strength for the Chern insulator phase is taken as mt = mb = 0.15. Here, T1, T2, and T3 are the
transmission coefficients between two clockwise neighboring, counterclockwise neighboring, and non-neighboring terminals, respectively.
(d) Schematic illustration of the four-terminal Hall-bar setup. T1,2,3 can be obtained through the nonlocal transport. (e)–(g) The same as (b)–(e)
except that they depict the axion insulator phase with mt = −mb = 0.15. The superscripts “Chern” in (b) and “Axion” in (f) are to distinguish
the Chern and axion insulator phases, respectively. (h) The transmission coefficients as functions of mb, where we take mt = 0.15. The system
size is taken as nx = ny = 30 and nz = 50.

direction. The magnetic effect is represented by layer-
dependent magnetization that acts as an effective Zeeman
field m(z). We consider two different cases: the Chern in-
sulator phase and axion insulator phase. We take m(z) = mb

for z = 1, 2, m(z) = mt for z = nz − 1, nz and m(z) = 0 else-
where. As illustrated in Figs. 1(a) and 1(e), we have mt mb > 0
(mt mb < 0) for the Chern (axion) insulator phase. For both
Chern and axion insulator phases, the magnetization is in-
troduced to the top and bottom surfaces, and therefore the
spectra of surface states open energy gaps at the � point on
both the top and bottom surfaces [Figs. 1(a) and 1(e)]. For the
Chern insulator phase with parallel magnetization alignment
on the top and bottom surfaces, the two energy gaps are
characterized by half-quantized Hall conductance [10,40,41]
with the same sign, and they combine to yield a quantized Hall
conductance (see Sec. SII of the Supplemental Material [42]
and Refs. [10,16,28,37,40,41,43–55] therein). The top and
bottom surfaces with antiparallel magnetization alignment are
characterized by half-quantized Hall conductances with oppo-
site signs on each surface, which leads to the emergence of the
axion insulator phase. In the numerical calculations, we take
the parameters as A = 0.5, B = 0.25, and M = 0.4.

III. TRANSPORT SIGNATURES

We investigate the transport signatures of the axion and
Chern insulator phases in a four-terminal Hall-bar setup as
shown in Fig. 1(d). From the Landauer-Büttiker formula at
zero temperature, the current flowing into terminal p is given
by Ip = e2

h

∑
q �=p Tpq(EF )(Vp − Vq) [43,44]. Tpq depicts the

transmission coefficient from electrode q to p. Vi corresponds
to the voltage of lead i shown in Fig. 1(d). The transmission
matrix is found to have the following form in numerical cal-
culations,

T =

⎛
⎜⎜⎝

0 T1 T3 T2

T2 0 T1 T3

T3 T2 0 T1

T1 T3 T2 0

⎞
⎟⎟⎠, (2)

where T1 and T2 are the clockwise and anticlockwise trans-
mission coefficients between two neighboring terminals,
respectively, and T3 is the transmission coefficient between
two non-neighboring terminals, as shown in Fig. 1(d). The
diagonal terms represent the reflection of charge carriers
within the same terminal, and only depend on the matching
between the terminals and conductors. These terms are irrele-
vant to the intrinsic properties of the material. Therefore, we
assume the diagonal terms of the transmission matrix to be
zero for simplicity. It is noticed that the magnetic topological
insulator thin film can be regarded as a quasi-two-dimensional
(2D) system with an insulating bulk and conducting edge
channels. Electrons can only propagate from one terminal to
the next-neighboring terminal along the “edge” of the quasi-
2D system. Thus, only the transmission coefficients between
two neighboring terminals are nonzero.

Figure 1(b) shows the transport coefficients of the Chern
insulator phase as functions of the film thickness nz. It is
the difference between the clockwise and counterclockwise
channels (i.e., T Chern

2 − T Chern
1 ) that characterizes the Chern
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insulator phase with T Chern
1 being the contributions from

side surfaces. For thin films, we notice that T Chern
1(3) = 0 and

T Chern
2 = 1, which indicates that only the chiral currents on the

top and bottom surfaces contribute to the transport. For thick
films, T Chern

1(2) increase with increasing film thickness due to the
increasing conducting channels from the side surfaces. But
the chiral difference T Chern

2 − T Chern
1 = 1 remains quantized,

which establishes the Chern insulator phase [Fig. 1(c)].
Figure 1(f) shows the transport coefficients of the axion

insulator phase as functions of the film thickness nz. We ob-
serve T Axion

1 = T Axion
2 , which indicates the vanishing of the net

chiral current and agrees well with the magnetic compensated
nature of axion insulators. Due to the contributions of side sur-
faces, T Axion

1(2) increases with increasing film thickness nz. We
calculate T Axion

1(2) − T Chern
2 as a function of nz. For thick films,

T Axion
1(2) − T Chern

1 = 1/2, indicating that the system corresponds
to an axion insulator with a half-quantized counterpropagating
current. For thin films, the half-quantized counterpropagating
current is strongly suppressed. The hybridization effect in
the axion insulator phase can be observed more clearly in
Fig. 1(g).

In experiments, T1, T2, and T3 can be measured through
the nonlocal measurement [28,48,49] by adopting the four-
terminal Hall-bar setup [see Fig. 1(d) and Sec. SI of the
Supplemental Material [42] for more details]. The axion and
Chern insulator phases can be tuned by applying an external
magnetic field [1,20,21,56]. To simulate this process, we con-
sider a more general case with a fixed mt = 0.15 and a varying
mb. Figure 1(h) illustrates the transmission coefficients T1

and T2 as functions of mb, which shows three plateaus with
the values p1 = 1.61, p2 = 1.11, and p3 = 0.61. For mb > 0,
the Chern insulator phase is characterized by the difference
p1 − p3 = 1. On the other hand, for mb < 0, the axion in-
sulator phase is identified by p1 − p2 = p2 − p3 = 0.5. This
scenario offers the possibility of experimentally detecting the
half-quantized counterpropagating chiral currents in axion
insulators and is able to distinguish axion insulators from
normal insulators. Near the critical value mb = 0, the shift of
T1 and T2 from plateaus p1, p2, and p3 can be attributed to the
confinement effect along the x and y directions (see Sec. SI of
the Supplemental Material [42] for more details).

IV. SIDE-SURFACE-MEDIATED HYBRIDIZATION

The unique transport signatures of the axion insulator
phase indicate the existence of counterpropagating currents
near the top and bottom surfaces, which is confirmed by
checking the spectra and the corresponding wave-function
distributions shown in Figs. 2(a)–2(f). The red points corre-
spond to the diagonal hinge states shown in Fig. 2(c), and
the wave-function distributions of the blue points are opposite
to that of the red points, which are mainly located at the
off-diagonal hinges [Fig. 2(c)]. From the spectrum shown in
Fig. 2(a), we observe that the diagonal hinge states and the
off-diagonal hinge states have opposite velocities. Therefore,
as shown in the inset in Fig. 2(c), it is the hinge states that
establish the counterpropagating chiral currents in the axion
insulator phase. Moreover, at ky = 0, the two states couple

FIG. 2. (a) The spectrum of the axion insulator phase as a
function of ky. Here, the color scheme indicates the wave-function
distribution shown in (c) and (d). (b) The hybridization energy gap
�E at ky = 0 as a function of the film thickness nz. The inset shows
�E exhibits a linear relationship as a function of 1/nz. (e) and (f) The
probability distributions |ψ (x = 1, z)|2 [the area in the dashed frame
in (e) and (f)] as functions of z at ky = −0.01 (red), ky = 0 (green),
and ky = 0.01 (blue) with film thickness (e) nz = 20 and (f) nz = 60,
respectively. The results are calculated in the axion insulator phase
with the periodic boundary condition along the y direction and the
open boundary conditions along the x and z directions. The system
sizes are (a), (c)–(e) nx = nz = 20, (b) nx = 20, and (f) nx = 20 and
nz = 60, respectively.

together [Fig. 2(d)], and the spectrum opens a hybridization
energy gap [Fig. 2(a)].

By checking the wave-function distributions, we found that
hinge states are not that localized, and they can penetrate
deep into the bulk. The above scenarios can be observed more
clearly in Figs. 2(e) and 2(f), where we plot |ψ (x = 1, z)|2 as
a function of z at different ky for different film thicknesses nz.
At ky = 0, the wave function is uniformly distributed inside
the bulk for 3 < z < nz − 3. At ky �= 0, the wave-function dis-
tribution |ψ (x = 1, z)|2 of the surface states exhibits a linear
decrease or increase as a function of z, which indicates that
the top and bottom surface states are strongly hybridized.

The hybridization gap decays with increasing thickness
nz as �E ∼ 1/nz [Fig. 2(b)], which is distinct from the
hybridization effect in topological insulators, where the hy-
bridization gap exhibits an exponential decay with an increase
of system size [34–37]. In fact, the counterpropagating
currents are bridged by a massless Dirac fermion. As a
result, the hybridization effect in axion insulators is much
stronger compared to that of topological insulators, where the
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FIG. 3. (a) The side surface of the axion insulator phase can be
described by a massless region sandwiched by two massive regions.
(b) The topological insulator can be described by a massive region
sandwiched by two massive regions. (c), (d) Probability density of
the solutions in the mass domains at kx = 0. Here, green, yellow,
and white regions are characterized by different topological masses,
respectively. (e) The hybridization gap �E of the solution in (d) as a
function of L. We take m = 0.2 in (c)–(e).

counterpropagating currents are hybridized via a fully gapped
bulk [34–37].

V. EFFECTIVE MODEL ANALYSIS

Now, we discuss the physical picture of the hybridization
effect in axion insulators. Because the bulk of the mag-
netic topological insulator is insulating, it is effectively a
closed 2D surface with six facets [16,50]. In the absence
of magnetization, the effective Hamiltonian of the Dirac
fermions for the surface states can be written as Heff (k) =
vh̄(k × σ ) · n [37,51]. The different facets have different ef-
fective Hamiltonians respective to different normal vectors n.
More specifically, the effective Hamiltonian can be written as
HAxion

t/b = ±vh̄(kxσy − kyσx ) ± mσz for axion insulators with
antiparallel magnetism on the top and bottom surfaces, respec-
tively [57,58]. The spectra open gaps on the top and bottom
facets, and the Dirac fermions gain the same mass for the
axion insulator phase. Thus, the effective Hamiltonians (see
Sec. SIII of the Supplemental Material [42] for more details)
for the side facets can be written as Hside = vh̄(kxσz − kzσx ) +
m(z)σz [16,52,59]. Here, m(z) > 0 when z is near the top and
bottom facets in the axion insulator, and m(z) = 0 elsewhere
[Fig. 3(a)].

Let us first review the famous Jackiw-Rebbi solution
[60] in one dimension with the Hamiltonian h = −ivh̄∂zσx +
m(z)σz and m(z) = mI for z < 0 and m(z) = mII for z > 0.
Here, we assume mI > 0 for simplicity. For mII = mI, the
system only hosts the bulk states E = ±√

v2k2
z + (mI )2 ex-

tending to the whole space. For mII � 0, there exists a solution
of zero energy E = 0 with the corresponding wave function
φ(z) = C(i, 1)e−|m(z)vz|/h̄. Hence, the wave function of the
zero mode decays exponentially for mII < 0, but can percolate
the whole system for the massless case with mII = 0 [shown
in Fig. 3(c)].

The axion insulator is equivalent to the 1D domain-wall
structure across which the Dirac fermion mass is positive
when z < −L/2 and z > L/2 and zero when −L/2 < z <

L/2 [24,25]. In the limit L → 0, there is only the bulk state
with the energy gap �E = 2m. In the limit L → ∞, the sys-
tem can be regarded as two copies of the Jackiw-Rebbi system
with two zero-energy modes percolating the whole system.
Therefore, when L varies from ∞ to zero, the energy gap of
the system varies from 2m to 0. The probability density of
the solution is uniformly distributed in the massless region.
Hence, the hybridization gap decays as 1/L. The states on
opposite domains are always bridged by the massless Dirac
fermion [see Fig. 3(d)].

The above scenario for axion insulators [solid blue line in
Fig. 3(d)] is distinct from the case of topological insulators
[red dashed line in Fig. 3(d)]. The topological insulator hosts
a nonzero topological mass inside the bulk. In topological
insulators, the probability decays exponentially when z is
away from the domain wall. Thus, the hybridization gap �E

depicting the hybridization between the two domains also
decays exponentially with the sample length L as �E ∼ e−L

[34–37].
In Sec. SIII of the Supplemental Material [42], we inves-

tigate the hybridization effect in the Chern insulator phase.
With an increase of the film thickness, we show that the
hybridization effect is absent in the Chern insulator phase.
The distinct decay patterns of the hybridization gap in the
Chern and axion insulator phases explain the different trans-
port properties shown in Figs. 1(b) and 1(f). Furthermore, in
Sec. SIV of the Supplemental Material [42], we investigate
the hybridization effect in a two-dimensional system with
multiple topological mass domains. The above scenarios for
the axion insulator phase are further confirmed.

VI. CONCLUSION AND DISCUSSION

We study the transport signatures of the axion insulator
phase in magnetic topological insulators. We show that the
half-quantized counterpropagating current can be extracted
in the axion insulator phase, which provides a transport sig-
nature to identify it in experiments. We argue that the shift
of the conductance from half quantization can be attributed
to the side-surface-mediated hybridization effect. Moreover,
we reveal that the half-quantized counterpropagating current
is strongly suppressed in axion insulator thin films due to the
strong hybridization effect. The power-law decay of the hy-
bridization gap manifests a different kind of finite-size effect,
which can be immediately measured in experiments.

Even though the counterpropagating chiral currents in
the nonlocal transport can provide signatures for the axion
insulator phase, it is still hard to directly observe the re-
sistance expected for the half-quantized counterpropagating
edge current in the Hall-bar measurement of an axion insulator
[27,28]. Our study shows that the hybridization effect in axion
insulators can strongly suppress the half-quantized counter-
propagating currents, which provides a potential mechanism
to interpret the experimental result.

Besides nonlocal transport, the power-law decay of the
edge-current distribution in axion insulators has been exten-
sively studied recently [24,25]. Our findings are consistent
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with the former works. In addition, we systematically in-
vestigate the strong hybridization effect exemplified by the
power-law decay of the edge-current distribution and its im-
pact on the transport properties of axion insulators.
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