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To explore the non-Euclidean generalization of higher-order topological phenomena, we construct a higher-
order topological insulator model in hyperbolic lattices by breaking the time-reversal symmetry (TRS) of
quantum spin Hall insulators. We investigate three kinds of hyperbolic lattices, i.e., hyperbolic {4, 5}, {8, 3},
and {12, 3} lattices, respectively. The non-Euclidean higher-order topological behavior is characterized by
zero-energy effective corner states appearing in hyperbolic lattices. By adjusting the variation period of the
TRS breaking term, we obtain 4, 8, and 12 zero-energy effective corner states in these three different hyperbolic
lattices, respectively. It is found that the number of zero-energy effective corner states of a hyperbolic lattice
depends on the variation period of the TRS breaking term. The real-space quadrupole moment is employed to
characterize the higher-order topology of the hyperbolic lattice with four zero-energy effective corner states.
Via symmetry analysis, it is confirmed that the hyperbolic zero-energy effective corner states are protected by
the particle-hole symmetry P, the effective chiral symmetry Smz, and combined symmetries CpT and Cpmz.
The hyperbolic zero-energy effective corner states remain stable unless these four symmetries are broken
simultaneously. The topological nature of hyperbolic zero-energy effective corner states is further confirmed
by checking the robustness of the zero-energy modes in the hyperbolic lattices in the presence of disorder. Our
paper provides a route for research on hyperbolic higher-order topological insulators in non-Euclidean geometric
systems.
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I. INTRODUCTION

The study of topological insulators is an important field
in condensed matter physics [1–6]. Topological insulators
in the d-dimensional geometry host a d-dimensional gapped
bulk and (d − 1)-dimensional gapless boundary states [7–12].
These boundary states are protected by the topological prop-
erties of the bulk, characterized by a quantized number
called the topological invariant [1,9,13–15]. Recently, the
notion of topological insulators has been generalized, and
a class of topological materials called higher-order topo-
logical insulators (HOTIs) has attracted increasing research
interest [16–50]. In comparison with conventional first-order
topological insulators, the HOTIs possess topologically lo-
calized states that are at least two dimensions lower than
the bulk, namely, an nth-order topological insulator is char-
acterized by (d − n)-dimensional gapless boundary states
for d-dimensional bulk system. The HOTIs can be real-
ized in a wide variety of systems, such as bismuth [20],
phononic [42], photonic [43,50], microwave [44], acous-
tic metamaterial [45,46], and electrical circuit systems [47].
In two-dimensional (2D) geometry, the HOTIs refer to
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second-order topological insulators. A second-order topolog-
ical insulator in 2D geometry has a gapped 2D bulk state
and gapped one-dimensional (1D) boundary state, but has
topologically protected gapless zero-dimensional (0D) corner
states localized at the intersections between 1D boundaries
[23,24,27–47].

In addition to Euclidean geometry, non-Euclidean ge-
ometry also possesses abundant novel physical phenomena.
Hyperbolic lattices with constant negative curvature are
promising platforms for fault-tolerant quantum computing
[51–55]. Inspired by recent experimental realizations of hy-
perbolic lattices in circuit quantum electrodynamics [56], a
considerable number of theoretical studies and experimen-
tal observations of hyperbolic lattices have been reported
[57–77]. Based on the Riemann surface theory and alge-
braic geometry framework, a hyperbolic lattice generalization
of Bloch band theory and crystallography has been pro-
posed [57–62]. Recently, the non-Euclidean generalization
of topological phenomena has also received enthusiastic at-
tention [63–70]. Yu et al. proposed a non-Euclidean analog
of the quantum spin Hall effect in hyperbolic lattices [63].
Subsequently, the topological phase transition and transport
properties of Chern insulator in a hyperbolic lattice were
explored [65]. Urwyler et al. investigated the topological
aspects arising in hyperbolic band theory based on the
hyperbolic Haldane model and the hyperbolic Kane-Mele
model [66]. It is noted that an experimental demonstration of
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topological hyperbolic lattices on an electric circuit network
has been reported by Zhang et al. [64]. In their work, in ad-
dition to the theoretical proposal and experimental simulation
of the hyperbolic Haldane model, they also showed that the
fractal-like midgap higher-order zero-energy modes appear
in deformed hyperbolic lattices, in which a pair of distinct
coupling strengths is introduced [64]. Motivated by recent
theoretical progress and experimental realization in topolog-
ical hyperbolic lattices, further exploring the non-Euclidean
generalization of higher-order topological phenomena is a
fascinating issue. In this paper, we aim to investigate a non-
Euclidean analog of HOTIs. We construct a HOTI model in
hyperbolic lattices by introducing a time-reversal symmetry
(TRS) breaking Wilson mass term into the quantum spin
Hall insulator. For concreteness, the hyperbolic {4, 5}, {8, 3},
and {12, 3} lattices are considered, respectively. The non-
Euclidean higher-order topological behavior is characterized
by zero-energy effective corner states appearing in hyperbolic
lattices. We use a real-space quadrupole moment to charac-
terize the higher-order topology of the hyperbolic lattice with
four zero-energy effective corner states. The symmetry anal-
ysis and robustness against weak disorder further confirm the
topological nature of hyperbolic zero-energy effective corner
states. It is noted that the hyperbolic system proposed in this
paper breaks the translation symmetry, therefore the crystal
momentum is no longer a good quantum number. On the other
hand, we find that the value of the edge gap in the hyperbolic
system decreases with increasing system size, which implies
that the edge gap may vanish in the thermodynamic limit (see
Appendix C for more details). These issues will be investi-
gated in our future work.

The rest of the paper is organized as follows. In Sec. II,
we introduce a HOTI model in real space into hyperbolic
{4, 5}, {8, 3}, and {12, 3} lattices and calculate the energy
spectrum of the system and the probability distribution of the
(near) zero-energy eigenstates when the Wilson mass term is
turned off or on. In Sec. III, we introduce the numerical cal-
culations of the real-space quadrupole moment. In Sec. IV A,
we analyze the symmetry of hyperbolic HOTI systems with
different types of perturbations, and show the energy spectrum
under the effect of different perturbations. In Sec. IV B, we
demonstrate the robustness of zero-energy effective corner
states against symmetry-preserving weak disorder. Finally, we
summarize our conclusions in Sec. V.

II. ZERO-ENERGY EFFECTIVE CORNER STATES
IN HYPERBOLIC LATTICES

In this paper, we adopt Schläfli symbol {p, q} to label the
hyperbolic lattice in the Poincaré disk, which is obtained by
projecting a hyperbolic plane with constant negative curvature
into the unit circle in Euclidean plane [78–80]. p represents
the number of vertices of regular polygons that are uniformly
tessellated in hyperbolic space, and q means the number of
polygons adjacent to the same vertex. In Euclidean geometry,
a regular polygon uniformly tessellated in a plane must satisfy
the relation (p − 2)(q − 2) = 4. This means that only three
regular polygons {3, 6}, {4, 4}, and {6, 3} can be uniformly
tessellated in the Euclidean plane. However, there are infinite
kinds of regular polygons in the hyperbolic plane, which is

guaranteed by the relation (p − 2)(q − 2) > 4. It provides
support for the unique physical phenomena in hyperbolic
lattices.

Quantum spin Hall insulators are a promising platform
for realizing HOTIs [16,17,35,38,39,41]. First, we introduce
Bernevig-Hughes-Zhang (BHZ) model [10,11] of quantum
spin Hall insulators to hyperbolic lattice in the real space,
which can be described by the following tight-binding model
Hamiltonian [35,81]:

H0 = −1

2

∑
〈 j,k〉

c†
j it1[szτx cos(θ jk ) + s0τy sin(θ jk )]ck

−1

2

∑
〈 j,k〉

c†
j t2s0τzck +

∑
j

(M + 2t2)c†
j s0τzc j, (1)

where c†
j and c j are the creation and annihilation operators of

electrons on site j. θ jk represents the polar angle of the vector
from site k to site j in the Poincaré disk. s0 is the identity
matrix, sx,y,z and τx,y,z are the Pauli matrices representing spin
and orbital, respectively. M denotes the Dirac mass, t1 is the
spin-orbit coupling strength, and t2 is the hopping amplitude.
It is worth noting that the Hamiltonian H0 does not possess
translation symmetry in hyperbolic lattices in the presence of
the polar angles θ jk because θ jk are defined in the Poincaré
disk in the Euclidean plane, not projected from hyperbolic
plane [65]. Therefore, we will apply the numerical calculation
approach in the real space to explore the topological properties
of the hyperbolic lattices.

Before constructing higher-order topological states, we
discuss the symmetries of Hamiltonian H0. Similar to that in
the Euclidean geometric system, Hamiltonian H0 in the hyper-
bolic lattice possesses TRS T H0T −1 = H0 with TRS operator
T = isyτ0K (where K is the complex conjugation), particle-
hole symmetry (PHS) PH0P−1 = −H0 with PHS operator
P = szτxK, and chiral symmetry SH0S−1 = −H0 with chiral
symmetry operator S = PT . In addition to the fundamental
symmetries, Hamiltonian H0 in the hyperbolic lattice also
satisfies some spatial symmetries. For the hyperbolic {p, q}
lattice, H0 has mirror symmetry [H0, mz] = 0 with mirror
symmetry operator mz = szτ0 and p-fold rotational symme-
try [H0,Cp] = 0. The p-fold rotational symmetry operator is
Cp = e−i π

p szτzRp, where Rp is an orthogonal matrix permuting
the vertices of the hyperbolic {p, q} lattice to rotate the whole
system by an angle of 2π/p.

Here, for concreteness, the hyperbolic {4, 5}, {8, 3}, and
{12, 3} lattices are constructed in the Poincaré disk as shown
in Figs. 1(a)–1(c), respectively. Energy spectra of Hamiltonian
H0 are plotted in Figs. 1(d)–1(f). To quantify the localiza-
tion degree of each energy on the edge, a quantity V (E ) =∑

j∈Nedge
|φ j (E )|2/∑

j∈Ntotal
|φ j (E )|2 of energy E is calculated

[64], where φ j (E ) is the element of the eigenstate with the
energy E at site j, Ntotal represents all the sites of the sam-
ple, and Nedge refers to the sites that locate at the edge. In
Figs. 1(d)–1(f), there are 248, 2120, and 6708 sites at the
edge, respectively. The color bars in Figs. 1(d)–1(f) represent
the quantity V (E ). In previous work, the gapless chiral edge
states were presented when the Chern insulator model was
applied to a hyperbolic lattice [65]. Here, we plot the prob-
ability distribution of the edge states of the BHZ model H0
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FIG. 1. Schematic illustration of the hyperbolic (a) {4, 5},
(b) {8, 3}, and (c) {12, 3} lattice. In the Poincaré disk, the solid
black line means the distance between the nearest neighbors of two
lattice sites, and any solid black line in the same disk represents the
same distance. Energy spectrum of Hamiltonian H0 on the hyperbolic
(d) {4, 5}, (e) {8, 3}, and (f) {12, 3} lattice. The color bar corresponds
to the quantity V (E ) for the localization degree at the edge. (g) The
probability distribution of four eigenstates near zero energy (En =
−0.0091, −0.0091, 0.0091, 0.0091) marked by the red arrow in (d).
The parameters are M = −1 and the lattice site number N = 436
in (d) and (g). (h) The probability distribution of four eigenstates
near zero energy (En = −0.0012, −0.0012, 0.0012, 0.0012) marked
by the red arrow in (e). The parameters are M = −1.2 and N = 2888
in (e) and (h). (i) The probability distribution of four eigenstates
near zero energy (En = −0.0005, −0.0005, 0.0005, 0.0005) marked
by the red arrow in (f). The parameters are M = −1 and N = 7680
in (f) and (i). Here, we take the parameters t1 = t2 = 1.

in the hyperbolic {4, 5}, {8, 3}, and {12, 3} lattices, as shown
in Figs. 1(g)–1(i). It is found that gapless edge states exist in
three different hyperbolic lattices and the double degeneracy
of the edge states is guaranteed by TRS.

One of the ways to realize HOTIs is to construct mass
domain walls on the boundaries of first-order topological
insulators [16,17,22,24,32–35,38,39]. The energy gap of the
first-order topological insulator can be opened by breaking
the TRS, therefore we construct the following Hamiltonian
[35,81]:

H1 = H0 + Hg, (2)

with

Hg = g

2

∑
〈 j,k〉

c†
j cos(ηθ jk )sxτxck, (3)

where Hg is a Wilson mass term and g is the magnitude of the
Wilson mass. η can only take even numbers, which is used
to adjust the variation period of the Wilson mass. It is worth
noting that Hamiltonian H1 becomes non-Hermitian when η

takes odd numbers. The TRS breaking term Hg gaps out 1D
edge states in the first-order topological insulator. In addition,
since cos(ηθ jk ) in Hg is alternating positive and negative, Hg

can construct new mass domain walls on the edge. We give
more details of Hamiltonian H1 in Appendix A.

FIG. 2. (a) Energy spectrum of the Hamiltonian H1 in the hy-
perbolic {4, 5} lattice. (b) The probability distribution of the four
zero-energy eigenstates marked with red dots in (a). The parameters
are M = −1, g = 0.5, η = 2, and N = 436 in (a) and (b). (c) Energy
spectrum of Hamiltonian H1 in the hyperbolic {8, 3} lattice. (d) The
probability distribution of the eight zero-energy eigenstates marked
with red dots in (c). The parameters are M = −1.2, g = 0.5, η = 4,
and N = 2888 in (c) and (d). (e) Energy spectrum of Hamiltonian
H1 in the hyperbolic {12, 3} lattice. (f) The probability distribution
of the 12 zero-energy eigenstates marked with red dots in (e). The
parameters are M = −1, g = 0.5, η = 6, and N = 7680 in (e) and
(f). Here, we take the parameters t1 = t2 = 1.

Next, we turn on the Hg term to explore higher-order
topological states. Here we first set η = 2 and use the Jackiw-
Rebbi mechanism to analyze the newly generated Dirac-mass
domain walls [82]. The sign change of Hg is modulated by
cos(ηθ jk ), and when η = 2, Hg is divided into four parts with
alternating positive and negative signs in the whole plane
by cos(ηθ jk ). Then, the boundary between the positive and
negative regions of Dirac mass is the domain wall with the
Dirac mass equal to zero. When η = 2, there are four such
domain walls. As shown in Fig. 2(a), there are four zero
energies marked with red dots in the energy gap opened by
the Hg term. In Fig. 2(b), we show the probability distribu-
tion of these four zero-energy eigenstates and find that they
are localized exactly at the new domain walls constructed
by Hg. This is consistent with our analysis results. These
four zero-energy modes are called hyperbolic effective corner
states, since there are not real geometric corners (intersections
between 1D boundaries) in the Poincaré disk corresponding to
a hyperbolic lattice [64]. Then, we apply Hamiltonian H1 with
η = 4 and η = 6 in the hyperbolic {8, 3} and {12, 3} lattices,
respectively. By diagonalizing Hamiltonian H1 in two differ-
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ent hyperbolic lattices, we obtain partial energies near zero
energy, as shown in Figs. 2(c) and 2(e). It can be found that
there are 8 and 12 in-gap zero energies, respectively. Similarly,
we calculate the probability distributions of these 8 (12) zero-
energy eigenstates and find that they all exhibit a 0D form
localized at the edge of the hyperbolic lattice. The 8 and 12
zero-energy effective corner states in the hyperbolic {8, 3} and
{12, 3} lattices are plotted in Figs. 2(d) and 2(f), respectively.
Numerical calculations show that the number of zero-energy
effective corner states of a hyperbolic lattice can be tuned by
changing the value of η. In hyperbolic systems, η = p/2 is
not a necessary condition to produce the zero-energy effective
corner states. There can also exit 12 zero-energy effective
corner states in the hyperbolic {8, 3} lattice when the value
of η in Hamiltonian H1 is taken as η = 6 for the hyperbolic
{8, 3} lattice. In Appendix B, we discuss the existence of zero-
energy effective corner states in the hyperbolic lattice with
η �= p/2, and compare the difference of symmetry between
the two cases (i.e., η = p/2 and η �= p/2).

III. THE QUADRUPOLE MOMENT

In Euclidean space, the quadrupole moment can be used as
a topological invariant to characterize the higher-order topol-
ogy, and it can be expressed in momentum space [23,28] and
real space [39,81,83–87], respectively. Due to the fact that the
translation symmetry is lacking in the hyperbolic lattice model
considered, we utilize the real-space quadrupole moment to
characterize the topological properties of the zero-energy ef-
fective corner states. The real-space quadrupole moment Qxy

is given by [39,81,83–87]

Qxy =
[

1

2π
Im log det(�†

occÛ�occ) − Q0

]
mod 1, (4)

with

Q0 = 1

2

∑
j

x jy j/A, (5)

where �occ are the occupied eigenstates of H1, Û is a diagonal
matrix whose diagonal elements are e2π ix j y j/A, and (x j, y j )
denotes the rescaled coordinate of the jth site in the Poincaré
disk. A = πr2 is the area of the disk with the radius r = 1.
It is worth noting that the area A is computed with respect
to the Euclidean metric. In calculations, we need to translate
the coordinates in interval x j, y j ∈ (−1, 1) to interval x j, y j ∈
(0, 2). A HOTI is characterized by the quadrupole moment
Qxy = 0.5, while the quadrupole moment of a trivial system is
equal to 0.

In Fig. 3(a), we show the evolution of the energy spec-
trum of Hamiltonian H1 in the hyperbolic {4, 5} lattice with
respect to the Wilson mass g. When the Wilson mass term
Hg is turned on, the system possesses four effective corner
states at zero energy. While the strength of the Wilson mass
term Hg exceeds a certain value g = 1.565, the zero-energy
effective corner states are destroyed and an energy gap of the
system appears. To explore this topological phase transition
process, we calculate the real-space quadrupole moment as
a function of Wilson mass g as shown in Fig. 3(b). It is
found that the real-space quadrupole moment changes from

FIG. 3. (a) The energy spectrum of Hamiltonian H1 in the hy-
perbolic {4, 5} lattice with respect to g. (b) The quadrupole moment
Qxy as a function of g. Here, we take the parameters M = −1,
t1 = t2 = 1, η = 2, and N = 2320.

Qxy = 0.5 to Qxy = 0 at g = 1.711. It is obvious that the
interval in which the zero-energy effective corner states exist
can match well with the plateau of the quadrupole moment
values with Qxy = 0.5. A slight difference of the phase tran-
sition point between Figs. 3(a) and 3(b) is owing to the
finite-size effect. Thus, the four zero-energy effective corner
states, which are characterized by the real-space quadrupole
moment, are a hallmark feature of the hyperbolic higher-order
topology.

However, the real-space quadrupole moment does not ap-
ply to hyperbolic lattices with 8 or 12 zero-energy effective
corner states. It is an intriguing topic to explore real-space
topological invariants that can characterize the hyperbolic
higher-order topology with more than four corner states.

IV. STABILITY OF ZERO-ENERGY
EFFECTIVE CORNER STATES

In this section, we will explore the effects of perturbation
and disorder on the zero-energy effective corner states. First,
we examine whether zero-energy effective corner states in hy-
perbolic lattices are protected by specific symmetries through
symmetry analysis and the responses of zero-energy effective
corner states to different perturbations. Then, we present the
robustness of the zero-energy modes in the hyperbolic lattices
against weak disorder.

A. Symmetry analysis

It is known that by adding perturbations to the system,
the gapless topological boundary states remain stable as
long as the symmetry protecting the topological system is
preserved. In this subsection, we add a uniform perturba-
tion �mn = U

∑
j c†

j smτnc j to Hamiltonian H1 to examine
the stability of zero-energy effective corner states. U is the
strength of the perturbation, and m, n = 0, x, y, z. Here, for
concreteness, we take the {4, 5} lattice as an example to
show the changes of the near-zero energy spectrum under the
effect of different perturbations. The cases of the {8, 3} lattice
and the {12, 3} lattice are similar to those in the {4, 5} lattice.
In addition, we calculate the quadrupole moment of the sys-
tem under the effect of different perturbations respectively. As
shown in Fig. 4, the zero-energy modes remain stable in the
presence of ten kinds of uniform perturbations, which are �0y

[Fig. 4(c)], �0z [Fig. 4(d)], �x0 [Fig. 4(e)], �xx [Fig. 4(f)], �xy

[Fig. 4(g)], �yy [Fig. 4(k)], �yz [Fig. 4(l)], �z0 [Fig. 4(m)],
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FIG. 4. (a) Energy spectrum of Hamiltonian H1 in the hyperbolic {4, 5} lattice. (b)–(p) Energy spectrum of H1 + �mn in the hyperbolic
{4, 5} lattice, where m, n = 0, x, y, z. The quadrupole moment in different cases is shown in the insets. Here, we take the parameters M = −1,
t1 = t2 = 1, g = 0.5, η = 2, the perturbation strength U = 0.01, and N = 436.

�zx [Fig. 4(n)], and �zz [Fig. 4(p)], respectively. The other
five kinds of perturbations can destroy the zero-energy modes.
It is found that the quadrupole moment Qxy = 0.5 for the
system in which the zero energy mode remains stable, while
the quadrupole moment of the system in which the zero en-
ergy mode is destroyed deviates from the quantized value
0.5. Like conventional topological insulators, topologically
localized states in HOTIs are likewise protected by specific
symmetries. Next, we explore the symmetries that protect
zero-energy effective corner states in hyperbolic lattices by
analyzing the changes in symmetry under perturbation.

The results of symmetry analysis are presented in Table I.
In the absence of perturbation �mn, Hamiltonian H1 satisfies
PHS, mirror symmetries mx and my, and combined symme-
tries Smz, CpT , Cpmz. Comparing with Fig. 4, we find that the
zero-energy modes remain stable when one of the PHS P, the
effective chiral symmetry Seff = Smz, and combined symme-
tries CpT and Cpmz is preserved, while the zero-energy modes
are broken when these four symmetries are absent simultane-
ously. When perturbations is considered, the system respects
at least two symmetries protecting the corner modes except for
�0y and �zx. Therefore, to verify whether each of these four
symmetries can provide protection for the zero-energy states
alone, we exclude the interference of redundant symmetries
by combining two different perturbations. In Table II, we
show the results of the symmetry analysis of the Hamiltonian

H1 under the effect of four combined perturbations �kl,mn =∑
j c†

j (U1skτl + U2smτn)c j . When combined �yz,zz perturba-
tion is applied to Hamiltonian H1, the system preserves only
PHS P. Similarly, when �yy,z0, �xy,yy, and �z0,zz perturbation
are applied to Hamiltonian H1, the system preserves only
Smz, CpT , and Cpmz, respectively. The energy spectrum of
Hamiltonian H1 in the hyperbolic {4, 5} lattice under the effect
of four combined perturbations is shown in Fig. 5, and we cal-
culate the quadrupole moment of these systems respectively.
After eliminating redundant symmetries, we find that any one
of these four symmetries preserves the topological properties
of the zero-energy effective corner states. This is in agreement
with the previously discussed results and furthermore shows
that any one of the PHS P, effective chiral symmetry Smz,
CpT , and Cpmz can protect the zero-energy effective corner
states. Moreover, from the perspective of the quadrupole mo-
ment, these symmetries can guarantee that the quadrupole
moment is quantized. When these four symmetries are broken
simultaneously, the quadrupole moment deviates from the
quantization (0 or 0.5).

B. Robustness of the zero-energy modes against disorder

Now, we study the zero-energy effective corner states in
the hyperbolic lattices with disorder. Here, we take two kinds
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TABLE I. Symmetry analysis of Hamiltonian H1 without (U =
0) and with (U �= 0) the perturbation terms �mn on the hyperbolic
{4, 5}, {8, 3}, and {12, 3} lattices. Here, for the hyperbolic {4, 5},
{8, 3}, and {12, 3} lattices, Cp refers to 4-fold, 8-fold, and 12-fold
rotational symmetries, respectively. Check mark indicates that the
symmetry in this case is preserved, and a cross mark means the
symmetry is absent.

U �= 0

U = 0 0x 0y 0z x0 xx xy xz y0 yx yy yz z0 zx zy zz

P � × × � � � � × × × × � × × × �
T × × × × × × × × × × × × × × × ×
S × × × × × × × × × × × × × × × ×
mx � � � � � � � � × × × × × × × ×
my � × × � × � � × � × × � × � � ×
mz × × × × × × × × × × × × × × × ×
Smz � × � � � � × × × × � � � � × ×
Cp × × × × × × × × × × × × × × × ×
CpT � × × � × × � × × × � × × × × ×
Cpmx × × × × × × × × × × × × × × × ×
Cpmy × × × × × × × × × × × × × × × ×
Cpmz � × × � × × × × × × × × � × × �

TABLE II. Symmetry analysis of the Hamiltonian H1 with the
combined perturbation terms �kl,mn = ∑

j c†
j (U1skτl + U2smτn)c j on

the hyperbolic {4, 5}, {8, 3}, and {12, 3} lattices. Here, for the hyper-
bolic {4, 5}, {8, 3}, and {12, 3} lattices, Cp refers to 4-fold, 8-fold, and
12-fold rotational symmetries, respectively. Check mark indicates
that the symmetry in this case is preserved, and a cross mark means
the symmetry is absent.

�yz,zz �yy,z0 �xy,yy �z0,zz

P � × × ×
Smz × � × ×
CpT × × � ×
Cpmz × × × �

FIG. 5. (a)–(d) Energy spectrum of H1 + �kl,mn in the hyperbolic
{4, 5} lattice, in which the type of combined perturbation is labeled.
The quadrupole moment in different cases is shown in the insets.
Here, we take the parameters M = −1, t1 = t2 = 1, g = 0.5, η = 2,
the perturbation strength U1 = 0.01, U2 = 0.02, and N = 436.

FIG. 6. The s0τz-type disorder: (a) Eigenenergy of H1 + �H1

as a function of the disorder strength W1 in the hyperbolic {4, 5}
lattice. (b) The quadrupole moment Qxy as a function of W1. The
error bar represents the standard deviation of 100 samples. (c) Energy
spectrum in the hyperbolic {4, 5} lattice when W1 = 0.5. (d) The
probability distribution of the four zero-energy modes [the red dots
in (c)]. The s0τx-type disorder: (e) Eigenenergy of H1 + �H2 as a
function of the disorder strength W2 in the hyperbolic {4, 5} lattice.
(f) The quadrupole moment Qxy as a function of W2. In (e) and (f),
we take only one sample. Here, we take the parameters M = −1,
t1 = t2 = 1, g = 0.5, η = 2, and N = 436.

of on-site disorder that is randomly distributed in the whole
sample as examples, which are, respectively, given by

�H1 = W1

∑
j

c†
jω j s0τzc j, (6)

�H2 = W2

∑
j

c†
jω js0τxc j, (7)

where W1,2 depict the disorder strength and ω j is uniformly
distributed within [−0.5, 0.5]. Both of them break the sym-
metries associated with the rotation symmetry including CpT
and Cpmz. The difference between �H1 and �H2 is that the
former preserves the PHS P and the effective chiral symmetry
Smz, while the latter breaks them.

In Fig. 6(a), we show the evolution of the energy spectrum
in the hyperbolic {4, 5} lattice for the disorder strength W1

with W2 = 0. The four degenerate zero-energy states remain
stable in weak disorder until the disorder strength exceeds
a certain value W1 = 1.837. Accordingly, we calculate the
quadrupole moment Qxy as a function of the disorder strength
W1 as shown in Fig. 6(b). It is obvious that the quadrupole
moment maintains a quantized plateau of Qxy = 0.5 when
the zero-energy states remains stable. This phenomenon is
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observed more clearly by plotting the spectrum and the prob-
ability distribution of the zero-energy states for W1 = 0.5
[Figs. 6(c) and 6(d)].

However, this robustness is not valid for all types of
disorders. For W1 = 0 and W2 �= 0, the weak s0τx-type dis-
order destroys the degenerate zero-energy states immediately,
and the quadrupole moment deviates from the quantization
[Figs. 6(e) and 6(f)]. Therefore, we show that the zero-energy
effective corner states are robust against weak disorder when
P and Smz are preserved.

V. CONCLUSION

In this paper, we investigate higher-order topological be-
havior of the hyperbolic lattices by introducing a TRS
breaking Wilson mass term into the quantum spin Hall in-
sulator. Three hyperbolic {4, 5}, {8, 3}, and {12, 3} lattices
are considered, respectively. By adjusting the variation pe-
riod of the TRS breaking term, different numbers zero-energy
effective corner states can appear in the hyperbolic lattices.
Based on numerical calculations of real-space quadrupole
moment in hyperbolic {4, 5} lattices, the system with these
zero-energy states are demonstrated to be HOTIs. Although
the real-space quadrupole moment can only characterize the
topological properties of the hyperbolic lattice with four zero-
energy effective corner states, we believe that the zero-energy
states in other hyperbolic lattices with similar responses to
perturbation and disorder are also topological. However, we
do not construct a topological invariant that can characterize
higher-order topological properties of hyperbolic lattices with
more zero-energy states, and we will continue to investigate
them in future work.

By analyzing the effects of different types of perturbations
on the system, we find that the hyperbolic zero-energy effec-
tive corner states are protected by four symmetries, which
are PHS P, effective chiral symmetry Seff , and combined
symmetries CpT and Cpmz. Moreover, we find that these
zero-energy states are robust against the weak disorder that
preserves these four symmetries, but they are broken under
the effect of the disorder that breaks these four symmetries.
Although our model does not possess translational symmetry
in the projected hyperbolic lattice, we demonstrate that the
zero-energy effective corner states in the hyperbolic lattice
are topologically nontrivial using a numerical calculation ap-
proach in the real space. We will continue to study hyperbolic
HOTIs with translation symmetry in our future work.

Note added. Recently, we became aware of a complemen-
tary study [88], which addresses similar problems from a
different perspective.
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APPENDIX A: CONSTRUCTION
OF THE HAMILTONIAN H1

In this Appendix, we present the details of the Hamiltonian
H1. Before presenting the construction details of H1, let us
review some concepts in the Poincaré disk model. The sites
in the Poincaré disk can be considered as all points of a unit
disk D = {z ∈ C, |z| < 1}. Therefore, the sites in the disk can
be expressed as z = x + iy = reiθ . The hyperbolic distance
between two points z, z′ ∈ D is given by [61]

d (z, z′) = κ arcosh

(
1 + 2|z − z′|2

(1 − |z|2)(1 − |z′|2)

)
, (A1)

where κ is the curvature radius. Next, we discuss the details in
Hamiltonian H1. Hamiltonian H1 is described as the following
equation:

H1 = − 1

2

∑
〈 j,k〉

c†
j it1[szτx cos(θ jk ) + s0τy sin(θ jk )]ck

− 1

2

∑
〈 j,k〉

c†
j t2s0τzck +

∑
j

(M + 2t2)c†
j s0τzc j

+ g

2

∑
〈 j,k〉

c†
j cos(ηθ jk )sxτxck, (A2)

where c†
j and c j are the creation and annihilation operators

of electrons on site j. θ jk represents the polar angle of the
vector from site k to site j in the Poincaré disk, which is given
by z j − zk = r jkeiθ jk . s0 is the identity matrix, sx,y,z and τx,y,z

are the Pauli matrices representing spin and orbital, respec-
tively. M denotes the Dirac mass, t1 is the spin-orbit coupling
strength, and t2 is the hopping amplitude between the near-
est neighbor sites. The nearest-neighbor distance here refers
to the nearest hyperbolic distance between two sites in the
Poincaré disk. The last term Hg = g

2

∑
〈 j,k〉 c†

j cos(ηθ jk )sxτxck

is the Wilson mass term, where η is used to tune the variation
period of the Wilson mass. η can only take even numbers.
If a Hermitian system satisfies Hg = H†

g , then cos(ηθ jk ) =
cos(ηθk j ) = cos[η(θ jk + π )]. When η takes an odd number,
this equation is not satisfied and the Hamiltonian becomes
non-Hermitian.

APPENDIX B: ZERO-ENERGY EFFECTIVE
CORNER STATES WITH η �= p/2

In the main text, we discuss the case where η = p/2. In
fact, when η is not equal to p/2, the zero-energy effective
corner states can also occur in the hyperbolic lattices. In this
Appendix, we discuss the electronic structure of the system
when η �= p/2. Moreover, by symmetry analysis, we compare
the difference of symmetry of the systems with η = p/2 and
η �= p/2.

In Fig. 7(a), we show the energy spectrum of Hamiltonian
H1 in the hyperbolic {8, 3} lattice when η = 6. It is found that
there are 12 zero energies marked with red dots in the energy
gap. These zero energies originate from the mass domain

125302-7



LIU, HUA, PENG, CHEN, AND ZHOU PHYSICAL REVIEW B 107, 125302 (2023)

FIG. 7. (a) Energy spectrum of Hamiltonian H1 in the hyperbolic
{8, 3} lattice. (b) The probability distribution of the 12 zero-energy
modes marked with red dots in (a). We take the parameter g = 1 in
(a) and (b). (c) The energy spectrum of the Hamiltonian H1 in the
hyperbolic {8, 3} lattice with respect to g. The parameters are M =
−1.2, t1 = t2 = 1, η = 6, N = 2888 in (a)–(c). (d) Energy spectrum
of Hamiltonian H1 in the hyperbolic {4, 5} lattice. (e) The probability
distribution of the eight zero-energy modes marked with red dots in
(d). We take the parameter g = 0.6 in (d) and (e). (f) The energy
spectrum of the Hamiltonian H1 in the hyperbolic {4, 5} lattice with
respect to g. The parameters are M = −1.5, t1 = t2 = 1, η = 4, N =
2320 in (d)–(f).

walls constructed by the Wilson mass term at the edge. As
shown in Fig. 7(b), these zero-energy eigenstates are local-
ized in zero dimensions at the edge of the finite hyperbolic
lattice. To study the changes that occur in the system when
the Wilson mass g is changed, we plot the energy spectrum
of the Hamiltonian H1 with respect to g in Fig. 7(c). We
can find that a Wilson mass of suitable strength forces the
edge of the finite hyperbolic lattice to produce the 0D mass
domain walls, resulting in zero-energy effective corner states.
These zero-energy effective corner states are destroyed when
the strength of the Wilson mass exceeds a critical value.
Without restricting to this case, we also observe a similar
phenomenon by applying Hamiltonian H1 with η = 4 �= p/2
to the hyperbolic {4, 5} lattice as shown in Figs. 7(d)–7(f), and
applying the Hamiltonian H1 with η = 2 �= p/2 to the hyper-
bolic {8, 3} lattice as shown in Figs. 8(a)–8(c). In the main
text, we present that the quadrupole moment can be used to
characterize the HOTI phase of a hyperbolic lattice with four
zero-energy states. Therefore, we plot the quadrupole moment
of Hamiltonian H1 in hyperbolic {8, 3} lattice as a function of
Wilson mass g when η = 2 in Fig. 8(d). In Fig. 8(d), except
for the shaded area, the platform with quadrupole moment
Qxy = 0.5 represents the HOTI phase with four zero-energy
states, while the platform with Qxy = 0 means that the system
is in topological trivial phase. The quadrupole moment is not
well-defined in a gapless system, so the quadrupole moment
value in the shaded area cannot correctly represent the phase
transition of the system.

Based on the symmetry analysis, we find that the Hamil-
tonian H1 preserves only the PHS P and the effective chiral
symmetry Smz when η �= p/2. And the two combined sym-
metries CpT and Cpmz associated with rotation symmetry are
not preserved. These results suggest that the variation period
of the Wilson mass determines the number of zero-energy

FIG. 8. (a) Energy spectrum of the Hamiltonian H1 in the hy-
perbolic {8, 3} lattice. (b) The probability distribution of the four
zero-energy modes marked with red dots in (a). We take the pa-
rameter g = 0.5 in (a) and (b). (c) The energy spectrum of the
Hamiltonian H1 in the hyperbolic {8, 3} lattice with respect to g.
(d) The quadrupole moment Qxy as a function of g. The gray shaded
area represents the area where the bulk energy gap is zero. Here, we
take the parameters M = −1.2, t1 = t2 = 1, η = 2, and N = 2888.

effective corner states, and the Wilson mass term at η �= p/2
is still able to induce the quantum spin Hall insulator to
transform into a HOTI with 2η zero-energy effective corner
states.

APPENDIX C: FINITE-SIZE EFFECT

In this Appendix, we explore the response of systems
with zero-energy effective corner states to changes in sample
size. In Figs. 9(a) and 9(b), we show the energy spectrum of
Hamiltonian H1 in samples of different sizes with respect to
Wilson mass g. In Fig. 9(c), we show the energy spectrum of
Hamiltonian H1 in the hyperbolic {4, 5} lattice, with the colors
of the dots representing samples of different sizes. The energy
gap where the zero-energy effective corner states are located
decreases as the size of the sample increases. To compare the
results in the Euclidean system, we take the example of the
square lattice. In Fig. 9(d), we show the energy spectrum of
Hamiltonian H1 in the square lattice, with the colors of the
dots representing square samples of different sizes. We find
that when the sample size changes, the energy gap of square
lattice in Euclidean system is stable, while the energy gap of
hyperbolic {4, 5} lattice decreases with the increase of sample
size. This is because the edge of the finite hyperbolic lattice
is not smooth and there are bonds with different orientations
on the edge. These bonds lead to the appearance of in-gap
local states, and the number of such bonds increases with the
increase in the size of the finite hyperbolic lattice, thus the
edge energy gap decreases gradually. A similar phenomenon
has been reported in the HOTIs on a fractal lattice, where the
energy gap also decreases as the system size increases [89].
However, this gap remains finite as the sample size approaches
the thermodynamic limit. Due to limitations in computa-
tional power, it is currently unclear whether the edge gap in
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FIG. 9. (a), (b) Energy spectrum of the Hamiltonian H1 in finite
hyperbolic {4, 5} lattices of different sizes with respect to g. We take
the number of sites N = 436 for (a) and N = 1008 for (b). (c) Energy
spectrum of the Hamiltonian H1 in finite hyperbolic {4, 5} lattices
of different sizes. The red dots, green diamonds, and blue circles
represent hyperbolic {4, 5} lattices with the number of sites N = 436,
N = 1008, and N = 2320, respectively. (d) Energy spectrum of the
Hamiltonian H1 in finite square lattices of different sizes. The red
dots, green diamonds, and blue circles represent square samples with
the number of sites N = 400, N = 900, and N = 1600, respectively.
Here, we take parameters M = −1, t1 = t2 = 1, g = 0.5, and η = 2.

hyperbolic lattices remains finite in the thermodynamic limit,
and this will be investigated in our future works.

APPENDIX D: HIGHER-ORDER HYPERBOLIC
TOPOLOGICAL INSULATORS WITH TIME-REVERSAL

SYMMETRY

In general, TRS breaking is not necessary for HO-
TIs. Many works on TRS-preserving HOTIs have been
proposed [16,17,20,22–24,27–29,32–36,38–40,43]. Here we
apply TRS-preserving quadrupole insulators (QIs) model to
the hyperbolic lattice [23]. The QI model in the real space can
be described by the following tight-binding model Hamilto-
nian [35]:

HQI = γ
∑

j

c†
j (�2 + �4)c j

+ λ

2

∑
〈 j,k〉

c†
j [| cos(θ jk )|�4 − i cos(θ jk )�3

+ | sin(θ jk )|�2 − i sin(θ jk )�1]ck, (D1)

where c†
j and c j are the creation and annihilation operators

of electrons on site j. θ jk represents the polar angle of the
vector from the site k to the site j in the Poincaré disk. The
vector from the site k to the site j mentioned here refers to
the vector composed of two points in the Euclidean plane,
not the geodesic line in the Poincaré disk model. �1 = −σyσx,
�2 = −σyσy, �3 = −σyσz, and �4 = σxσ0. σx,y,z are the Pauli
matrices acting on the sublattice, σ0 is the identity matrix. γ

represents the hopping amplitude between the sublattices of

FIG. 10. (a) Energy spectrum of Hamiltonian HQI in the hy-
perbolic {4, 5} lattice. (b) The probability distribution of the four
zero-energy modes [the red dots in (a)]. We take the parameter
λ = 1.5 in (a) and (b). (c) The energy spectrum of Hamiltonian HQI

in the hyperbolic {4, 5} lattice with respect to λ. (d) The quadrupole
moment Qxy as a function of λ. (e) The probability distribution of
the bulk states (E = 0.3972) when λ = 0.75. (f) The probability
distribution of the local states (E = 0.1293) [the green dots in (a)].
Here, we take the parameters γ = 1 and N = 2320.

the same site. λ represents the hopping amplitude between
the nearest-neighbor sites. The nearest-neighbor distance here
refers to the nearest hyperbolic distance between two sites in
the Poincaré disk [61]. The Hamiltonian HQI respects TRS
T = K, PHS P = σzσ0K, and chiral symmetry S = PT =
σzσ0.

In Fig. 10(a), we show the energy spectrum of Hamiltonian
HQI in the hyperbolic {4, 5} lattice. It is found that there
are four degenerate zero energies, which are similar to the
results in the square lattice and quasicrystals [23,28,35,39].
These zero-energy eigenstates are localized in 0D form at
the edge of the hyperbolic lattice as shown in Fig. 10(b). In
the square lattice, the zero-energy corner states are localized
at the four vertices of the square sample when the intercell
hopping amplitude is greater than the intracell hopping am-
plitude [23]. Similar to the case of the square lattice, this
system also requires certain conditions to be satisfied in the
hyperbolic lattice to exhibit the zero-energy effective corner
states. Therefore, we show in Fig. 10(c) the energy spectrum
of the Hamiltonian HQI in the hyperbolic {4, 5} lattice as a
function of λ. It is obvious that four degenerate zero-energy
states appear in the system only when λ > 0.9242. This
model with polarization angle θ jk does not possess translation
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symmetry in the hyperbolic lattice, thus we use real-space
quadrupole moment as a topological invariant to characterize
the hyperbolic higher-order topology. In Fig. 10(d), we show
the quadrupole moment Qxy as a function of λ. Then, the
system transitions from a normal insulator phase to a HOTI
phase with four zero-energy effective corner states when λ

exceeds the critical value.
Furthermore, in the spectrum shown in Fig. 10(c), one

clearly recognizes regions in the (λ, E ) plane with more dense
and less dense distribution of eigenenergies. The more dense
region corresponds to the bulk band of states [Fig. 10(e)],
whereas the less dense region corresponds to the edge band
of states [Fig. 10(f)], which arises from bonds of a variety of

orientations at the edge of the finite hyperbolic lattice. Then,
the phase at λ > 0.9 (where the corner modes are observed),
would likely be interpreted as having metallic edge states.
This seems to provide further evidence for the conclusion that
the finite edge gap may be a result of the finite-size effect
and that the edge gap may drop to zero in the thermodynamic
limit, which is consistent with the discussions in Appendix C.

In this Appendix, we apply the QI model in real space to
the hyperbolic {4, 5} lattice that preserves TRS. In this system,
we observe four zero-energy effective corner states. Numeri-
cal calculations of the real-space quadrupole moment show
that these zero-energy effective corner states are topologically
nontrivial.
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