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Level structure of hole two-center complex and related luminescence in semiconductors
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Real semiconductors usually contain both donor and acceptor impurities. A finite compensation degree leads
to the possibility of the single carrier to be bounded by two impurity centers. For such an electron complex
(near a simple conduction band), the spectral problem resembles the hydrogen molecule ion problem (up to
renormalization of the effective mass and dielectric screening). In p-type semiconductors, the spectral problem
for a single hole in the field of two attracting centers (A−

2 complex) is more complicated due to the complex
structure of the valence band. Here such a problem is presented for the case of the hole bounded at two shallow
acceptors close to the �8 valence band edge (AIIIBV or group IV semiconductors). The multicomponent envelope
functions are used to develop quantum chemistrylike approach (molecular orbital method). The variational
approach is applied to calculate the level structure of the complex. The states of the complex are classified by
the total angular momentum projection onto the intercenter axis and by the parity with respect to the intercenter
permutation. The ground state has a total angular momentum projection of ±1/2 and a wave function that is
symmetric with respect to the intercenter permutation. The energy levels are found as a function of the intercenter
distance. A possible manifestation of A−

2 complexes in acceptor-related luminescence is discussed.

DOI: 10.1103/PhysRevB.107.125208

I. INTRODUCTION

Defects and impurities play a key role in crystals, es-
pecially in semiconductors. They can supply mobile charge
carriers or vice versa act as traps. In real semiconductors,
both donors and acceptors are usually present, i.e., a real
semiconductor is partially compensated. Thus, it is necessary
to take into account the presence of different charge states of
donors and acceptors (at least, neutral and ionized ones) in
various phenomena.

A nonzero compensation degree makes possible the op-
tical excitation with the participation of ionized impurities
[1,2]: the so-called photoneutralization transition, when the
impurity state changes from ionized to neutral. In the case
of doping with paramagnetic ions, such an excitation scheme
allows direct access to the magnetic moment of the impurity
[3,4]. Moreover, the same dopant in the same binary semi-
conductor can act as both a donor and an acceptor, since it
can substitute an atom in the anion or cation sublattice or,
in addition, be located in an interstitial site. The presence
of different dopant types in a semiconductor crystal and the
possible interaction between them can lead to interesting phe-
nomena. In particular, the possibility to control the electron
magnetization (or even reverse it) by all-optical means was
recently predicted [5].

However, the diversity of impurities is not limited to simple
donors and acceptors. More complex compound complexes
are also contained in semiconductors. In particular, a neutral
donor (acceptor) can capture an additional electron (hole): in
this case, one speaks of the so-called D− and A+ centers,
respectively. In order to obtain such complexes in equilibrium,
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quantum wells are usually used [6] with joint doping of the
well and barrier regions. The complex structure of the valence
band leads to a richer level structure of the A+ center [7,8],
especially in quantum wells and/or under the action of exter-
nal fields [9,10]. On the other hand, there is another possibility
in compensated semiconductors: a single charge carrier can be
localized by a pair of closely located centers. These complexes
should be called D+

2 and A−
2 for the case of a localized electron

and hole, respectively.
In diluted magnetic semiconductors (DMSs), such as

GaMnAs, usually the indirect exchange interaction, in the
spirit of the Zener or Ruderman-Kittel-Kasuya-Yosida mod-
els, is accepted as responsible for ferromagnetism. However,
this consideration applies to samples with a manganese con-
tent of a few percent, when the exchange is mediated by free
holes. At the same time, it is of interest to consider ferro-
magnetism in DMS in the insulating phase. In this case, an
impurity band is not formed, and the indirect exchange occurs
due to the overlap of the wave functions of holes localized
at acceptors. This corresponds to Mn concentrations up to
1019 − 1020 cm−3 [11]. The ferromagnetism on the insulating
side of the metal-insulator transition is noticeably weaker and
the Curie temperature is lower (units of K). But such samples
can find an application, e.g., in superconducting spintronics,
more precisely, in ferromagnet/superconductor (F/S) hybrid
structures [12]. In this case the low Curie temperature is not
so critical, since low temperatures are also required for the
existence of superconductivity. A more ideal and well-defined
system would consist of a ferromagnetic insulator (FI) instead
of a ferromagnetic metal. In the FI/S/FI system, the prox-
imity effect that destroys superconductivity, is limited to the
interface because the electron wave function decays in the
insulator at an atomic distance [13]. Such a case was discussed
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by de Gennes more than half a century ago [14]. Moreover, the
GaMnAs-based structures can be integrated with conventional
semiconductor and even silicon electronics.

A consideration of any mechanism of ferromagnetism be-
gins with a study of pair interaction. In this case it is important
to consider the interaction of two acceptors. At the same time,
it is well known that an attempt to increase the Mn content
in GaAs leads to embedding of Mn ions into interstitial sites
[11]. In this case, Mn behaves like a double donor, that in turn
leads to self-compensation. Thus, to determine the nature of
the exchange in insulating GaMnAs, it is important to know
the mechanism of interaction not only between two neutral A0

acceptors (A0
2 complex), but also between a neutral acceptor

A0 and an ionized A− one, i.e., A−
2 complex. In this sense, the

calculation of the A−
2 energy levels is the first step towards un-

derstanding the ferromagnetism in GaMnAs in an insulating
state.

The effective mass (including the multiband one) approxi-
mation is the main approach that allows us to understand the
structure of donors [15–17] and acceptors [18,19], as well as
composite complexes [7,8]. The effective mass approximation
applied to the D+

2 complex (near a simple isotropic conduction
band) resembles the well-known problem of the hydrogen
molecule ion H+

2 up to renormalization of the effective mass
and dielectric screening. In the case of the A−

2 center, the
complex structure of the valence band makes the spectral
problem nontrivial.

The goal of this work is a theoretical study of the A−
2

complex structure. For this purpose, the multiband effec-
tive mass approximation is used. The two-center problem is
solved by adopting the well-known in quantum chemistry
method of molecular orbitals (MOs) as a linear combina-
tion of atomic orbitals (LCAOs) to multicomponent envelope
functions. Single-center hole states (corresponding to AOs)
[20] are described within the spherical approximation of the
Luttinger Hamiltonian [21], which is applicable to describe
the valence band of many semiconductors with a diamond or
zinc-blende lattice (Ge and AIIIBV).

The paper is organized as follows. In Sec. II the known
result for the shallow acceptor A0 within the spherical ap-
proximation is presented, that is the starting point for the
A−

2 problem. The spectral problem is solved by means of
the variational method. The central-cell correction term (the
short-range part of the attracting potential) is also included
into the Hamiltonian. Section III is devoted to the spectral
problem of the A−

2 complex. The level structure is studied as
a function of the intercenter distance. Numerical estimates for
the A−

2 complex in GaAs and the possible manifestation of
the complex in optical experiments are discussed in Sec. IV.
In Sec. V the obtained results are summarized. Calculation
details are presented in Appendices A and B.

II. SINGLE ACCEPTOR

The Luttinger Hamiltonian [21] is suitable for describing
the �8 valence band states in cubic semiconductors with a
wide band gap Eg and a large spin-orbit splitting �. For the
acceptor problem, there is an additional spherically symmetri-
cal potential V (r). However, the exact solution of the spectral
problem is hindered by the cubic symmetry of the Hamilto-
nian in this case. The way out is to extract the spherically

symmetrical part from the initial Hamiltonian. This can be
done using an approach based on irreducible spherical tensors
[22,23]. The spherical approximation works well for many
semiconductors such as Ge, GaAs, and others. Small cubic
corrections can be taken into account perturbatively [24]. The
spherical approximation is also useful for other problems with
spherical symmetry, e.g., for calculating of holes states in
spherical quantum dots [25,26].

The ground state (1S3/2) of a hole in a spherically sym-
metrical potential (near the edge of the �8 valence band) is
described by a four-component envelope function [27]

�
3/2
M (r, θ, ϕ) = 2

∑
l=0,2

(−1)l−3/2+MRl (r)

×
∑
mμ

(
l 3/2 3/2
m μ −M

)
Ylm(θ, ϕ)Xμ, (1)

which corresponds to the total angular momentum of 3/2
(also �8 symmetry). Here M = ±1/2,±3/2 is the z projec-
tion of the total angular momentum, Ylm(θ, ϕ) are spherical
harmonics, Xμ are eigenvectors of a spin-3/2 matrix Jz, μ =
±1/2,±3/2 is the hole spin projection onto the z axis and( l 3/2 3/2

m μ −M

)
are Wigner 3 j-symbols. The orbital angular

momentum and its projection are denoted by l and m, respec-
tively. The form of the radial wave functions R0(r) and R2(r)
depends on the explicit form of the potential V (r).

Wave functions �
3/2
3/2 and �

3/2
1/2 are given by

�
3/2
3/2 =

⎛
⎜⎜⎜⎜⎜⎝

R0(r)Y00(θ, ϕ) + 1√
5
R2(r)Y20(θ, ϕ)

−
√

2
5 R2(r)Y21(θ, ϕ)√

2
5 R2(r)Y22(θ, ϕ)

0

⎞
⎟⎟⎟⎟⎟⎠,

�
3/2
1/2 =

⎛
⎜⎜⎜⎜⎜⎝

√
2
5 R2(r)Y2,−1(θ, ϕ)

R0(r)Y00(θ, ϕ) − 1√
5
R2(r)Y20(θ, ϕ)

0√
2
5 R2(r)Y22(θ, ϕ)

⎞
⎟⎟⎟⎟⎟⎠, (2)

and other functions �
3/2
−3/2 and �

3/2
−1/2 are Kramers-conjugated

to the above pair (related by the time reversal symmetry).
The spectral problem for the case of an attractive Coulomb

potential leads to the following system of differential equa-
tions [22,23] for radial wave functions of the ground-state:⎛
⎝ d2

dr2 + 2
r

d
dr + 2

r − E −μ0

(
d2

dr2 + 5
r

d
dr + 3

r2

)
−μ0

(
d2

dr2 − 1
r

d
dr

)
d2

dr2 + 2
r

d
dr − 6

r2 + 2
r − E

⎞
⎠(R0(r)

R2(r)

)

= 0, (3)

where μ0 = (6γ3 + 4γ2)/5γ1 and γ1, γ2, γ3 are the Luttinger
parameters [21]. Here, the lengths and energies are in units of
the effective Bohr radius and effective Rydberg, respectively:

aB = h̄2εγ1

m0e2
, Ry = m0e4

2h̄2ε2γ1
,

where m0 is the free electron mass and ε is the material
dielectric constant.
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In the general case, this system of equations does not have
an analytical solution. Usually it can be solved using the
variational method. Here a simple set of trial functions is used
[22]

f (r) = 2α3/2e−αr, (4a)

g(r) = 2√
3
β5/2re−βr, (4b)

since a complex set of functions with multiple variational
parameters [23] does not lead to a significant increase in the
accuracy of the ground state energy calculation. The differ-
ence is about 0.25% for GaAs parameters [28]. Here, the
trial functions f (r) and g(r) correspond to R0(r) and R2(r),
respectively, and α and β are adjustable parameters. It should
be noted that these trial functions are normalized indepen-
dently. This means the appearance of an additional variational
parameter c, which takes into account the correct normaliza-
tion of the multicomponent wave function. Thus, the real trial
functions are c f (r) and dg(r) with the additional condition
c2 + d2 = 1 imposed by the normalization.

The system of Eqs. (3), together with trial functions (4a)
and (4b), leads to the following expression for the binding
energy of the acceptor ground state as a function of the vari-
ational parameters and the parameter μ0, which describes the
strength of the spin-orbit coupling:

E0(α, β, c; μ0) = c2(−α2 + 2α) + (1 − c2)

(
−7

3
β2 + β

)

− c
√

1 − c2
16μ0α

5/2β5/2(4α + β )√
3(α + β )4

. (5)

In accordance with the results of Ref. [29], the short-range
part of the impurity potential (the so-called central-cell cor-
rection) Vsr (r) can be additionally introduced into the problem
using an appropriate potential [30], e.g., a rectangular well of
finite depth or Gaussian potential well

V rw
sr (r) =

{−V0, r < r0

0, r � r0
, (6a)

V G
sr (r) = −V0e−r2/r2

0 , (6b)

where r0 is the characteristic extension of the potential and
V0 is its strength. Finally, to take into account the short-range
potential, the following terms should be added into Eq. (5):

c2〈 f |Vsr (r)| f 〉 + (1 − c2)〈g|Vsr (r)|g〉. (7)

The matrix elements for both types of short-range potential
are presented in Appendix A.

The variational minimization of Eq. (5) with the addition
of Eq. (7), leads to the dependence of the acceptor binding
energy on the parameter μ0 depicted in Fig. 1. Three cases are
considered: (i) a shallow Coulomb acceptor; (ii) an acceptor
with an additional short-range potential of the form (6a), and
(iii) an acceptor with an additional short-range potential of
the form (6b). One can see a significant increase in the ground
state binding energy when the short-range potential is taken
into account, especially at μ0 > 0.5.

For the interesting case of GaAs, we have the following
set of parameters [31]: γ1 = 6.85, γ2 = 2.10, γ3 = 2.90, and

FIG. 1. The binding energy of the ground state of the neutral
acceptor A0 as a function of the parameter μ0. The red (solid)
line corresponds to a shallow Coulomb acceptor, disregarding the
short-range potential. The green (dashed) and blue (dotted) lines
correspond to taking into account the short-range potential of the
form (6a) and (6b), respectively. The top axis shows the dependence
of the binding energy on the ratio of the effective masses of light
and heavy holes, mlh/mhh = (1 − μ0)/(1 + μ0 ). The following di-
mensionless parameters are used for short-range potentials: V0 = 192
and r0 = 0.0626. In the case of the GaAs band parameters, this
corresponds to the dimensional parameters of Ref. [29].

ε = 12.4. This corresponds to the following characteristic
values: μ0 = 0.753, aB = 4.47 nm, and Ry = 13.0 meV. This
in turn leads to the following absolute values of the binding
energy: 28.1, 57.0, and 59.4 meV, corresponding to a shallow
Coulomb center and taking into account two types of short-
range potential (6a) and (6b), respectively [32]. In the limit
of μ0 = 0 (the mass ratio of light and heavy holes tends to
unity), the equations of system (3) are decoupled. As a result,
the binding energy of the shallow A0 center is simply equal to
the effective Rydberg. In this case, the level is insignificantly
deepened by the short-range part of the attracting potential.

III. SINGLE HOLE IN THE FIELD OF TWO CENTERS

Let us now consider the spectral problem for a hole in
the field of two Coulomb centers. Such a system should be
called the A−

2 complex. The spectral problem is similar to the
problem of the hydrogen molecule ion H+

2 , which is the sim-
plest molecular system. The main difference between H+

2 and
A−

2 is following: the usual term corresponding to the kinetic
energy operator should be replaced by the 4 × 4 Luttinger
Hamiltonian [21]. The solution of the problem is significantly
complicated by the complex structure of the �8 valence band.

Two-center wave functions (MOs) are composed as a linear
combination of single-center wave functions (AOs), i.e., using
the standard quantum chemical approach. The explicit form of
the AOs is known (see Sec. II). Two centers, denoted A and B,
are chosen to be symmetrically located relative to the origin,
RA(B) = (0, 0,∓R/2), where R is the intercenter distance. The
conservation of the total angular momentum projection onto
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the axis joining the centers A and B (z axis) is implied by
the axial symmetry of the problem. This means that MOs can
only be composed of AOs with the same M. This leads to the
following set of MOs:

�±
3/2(r) = C±

3/2

[
�

3/2
3/2 (rA, θA, ϕ) ± �

3/2
3/2 (rB, θB, ϕ)

]
, (8a)

�±
1/2(r) = C±

1/2

[
�

3/2
1/2 (rA, θA, ϕ) ± �

3/2
1/2 (rB, θB, ϕ)

]
. (8b)

Here the sign ± denotes the states, that are even (odd) with
respect to the intercenter permutations, A ↔ B. The spherical
coordinates (rA = |r − RA|, θA, ϕ) and (rB = |r − RB|, θB, ϕ)
are introduced: radial distances and polar angles correspond
to spherical reference frames with origins at RA and RB,
respectively; the azimuthal angle ϕ is chosen to be the same
in both frames of reference due to the coincidence of the
polar axes. The states with M = −3/2,−1/2 are obtained in
a similar way, and their energies are equal to that of states
with M = 3/2, 1/2, respectively. This is the consequence of
the time-reversal symmetry. Thus, four levels with twofold
degeneracy are expected. The normalization factors in the
wave functions (8a), (8b) are of the standard form

C±
M = 1√

2(1 ± SM )
,

where SM is the overlap integral for A- and B- centered AOs
with the projection of the total angular momentum M. Details
of the calculation of the overlap integrals are presented in
Appendix B.

The states with different M are not mixed, that is due to
the axial symmetry of the problem. Thus, there are four (ac-
cording to the number of possible projections M) independent
spectral problems. The two-center problem is solved in usual
manner [33,34], taking into account the solution of the single-
center spectral problem. Moreover, the similar matrix ele-
ments appears as in the H+

2 problem: the overlap integral S, the
Coulomb integral J and the resonance integral K . However,
the form of these integrals is significantly different, because to
calculate these integrals, it is necessary to use multicomponent
AOs (2) with trial functions of the form (4a) and (4b).

The energy levels are determined from an equation similar
to that of the H+

2 problem [33,34], but with three variation
parameters,

E±
M = −E0(α, β, c; μ0) + 2

R
− JM (α, β, c) ± KM (α, β, c)

1 ± SM (α, β, c)
.

(9)

Here E0(α, β, c; μ0) is the binding energy of the neutral
acceptor A0 from Eq. (5). The integrals JM (α, β, c) and
KM (α, β, c) are found explicitly (see Appendix B). The 2/R
term corresponds to the “internuclear” repulsion and can be
omitted, since it does not affect the order of the energy levels.

The energy levels of the A−
2 complex are found by numer-

ical minimization of the three-parameter variational Eq. (9).
The dependence of the energy levels on the intercenter dis-
tance R is shown in Fig. 2. The above set of parameters
corresponding to GaAs is used in the numerical calculation.
The ground state of the A−

2 complex is described by the z
projection of the total angular momentum M = ±1/2. The
corresponding wave function is even with respect to the inter-
center permutation (A ↔ B), �+

±1/2. It should be noted that the

−3

−2.5

−2

−1.5

−1

 0  1  2  3  4  5

En
er

gy
  E

/R
y

Distance R/aB

FIG. 2. Energy levels of the A−
2 complex as a function of the

intercenter distance R. The band parameters correspond to GaAs (see
text). The red (solid) line corresponds to states with |M| = 1/2 and
a wave function, which is symmetric with respect to the permutation
of the centers (A ↔ B), �+

±1/2. The green (dashed) line corresponds
to |M| = 3/2 and a wave function, which is antisymmetric relative
to A ↔ B, �−

±3/2. The blue (dotted) line corresponds to |M| = 3/2
and the symmetric wave function �+

±3/2. The orange (dashed-dotted)
line corresponds to the states |M| = 1/2 with an antisymmetric wave
function �−

±1/2.

same structure of the ground state was also found for the case
of the deep A−

2 complex described by zero-range potentials
[35]: the order of the other levels is the same.

The distance corresponding to the maximum binding en-
ergy of the ground state (which, by analogy with molecular
physics, can be called by “bond length”) is about 0.99aB. In
the case of GaAs, it is equal to 4.43 nm [36]. The correspond-
ing ionization energy is equal to 2.7882 Ry, which in absolute
units is 36.2 meV. In the limit of a long intercenter distance
(R → ∞), there is expected result 2.1236 Ry (28.1 meV),
which coincides with the A0 binding energy.

The central-cell correction is not taken into account in the
numerical calculations corresponding to Fig. 2. The solution
of the spectral problem taking into account the short-range
potential (adding the terms Vsr (rA) and Vsr (rB) into the A−

2
Hamiltonian) leads to the following changes in Eq. (9): we
have to make replacements, JM → JM + Jsr

M − �E , KM →
KM + 2Ksr

M , where

Jsr
M = −〈�3/2

M (rA, θA, ϕ)
∣∣Vsr (rB)

∣∣�3/2
M (rA, θA, ϕ)

〉
,

Ksr
M = −〈�3/2

M (rA, θA, ϕ)
∣∣Vsr (rA)

∣∣�3/2
M (rB, θB, ϕ)

〉
,

are the short-range contributions into the Coulomb and reso-
nance integral, respectively. The value of �E is determined
by Eq. (7). The exact form of Jsr

M and Ksr
M for potentials (6a)

and (6b) is presented in Appendix B. For the parameters of
the short-range potential used in the calculation of Fig. 1,
simple estimates show that the short-range contributions to the
Coulomb and resonance integral are two orders of magnitude
smaller than that of the standard Coulomb type. An increase in
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the short-range contribution is associated with an increase in
the strength of the Vsr (r) potential, which, in turn, is associated
with the need to solve the multiband problem for impurities,
which is beyond the scope of this work.

Since the short-range contributions to the Coulomb and
resonance integrals are negligible, the energy levels of A−

2
are simply shifted down in energy as a whole. In the first
approximation, this shift coincides with the shift of A0 ground
state due to the short-range potential. Thus, any new effects
do not appear when the short-range contribution to the impu-
rity potential is taken into account: the energy levels become
deeper, but the level order remains the same.

IV. DISCUSSION

We start the discussion with estimates of the accuracy of
our variational calculation, estimate the energy of the A−

2
complex in GaAs, consider the conditions under which above
complex exists, discuss its possible manifestation in optical
experiments, and, finally, examine in details the experimental
photoluminescence (PL) data of Ref. [37] taking into account
the possible participation of A−

2 complexes.
The accuracy of the our variational calculation can be

found in the μ0 → 0 limit, which corresponds to a simple
band with the scalar effective mass. In this case, there is an ex-
act solution coinciding (up to renormalization of the effective
mass and dielectric screening) with the solution for the levels
of the hydrogen molecule ion H+

2 . From Fig. 2.2 of Ref. [38]
one can see that the maximal error of variational calculation
for H+

2 does not exceed 5%, which takes place at R ∼ 1 (in
atomic units). On the one hand, the error can increase for
a complex valence band, and on the other hand, the three-
parameter (in contrast to the one-parameter solution in the
case of H+

2 ) variational procedure used improves the accuracy.
Since most A−

2 complexes correspond to R > 1, the accuracy
can be estimated to be of the same order, i.e., 5% or better.

For the intercenter distance R = 10 nm [39] (in GaAs this
corresponds to 2.24aB) the binding energy of the A−

2 complex
is −2.4270 Ry, which is 0.3034Ry (3.94 meV) less than the
binding energy of the neutral acceptor A0. This energy differ-
ence corresponds to 45.8 K in temperature units, which means
that such A−

2 complexes definitely exist in compensated p-type
GaAs at liquid helium (4.2 K). At the same intercenter dis-
tance, the energy of the first excited level of the A−

2 complex
is 0.1046Ry (1.36 meV or 15.8 K) higher. This means that at
4.2 K the A−

2 complex is in the ground state.
Let us now discuss the possible manifestation of A−

2
complexes in the acceptor-related PL. In partially compen-
sated p-doped semiconductors both A0 and A−

2 complexes are
presented. Both can be additionally formed in the excitation-
recombination process. The radiative recombination of a
conduction band electron with a hole of the A0 and A−

2 com-
plex is denoted as (e − A0) and (e − A−

2 ), respectively. The
relative contribution of (e − A0) and (e − A−

2 ) optical tran-
sitions into the total acceptor-related PL line can be changed
due to the change in the relative concentrations of A0 and A−

2
complexes. It might happen, e.g., under conditions of optical
excitation (interband or impurity-to-band). The contribution
to the PL line from the (e − A−

2 ) optical transition will have an
asymmetric shape, which is due to the spread of A−

2 complexes
in the values of the intercenter distances R.

It is supposed that at not too high temperatures, both
complexes are in the ground states before recombination.
The difference in rates of (e − A0) and (e − A−

2 ) optical
transitions depends not only on concentrations of correspond-
ing complexes. Within the envelope function approximation,
it is also determined by a squared electron-hole overlap
integral for corresponding transitions. For quasiequilibrium
photoexcited electrons in p-type semiconductors the Boltz-
mann statistics can be utilized. At low temperature the wave
vector k of thermalized electron, which state is described by a
plane wave eikr, is close to zero, and the following conditions
are satisfied: kaB 
 1, kR 
 1. This means, that the electron
wave function is approximately constant at the scales of A0

and A−
2 complexes. This approximation allows us to find the

probabilities for both optical transitions exactly. Using Eq. (8)
we find that the quantum-mechanical probabilities of electron
recombination with the hole in the ground states of A−

2 and A0

are related as 2/[1 + S1/2(R)]. Thus, the probability of optical
transition is slightly higher for (e − A−

2 ), which is associated
with a stronger spreading of the A−

2 hole wave function.
It should be noted, that the electron-hole overlap integral

in the k = 0 limit contains contributions from spherically
symmetric part of acceptor wave function (1) only, since the
spherical harmonics Y2m gives zero after integration in the total
solid angle. This feature partly justifies the approximation
for (e − A0) transition used by Eagles [1], who did not take
into account the multicomponent nature of the acceptor wave
function [22,27].

The energy of the quantum emitted during the (e − A−
2 )

optical transition is on average lower than at (e − A0). An
extended low-energy PL tail can be provided by the spread
in the binding energy, which, in turn, is due to the spread
in the intercenter distances of the A−

2 complexes. Moreover,
the decrease in the PL energy is associated not only with an
increase in the binding energy of a localized hole, but also
with the Coulomb repulsion of ionized centers in the final
state. This resembles the donor-acceptor recombination (see,
for instance, Ref. [40]), when the attraction of an ionized
donor and acceptor in the final state leads to an increase in
the transition energy.

The extension of the low-energy PL tail can be estimated
simply from the energy of the Coulomb repulsion of two
A− centers located at the minimal intercenter distance Rmin,
which still provides the bound state of the A−

2 complex. From
the results of previous section, we have Rmin ∼ 0.5aB, which
leads to a Coulomb energy of the order of the binding energy
of the neutral acceptor E0. Thus, there is a rather extended
low-energy PL tail, whose extension is determined by the
acceptor binding energy. The width of the high-energy part
of the PL band is of the order of the average kinetic energy
of the conduction band electron [1], i.e., is determined by the
temperature.

An extended low-energy tail of the acceptor-related PL
band was first observed about 50 years ago in p-doped GaAs
[41]. It should be noted, that only the maximum and the
high-energy part of the PL band associated with (e − A0)
recombination was described by the simple Eagles theory [1],
while the extended low-energy tail has not found a reasonable
theoretical interpretation. Attempts to take into account vari-
ous broadening mechanisms of the (e − A0) transition led to
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a more regular shape of the central and high-energy part of
the line [42]; nevertheless, they were not able to describe an
extended low-energy tail.

In low-dimensional structures, acceptor-related PL also
takes place. The line shape exhibits the same features as in
the bulk. In modern works on the subject, the same feature is
manifested [37,43,44], but not discussed. Apparently, the is-
sue was simply forgotten, not finding an explanation after the
first experimental observations. These references refer only
to GaAs structures, although this phenomenon is general and
takes place in other materials. An extended low-energy tail
was observed in the acceptor-related PL band of Mn-doped
quantum wells [4]. The effect seems to have been enhanced
by using a specific excitation scheme (photoneutralization
of ionized acceptors) in compensated samples, when the
band-to-band optical transitions are excluded from both ex-
citation and recombination processes. It should be noted, that
in low-dimensional structures, the influence of the quantum
confinement, as well as the width fluctuations, an acceptors
position relative to interfaces, etc., can somewhat change and
diversify the picture of the phenomenon, but, apparently, the
main qualitative features will remain.

Let us discuss the shape of the acceptor-related PL line
of Ref. [37] in the light of our consideration. In this work
the PL spectra of Be-doped 20 nm wide quantum wells were
experimentally studied. Quantum wells with two doping lev-
els are described: 5 × 1010 cm−2 and 2.5 × 1012cm−2, that
after recalculation into volume concentrations leads to 2.5 ×
1016 cm−3 and 1.25 × 1018 cm−3, respectively. Moreover, the
δ doping is applied, which in turn means an even higher level
of local doping.

The stated binding energy of neutral Be acceptor is 28 meV
[37]. This gives the estimate for Bohr radius of 2.5 nm, that
is much less than the quantum-well width, i.e., in fact, the
acceptors are in the bulk and do not feel quantum confinement,
especially taking into account the δ doping. This fact is also
confirmed by the so-called fractional dimensionality model
[45,46] used in the theoretical fit of absorption and PL lines.
This model gives a dimension value of 2.93 [37], which differs
little from the bulk value of 3.

In Fig. 9 of Ref. [37] the fit is performed using averag-
ing over a random (Gaussian) distribution, similar to that in
Ref. [42]. In this case the central and high-energy part of fitted
line is in good agreement with experimental one (especially
for the 20 K data). However, the low-energy part shows a
long tail that extends even beyond the figure. This behavior
coincides with the above-discussed length of this tail on the
order of the binding energy of the neutral acceptor.

We ascribe the presence of the discussed tail to the radiative
recombination of the conduction band electron with the hole
of the A−

2 complex. To confirm this, let us consider how the PL
line shape changes with increasing laser excitation intensity,
temperature, and doping level. The change in the last param-
eter is less informative, since there are samples with only two
different acceptor concentrations.

The presence of residual donor doping at the level of
1014 − 1015 cm−3 is assumed, which is a typical value for
epitaxially grown GaAs. This means that for samples with
lower levels of p doping, there are about 1–10 percent of A−
ionized centers that can form A−

2 complexes with neutral ones.

For heavily doped samples, the fraction of A−
2 is two orders

of magnitude lower. If the excitation intensity is low, then the
radiative lifetime is long and the A−

2 complexes with a minimal
R have time to form. As the excitation intensity increases, the
number of photoexcited electrons increases and the radiative
lifetime becomes shorter both for the (e − A0) channel and
for (e − A−

2 ) one. In a shorter time, the A−
2 complexes with

the smallest intercenter distance R will not be able to form.
In addition, the number of A−

2 complexes can be reduced by
excitation with photoneutralization (impurity-band transition)
[3,4]. Thus, the contribution of the A−

2 complexes with the
smallest R to the PL line corresponding to low-energy photon
quanta will decrease. Moreover, the contribution of the high-
energy part (e − A0) will also increase due to an increase
in the number of photoexcited electrons. This means that
the discussed low-energy tail will disappear with increasing
excitation intensity. The same tendency can be seen in Fig. 2
of Ref. [37].

An increase in temperature leads to the disappearance of
the low-energy tail, as can be seen in Fig. 1 of Ref. [37].
Within our model, this is a consequence of the thermal dis-
sociation of two-center complexes A−

2 → A0 + A− and the
growth of the relative (e − A0) contribution. The theoretical
fit of Ref. [37] with Gaussian convolution of (e − A0) for
two temperatures 3.6 and 20 K (Fig. 9 of Ref. [37]) can also
indicate the greater contribution from the (e − A−

2 ) transition
at lower temperature. The authors of Ref. [37] partially re-
duced the disagreement by increasing the effective electron
temperature to 8 K and doubling the Gaussian broadening.
However, we believe that the latter manipulation is not fully
justified. An additional increase in the electron temperature,
say, to 10 K, can lead to a better fit of the high-energy part of
the PL line, while the low-energy part can be explained by the
contribution of the (e − A−

2 ) transition.
As for the influence of the acceptor concentration on the

shape of the PL line, it is difficult for us to judge the exper-
imental data, since only two samples with different doping
levels are presented in Ref. [37]. Two corresponding PL spec-
tra at a sufficiently low excitation intensity are presented in
Fig. 3 of Ref. [37]. At the same level of residual donor im-
purity, the relative amount of A−

2 is higher in samples with
lower p doping. Consequently, the relative contribution of the
(e − A−

2 ) transition and, hence, the long-wavelength tail of
the PL line should be more pronounced for samples with a
lower p-doping level. Figure 3 of Ref. [37] does not contain
the theoretical fit of (e − A0)-related line (cf., e.g., Fig. 9
of the same work), which makes it difficult to determine the
possible contribution of the (e − A−

2 ) transition. However, in
our opinion, the long-wavelength tail is more pronounced in
the PL spectrum of the sample with a lower level of p doping.

Detailed qualitative and semiquantitative considerations
on the contribution of two-center complexes to acceptor-
related PL are presented here, including a comparison with
experimental data of Ref. [37]. A detailed microscopic calcu-
lation of the corresponding PL line shape will be published
elsewhere.1

1The article containing the microscopic calculation of the PL-line
shape will be published in Ref. [47].
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V. CONCLUSIONS

The spectral problems for A0 and A−
2 hole complexes in

cubic semiconductors are solved. The short-range part of the
attracting potential is taken into account. In the case of the A0

center it leads to a significant increasing in the binding energy,
whereas, the levels of the A−

2 complex become deeper as well,
but the level order remains unchanged. The dependence of
the A−

2 -complex energy levels on the intercenter distance is
found. It is established, that the ground state of the complex
has a projection of the total angular momentum ±1/2 onto
the intercenter axis. The corresponding wave function is sym-
metric with respect to intercenter permutation, �+

±1/2. The A−
2

complex, in addition to a richer level structure, has a higher
binding energy than its donor counterpart D+

2 . Estimates are
made for the A−

2 complex in GaAs, indicating the existence
of the complex at sufficiently high temperatures, above 40 K,
even for a shallow complex, without taking into account the
short-range part of the impurity potential.

These results are applicable both to stationary complexes,
which, as established, can exist in compensated samples, and
to quasiequilibrium ones, which arise in p-type crystals un-
der the optical excitation. The possible manifestation of A−

2
complexes in optical experiments is discussed. The qualitative
and semiquantitative description of the PL experiment [37]
was made taking into account the dependences on three con-
trolled parameters. This makes it possible to speak about the
involvement of A−

2 complex in the acceptor-related PL line: in

particular, it is responsible for the extended low-energy tail of
corresponding line.

Our results can serve as a first step towards considering
the A0

2 complex, which is an acceptor analog of the hydrogen
molecule. The MO-like approach used can be adopted to the
A0

2 problem with less computational costs than the recently
used Heitler-London-like approach [48]. In the limit of the
large intercenter distances, close values of the binding energy
obtained by different methods should be expected. The indi-
rect exchange interaction of magnetic impurities mediated by
localized holes is another area of theoretical research that can
be developed based on our results.

ACKNOWLEDGMENT

We acknowledge financial support from the Russian Sci-
ence Foundation (Grant No. 22-12-00139).

APPENDIX A: MATRIX ELEMENTS OF SHORT-RANGE
POTENTIAL

In this section, the matrix elements of the short-range po-
tentials (6a) and (6b) between the trial functions (4a) and (4b)
are presented. Because of θ - and ϕ-independent functions, the
matrix elements contain only radial integration 〈x|Vsr (r)|x〉 =∫∞

0 drr2x2(r)Vsr (r), with x(r) = f (r), g(r), as well as at the
derivation of Eq. (5)

〈 f |V rw
sr | f 〉 = −V0{1 − [1 + 2αr0 + 2(αr0)2]e−2αr0}, (A1)

〈g|V rw
sr |g〉 = −V0

{
1 − [

1 + 2βr0 + 2(βr0)2 + 4
3 (βr0)3 + 2

3 (βr0)4
]
e−2βr0

}
, (A2)

〈 f |V G
sr | f 〉 = −α3r3

0V0{−2αr0 + √
πe(αr0 )2

[1 + 2(αr0)2]erfc(αr0)}, (A3)

〈g|V G
sr |g〉 = − 1

6β5r5
0V0{−2βr0[5 + 2(βr0)2] + √

πe(βr0 )2
[3 + 12(βr0)2 + 4(βr0)4]erfc(βr0)}, (A4)

where erfc(x) = 2√
π

∫∞
x dte−t2

is the complementary error
function.

However, we can use the fact that the characteristic scale
of the change in functions f (r) and g(r) is much larger than
r0. This means that the following approximate formula can
be used, 〈x|Vsr (r)|x〉 = x2(0)

∫∞
0 drr2Vsr (r). In this approx-

imation 〈g|V rw
sr |g〉, 〈g|V G

sr |g〉 → 0, while 〈 f |Vsr | f 〉 has more
simple form

〈 f |V rw
sr | f 〉 = − 4

3V0(αr0)3, (A5)

〈 f |V G
sr | f 〉 = −√

πV0(αr0)3. (A6)

APPENDIX B: DETAILS OF INTEGRAL CALCULATION

The complex under study has a cylindrical symmetry.
However, ellipsoidal coordinates [49] (also known as confocal
elliptic coordinates) are more convenient for the theoretical
consideration of molecular systems, such as the hydrogen
molecule H2, the molecule ion H+

2 or the A−
2 complex. Here,

these coordinates are used to calculate the overlap integrals,
the Coulomb and resonance integrals, which contain multi-
component envelope functions (AOs) of a single hole (2),
localized at the centers A and B. In ellipsoidal coordinates
there is a triad (μ, ν, ϕ) and a elementary volume

dV = R3

8
(μ2 − ν2)dμdνdϕ

with 1 � μ < ∞, −1 � ν � 1, 0 � ϕ � 2π .
The new variables are related to two sets of spherical coor-

dinates originating at the centers A and B [corresponding sets
of spherical coordinates are designated as (rA, θA, ϕ) and (rB,
θB, ϕ), respectively] by

μ = 1

R
(rA + rB), ν = 1

R
(rA − rB).

It is also necessary to represent the spherical harmonics
centered near A and B in new coordinates (μ, ν, ϕ). First of
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all, the expressions for cos θA(B) and sin θA(B) must be written
in new variables (using, for example, the cosine theorem)

cos θA(B) = μν ± 1

μ ± ν
, (B1a)

sin θA(B) =
√

(μ2 − 1)(1 − ν2)

μ ± ν
. (B1b)

It is convenient to extract from the A(B)-centered spher-
ical harmonics the terms depending on ϕ, Y A(B)

lm (μ, ν, ϕ) =
yA(B)

lm (μ, ν) 1√
2π

eimϕ . Using the above expressions for cos θA(B)

and sin θA(B), the following expressions for ϕ-independent
parts of spherical harmonics are found:

yA(B)
00 = 1√

2
,

yA(B)
20 (μ, ν) = 1

2

√
5

2

[
3μ2ν2 ± 4μν + 3 − μ2 − ν2

(μ ± ν)2

]
,

yA(B)
21 (μ, ν) = −

√
15

2

(μν ± 1)
√

(μ2 − 1)(1 − ν2)

(μ ± ν)2
,

yA(B)
22 (μ, ν) =

√
15

4

(μ2 − 1)(1 − ν2)

(μ ± ν)2
.

Here, standard definitions and phase conventions for spherical
harmonics are used (see, for instance, Ref. [50]).

The radial trial wave functions (4a) and (4b) centered near
A and B [ f (|r − RA(B)|) = f A(B)(μ, ν) and g(|r − RA(B)|) =
gA(B)(μ, ν)] in ellipsoidal coordinates are given by

f A(B)(μ, ν) = 2α3/2e− αR
2 (μ±ν), (B2a)

gA(B)(μ, ν) = 1√
3
β5/2R(μ ± ν)e− βR

2 (μ±ν). (B2b)

By analogy with the H+
2 -ion problem, there are three types

of integrals: the overlap integral S, the Coulomb integral J and
the resonance integral K . For states with M = ±3/2 and M =
±1/2 the corresponding integrals are different. The structure
of wave functions (2) with trial functions of the form (B2a)
and (B2b) leads to the following general form of integrals:

AM = c2A(1) ± c
√

1 − c2A(2) + (1 − c2)A(3) (B3)

with A being S, J or K . The integrals S(i), J (i) and K (i)

(i = 1, 2, 3) are calculated below. The upper sign corre-
sponds to M = 3/2, and the lower sign corresponds to M =
1/2. The case μ0 = 0 corresponds to a simple band and
all integrals coincide with their values for the case of the
hydrogen molecule ion H+

2 : S(1), J (1) and K (1). The inte-
grals are written as follows: in the integrands the terms
containing f ξ (μ, ν) f ζ (μ, ν) are included in A(1), terms with
f ξ (μ, ν)gζ (μ, ν) correspond to A(2), and gξ (μ, ν)gζ (μ, ν) is
included in A(3). The equality (inequality) of ξ and ζ is deter-
mined by a particular type of integral (S, J , or K). The weight
factors in Eq. (B3) are included in this form due to the above
grouping.

1. Overlap integrals

The three terms constituting overlap integrals SM = 〈�3/2
M (r − RA)|�3/2

M (r − RB)〉 are presented here. The first one is
given by

S(1) = α3R3

4

∫ ∞

1
dμe−αRμ

∫ 1

−1
dν(μ2 − ν2) = e−αR

[
1 + αR + 1

3
(αR)2

]
. (B4)

The second term

S(2) = α3/2β5/2R4

8
√

3

∫ ∞

1
dμe− (α+β )Rμ

2

∫ 1

−1
dνe− (α−β )Rν

2 (μ + ν)(3μ2ν2 − 4μν − μ2 − ν2 + 3),

is more cumbersome. The result of integration is

S(2) = 16α5/2β5/2

√
3(α2 − β2)4R3

{e−βR[72 + 72βR − 8(α2 − 4β2)R2 − 8β(α2 − β2)R3 + (α2 − β2)2R4]

− e−αR[72 + 72αR + 4(7α2 − β2)R2 + 4α(α2 − β2)R3]}. (B5)

The third term

S(3) = β5R5

48

∫ ∞

1
dμe−βRμ

∫ 1

−1
dν(μ4 + ν4 + 4μ2ν2 − 6μ2 − 6ν2 + 6)

after calculation is given by

S(3) = e−βR

[
1 + βR + 1

9
(βR)2 − 2

9
(βR)3 + 1

45
(βR)4

]
. (B6)
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2. Coulomb integrals

The Coulomb integral corresponds to the attraction energy of the charge density localized near the center A(B) to the center
B(A), JM = 〈�3/2

M (r − RA)| 2
|r−RB| |�3/2

M (r − RA)〉. The first contribution into Eq. (B3) is given by

J (1) = α3R2
∫ ∞

1
dμe−αRμ

∫ 1

−1
dν(μ + ν)e−αRν = 2

R
[1 − (1 + αR)e−2αR]. (B7)

The second term has the form

J (2) = α3/2β5/2R3

2
√

3

∫ ∞

1
dμe− (α+β )R

2 μ

∫ 1

−1
dνe− (α+β )R

2 ν (3μ2ν2 + 4μν + 3 − μ2 − ν2). (B8)

The result is

J (2) = 128
√

3α3/2β5/2

(α + β )6R3

[
1 − e−(α+β )R

4∑
m=0

(αR)m

m!

4−m∑
n=0

(βR)n

n!

]
. (B9)

The third term is given by

J (3) = β5R4

12

∫ ∞

1
dμe−βRμ

∫ 1

−1
dν(μ + ν)3e−βRν = 2

R

[
1 −

(
1 + 3

2
βR + (βR)2 + 1

3
(βR)3

)
e−2βR

]
. (B10)

3. Resonance integrals

The resonance integral corresponds to the attraction energy of “mixed” charge density �
3/2
M (r − RA)�3/2

M (r − RB) to each
center: KM = 〈�3/2

M (r − RA)| 2
|r−RA| |�3/2

M (r − RB)〉.
The first contribution into Eq. (B3) is given by

K (1) = α3R2
∫ ∞

1
dμe−αRμ

∫ 1

−1
dν(μ − ν) = 2αe−αR(1 + αR). (B11)

The second term is

K (2) = α3/2β5/2R3

2
√

3

∫ ∞

1
dμe− (α+β )R

2 μ

∫ 1

−1
dνe− (α−β )R

2 ν (3μ2ν2 − 4μν + 3 − μ2 − ν2), (B12)

and it is calculated in the same manner

K (2) = −128
√

3α3/2β5/2

(α2 − β2)3R3

{
e−αR

[
1 + αR + 1

3
(αR)2

]
− e−βR

[
4∑

n=0

(βR)n

n!
− 1

6
(αR)2

2∑
n=0

(βR)n

n!
+ 1

24
(αR)4

]}
. (B13)

The last term is more difficult for calculation

K (3) = β5R4

12

∫ ∞

1
dμe−βRμ

∫ 1

−1
dν

6 + μ4 − 6ν2 + ν4 − 6μ2 + 4μ2ν2

(μ + ν)
. (B14)

It is convenient to divide this integral into two parts, K (3) = K (3)
1 + K (3)

2 , using the following relation:

6 + μ4 − 6ν2 + ν4 − 6μ2 + 4μ2ν2

(μ + ν)
= ν3 − μν2 + (5μ2 − 6)ν + (6μ − 5μ3) + 6

(1 − μ2)2

(μ + ν)
.

The first part

K (3)
1 = β5R4

12

∫ ∞

1
dμe−βRμ

∫ 1

−1
dν[ν3 − μν2 + (5μ2 − 6)ν + (6μ − 5μ3)] (B15)

is simple in calculation:

K (3)
1 = −5βe−βR

[
1 + βR + 14

45
(βR)2 − 1

45
(βR)3

]
, (B16)

while the second one

K (3)
2 = β5R4

2

∫ ∞

1
dμ(1 − μ2)2e−βRμ

∫ 1

−1

dν

(μ + ν)
(B17)
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requires some effort. The inner integral is simple, and after a change of variable and successive integration by parts, we find

K (3)
2 = 6

e−βR

R

{
2(ln βR + ln 2 + γ )

[
1 + βR + 1

3
(βR)2

]
− 3βR − (βR)2 + 2e2βR�(0, 2βR)

[
1 − βR + 1

3
(βR)2

]}
, (B18)

where γ � 0.577216... is the Euler-Mascheroni constant, and �(a, z) = ∫∞
z dtta−1e−t is the incomplete Gamma function.

4. Short-range contribution to Coulomb and resonance integrals

Here the calculation of short-range contribution to the Coulomb Jsr
M = −〈�3/2

M (r − RA)|Vsr (|r − RB|)|�3/2
M (r − RA)〉 and

resonance Ksr
M = −〈�3/2

M (r − RA)|Vsr (|r − RA|)|�3/2
M (r − RB)〉 integrals is presented. It is convenient to carry out integration

in a spherical reference frame centered at the minimum of Vsr (r). The same approximation is used here as was done when
calculating Eqs. (A5) and (A6). In this case one should simply find the values of �

3/2
M (r, θ, ϕ) at (R, π, 0) and (0, 0, 0), then

Jsr
3/2(1/2) = −[R0(R) ± R2(R)]2

∫ ∞

0
drr2Vsr (r), (B19)

Ksr
3/2(1/2) = −R0(0)[R0(R) ± R2(R)]

∫ ∞

0
drr2Vsr (r), (B20)

where ∫ ∞

0
drr2V rw

sr (r) = −1

3
V0r3

0 ,

∫ ∞

0
drr2V G

sr (r) = −
√

π

4
V0r3

0 .

For the variational procedure, it is necessary to make the replacements R0(r) → c f (r) and R2(r) → √
1 − c2g(r) in these

equations, which gives the dependence on three variational parameters (α, β, c).
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