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Temperature dependence of Raman scattering in CdO: Insights into phonon
anharmonicity and plasmon excitations
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We present a temperature-dependent Raman scattering study of CdO in the temperature range between 80 and
500 K. Distinctive features present in the second-order Raman spectra of CdO are identified as overtones and
combination modes with the help of density functional perturbation theory calculations. A wide, broad band in
the region between 250 and 470 cm−1 is attributed to Raman scattering by charge-density fluctuations in the high-
density overdamped electron gas present in the sample. Very good agreement is found between the Raman spectra
and the expected scattering arising from the overtone density of states and plasmon excitations. The temperature
dependence of the modes yields information about the anharmonic phonon interactions. Four-phonon processes
arising from quartic anharmonicity play a significant role in the observed temperature dependence.
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I. INTRODUCTION

Recently, there has been growing interest in the family of
binary oxides owing to their promising functional properties
in a wide range of important technological applications [1].
CdO belongs to the family of rock-salt structured binary
oxides, and it has attracted attention as a thin-film transparent
conductor [2], as a thermoelectric material [3], and, more
recently, as a promising emerging material for plasmonics
[4–7]. CdO may also have an impact on increasing the
possibilities of two-dimensional layered materials, as oxide
materials containing d orbitals such as CdO and HfO have
been predicted to form graphenelike monolayers with high
stability [8].

Accurate knowledge of the basic physical properties of
CdO is relevant for these applications. Some dispersion exists
in the values reported in the literature, probably owing to
differences in crystal quality and the presence of a high free
carrier density due to oxygen vacancies. For instance, the
direct band gap was determined to be 2.28 eV from 100 K
thermoreflectance measurements [9]. A detailed analysis of
infrared reflectivity, absorption, and Hall effect measure-
ments of high-quality single-crystal epitaxial layers, taking
into account band nonparabolicity, band filling, and band-gap
renormalization, yielded a band gap of 2.16 eV [6]. Thermal
conductivity has also been revisited, and a one order of mag-
nitude increase relative to previous reported values has been
proposed in light of first-principles calculations and recent
experiments [10].

Optical characterization by means of Raman scattering
is severely limited in rock-salt structured materials because
first-order Raman scattering is symmetry forbidden. The fact
that every atom of the lattice is a center of inversion imposes
that the third-rank Raman tensor (the derivative of the po-
larizability tensor with respect to the phonon coordinate) is

identically zero. The first Raman scattering measurements of
CdO were performed on polycrystalline samples and revealed
only weak second-order Raman spectra [11], as already ob-
served previously in a series of measurements on rock-salt
structured alkali halides [12]. Today, high-quality fully re-
laxed CdO layers can be grown directly on r-plane sapphire
by metal-organic chemical vapor deposition (MOCVD) [13].
A preliminary study of the improved-quality Raman spectra of
these single-crystal epitaxial layers was reported [14]. Some
features were tentatively assigned based on ab initio phonon
calculations [14], although the calculated phonon frequencies
appeared to be significantly underestimated. The behavior of
the second-order Raman spectrum was further investigated
under high pressures [15].

In this work, we present a thorough Raman investigation of
CdO, where the most distinctive features of the second-order
Raman spectrum are identified with the aid of density func-
tional perturbation theory (DFPT) calculations. The overall
shape of the spectrum, which displays an intense, wide central
band, is addressed, along with the temperature dependence of
the most salient features of the spectrum. Detailed calculations
of scattering by excitations of the high-density overdamped
plasma and a semiempirical perturbative approach to phonon
anharmonic decay provide a comprehensive description of the
second-order Raman spectrum of CdO and its temperature
dependence. Information about the acoustic phonon lifetimes
is extracted from the temperature dependence of the second-
order Raman peaks. Good knowledge of acoustic phonon
lifetimes is of great interest for the analysis of the thermal
conductivity of the materials [16].

II. EXPERIMENT

Single-crystal CdO epilayers with a thickness of ∼500 nm
were grown by metal-organic vapor-phase epitaxy (MOCVD)
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on r-plane sapphire substrates. Tertiary butanol and dimethyl-
cadmium were used as precursors in a reactor equipped with
two independent gas inlets. The sample was kept at 304 ◦C
on a radio-frequency-heated graphite susceptor. Details of
the sample growth and structural characterization are given
elsewhere [13].

Raman scattering spectra were excited with the 488-nm
line of an Ar+ laser in the backscattering configuration from
a c face and analyzed using a Jobin-Yvon T64000 spectrom-
eter equipped with a liquid N2 (LN2) cooled charge-coupled
detector. The measurements in the temperature range between
80 and 350 K were performed using a TBT-AirLiquide LN2

cryostat equipped with a platinum resistance sensor and a
temperature controller. Measurements at higher temperatures
up to 500 K were carried out using a Linkam THMS600
heating stage.

DFPT calculations were performed in the framework of the
local density approximation (LDA). The projector augmented
wave (PAW) approach as implemented in the ABINIT package
[17] was employed, with data sets derived from ultrasoft po-
tentials [18]. The dynamical matrix was obtained on a mesh
of k points using perturbation-theory linear response and in-
terpolated to arbitrary wave vectors for the calculation of the
phonon dispersion and density of states. An energy cutoff of
50 hartrees and an 8 × 8 × 8 Monkhorst-Pack k-point sam-
pling were used in the calculations.

III. RESULTS AND DISCUSSION

A. The second-order Raman spectrum of CdO

The Raman spectrum of the CdO sample at 80 K is shown
in Fig. 1 (top blue curve). Although the excitation energy
used (2.54 eV) was above the nominal band-gap energy of
CdO (∼2.2 eV), the absorption edge in our samples is shifted
to higher energies due to band filling effects (Burstein-Moss
shift). As a result, several Raman peaks arising from the
sapphire substrate can still be seen, which are marked with
asterisks. Besides a prominent central band between 250 and
480 cm−1, several narrow peaks are observed, which are re-
lated to critical points in the phonon dispersion where the
phonon bands are notably flat and lead to a high phonon
density of states (PDOS). Second-order scattering in CdO in-
volves the generation of two phonons (ωi, qi ) and (ω j, q j ) by
the electron-phonon interaction. For Stokes scattering, wave-
vector conservation implies that qi ≈ −q j , whereas qi ≈ q j

for difference scattering. Since the tensors belonging to the
identity representation (A1g) produce the highest scattering ef-
ficiencies and A1g is contained in the product representation of
overtones, the polarized second-order Raman spectrum should
largely be an overtone spectrum [19].

B. Phonon overtone distribution

For the interpretation and correct assignment of the
features observed in the second-order spectra, reliable calcu-
lations of the phonon dispersion and the PDOS are crucial.
Early works lacked such theoretical support and assign-
ments were made by analogy with other compounds [11].
In a previous publication, we tentatively assigned the ob-
served peaks based on ab initio calculations of the phonon

FIG. 1. Second-order Raman spectrum of the CdO film at 80 K
(top blue line) compared to the distribution of phonon overtones
(OTD) obtained from density functional perturbation theory calcu-
lations (bottom red line). A smooth scaling of the frequency axis
in the OTD was performed to bring the sharp distinctive features
into perfect match with the Raman spectrum (highlighted by dashed
orange lines). Raman peaks arising from the sapphire substrate are
marked with asterisks. The contribution of charge-density fluctua-
tions is depicted by the light blue trace labeled CDF. The sum of the
OTD and CDF contributions is plotted as a green line. The scaled
two-phonon difference density of states in the LA − TA(L) spectral
region is shown as a gray line.

dispersion [14]. Unfortunately, the DFPT method in the LDA
or generalized gradient approximation has intrinsic limitations
associated with the accurate treatment of the localization of
semicore d electrons. It was found that phonon energies were
systematically underestimated by norm-conserving Troullier-
Martins pseudopotentials, by as much as ∼40 cm−1 in the
case of the LO mode [14]. Here we repeat the calculations
using the PAW formalism using data sets from the new GBRV

library [20] generated from ultrasoft pseudopotentials [18]
at higher cutoff energies and k-sampling densities, but the
phonon frequencies are only marginally improved (the LO
mode is underestimated by 30 cm−1). Nevertheless, the shape
of the calculated PDOS bears an obvious resemblance to the
measured spectrum, which suggests that the overall phonon
structure is well reproduced by the calculations.

As discussed above, we expect the second-order Raman
spectrum to reflect the overtone distribution according to
[19,21]

I2(ω) ∝ [nBE(ω/2, T ) + 1]2ρph(ω/2), (1)

where nBE(ω, T ) is the Bose-Einstein distribution and ρph

is PDOS. In the following discussion, we will use a
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FIG. 2. Frequency-scaling function that brings the calculated
PDOS into accord with the most prominent features of the second-
order Raman spectrum (see text). The green and purple shaded areas
correspond, respectively, to the PDOS before and after frequency
scaling. The reference frequencies are marked with asterisks.

modified phonon dispersion in which we have carried out a
smooth continuous scaling of the energy axis to cause the
most salient critical-point features, namely, the calculated
ρph peaks at 111, 168, and 445 cm−1, to coincide with the
frequency of the second-order Raman peaks halved. A third-
degree Chebyshev polynomial expansion with coefficients
a0 = 1.428, a1 = −2.08 × 10−3 cm, a2 = 1.99 × 10−6 cm2,
and a3 = −6.73 × 10−10 cm3 was employed as a frequency-
scaling function. The scaling function and the corresponding
shift in the PDOS are shown in Fig. 2. The scaled overtone
distribution [OTD; Eq. (1)] is displayed in Fig. 1, where the
alignment of the features used for the scaling is highlighted
by the orange dashed lines. It is worth mentioning that other
minor features also become aligned with the experimental
spectrum, as depicted by the gray dotted lines. Most notably,
very good agreement is observed between the weak Raman
peak at ∼98 cm−1 and the peak in the two-phonon difference
density of states (2PDOS), displayed as a gray trace in Fig. 1.
All these observations strongly suggest that the scaled phonon
dispersion may provide a more faithful description of phonons
in CdO.

Notwithstanding the excellent agreement between the main
critical points and the narrow peaks of the Raman spectrum,
the latter displays an intense wide central band between 250
and 470 cm−1 that is not reflected in the OTD. This central
band had been attributed to first-order Raman scattering in-
duced by oxygen deficiencies in CdO [11]. However, this is
unlikely since there is no prominent structure in this spectral
region in the PDOS. We address the origin of the central band
in the next section.

C. Raman scattering by damped plasmon excitations

CdO samples display a high unintentional n-type conduc-
tivity originating in doubly ionized oxygen vacancies [4,6].
The presence of a high-density free-electron plasma may give
rise to Raman scattering by plasmon excitations. In fact, a
broad Raman feature spanning a spectral region between TO
and LO frequencies was reported on an overdamped plasma
in cubic n-type GaN and was attributed to the charge-density-
fluctuation (CDF) mechanism [22].

FIG. 3. Frequencies of the L− branch of the phonon-plasmon
coupled mode at increasingly large values of wave vector. The single-
particle excitation (SPE) region is shown as a shaded green area. The
weighting function F (q) [see Eq. (3)] is also plotted as a dotted line
for reference.

MOCVD-grown CdO epitaxial layers typically exhibit
electron densities Ne ∼ 1.5 × 1020 cm−3 and Hall mobilities
μ ∼ 83 cm2 V−1 s−1 [6,23]. We take into account conduction
band nonparabolicity via a two-band k · p Kane model [24],

E (k) = EG

2

⎡
⎣

√
1 + 4

EG

h̄2k2

2m∗ − 1

⎤
⎦, (2)

where EG is the band gap and m∗ is the band edge elec-
tron effective mass. We take the values EG = 2.16 eV and
m∗ = 0.21me from Ref. [6]. Using Eq. (2), for Ne = 1.5 ×
1020 cm−3 at 80 K, we find a Fermi wave vector of kF =
1.64 × 107 cm−1 and a Thomas-Fermi screening wave vec-
tor of qTF = 1.37 × 107 cm−1. At such high densities, the
single-particle regime (Landau damping region) for the plas-
mon excitations, h̄ωp(q) = E (kF ± q) − E (kF), sets in very
quickly and extends beyond qTF (see Fig. 3). Under wave-
vector nonconservation induced by the charged impurities,
large wave vectors contribute to scattering, and the Raman line
shape can be expressed as [25]

I (ω) =
∫ qmax

0
dqF (q)L(q, ω), (3)

where L(q, ω) is the spectral line shape at wave vector q
and F (q) = (4π )2/(q2 + q2

TF) is the Fourier transform of a
Yukawa-type distribution. For the charge-density-fluctuation
mechanism, the spectral line shape is given by [26]

L(q, ω) = q2

(
ω2

LO − ω2

ω2
TO − ω2

)2

Im

{ −1

ε(q, ω)

}
. (4)

The dielectric function ε(q, ω) can be written as

ε(q, ω) = ε∞
ω2

LO − ω2

ω2
TO − ω2

+ 4πχLM. (5)

Here χLM is the plasmon contribution to the electron gas
susceptibility, which is calculated using the Lindhard-Mermin
formalism:

χLM(q, ω) = (1 + i�/ω)[χL(q, ω + i�)]

1 + (i�/ω)[χL(q, ω + i�)/χL(q, 0)]
, (6)
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FIG. 4. Phonon dispersion of CdO along the main high-symmetry directions and the corresponding PDOS. The frequency axis has been
scaled to bring the main critical points into accord with the sharp peaks observed in the second-order Raman spectrum. In the PDOS, the blue
(red) shaded areas correspond to O (Cd) atomic motion. Arrows indicate the main paths for the anharmonic processes considered, namely,
cubic-anharmonicity decay and up-conversion (red and yellow circles, respectively) and quartic-anharmonicity recombination (blue circles).

with χL given by the Lindhard integral,

χL(q, ω) = 1

2

(
e

qπ

)2 ∫ ∞

0
dk k2nBE[E (k), T ]

×
∫ π

0
dθ sin θ

{
	E + h̄ω − ih̄�

(	E + h̄ω)2 + (h̄�)2

+ 	E − h̄ω + ih̄�

(	E − h̄ω)2 + (h̄�)2

}
, (7)

where 	E = E (k + q) − E (k), with E (k) being the non-
parabolic band given by Eq. (2). As can be seen from Fig. 3,
the wave vectors entering in the average of Eq. (3) lie within
the Landau damping region. Therefore, it is imperative to
use the Lindhard-Mermin approach to calculate the plasma
response, taking into account the overdamped nature of the
plasma. It should be noted that the line shape equation (4)
critically depends on the exact cancellation by the prefactor
of the pole on the real axis of ε(ω, q). Irmer et al. [27] derived
a different prefactor for the scattering efficiency that included
phonon damping using a small-q-limit, Drude-type suscep-
tibility. That expression breaks down the cancellation of the
pole, and it generates a spurious strong peak at the TO fre-
quency when used with the Lindhard-Mermin susceptibility
[22]. Since the damping constant of the plasma obtained from
the Hall measurement data (� ∼ 420 cm−1) is much larger
than the damping constant of the phonons, we neglect phonon
damping in the model to avoid these inconsistency problems.
As can be seen in Fig. 3, the low-energy branch of the coupled
mode (L−) shifts to higher energies for increasing wave vector,
from slightly below ωTO to frequencies approaching ωLO at
high q. Then, the weighted average (3) yields a broad band
spanning the spectral region between TO and LO frequen-
cies. The result of the calculation is shown in Fig. 1 as the
light blue curve labeled CDF. Adding the CDF contribution

to the OTD, we obtain the green curve, which reproduces
the overall shape and the main distinguishing features of the
second-order Raman spectrum (see dashed and dotted vertical
lines in Fig. 1). Only the weak shoulders at X and W in the
acoustic range and a sharp peak at X in the optical region lack
its reflection into the Raman spectrum, probably due to small
Raman susceptibility of the modes involved.

D. Temperature dependence

Once a reliable scaled phonon dispersion has been estab-
lished by comparison with the second-order Raman spectrum,
we can use it to analyze the temperature dependence of the
Raman peaks and the anharmonic phonon decay paths. The
scaled phonon dispersion is plotted along the main high-
symmetry directions in Fig. 4. Phonon lifetimes at the zone
center are commonly determined from the Raman spectrum
linewidths, and the temperature dependence of the Raman
line shape yields information about the anharmonic phonon
decay processes [28,29]. In the case of CdO, the temperature
dependence of the narrow peaks observed in the second-order
Raman spectra, which were identified as overtones at L and
	 critical points, can probe the anharmonicity of the phonons
involved. Figure 5 shows the Raman spectra at temperatures
in the 80–480 K range after removing the background, which
for the 2TA and 2LA region is, as previously discussed,
mainly due to overdamped plasmon excitations. The temper-
ature dependence is quite different for the different modes.
As expected, the LA − TA difference mode changes very
little with temperature because of the cancellation of thermal
expansion effects and the lack of effective decay channels.
Unfortunately, the intensity of this peak is extremely weak
and can hardly be observed at higher temperatures. In con-
trast, the 2TA(L) peak manifestly broadens and shifts to lower
frequencies as the temperature increases from 80 to 480 K,
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FIG. 5. Temperature dependence of the narrow second-order Raman features of CdO and the high-frequency cutoff at the 2LO(L) overtone.

whereas the 2LA(	) peak steadily broadens but its frequency
slightly increases with temperature. In a similar fashion, the
high-frequency cutoff at the 2LO(L) overtone is smoothed
out with increasing temperature, but its frequency practically
remains unaltered. To explain the temperature dependence of
the second-order Raman spectrum of CdO, next we consider
the effects of lattice thermal expansion and anharmonicity on
the phonon modes.

1. Lattice thermal expansion

The thermal expansion coefficient in a cubic crystal is
given by

α = γ cV

3B
, (8)

where γ is the average Grüneisen parameter, cV is the spe-
cific heat, and B = −V (∂P/∂V )T is the bulk modulus. In
terms of the mode contribution to the specific heat cVs(q) =
(h̄ωqs/V ) ∂nBE(ωqs, T )/∂T and the mode Grüneisen pa-
rameter γqs = −(V/ωqs) ∂ωqs/∂V , the average Grüneisen
parameter is

γ =
∑

qs γqscVs(q)∑
qs cVs(q)

, (9)

and the specific heat can be written as

cV = kB

V

∑
qs

(
h̄ωqs

2kBT

)2 1

sinh2
( h̄ωqs

2kBT

) . (10)

All the above quantities can be calculated from the cor-
rected phonon dispersion obtained from DFPT. We evaluate
the sums over the Brillouin zone using the set of 10 special
reciprocal-space points derived by Chadi and Cohen [30]. At
300 K we obtain α = 1.36 × 105 K−1 and cV = 43.3 J/mol K,
in excellent agreement with recent data for CdO (α = 1.4 ×
105 K−1 and cV = 43.6 J/mol K) [31]. In the quasiharmonic
approximation, the phonon shift due to thermal expansion of

the lattice 	0 is obtained from

	0 = −ω0

∫ T

0
3γα(T ′)dT ′. (11)

MOCVD CdO layers grown on r-plane sapphire are fully
relaxed, with perpendicular and in-plane lattice parameters in
agreement with the bulk value [13]. Consequently, we assume
that the relatively thick layer studied here is effectively decou-
pled from the sapphire substrate and the effects of differential
expansion can be neglected.

2. Anharmonic decay

Anharmonic interactions couple the harmonic eigenstates
and induce a complex phonon self-energy (ω) = 	(ω) +
i�(ω) which accounts for the finite lifetime of the phonons.
The imaginary part of the self-energy yields the Raman line
shape broadening, which has an associated frequency shift
due to the real part of the phonon self-energy [32]. Second-
order Stokes Raman scattering in CdO involves the creation
of a two-phonon state in a single event. The lifetime of such
an excited state is limited by the anharmonic decay of each
constituent phonon (three-phonon processes) as well as by
the recombination of the two-phonon state via quartic an-
harmonicity resulting in pairs of lower-lying phonons with
opposite wave vectors (four-phonon processes). The decay
rate of the two-phonon state is then τ−1 = τ−1

(3),1 + τ−1
(3),2 +

τ−1
(4),1⊕2, where τ−1

(3),i is the cubic-anharmonicity decay rate of
phonon i and τ−1

(4),1⊕2 is the recombination rate of the two-
phonon state via quartic anharmonicity. Most of the observed
Raman features correspond to overtones of acoustic modes,
which generally exhibit longer lifetimes than optical modes
due to the low density of phonon states available for decay.
Thus, quartic-anharmonicity interactions have to be included
to explain the temperature dependence measured in the exper-
iments.
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A perturbative analysis of the anharmonic interactions was
first applied to group-IV semiconductors [28] and later ex-
tended to a number of compound semiconductors [33–37].
Assuming that the Bose-Einstein factors and the anharmonic
potentials vary slowly around the considered phonon frequen-
cies, the imaginary part of the phonon self-energy for cubic
anharmonicity can be written to the lowest order in perturba-
tion theory as

�(3)(ω, T ) = |V +
3 |2(1 + n1 + n2)ρ+(ω)

+ |V −
3 |2(n1 − n2)ρ−(ω), (12)

where ρ+(ω) and ρ−(ω) are, respectively, the two-phonon
sum and difference density of states, n1 and n2 are the Bose-
Einstein occupation factors for the phonon products, and V +

3
and V −

3 are effective cubic-anharmonicity potentials. The sec-
ond term corresponds to an up-conversion process in which
a phonon ω1 is annihilated and a higher-energy phonon ω2

is created. The real part of the phonon self-energy can be
obtained from a Kramers-Kronig transformation. In addi-
tion, there is a purely real contribution to the self-energy
arising from quasielastic scattering with pairs of opposite-
wave-vector phonons. This contribution, which is associated
with a first-order loop diagram and is referred to as four-
phonon scattering, is particularly important in laminar crystals
exhibiting low-lying optical branches [29]. In the case of CdO,
the PDOS maximum occurs at a sharp peak at ∼140 cm−1,
which may enable a relevant contribution of the four-phonon
scattering mechanism.

The relatively weak cubic-anharmonicity decay of the
acoustic modes is not sufficient to explain the observed vari-
ation of the second-order Raman peaks with temperature.
Quartic anharmonicity, which gives rise to four-phonon pro-
cesses, has been shown to be important in many cases [38,39].
Balkanski et al. [38] gave explicit expressions for the quartic-
anharmonicity contributions to the self-energy. To estimate
the overtone recombination rate τ−1

(4),1⊕2, we consider the quar-
tic interaction corresponding to the annihilation of phonon ω1

and creation of phonons ω2 and ω3 [38], with ω1 fixed at the
half frequency of the overtone. Under the same assumptions
leading to Eq. (12), the contribution of four-phonon recombi-
nation of the overtone can be approximated by

�(4)(ω, T ) = 3|V4|2{n1(1 + n2)(1 + n3)

− (1 + n1)n2n3}ρ+(ω), (13)

where V4 is an effective quartic anharmonic potential. Note
that here ω stands for the frequency of the overtone. The main
paths for phonon decay via cubic and quartic anharmonicity
considered in our analysis are depicted in Fig. 4.

For small anharmonic shifts and broadenings compared
to the harmonic frequency, the Raman scattering line shape
is [28]

I (ω) ∝ �(ω)

[ω0 + 	0 + 	(ω) − ω]2 + �(ω)2
, (14)

which yields the frequency and linewidth of the renormalized
phonon. Note that for a slowly varying self-energy, the line
shape is Lorentzian-like with the full width at half maximum
(FWHM) equal to 2�(ω). Next, we analyze the observed

FIG. 6. (a) Temperature dependence of the full width at half
maximum (FWHM) of the 2TA(L) peak (circles) and the FWHM
calculated using the anharmonic decay model (solid line). (b) Ther-
mal downshift of the 2TA(L) frequency (circles) and the calculated
contributions of anharmonic decay (dashed line) and lattice thermal
expansion (dash-dotted line). The solid green line is the sum of
anharmonic decay and lattice expansion contributions.

temperature dependence of each of the modes displayed in
Fig. 5 in light of the theoretical framework described above.

3. 2TA(L)

The 2TA(L) peak exhibits a typical temperature depen-
dence with a steady broadening and frequency downshift as
temperature increases. We identify representative frequencies
for cubic-anharmonicity decay of the TA(L) mode along the
�-L line. Only up-conversion processes are possible (gray
up-pointing arrows in Fig. 4), with average frequencies ω1 =
79 cm−1 and ω2 = 217.5 cm−1. Quartic-anharmonicity re-
combination of the two-phonon state can proceed via the
creation of pairs of opposite-wave-vector phonons at L or at
the �-K and L-X lines, as indicated by the green arrows in
Fig. 4. Figure 6(a) shows the FWHM of the 2TA(L) peak mea-
sured for temperatures from 80 to 510 K. The FWHMs were
determined from Lorentzian fits to the spectra, and the error
bars correspond to the asymptotic standard errors of the fit.
The anharmonic model based on Eqs. (12) and (13) reproduce
well the experimental results. Table I lists the values of the
effective anharmonic potentials that were used to obtain a best
fit to the data, as well as the constant background contribution
which accounts for impurity scattering and the inhomoge-
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TABLE I. Cubic (V +,−
3 ) and quartic (V4, V4ps) anharmonicity effective potentials used to describe our data and anharmonicity-limited

phonon lifetimes at 80 and 300 K. �b is the constant background contribution to the FWHM that accounts for background impurity scattering
and inhomogeneous broadening.

|V +
3 |2 |V −

3 |2 |V4|2 V4ps τ 80K
anh τ 300K

anh �b

Mode (cm−2) (cm−2) (cm−1) (cm−1) (ps) (ps) (cm−1)

TA − LA(L) 10 10 10 9.5 2.1 15.0
2TA(L) 5.5 5.7 −0.1 6.8 0.9 15.6
2LA(	) 22 15 1 2.5 0.5 12.0
2LO(L) 26 25 0.8 0.6 0.3

neous broadening caused by the finite width of the peak in the
PDOS. The variation of the FWHM with temperature allows
us to estimate the anharmonic-decay-limited phonon lifetime
τanh from FWHM = h̄(τ−1

anh + τ−1
b ), where τ−1

b accounts for
the phonon broadening by background impurities and in-
homogeneous broadening and h̄ = 5.3089 × 10−12 cm−1 s.
Values of τanh at 80 and 300 K are also listed in Table I.
In Fig. 6(b) we analyze the frequency downshift with tem-
perature, which is well described by the sum of the thermal
expansion contribution (dash-dotted line) and the anharmonic
shift (dashed line). Only a marginal contribution of the four-
phonon scattering (V4ps = −0.1 cm−1) was included to finely
match the model with the experimental results (solid green
line).

4. 2LA(�)

The temperature dependence of the 2LA(	) mode is quite
different from that of the 2TA(L) mode. As can be seen from
the spectra in Fig. 5, whereas the linewidth increases with
temperature at a significantly higher rate than that of the
2TA(L) mode, the 2LA(	) mode frequency shows a small
upshift with temperature. The LA(	) mode can decay into
a pair of transverse and longitudinal acoustic phonons on the
�-X line, with representative frequencies ω1 = 62 cm−1 and
ω2 = 135 cm−1, as depicted by the cyan arrows in Fig. 4.
Recombination of the two-phonon state results in pairs of
opposite-wave-vector LA phonons on the �-X line (orange
arrows in Fig. 4). Figure 7(a) displays the temperature depen-
dence of the FWHM of the 2LA(	) mode (circles), which
is well reproduced by the anharmonic model (for the model
parameters, see Table I). The phonon shift associated with
the real part of the phonon self-energy is plotted as a dashed
line in Fig. 7(b). The anharmonic decay yields a negative
frequency shift with a magnitude comparable to the thermal
expansion downshift (dash-dotted line). A substantial contri-
bution of the four-phonon scattering has to be included to
achieve good agreement with the experimental frequencies.
The model reproduces well the observed saturation of the
frequency upshift at higher temperatures.

5. LA − TA(L)

For completeness, we also discuss the LA − TA(L) dif-
ference mode. Unfortunately, this is an extremely weak
peak, and it becomes buried in the background of the spec-
tra at temperatures higher than 300 K, so only a limited
range of temperatures is available, and the results should be
taken as qualitative. Being a difference mode, we expect the

anharmonic effects to be small. First, it has a small frequency,
so the PDOS available for decay is very small. Second, the
lattice expansion effects should tend to cancel for the differ-
ence mode. Only up-conversion processes are possible for the
TA(L) mode, which are indicated by up-pointing arrows in
Fig. 4. The LA(L) mode can decay into phonons of the LA
and TA branches in the �-L line at frequencies of 122 and
119 cm−1, respectively (this path has been omitted in Fig. 4 to
avoid cluttering the graphic). Figure 8(a) shows the FWHM of
the difference mode measured for temperatures up to 300 K,

FIG. 7. (a) Temperature dependence of the FWHM of the
2LA(	) peak (circles) and the FWHM calculated using the an-
harmonic decay model (solid line). (b) Thermal downshift of the
2LA(	) frequency (circles) and the calculated contributions of an-
harmonic decay (dashed line), four-phonon scattering (dotted line),
and lattice thermal expansion (dash-dotted line). The solid green line
is the sum of anharmonic decay, four-phonon scattering, and lattice
expansion contributions.
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FIG. 8. (a) Temperature dependence of the FWHM of the LA −
TA(L) peak (circles) and the FWHM calculated using the anhar-
monic decay model (solid line). (b) Thermal downshift of the
LA − TA(L) frequency (circles) and the calculated contributions of
lattice thermal expansion for LA − TA(L) (dash-dotted line) and
TO − TA(L). The solid green line is the sum of the anharmonic decay
and the lattice expansion contribution for LA − TA(L).

compared with the theoretical model. Generic nominal an-
harmonic potentials |V +

3 |2 = |V −
3 |2 = |V4|2 = 10 cm−2 were

used in the calculations because the quality of the data does
not allow refining the estimates. The corresponding real part
of the phonon self-energy yields a small negative shift in this
temperature range. Since at the L point the frequencies of
the LA and TO modes are almost identical (see Fig. 4), one
might also consider TO − TA as a possible assignment for
this mode. However, we find that the Grüneisen parameters
for the TO and LA modes differ considerably (γTO = 4.93 vs
γLA = 1.16). This means that the thermal expansion shift of
TO − TA [dashed line in Fig. 8(b)] would play a dominant
role in its temperature dependence, which is not observed in
the experiment. This would suggest that this mode is mainly a
difference mode of acoustic branches primarily involving Cd
motion.

6. The 2LO(L) cutoff

Unlike the second-order modes previously analyzed, the
2LO(L) mode does not appear as a sharp peak in the Raman
spectrum, but it marks an abrupt high-frequency cutoff. As can
be seen in Fig. 5, this steplike cutoff broadens and slightly
downshifts as temperature increases. To extract more quan-
titative information from the spectra, we have modeled the

FIG. 9. (a) Slope of the sigmoidal function at the midpoint (blue
curve, left axis) and the shift of the midpoint (red curve, right axis)
as a function of the FWHM of the Lorentzian line shape. (b) Fits of
the sigmoidal function (solid lines) to the experimental data (points)
at different temperatures.

high-frequency cutoff using a generalized sigmoidal curve,

σ (ω) = A

{1 + exp[B(ω − ω0)]}1/2
, (15)

where A, B, and ω0 are fitting parameters. To reduce the
degrees of freedom, the exponent in the denominator is kept
fixed at 1/2, as this value yields similarly good fits for all the
spectra. The physically relevant parameters of the fit are the
midpoint ω0 and the slope at midpoint −2−5/2AB, which are
related to the frequency and FWHM of the 2LO(L) mode.

To determine this relationship, we have fitted the sigmoidal
curve [Eq. (15)] to the convolution of a Lorentzian function
with the PDOS with a doubled frequency axis. One should
bear in mind that this procedure may introduce an artifi-
cial inhomogeneous broadening if the scattering efficiency
of the 2LO mode along the �-L line, responsible for the
high-frequency tail in the PDOS, is lower than at the L point.
The changes in slope and midpoint of the convolved steplike
structure are plotted in Fig. 9(a), which shows that the slope
gradually decreases as the Lorentzian linewidth increases, and
the midpoint shifts to lower frequencies. By fitting the sig-
moidal curve to the Raman spectrum as displayed in Fig. 9(b)
and using the calibration provided in Fig. 9(a), we can extract
the values of the FWHM for the 2LO(L) mode. These are
plotted as a function of temperature in Fig. 10(a).

Representative frequencies for decay of the LO(L) mode
are identified on the TO and LA branches along the �-L line
as depicted in Fig. 4 by purple arrows. Quartic-anharmonicity
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FIG. 10. (a) FWHM of the 2LO(L) mode extracted from the
second-order spectra high-frequency cutoff (circles). The solid line
is a calculation using the anharmonic model. (b) Shift of the second-
order spectra cutoff frequency with increasing temperature (circles).
The dash-dotted line is the contribution of the lattice thermal ex-
pansion. The green solid line is the sum of the anharmonic decay,
four-phonon scattering, and thermal expansion contributions.

recombination paths are depicted by magenta discontinuous
arrows. The increase in the FWHM with temperature is well
reproduced by the anharmonic model with the parameters
listed in Table I. Note that the magnitude of the FWHM is
fairly low and that no background contribution had to be
added. This is a consequence of the inhomogeneous broad-
ening associated with the convolution, as discussed above.
After correcting for the shift of the sigmoidal curve [see
Fig. 9(a)], the frequency of the 2LO(L) mode does not change
significantly for temperatures up to 300 K, as can be seen in
Fig. 10(b), indicating that in this case four-phonon scattering
also tends to compensate the effect of the lattice thermal
expansion. At higher temperatures the high-frequency cutoff
seems to downshift slightly, but the spectra become very weak
and noisy, making the analysis uncertain in this higher temper-
ature range.

IV. CONCLUSIONS

We have performed a comprehensive study of Raman scat-
tering of rock-salt CdO. Despite first-order Raman scattering
being forbidden by the symmetry of the lattice, the second-
order Raman spectra can still yield a good deal of information.
The particular phonon dispersion of CdO contains sharp Van
Hove singularities that result in narrow peaks in the second-
order spectra which can be readily identified from ab initio
calculations. Although, presently, DFPT calculations substan-
tially underestimate the phonon frequencies of CdO, we can
exploit these hallmarks in the spectra to correct the calculated
phonon dispersion and PDOS for subsequent use in the mod-
eling of anharmonic interactions.

The second-order Raman spectrum is primarily an over-
tone spectrum, as indicated by the good agreement that is
observed with the PDOS with the frequency axis doubled,
except for a wide, intense central band that is not correlated
with the PDOS. We attribute this band to Raman scatter-
ing by large-wave-vector coupled-plasmon excitations of the
overdamped plasma present in the n-type sample. A detailed
calculation of this contribution using the Lindhard-Mermin
formalism yields excellent agreement with the experimental
data, thus supporting this assignment.

The temperature dependence of the second-order peaks
has been analyzed using a semiempirical anharmonic decay
model based on the phonon self-energy that includes phonon
decay via cubic- and quartic-anharmonicity interactions
and quasielastic scattering with low-frequency modes (four-
phonon scattering mechanism). The cubic-anharmonicity
decay is relatively weak for the acoustic modes, and quartic-
anharmonicity interactions have to be included to explain the
experimental results. While the 2TA(L) mode exhibits a typ-
ical temperature behavior with a frequency downshift linked
with the line broadening, the 2LA(	) shows a slight blueshift
associated with the four-phonon scattering mechanism that
compensates the thermal expansion shift. A similar behavior
is observed for the high-frequency cutoff of the second Raman
spectrum delimited by the 2LO(L) frequency.
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