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We use general symmetry-based arguments to construct an effective model suitable for studying optical
properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between
electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k · p
Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet
constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for
calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that
the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that
optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this,
we discuss third-harmonic generation.
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Lead halide perovskites (LHP) are a family of lead-
based compounds with the structure APbX3 where A = Cs,
CH3NH3; X = Cl, Br, I. They attract attention as promising
candidates for high-performance solar cells [1,2]. In order
to construct improved photovoltaic devices as well as to ex-
plore further potential applications of perovskite compounds,
it is necessary to gain a better understanding of the material
properties of this system. The study of basic optoelectronic
phenomena in LHP in the near-infrared range is particularly
important in this regard as it may provide an insight into
microscopic properties of the charged excitations in these
materials such as dispersion and excitonic states [3,4].

The response of a given system to applied electromagnetic
fields crucially depends on how these fields couple to the
(relevant) degrees of freedom of the system. In this paper,
which accompanies [5], we argue that introducing electro-
magnetic field by naive minimal electromagnetic coupling to
the k · p Hamiltonian does not adequately capture the fre-
quency dependence of basic optical properties of lead halide
perovskites. Moreover, we amend the k · p Hamiltonian by
introducing new terms which have a transparent physical
meaning. We test our effective description of LHP against
available experimental data and produce numeric values for
the strengths of the new terms in the effective Hamiltonian.

The main results of the paper are as follows: First, we
argue that the Hamiltonian introduced in Ref. [5] satisfies
all necessary symmetries for describing low-energy optical
properties of LHP. Second, we employ the model to calcu-
late linear optical quantities. Finally, we argue that nonlinear
optical effects can also be conveniently studied within the
introduced theoretical framework. We compute the third-order
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optical susceptibility, which (in particular) allows one to in-
vestigate polarization-dependent nonlinear properties of LHP.
As an illustration, we discuss anisotropy in third-harmonic
generation (THG).

The paper is structured as follows: In Sec. I, we use
general symmetry-based arguments to construct an effective
low-energy description of LHP. This result is then used in
Secs. II and III to calculate the linear optical polarizability and
the Verdet constant. We show how to calculate nonlinear ef-
fects using the effective model in Sec. IV. Section V contains
a brief summary of our work. Technical details to support the
discussion are presented in three Appendixes.

I. EFFECTIVE DESCRIPTION OF LHP

A. Basis states and symmetries

The low-energy optoelectronic properties of LHP are deter-
mined by the hybridization of s and p orbitals of Pb and halide
atoms [6]. Near the gap edge, the states have a pronounced s-
(valence band) and p-type (conduction band) character. As a
result of spin-orbit coupling the p-type states further split into
J = 1

2 and 3
2 manifolds. The former shapes the properties of

the bottom of the conduction band. Therefore, to analyze the
low-energy physics of LHP, it is sufficient to consider only the
following four basis states [7]:
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where the left-hand side introduces the “quasispin” notation
convenient for our work. The right-hand side follows the stan-
dard notation [8,9] for the spin structure of a state [|↓〉 and |↑〉]
and for the components of the Bloch functions [|s〉, |px〉, |py〉,
|pz〉]. For clarity, we also describe the states in terms of the
total angular momentum and its projection in the parentheses.
Note that in the companion paper [5], for simplicity, we used
a somewhat different notation, e.g., there ⇑↑ was used instead
of ⇑⇑⇑. We do not employ this simplification in this paper.

In a periodic lattice, the atomic states form bands. In the
basis given by Eqs. (1)–(4), the s- and p-type states form
the valence and conduction band, respectively. To understand
the corresponding physics, the standard approach is to con-
struct an effective k · p Hamiltonian that acts on these basis
states. In the cubic phase, the resulting Hamiltonian in the ma-
trix form acting on ψT = (⇑⇑⇑, ⇑⇑⇓, ⇓⇓⇑, ⇓⇓⇓) can be written
in the vicinity of the high-symmetry R point of the Brillouin
zone as follows (h̄ = 1):

Hk =

⎛
⎜⎜⎜⎜⎝

�(ka)
2 0 −2itkza −2itk−a

0 �(ka)
2 −2itk+a 2itkza

2itkza 2itk−a −�(ka)
2 0

2itk+a −2itkza 0 −�(ka)
2

⎞
⎟⎟⎟⎟⎠, (5)

where ki is the momentum (without loss of generality, we
assume that k = 0 corresponds to the R point); k± = kx ± iky;
a is the (cubic) lattice unit; �(ka) has the meaning of a
k-dependent energy gap with a minimum at the R point; (it ) is
the intraorbital (s-p) overlap integral between the neighboring
sites [7].

The k · p method is a powerful tool with a general applica-
bility [8,9]. However it turns out that for the specific case of
a cubic lead halide perovskite it could be of advantage to take
an alternative route, and construct an effective description of
the low-energy physics from the allowed symmetries. To this
end, we note that any operator Ô [10], that acts in the Hilbert
space based upon the states in Eqs. (1)–(4), can be written as
follows:

Ô =
∑
i, j,l

C l
iDl

jτ
⇑⇑
i ⊗ τ

⇑
j , (6)

where τ1, τ2, τ3 is a set of the Pauli matrices and τ0 is the
identity matrix. The superscript ⇑⇑ (⇑) defines in a natural way
the subset of the space where the matrices act. To simplify the
notation, we shall define

τi ≡ τ
⇑⇑
i , σi ≡ τ

⇑
i . (7)

The expansion coefficients C l
i and Dl

j can depend on the
momentum of the particle as well as on the external electric
E and magnetic B fields. If one assumes that the system is
isotropic, then {C l

1, C l
2, C l

3} and {Dl
1,Dl

2,Dl
3} should transform

like vectors under the change of the system of coordinates. We
shall assume cubic symmetry Oh to model LHP. Therefore, in
our work, the Hamiltonian becomes approximately isotropic
only in the limit of low momenta. In general, one expects an
anisotropic optical response (see Sec. IV for details).

Naturally, any effective Hamiltonian that describes the sys-
tem can be written as Eq. (6). Its most general form can be
obtained by fixing time-reversal and parity symmetries of the

system. It is straightforward to show that the operators that
implement these symmetries for the states in Eqs. (1)–(4) are

T̂ = iτ3 ⊗ σ2K̂, (8)

P̂ = −τ3 ⊗ σ0, (9)

where K̂ is the complex-conjugation operator. The operators
T̂ and P̂ commute with each other as they should.

Note that the time-reversal operator T̂ acts in the standard
way in the ⇓⇓ manifold:

T̂ |⇓⇓⇑〉 = |⇓⇓⇓〉, T̂ |⇓⇓⇓〉 = −|⇓⇓⇑〉. (10)

However, there is an unconventional sign when T̂ operates in
the ⇑⇑ manifold:

T̂ |⇑⇑⇑〉 = −|⇑⇑⇓〉, T̂ |⇑⇑⇓〉 = |⇑⇑⇑〉. (11)

Analogously, one can check that the parity operation also
depends on the manifold.

B. Effective Hamiltonian

To construct an effective Hamiltonian, let us first consider
the simplest case of vanishing momentum (k = 0) and no
external electromagnetic fields (E = 0, B = 0). In this case,
there are only three commuting operators: T̂ , P̂, and the
identity operator Î . The operator T̂ is antiunitary and cannot
enter the Hamiltonian. Therefore, the Hamiltonian must be of
the form

H (k = E = B = 0) = α(1)τ0 ⊗ σ0 + α(2)τ3 ⊗ σ0, (12)

where the parameter α(1) determines the offset of the en-
ergy [11]. It will not be important in our study and can be set
to zero. The physics of the parameter α(2) is also clear; it fixes
the gap between the ⇑⇑ and ⇓⇓ manifolds. One can conveniently
write it as �/2. For the APbBr3 perovskites the value of the
gap is known to be approximately 2 eV; see also below as well
as Ref. [12] and references therein.

For a nonvanishing momentum and electromagnetic fields,
one can add terms to Eq. (12). Indeed, in this case the coef-
ficients C l

i and Dl
j can depend on k, E, and B, and the most

general of the Hamiltonian can be written as

H = α(1)τ0 ⊗ σ0 + α(2)τ3 ⊗ σ0 +
∑

l

α
(3)
l τ1 ⊗ σl

+
∑

l

α
(4)
l τ2 ⊗ σl +

∑
l

α
(5)
l τ0 ⊗ σl +

∑
l

α
(6)
l τ3 ⊗ σl ,

(13)

where α(1) and α(2) are symmetric under the action of both T̂
and P̂; α

(4)
l is antisymmetric under T̂ and P̂; α

(3)
l is symmetric

under T̂ , but antisymmetric under P̂; α(5)
l and α

(6)
l are antisym-

metric under T̂ , but symmetric under P̂. As before, we shall
assume that α(1) = 0. Note that by definition T̂ k = P̂k = −k,
T̂ E = −P̂E = E, and T̂ B = −P̂B = −B.

Assuming that the electromagnetic fields are weak, we can
write (see also [5])

H = Hk + HE + HB, (14)

where Hk determines the dispersion relation of the system.
HE and HB determine coupling of LHP to electromagnetic
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fields beyond the minimal coupling to Hk . Without loss of
generality, we write the operator Hk as

Hk = 1

2
�(k̃)τ3 ⊗ σ0 + 2tτ2 ⊗

3∑
l=1

σl S(k̃l ), (15)

where k̃l = kl a − qaAl (q is the charge of a particle, Al is the
vector potential in SI units) and t is the hopping parameter.
The even function �(x) and the odd function S(x) define
the momentum dependence of the electronic band. In what
follows, we shall also write �(x) as

�(k̃) =
(

� + t3

3∑
l=1

C(k̃l )

)
, (16)

where C(x) is some even function. We assume that C(x) 

x2/2 and S(x) 
 x in the limit x → 0. This natural assumption
implies that in the limit k → 0 the Hamiltonian Hk corre-
sponds to the model of Ref. [7] [see Eq. (5)].

For weak external fields, the operators HE and HB should
have the following forms:

HE = μτ1 ⊗
3∑

l=1

σlEl , (17)

HB = (
μ

(1)
B τ0 + μ

(2)
B τ3

) ⊗
3∑

l=1

σlBl , (18)

where μ controls the response of the medium to the external
electric field (similar to the dipole moment). The parame-
ters μ

(1)
B and μ

(2)
B determine the magnetic susceptibility. Note

that the terms [�k × �E ] and [�k × �B] have the symmetries of
magnetic and electric fields, respectively. Indeed, [�k × �E ] is a
time-reversal-odd axial vector; [�k × �B] is a time-reversal-even
polar vector. Therefore, they can be used in the corresponding
places in Eqs. (17) and (18). However, these terms can be
written as products of the basis coupling terms already pre-
sented in Eqs. (15), (17), and (18); hence, they do not lead
to any new functional dependence of observables, and are not
important for our discussion. We leave their investigation to
future studies.

Although, from the symmetry arguments μ
(1)
B and μ

(2)
B

can be arbitrary, the microscopic nature of the basis states
imply that μ

(1)
B = −μ

(2)
B , which is explored in Ref. [5]. This

condition corresponds to the fact that the Zeeman effect, direct
coupling of the magnetic field to ↑ and ↓, can occur only in
the two lower states. Indeed, the Zeeman term does not act
on the two higher states; otherwise, it would involve states
outside the Hilbert space defined in Eqs. (1)–(4). For the sake
of discussion, we shall treat μ

(1)
B and μ

(2)
B as independent

quantities. This will help us to illustrate that the strength of
the Faraday effect is given only by the first term in Eq. (18),
i.e., μ

(1)
B (see Sec. III).

As a summary of this section, the Hamiltonian in Eq. (13)
is the low-energy description of the system assuming the
Hilbert space from Eqs. (1)–(4), validating the phenomeno-
logical model presented in Ref. [5]. As expected, in the
absence of external fields and for k → 0, it coincides with
the k · p Hamiltonian in Eq. (5). Strictly speaking, the ef-
fective Hamiltonian H is limited to the vicinity of the band

gap. However, most of the low-energy optical properties are
determined by the transitions in this region, making the pro-
posed effective model useful. Another merit of the presented
phenomenological approach is that using similar symmetry
arguments one can further amend the effective Hamiltonian
with new degrees of freedom of a known symmetry.

II. LINEAR OPTICAL POLARIZABILITY

A. General derivations

As a first application of the effective Hamiltonian, we cal-
culate the linear optical susceptibility in the vicinity of the
energy gap. To this end, we follow the standard procedure
[13]. First, we assume that the magnetic field is zero, and
the electric field is weak (El , Al → 0). This allows us to write
the Hamiltonian as

H 
 H0 + HP(t ), (19)

where the time-independent part reads as

H0 = 1

2
�(ka)τ3 ⊗ σ0 + 2tτ2 ⊗

3∑
l=1

σl S(kla), (20)

and the time-dependent perturbation has the form

HP = μτ1 ⊗
3∑

l=1

σlEl − qa
3∑

l=1

Al

×
(

t3
2

C(kl a)′τ3 ⊗ σ0 + 2tτ2 ⊗ σl S(kla)′
)

. (21)

Note that we have neglected the terms at the order of A2
l and

beyond to be consistent with the derivation of the effective
Hamiltonian [in particular of HE in Eq. (17)]. These terms are
not immediately important for the discussion below, however,
they should be included to describe the optical properties at
low frequencies (see Appendix A).

To calculate the polarizability, we first use perturbation
theory to calculate the change in the energy of the material
in the approximation of slow fields. Then, we differentiate it
with respect to the electric fields. This procedure provides a
general way for calculating susceptibilities of the systems that
are described by the Hamiltonian H (see Appendix A).

Close to the band gap, the resonant transition dominates
the optics (see Fig. 1), and we derive in the leading order in
t/� the polarizability of a unit volume

αzz(ω) =
∫

dk
(2πξ )3

[
μ + 2tS(kza)′ qa

ω

]2

�(ka) − ω − i
/2
, (22)

where ω is the frequency of light, 
 is a phenomenological
parameter to model nonunitary processes, such as decay of
energy levels, and ξ is a phenomenological geometric factor
(see Appendix A). Note that Eq. (22) should be used only in
the vicinity of the energy gap (ω 
 �), in particular, it does
not lead to a finite value of αzz as ω → 0. The polarizability at
low frequencies requires additional calculations as we discuss
in Appendix A.

The theoretical prediction of Eq. (22) can be connected to
the refractive index via the Clausius-Mossotti relation (also
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FIG. 1. (Left) Cartoon of the cubic lattice with s- and p-type
orbitals. (Right) The resonant band-gap transition that contributes to
the polarizability in Eq. (22). The horizontal lines show the eigen-
states of the Hamiltonian in Eq. (20) for t = 0. They are separated
by �(ka). The arrows show a transition to a virtual level driven by a
photon with frequency ω.

known as the Lorentz-Lorenz law, see, e.g., [13,14])

n2 = 1 + 3αzz

3ε0 − αzz
, (23)

where ε0 is the permittivity of free space. The integer 3 is used
here in approximation of an isotropic material; in general, it
can also be used as a fitting parameter. Assuming that the
imaginary parts of n and αzz are small, we derive

[Re(n)]2 
 1 + 3 Reαzz

3ε0 − Reαzz
, (24)

Im(n) 
 9ε0Im(αzz )

2 Re(n)[3ε0 − Re(αzz )]2
, (25)

which leads to

Im(αzz )

ε0

 18 Re(n)Im(n)

{[Re(n)]2 + 2}2
. (26)

In our experimental setup [5], we can measure Re(n) and
Im(n), which allows us to benchmark our theoretical calcula-
tions against experimental measurements. Note that Re(n) 

2 for the considered parameters, which leads to Im(αzz ) 

ε0Im(n).

B. Comparison to the experiment

Here, we use experimental values of Re(n) and Im(n) dis-
cussed in Ref. [5] to calculate the right-hand side of Eq. (26).
To estimate the left-hand side, we work with our theoretical
prediction presented in Eq. (22). To fix the parameters that
enter Eq. (22), we rely on available experimental data [16–19],
and the numerical data for CsPbBr3 [7]. These data motivate
us to use t = 0.6 eV, t3 = 0.9 eV, � = 2.3 eV, a = 0.586 nm
(cf. [5]). To investigate the role of the functions C(x) and S(x),
we employ two possible functional forms:

C(x) = 1 − cos(x), S(x) = sin(x), (27)

and

C(x) = x2

2
, S(x) = x. (28)

FIG. 2. Experimental (blue dots, Ref. [5]) and theoretical values
for polarizability Im(αzz )/ε0 of CH3NH3PbBr3 as a function of the
photon energy. Theoretical curves are calculated using Eq. (26) for
different values of 
. Equation (27) and μ = 0.29qa are used to pro-
duce (a). The data in (b) are computed with Eq. (28) and μ = 0.26qa.
The other parameters that enter Eq. (26) are discussed in Sec. II B.

As we show in Fig. 2, Eqs. (27) and (28) lead to similar
results for Im(αzz ), in spite of very different energy spectra
(see Fig. 3). This is a manifestation of the fact that only the
behavior in the vicinity of k → 0 is important for interpreting
the present data.

The fit parameter μ is almost independent of 
, assuming
reasonable values of 
. Note that in the companion paper [5]
we included also the fit to the exciton peak. We do not do
it here, as an analysis of the exciton peak requires calcula-
tions beyond our single-body theoretical model; moreover,
the value of μ is (almost) not sensitive to the inclusion of
the exciton peak in the fitting procedure. Another remark is
that our model is capable of describing the shape and the
amplitude of Im(αzz ) without electron-hole interactions.

III. FARADAY EFFECT

As the next application of our effective model, we consider
the Faraday effect [20], in which (linear) polarization of an
electromagnetic wave is rotated in the presence of a magnetic

FIG. 3. The energy spectrum of the Hamiltonian without external

fields, ±
√

�(ka)2

4 + 4t2
∑

l S(ka)2, for Eqs. (27) [to the left of the
vertical (green) line] and (28) [to the right of the vertical (green) line].
The positions in the Brillouin zone are depicted by 
, X , M, and R
(see the inset). The depicted path 
 → X → M → R is motivated in
part by the discussion of mirrors of bonding in Ref. [15].
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FIG. 4. Transitions that enter calculations of χxy for t = t3 = 0
[see Eq. (29)]. Here, to simplify the figure, we employ the assump-
tion of the companion paper [5]: μ

(1)
B = −μ

(2)
B = −μ̃B/2. We do this

without loss of generality since only μ
(1)
B enters calculations.

field collinear with propagation of light. First, we focus on a
simple scenario without hopping terms (t = t3 = 0). Then, we
consider a general case.

A. Faraday effect with t = t3 = 0

To illustrate the origin of the Faraday effect in LHP, we
calculate linear susceptibilities using the standard expression
for the linear susceptibility (see Appendix B)

χxy(ω)[= −χyx(ω)] 
 − iμ2ω

ε0

8μ
(1)
B �

(�2 − ω2)2
B (29)

and

χxx(ω)[= χyy(ω)] 
 2μ2

ε0

�

�2 − ω2
. (30)

Note that only μ
(1)
B enters Eq. (29) implying that only the

first term in Eq. (18) contributes to χxy. The term μ
(2)
B τ3 ⊗∑3

l=1 σlBl does not modify the energy differences between
levels for the relevant transitions (see Fig. 4), and hence does
not modify the susceptibility.

To show that Eqs. (29) and (30) lead to the Faraday effect,
we consider the susceptibility matrix χ̂ written in the form

χ̂ (ω) = χxx(ω)

(
1 i Im(χxy)/χxx

−i Im(χxy)/χxx 1

)
. (31)

This form of χ̂ (ω) conserves circular polarization of light

χ̂

(
1
±i

)
= [χxx ∓ Im(χxy)]

(
1
±i

)
, (32)

allowing us to write the polarization vector as

P± = ε0[χxx ∓ Im(χxy)]E±, (33)

where ± corresponds to the amplitudes of right- and left-
polarized light. Correspondingly, there are two indices of
refraction

n± = √
1 + χxx ∓ Im(χxy), (34)

which lead to the Faraday effect. The resulting Verdet constant
enjoys the standard form for semiconductors [21]

V ≡ ω

2c

n+ − n−
B


 − ω

2cB

Im(χxy)√
1 + χxx

, (35)

where χxy should be taken from Eq. (29); instead of using
the theoretical expression for χxx presented in Eq. (30), it
is logical to use experimental data for the refractive index:√

1 + χxx 
 Re(n).

B. General case

In general, the Verdet coefficient assumes the form (see
Appendix B 2)

V = μ
(1)
B

cε0Re(n)

∫
dk

(2π )3

c0 + c2ω
2

[�(ka)2 − ω2]2
, (36)

where

c0 = 16�(ka)t2S′(kxa)S′(kya)(qa)2

+ 4tμ�(ka)2[S′(kxa) + S′(kxa)]qa (37)

and

c2 = 4�(ka)μ2 + 4tqaμ[S′(kxa) + S′(kxa)]. (38)

Note that V is finite at ω = 0, which is possible on general
grounds if hopping is allowed [22].

The existence of the spin-electric term (i.e., μ �= 0) is
crucial for explaining strong Faraday effect observed in the
experiment [5,23]. Indeed, if μ = 0, then c2 = 0 and the
reduced Verdet coefficient V (1 − ω2/�2)2 has only weak
frequency dependence, which contradicts experimental ob-
servations [5]. Moreover, even the overall increase of V (1 −
ω2/�2)2 found experimentally cannot be reproduced.

We have observed that the Verdet coefficient at low fre-
quencies is sensitive to the form of the functions S(x) and
C(x). Therefore, one can provide only an order-of-magnitude
estimate of μ

(1)
B . To this end, we notice that if t3 → 0, then

V = 4�μ2ω2μ
(1)
B

cε0Re(n)

1 + t3
�

F (ω)

(�2 − ω2)2
, (39)

where F (ω) is some even function of ω. Using this expression,
we estimate μ

(1)
B = 0.2μB, where μB is the Bohr magneton

(see also Ref. [5]).

IV. NONLINEAR SUSCEPTIBILITY

The focus of the two previous sections was on linear re-
sponse. The goal of this section is to demonstrate that the
proposed model can also be used to calculate nonlinear op-
tical effects, which are important in LHP [24]. Note that
in centrosymmetric materials the even-order susceptibilities
vanish. Therefore, nonlinearity in the leading order is given by
the third-order susceptibility χ (3). We will show how to com-
pute this quantity within our model with a particular focus on
its geometrical properties.

As in Sec. II, we assume that the magnetic field is zero, the
electric field is weak (El , Al → 0), and consider the Hamilto-
nian in the form

H 
 H0 + HP(t ), (40)
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where the unperturbed Hamiltonian reads as

H0 = 1
2�(ka)τ3 ⊗ σ0. (41)

Note that for the sake of discussion we have neglected the term
proportional to t [cf. Eq. (20)]. This omission implies that our
results are correct only in the leading order in t/�.

We write the time-dependent perturbation from Eq. (21)
in the form HP = H (1)

P + H (2)
P , where H (1)

P induces transitions
between the eigenstates of H0,

H (1)
P = μτ1 ⊗

3∑
l=1

σlEl − 2tqa
3∑

l=1

Alτ2 ⊗ σl S(kla)′, (42)

and H (2)
P does not,

H (2)
P = −qat3

2

3∑
l=1

AlC(kla)′τ3 ⊗ σ0. (43)

Since H (2)
P does not lead to any transitions, it can be neglected

when dealing with linear response. However, this term is
important for nonlinear processes, and third-harmonic gener-
ation (THG) in particular. Note also that to be consistent with
the derivation of the model, Eqs. (42) and (43) are truncated
at the linear order of Al . The higher-order terms become
important when describing the low-frequency limit, which is
beyond the scope of this paper.

A. THG with H (2)
P = 0

Let us first consider the case in which HP = H (1)
P . Far from

resonances the imaginary part of χ (3) vanishes, and the third-
order susceptibility reads as

χ̄
(3)
l jih(�,ω,ω′, ω′′)

= AP̂F

∑
ν,m,n

dl
gν (−�)d j

νn(ω)di
nm(ω′)dh

mg(ω′′)

(ενg + �)(εng + ω′ + ω′′)(εmg + ω′′)
, (44)

where � = ω + ω′ + ω′′; A is a constant that depends on the
density of charges and the system of units, P̂F is an operator
that produces 24 terms by permuting −�, ω, ω′, and ω′′
together with the corresponding Cartesian indices. The bar
symbol (χ̄) is used to specify that HP = H (1)

P ; the index g
refers to the ground state; the sum is over all possible inter-
mediate states; a summation over all momenta is implicitly
implied. The energy difference is εng = εn − εg, where εn =
±�(ka)/2 is the eigenenergy of the unperturbed Hamiltonian.
The matrix elements are defined as

d j
νn(ω) = 〈ν|μτ1 ⊗ σ j − 2i

qa

ω
tτ2 ⊗ σ jS(k ja)′|n〉. (45)

Note that in comparison to the standard expression [13], the
matrix elements depend on frequencies, which is taken into
account in our calculations (see also Appendix C).

The expression in Eq. (44) can be simplified

χ̄
(3)
l jih(�,ω,ω′, ω′′)

= AP̂F

∫
dk

(2π )3

fl (�) f j (ω) fi(−ω′) fh(ω′′)〈σlσ jσiσh〉⇑
[�(ka) + �](ω′ + ω′′)[�(ka) + ω′′]

,

(46)

where fi(ω) = μ − 2qatS(kia)′/ω, and 〈σlσ jσiσh〉⇑ is the av-
erage over the degenerate ground state. It is easy to show that
if t = 0, then

χ̄ (3)
xxxx = χ̄ (3)

xxyy + χ̄ (3)
xyyx + χ̄ (3)

xyxy, (47)

which is a manifestation of the isotropic nature of the
band structure at k = 0. However, there can be a substan-
tial anisotropic effect when the parameter t is nonvanishing.
To demonstrate this, we consider third-harmonic generation
(THG), i.e., we consider χ̄ (3)(3ω,ω,ω, ω).

The dominant contribution to this quantity is given by the
terms in Eq. (46) which contain in the denominator [�(ka) −
3ω]. In general, there are six terms of this type (see Ap-
pendix C). However, they are highly symmetric, which allows
us to write compact expressions

χ̄ (3)
xxxx 
 A

ω

∫
dk

(2π )3

−3 fx(−3ω) fx(ω) fx(−ω)2

[�(ka) − ω]
[
�(ka) − 3ω − i 


2

] ,

where we have introduced 
 to regularize the integral for ω >

�/3. The off-diagonal susceptibilities are equal to each other,
i.e., χ̄ (3)

xyxy = χ̄ (3)
xyyx = χ̄ (3)

xxyy:

χ̄ (3)
xxyy = A

ω

∫
dk

(2π )3

fx(−3ω) fx(ω) fy(−ω) fy(−ω)

[�(ka) − ω]
[
�(ka) − 3ω − i 


2

]
− 2A

ω

∫
dk

(2π )3

fx(−3ω) fx(−ω) fy(ω) fy(−ω)

[�(ka) − ω]
[
�(ka) − 3ω − i 


2

] .

Note that if t = 0, then the response is isotropic in agreement
with Eq. (47).

B. General case

As mentioned above, H (2)
P becomes important for nonlinear

processes. In particular, the term H (2)
P leads to additional terms

in the third-order susceptibility: χ3 = χ̄3 + ¯̄χ3, where ¯̄χ3 can
be calculated following the procedure described above. For
third-harmonic generation, we derive

¯̄χ (3)
xxxx = A

∫
dk

(2π )3

[
qat3C(kxa)′

2ω

]2 F fx(−ω) fx(−3ω)

�(ka) − 3ω − i 

2

and

¯̄χ (3)
xxyy = A

3

∫
dk

(2π )3

[
qat3C(kya)′

2ω

]2 F fx(−ω) fx(−3ω)

�(ka) − 3ω − i 

2

,

where

F = −3
�(ka)[�(ka) − ω] + 2ω2

ω2[�(ka) − ω][�(ka) − 2ω]
.

Again, it is easy to see that the response is only anisotropic
if t �= 0. To illustrate the anisotropy, we first calculate the
imaginary part of χ (3) [see Fig. 5(a)]. We see that for
the photon energies that are above the threshold the re-
sponse is anisotropic. This is expected from the discussion
above: When the light starts to probe the band structure
with k > 0, the response includes the hopping term, which
leads to a directional dependence of χ3. The real part of
the third-order susceptibility always features anisotropy [see
Fig. 5(b)]. Even in the vicinity of the three-photon reso-
nance, i.e., when the response is the most isotropic, we
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(a) (b)

(eV)(eV)

FIG. 5. The third-order susceptibility in the vicinity of a three-
photon resonance transition. The left (right) panel shows the
imaginary (real) part of χ 3. In each panel, the upper curve presents
χ (3)

xxxx , and the lower curve is for χ (3)
xyxy + χ (3)

xyyx + χ (3)
xxyy. The difference

between the upper and lower curves signals that the optical response
of LHP is anisotropic. To produce the data in the figure, the pa-
rameters presented in Sec. II B were used: 
 = 0.05 eV. The band
structure is defined by Eq. (27).

have χxxxx 
 2(χxxyy + χxyxy + χxyyx ). Therefore, one expects
to see a strong directional dependence of third-harmonic
generation.

Finally, we note that the anisotropy strongly depends on
the band structure. For example, it is easy to show that
Eq. (28) leads to isotropic response, which can be used
to experimentally distinguish between the band structures
presented in Fig. 3. As could be expected, the nonlinear sus-
ceptibility contains information about the energy spectrum
across different momenta, which can be used to discover
properties of the material that are beyond reach of linear
response.

V. SUMMARY AND OUTLOOK

In this paper, which accompanies [5], we introduced a
natural extension of the k · p Hamiltonian [see Eq. (5)] that
allows one to study optoelectronic phenomena in LHP in the
near-infrared range beyond minimal coupling substitution. In
our study, we first used general symmetry constraints such as
time-reversal and parity symmetries to identify possible terms

in the effective model of LHP in weak electromagnetic fields
[see Eq. (13)].

To test the model, we computed the linear optical polariz-
ability and the Verdet constant. Comparison of our theoretical
results to experimental data allowed us to confirm the neces-
sity of the spin-electric and Zeeman terms, which go beyond
those in the minimally coupled k · p Hamiltonian. Further-
more, we used the experimental data to fix the introduced
phenomenological parameters.

To illustrate a general applicability of our model to opti-
cal phenomena in LHP, we calculated the third-order linear
susceptibility. We argued that the spin-electric term can in-
duce only isotropic optical response due to the symmetry
of the band structure. At the same time, the hopping term
can yield significant directional dependence. To demonstrate
this, we calculated anisotropy in third-harmonic generation
(see Fig. 5). These theoretical calculations can be confirmed
experimentally (not discussed here), which will be the subject
of a followup publication. Our findings pave the way for
using anisotropy of optical response to learn about the band
structure and microscopic physics of LHP.

The proposed effective Hamiltonian suggests a number of
phenomena, such as Rashba-type splitting of energy levels
and axion-type physics. These effects, which are briefly dis-
cussed in Ref. [5], require further theoretical and experimental
investigations. Furthermore, the presented phenomenological
approach suggests a framework for symmetry-based inclusion
of terms into effective models of LHP. In particular, it paves
the way for studying the coupling to other relevant degrees
of freedom (for example, given by the lattice). Investigation
of the effect of the spin-electric term on excitons is another
research direction that naturally follows from our work.
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APPENDIX A: POLARIZABILITY OF THE MEDIUM

Here, we work with the Hamiltonian from Eq. (19), H = H0 + HP(t ), and derive the polarizability of the medium presented in
Eq. (22). Let us now write time-independent eigenstates of H0 as |m〉. A time-evolved eigenstate can be derived using first-order
perturbation theory

|ψn(t )〉 = |n〉e−iεnt −
∑
m,ω

〈m|HP(ω)|n〉 e−iεnt+iωt

εm − εn + ω − i
/2
|m〉, (A1)

where we have introduced decay via 
, and used

HP(t ) ≡
∑

ω

HP(ω)eiωt =
∑
ω,l

H̃ l
P(ω)El (ω)eiωt . (A2)

Assuming that the perturbation is given by Eq. (21), the quantity H̃ l
P(ω) takes the form

H̃ l
P(ω) = μτ1 ⊗ σl − 2i

qa

ω
tτ2 ⊗ σl S(kla)′ − i

qa

ω

t3
2

τ3 ⊗ σ0C(kla)′, (A3)

where we have used that E = − ∂A
∂t .
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To calculate linear susceptibility, we calculate the terms in the expectation value of the Hamiltonian that contain E2
l terms

and have a finite value of time average:

〈ψn(t )|H |ψn(t )〉
〈ψn(t )|ψn(t )〉 → −

∑
m,ω,ω′

〈n|HP(ω′)|m〉〈m|HP(ω)|n〉
εm − εn + ω − i
/2

eiωt+iω′t −
∑

m,ω,ω′

〈m|HP(ω′)|n〉[〈m|HP(ω)|n〉]∗
εm − εn + ω + i
/2

e−iωt+iω′t . (A4)

We average these terms over time and derive an expression of the energy of the material in the external field suitable for our
calculations:

〈ψn(t )|H |ψn(t )〉
〈ψn(t )|ψn(t )〉

∣∣∣∣
T

→ E = −
∑
m,ω

〈n|HP(ω)|m〉〈m|HP(−ω)|n〉
εm − εn − ω − i
/2

−
∑
m,ω

〈m|HP(ω)|n〉[〈m|HP(ω)|n〉]∗
εm − εn + ω + i
/2

. (A5)

If we differentiate this energy with respect to Ei(ω)∗ and Ej (ω), we derive the polarizability of the medium for a given value of
the momentum k:

α
(k)
i j (ω) =

∑
m

( 〈n|H̃ j
P (ω)|m〉〈m|H̃ i

P(−ω)|n〉
εm − εn − ω − i
/2

+
[〈m|H̃ i

P(ω)|n〉]∗〈m|H̃ j
P (ω)|n〉

εm − εn + ω + i
/2

)
, (A6)

which is a logical extension of textbook results (see, e.g., [13]) to our problem. The index n refers to the ground state, which is
double degenerate. Therefore, we need to average over the “spin” degree of freedom ⇓.

It is straightforward to calculate the expression in Eq. (A6) exactly. However, the resulting expression is cumbersome and
does not provide physical insight. Therefore, we use t = 0 in H0, which is a natural assumption since t is much smaller than �.
Note that the last term in Eq. (A3) does not induce any transitions within this approximation scheme. Hence, it can be neglected
for calculations of α in the vicinity of the band-gap transition, and we derive

α
(k)
ii (ω) =

[
μ + 2 qa

ω
tS(kia)′

]2

�(ka) − ω − i
/2
+

[
μ − 2 qa

ω
tS(kia)′

]2

�(ka) + ω + i
/2
. (A7)

Here, the first part is resonant in the vicinity of the band-gap transition. It was used to derive Eq. (22). The phenomenological
geometric parameter ξ that enters Eq. (22) determines the size of the polarizable unit. Its meaning can be most easily understood
by considering t = t3 = 0. In this case, αzz = ñ μ2

�−ω−i
/2 , where ñ is the density of polarizable units. In our calculations, we use
ξ 
 2.2, which reproduces the data well. Note that the value of ξ can affect the value of μ obtained in the fitting. However, we
have checked that the precise value of ξ is not important for our main conclusions.

Finally, note that the expression in Eq. (A7) is valid only in the vicinity of the band-gap transition, and should be modified
otherwise. For example, to have a meaningful expression in the limit ω → 0, one should include higher orders of Al in the
expansion of S(k̃), which leads to

α
(k)
ii (ω → 0) =

[
μ + 2 qa

ω
tS(kia)′

]2

�(ka) − ω
+

[
μ − 2 qa

ω
tS(kia)′

]2

�(ka) + ω
+ 8t2S(kia)S′′(kia)

�

(
qa

ω

)2

. (A8)

Therefore, for ω = 0, we have

αii(ω = 0) =
∫

dk
(2π )3

[
2μ2

�(ka)
+ 8qatμS(kia)′

�(ka)2

]
. (A9)

APPENDIX B: FARADAY EFFECT

1. Derivation of Eqs. (29) and (30)

For t = t3 = 0, the Hamiltonian of the system reads as

H = �

2
τ3 ⊗ σ0 + (

μ
(1)
B τ0 + μ

(2)
B τ3

) ⊗
3∑

l=1

σlBl + μτ1 ⊗
3∑

l=1

σlEl . (B1)

In the derivation of the susceptibility, the last term should be considered as perturbation of the form (−∑
d̂lEl ). The expression

of χi j far from resonances in this case is [13]

χi j (ω) = N
ε0

∑
m

(
di

nmd j
mn

εm − εn + ω
+ d j

nmdi
mn

εm − εn − ω

)
, (B2)

where di
nm = −μ〈n|τ1 ⊗ σi|m〉 (as before, n refers to the ground state), and N implies either integration over the momentum or

the density of atoms. Without loss of generality we shall omit this symbol. The sum in Eq. (B2) is over all possible states m.
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Assuming that the B field is along the z axis that is determined by the direction of light propagation, we derive

χi j (ω) = μ2

2ε0

[ 〈⇓⇓⇓|σiσ j |⇓⇓⇓〉
� + 2μ

(1)
B B + ω

+ 〈⇓⇓⇓|σ jσi|⇓⇓⇓〉
� + 2μ

(1)
B B − ω

]
+ μ2

2ε0

[ 〈⇓⇓⇑|σiσ j |⇓⇓⇑〉
� − 2μ

(1)
B B + ω

+ 〈⇓⇓⇑|σ jσi|⇓⇓⇑〉
� − 2μ

(1)
B B − ω

]
. (B3)

Equations (29) and (30) now follow, for example,

χxy(ω) = iωμ2

ε0

[
1(

� + 2μ
(1)
B B

)2 − ω2
− 1(

� − 2μ
(1)
B B

)2 − ω2

]

 − iωμ2

ε0

8μ
(1)
B B�

(�2 − ω2)2
. (B4)

2. Derivation of Eq. (36)

To derive the Verdet coefficient, we calculate the linear susceptibility. To this end, we follow the routine discussed in
Appendix A, i.e., we consider the Hamiltonian as the sum H = H0 + HP, where

H0 = 1

2
�(ka)τ3 ⊗ σ0 + 2tτ2 ⊗

3∑
l=1

σl S(kla) + (
μ

(1)
B τ0 + μ

(2)
B τ3

) ⊗
3∑

l=1

σlBl , (B5)

and the time-dependent perturbation has the form

HP = μτ1 ⊗
3∑

l=1

σlEl − qa
3∑

l=1

Al

(
t3
2

C(kla)′τ3 ⊗ σ0 + 2tτ2 ⊗ σl S(kl a)′
)

. (B6)

According to Appendix A, the linear susceptibility far from resonances (i.e., 
 = 0) reads as

χi j (ω) = 1

ε0

∫
dk

(2π )3

∑
m

( 〈n|H̃ j
P (ω)|m〉〈m|H̃ i

P(−ω)|n〉
εm − εn − ω

+
[〈m|H̃ i

P(ω)|n〉]∗〈m|H̃ j
P (ω)|n〉

εm − εn + ω

)
, (B7)

where H̃ i
P is defined in Eq. (A3). The states m and n are eigenstates of H0 in Eq. (B5). This form of χi j will lead to two

contributions to the Verdet coefficients: the first contribution is due to the change in the energy levels due to B (also sometimes
called the diamagnetic part), and the second one is due to the change of the eigenvectors [22]. We focus on the dominant first
part, which can be written as

χxy(ω) = 1

2ε0

∫
dk

(2π )3

∑
m

( 〈⇓⇓⇓|H̃y
P(ω)|m〉〈m|H̃x

P (−ω)|⇓⇓⇓〉
εm − ε⇓⇓⇓ − ω

+ 〈⇓⇓⇓|H̃x
P (−ω)|m〉〈m|H̃y

P(ω)|⇓⇓⇓〉
εm − ε⇓⇓⇓ + ω

)

+ 1

2ε0

∫
dk

(2π )3

∑
m

( 〈⇓⇓⇑|H̃y
P(ω)|m〉〈m|H̃x

P (−ω)|⇓⇓⇑〉
εm − ε⇓⇓⇑ − ω

+ 〈⇓⇓⇑|H̃x
P (−ω)|m〉〈m|H̃y

P(ω)|⇓⇓⇑〉
εm − ε⇓⇓⇑ + ω

)
, (B8)

where we average over the ground-state manifold. Note that the t3 term in Eq. (B6) does not induce any transitions between
states, and therefore does not contribute to the Verdet coefficient. Therefore, we can set t3 = 0. The resulting expression for χxy

reads as

χxy[= −χyx] = i

2ε0

∫
dk

(2π )3

(
4t2S′(kxa)S′(kya)

( qa
ω

)2 + μ2 + 2μt[S′(kxa) + S′(kya)] qa
ω

�(ka) + 2μ
(1)
B B − ω

)

+ i

2ε0

∫
dk

(2π )3

(−4t2S′(kxa)S′(kya)
( qa

ω

)2 − μ2 + 2μt[S′(kxa) + S′(kya)] qa
ω

�(ka) + 2μ
(1)
B B + ω

)

+ i

2ε0

∫
dk

(2π )3

(−4t2S′(kxa)S′(kya)
( qa

ω

)2 − μ2 − 2μt[S′(kxa) + S′(kya)] qa
ω

�(ka) − 2μ
(1)
B B − ω

)

+ i

2ε0

∫
dk

(2π )3

(
4t2S′(kxa)S′(kya)

( qa
ω

)2 + μ2 − 2tμ[S′(kxa) + S′(kya)] qa
ω

�(ka) − 2μ
(1)
B B + ω

)
. (B9)

This expression can be rewritten as

χxy = −2iμ(1)
B B

ε0

∫
dk

(2π )3

4ω�(ka)
(
4t2S′(kxa)S′(kya)

( qa
ω

)2 + μ2
) + 4tμ[�(ka)2 + ω2][S′(kxa) + S′(kxa)] qa

ω

[�(ka)2 − ω2]2
. (B10)
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APPENDIX C: THIRD-ORDER SUSCEPTIBILITY

Here, we work with the Hamiltonian H = H0 + HP(t ), and briefly outline how to derive an expression of the third-order
susceptibility. As before, we write time-independent eigenstates of H0 as |m〉. A time-evolved eigenstate can be derived using
perturbation theory

|ψn(t )〉 = |n〉e−iεnt −
∑
m,ω

〈m|HP(ω)|n〉 e−iεnt+iωt

εm − εn + ω − i
/2
|m〉

+
∑

k,m,ω,ω′

〈m|HP(ω)|k〉〈k|HP(ω′)|n〉
(εm − εn + ω + ω′ − i
/2)(εk − εn + ω′ − i
/2)

e−iεnt+iωt+iω′t |m〉

−
∑

k,m,p,ω,ω′,ω′′

〈m|HP(ω)|k〉〈k|HP(ω′)|p〉〈p|HP(ω′′)|n〉e−iεnt+iωt+iω′t+iω′′t

(εm − εn + ω + ω′ + ω′′ − i
/2)(εk − εn + ω′ + ω′′ − i
/2)(εp − εn + ω′′ − i
/2)
|m〉. (C1)

In this Appendix, we assume that all transitions are far from the resonance. Therefore, we shall use 
 = 0. As before (for the
calculation of the linear susceptibility), we compute the expectation value of the Hamiltonian 〈ψn(t )|H |ψn(t )〉:

〈ψn(t )|H |ψn(t )〉 = −
∑

k,m,p,ω,ω′,ω′′,ω′′′

〈n|HP(ω′′′)|m〉〈m|HP(ω)|k〉〈k|HP(ω′)|p〉〈p|HP(ω′′)|n〉eiωt+iω′t+iω′′t+iω′′′t

(εm − εn + ω + ω′ + ω′′ − i
/2)(εk − εn + ω′ + ω′′ − i
/2)(εp − εn + ω′′ − i
/2)

−
∑

k,m,p,ω,ω′,ω′′,ω′′′

〈m|HP(ω′′′)|n〉〈m|HP(ω)|k〉∗〈k|HP(ω′)|p〉∗〈p|HP(ω′′)|n〉∗e−iωt−iω′t−iω′′t+iω′′′t

(εm − εn + ω + ω′ + ω′′ + i
/2)(εk − εn + ω′ + ω′′ + i
/2)(εp − εn + ω′′ + i
/2)

−
∑

k,m,p,ω,ω′,ω′′,ω′′′

〈m|HP(ω)|n〉∗〈m|HP(ω′′′)|p〉〈p|HP(ω′′)|k〉〈k|HP(ω′)|n〉e−iωt+iω′t+iω′′t+iω′′′t

(εp − εn + ω′′ + ω′ − i
/2)(εk − εn + ω′ − i
/2)(εm − εn + ω + i
/2)

−
∑

k,m,p,ω,ω′,ω′′,ω′′′

〈m|HP(ω)|k〉∗〈k|HP(ω′)|n〉∗〈m|HP(ω′′′)|p〉〈p|HP(ω′′)|n〉e−iωt−iω′t+iω′′t+iω′′′t

(εm − εn + ω + ω′ + i
/2)(εk − εn + ω′ + i
/2)(εp − εn + ω′′ − i
/2)
. (C2)

We average this expression over time to produce an expression suitable for calculating the third-order susceptibility

〈ψn(t )|H |ψn(t )〉|T = −
∑

k,m,p,ω,ω′,ω′′

〈n|HP(−ω − ω′ − ω′′)|m〉〈m|HP(ω)|k〉〈k|HP(ω′)|p〉〈p|HP(ω′′)|n〉
(εm − εn + ω + ω′ + ω′′ − i
/2)(εk − εn + ω′ + ω′′ − i
/2)(εp − εn + ω′′ − i
/2)

−
∑

k,m,p,ω,ω′,ω′′

〈m|HP(−ω − ω′ − ω′′)|n〉〈k|HP(ω)|m〉〈p|HP(ω′)|k〉〈n|HP(ω′′)|p〉
(εm − εn − ω − ω′ − ω′′ + i
/2)(εk − εn − ω′ − ω′′ + i
/2)(εp − εn − ω′′ + i
/2)

−
∑

k,m,p,ω,ω′,ω′′

〈n|HP(ω)|m〉〈m|HP(−ω − ω′ − ω′′)|p〉〈p|HP(ω′′)|k〉〈k|HP(ω′)|n〉
(εp − εn + ω′′ + ω′ − i
/2)(εk − εn + ω′ − i
/2)(εm − εn − ω + i
/2)

−
∑

k,m,p,ω,ω′,ω′′

〈k|HP(ω)|m〉〈n|HP(ω′)|k〉〈m|HP(−ω − ω′ − ω′′)|p〉〈p|HP(ω′′)|n〉
(εm − εn − ω − ω′ + i
/2)(εk − εn − ω′ + i
/2)(εp − εn + ω′′ − i
/2)

. (C3)

Notice that the sign of the argument is negative only for the total frequency (for ω,ω′, ω′′ > 0), which leads to the expression
presented in the main matter.

Finally, for convenience, we present the general expression for χ̄3 that was used in the analysis of THG in the main matter:

χ
(3)
l jih(�,ω,ω′, ω′′) = A

∑
ν,m,n

dh
gν (ω′′)d j

νn(ω)di
nm(ω′)dl

mg(−�)

(ενg − ω′′)(εng + ω′ − �)(εmg − �)
+ A

∑
ν,m,n

d j
gν (ω)dh

νn(ω′′)di
nm(ω′)dl

mg(−�)

(ενg − ω)(εng + ω′ − �)(εmg − �)

+ A
∑
ν,m,n

di
gν (ω′)d j

νn(ω)dh
nm(ω′′)dl

mg(−�)

(ενg − ω′)(εng + ω′′ − �)(εmg − �)
+ A

∑
ν,m,n

dh
gν (ω′′)di

νn(ω′)d j
nm(ω)dl

mg(−�)

(ενg − ω′′)(εng + ω − �)(εmg − �)

+ A
∑
ν,m,n

d j
gν (ω)di

νn(ω′)dh
nm(ω′′)dl

mg(−�)

(ενg − ω)(εng + ω′′ − �)(εmg − �)
+ A

∑
ν,m,n

di
gν (ω′)dh

νn(ω′′)d j
nm(ω)dl

mg(−�)

(ενg − ω′)(εng + ω − �)(εmg − �)
. (C4)
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The corresponding expression for χ̄ (3) reads as follows:

χ̄
(3)
l jih(�,ω,ω′, ω′′)


 A
∫

dk
(2π )3

fl (−�) f j (ω) fi(−ω′) fh(−ω′′)〈σhσ jσiσl〉⇑
[�(ka) − ω′′](ω′ − �)[�(ka) − �]

+ A
∫

dk
(2π )3

fl (−�) f j (−ω) fi(ω′) fh(−ω′′)〈σhσiσ jσl〉⇑
[�(ka) − ω′′](ω − �)[�(ka) − �]

+ A
∫

dk
(2π )3

fl (−�) f j (ω) fi(−ω′) fh(−ω′′)〈σiσ jσhσl〉⇑
[�(ka) − ω′](ω′′ − �)[�(ka) − �]

+ A
∫

dk
(2π )3

fl (−�) f j (−ω) fi(−ω′) fh(ω′′)〈σ jσhσiσl〉⇑
[�(ka) − ω](ω′ − �)[�(ka) − �]

+ A
∫

dk
(2π )3

fl (−�) f j (−ω) fi(ω′) fh(−ω′′)〈σ jσiσhσl〉⇑
[�(ka) − ω](ω′′ − �)[�(ka) − �]

+ A
∫

dk
(2π )3

fl (−�) f j (−ω) fi(−ω′) fh(ω′′)〈σiσhσ jσl〉⇑
[�(ka) − ω′](ω − �)[�(ka) − �]

.
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