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Cumulant expansion in the Holstein model: Spectral functions and mobility
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We examine the range of validity of the second-order cumulant expansion (CE) for the calculation of spectral
functions, quasiparticle properties, and mobility of the Holstein polaron. We devise an efficient numerical
implementation that allows us to make comparisons in a broad interval of temperature, electron-phonon coupling,
and phonon frequency. For a benchmark, we use the dynamical mean-field theory which gives, as we have
recently shown, rather accurate spectral functions in the whole parameter space, even in low dimensions. We
find that in one dimension, the CE resolves well both the quasiparticle and the first satellite peak in a regime of
intermediate coupling. At high temperatures, the charge mobility assumes a power law μ ∝ T −2 in the limit of
weak coupling and μ ∝ T −3/2 for stronger coupling. We find that, for stronger coupling, the CE gives slightly
better results than the self-consistent Migdal approximation (SCMA), while the one-shot Migdal approximation
is appropriate only for a very weak electron-phonon interaction. We also analyze the atomic limit and the spectral
sum rules. We derive an analytical expression for the moments in CE and find that they are exact up to the fourth
order, as opposed to the SCMA where they are exact to the third order. Finally, we analyze the results in higher
dimensions.
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I. INTRODUCTION

The cumulant expansion (CE) method presents an alterna-
tive to the usual Dyson equation approach in the calculation
of spectral functions of interacting quantum many-particle
systems [1]. In this method, we express the Green’s function
in real time as an exponential function of an auxiliary quantity
C(t ), called the cumulant, which can be calculated perturba-
tively [2]. In the late 1960s, it was established that the lowest
order CE gives the exact solution of the problem of a core hole
coupled to bosonic excitations (plasmons or phonons) [3,4].
While there were early papers that emphasized the potential
role of CE as an approximate method to treat the elec-
tronic correlations in metals beyond the GW approximation
[5–8] and the electron-phonon interaction in semiconductors
and narrow band metals beyond the Migdal approximation
(MA) [9–11], a surge of studies of CE has appeared only
recently.

Renewed interest has emerged due to the possibility of
combining CE with ab initio band-structure calculations. The
CE for the electron-phonon interaction was used to obtain
the spectral functions of several doped transition-metal oxides
[12,13], showing a favorable comparison with angle-resolved
photoemission spectroscopy [14]. A particularly appealing
feature of the CE approach is that it describes the quasipar-
ticle part of the spectrum as well as the satellite structure
(sidebands). Combining the CE with the Kubo formula for
charge transport gives an attractive route to calculate mobility
in semiconductors beyond the Boltzmann approach, which
is applicable only for weak electron-phonon coupling [15].
This was very recently demonstrated for SrTiO3 [16] and
naphthalene [17]. CE was also applied to elemental metals
where a correction to the standard MA is discussed [18].
Similarly, the CE is successfully used to treat the electronic
correlations beyond the GW approximation [19–25]. Further-

more, CE was used to study absorption spectra in molecular
aggregates representative of photosynthetic pigment-protein
complexes [26–28].

Despite the wide use of the lowest order CE, there seems
to be a lack of studies establishing its range of validity,
which represents the central motivation for this paper. To
achieve this, we turn to simplified models of the electron-
phonon interaction. CE for the Fröhlich model [29,30] gives
the ground-state energy and the effective mass similar to
the exact quantum Monte Carlo calculations for moderate
interaction [31]. This is in contrast to the Dyson-Migdal
approach, which severely underestimates mass renormaliza-
tion. A comparison of the corresponding spectral functions
is, however, missing, since reliable quantum Monte Carlo
results are not available due to the well-known problems with
analytical continuation. The Holstein polaron model gives a
unique opportunity to explore the applicability of the CE since
various numerically exact methods are developed and applied
to this model covering different parameter regimes [32–49].
This was the approach of a very recent work by Reichman
and collaborators [50,51]. Still, there are several questions
that remained unresolved. Most importantly, a comparison of
spectral functions was made just for a small set of parameters
on a finite-size lattice, where the benchmark spectral functions
were available from the finite-temperature Lanczos results,
while the charge transport was not examined.

In our recent work [52], we established that the dynamical
mean-field theory (DMFT) [53] gives close to exact spectral
functions of the Holstein polaron for different phonon fre-
quencies, electron-phonon couplings, and temperatures even
in low dimensions, covering practically the whole parameter
space. This method is computationally very fast and precise,
which makes us ideally positioned to perform comprehen-
sive comparisons with the CE method, which is the goal of
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this paper. Within the CE, we calculate the spectral func-
tions and charge mobility for a broad set of parameters and
make detailed comparisons with DMFT and (self-consistent)
MA. We find that the one-shot MA is appropriate only for
very weak electron-phonon coupling. The validity of the CE
and self-consistent Migdal approximation (SCMA) is much
broader and for intermediate interaction CE even outperforms
SCMA. We also derive analytical CE expressions for the
ground-state energy, renormalized mass, and scattering rate
as well as the spectral sum rules, and make comparisons
between the methods. We establish a power-law behavior for
the charge mobility at high temperatures. We also compare the
performance of different methods as the bandwidth is reduced
toward the atomic limit.

The remaining part of the paper is organized as follows.
In Sec. II, we introduce the CE method and present details of
its implementation on the Holstein model. DMFT and SCMA
are here introduced as benchmark methods. Representative
spectral functions are shown in Sec. III from weak toward
the strong coupling. The high-temperature and atomic limits
are analyzed in detail, as well as the spectral sum rules. In
Sec. IV, we present the results for the effective mass and
ground-state energy. The temperature dependence of the elec-
tron mobility is analyzed in Sec. V, and Sec. VI contains our
conclusions. Some details concerning numerical implementa-
tions and additional figures for various parameters are shown
in the Appendix and in the Supplemental Material (SM) [54].

II. MODEL AND METHODS

The Holstein model is the simplest model of the lattice
electrons interacting with the phonons. It assumes a local
electron-phonon interaction and dispersionless phonons. The
Hamiltonian is given by

H = − t0
∑
〈i j〉

(c†
i c j + H.c.)

− g
∑

i

ni(a
†
i + ai ) + ω0

∑
i

a†
i ai. (1)

Here, t0 is the hopping parameter between the nearest neigh-
bors and ω0 is the phonon frequency. ci and ai are the electron
and the phonon annihilation operators, ni = c†

i ci, and g de-
notes the electron-phonon coupling strength. We set h̄, kB,
elementary charge e, and lattice constant to 1. We also often
use a parameter α = g/ω0. We study the model in the thermo-
dynamic limit (number of sites N → ∞). Furthermore, we
consider a dynamics of a single electron in the conduction
band and treat the electrons as spinless, since we are interested
only in weakly doped semiconductors. This is equivalent to
setting the chemical potential far below the conduction band,
i.e., considering the limit μ̃ → −∞. This case is often re-
ferred to as the Holstein polaron problem. We mostly focus
on the one-dimensional (1D) system, but we also consider the
system in 2D and 3D.

A. Cumulant expansion

1. General theory

The central quantity of this paper is the electron spectral
function Ak(ω) = (−1/π )ImGk(ω), where k is the momen-

tum and Gk(ω) is the retarded Green’s function in frequency
domain [1]. Its exact evaluation is often a formidable task,
which is why approximate techniques are usually employed.
One needs to be careful with such approaches not to violate
some analytic properties, such as the pole structure of the
Green’s function, the positivity of the spectral function, or
the spectral sum rules. At least some of these properties can
be easily satisfied if the Green’s function is not calculated
directly but instead through some auxiliary quantity, such as
the self-energy �k(ω). In the latter case, the connection with
the Green’s function is established via the Dyson equation

Gk(ω) = 1

Gk,0(ω)−1 − �k(ω)
= 1

ω − εk − �k(ω)
, (2)

where Gk,0(ω) is the noninteracting Green’s function and εk
is the noninteracting dispersion relation.

An alternative to the Dyson equation based approaches is
the so-called cumulant expansion method [19], in which the
exponential ansatz is chosen for the Green’s function in the
time domain:

Gk(t ) = Gk,0(t )eCk (t ) = −iθ (t )e−iεkt eCk (t ). (3)

Here, θ (t ) is the Heaviside step function and Ck(t ) plays the
role of an auxiliary quantity which is called the cumulant.
Both Eqs. (2) and (3) would correspond to the same Green’s
function in frequency and time domain if the cumulant Ck(t )
and the self-energy �k(ω) could be evaluated exactly [1].
In practice, however, one of these approaches is expected to
perform better. The spectral function within the CE can be
obtained as follows:

Ak(ω + εk ) = 1

π
Re

∫ ∞

0
dteiωt eCk (t ). (4)

Equation (4) circumvents the Fourier transform of the whole
Green’s function Ak(ω) = − 1

π
ImGk(ω), which is useful in

practice, as the free electron part e−iεkt typically oscillates
much more quickly than eCk (t ).

The expression for Ck(t ) in the lowest order perturbation
expansion can be obtained by taking the leading terms
in the Taylor expansion of the Dyson equation Gk(ω) =
(Gk,0(ω)−1 − �k(ω))−1 ≈ Gk,0(ω) + Gk,0(ω)�k(ω)Gk,0(ω),
taking its inverse Fourier transform and equating it to Eq. (3),
where the cumulant in the exponent is replaced with its linear
approximation eCk (t ) ≈ 1 + Ck(t ):

Ck(t ) = ieiεkt
∫ ∞

−∞

dω

2π

e−iωt�k(ω)

(ω − εk + i0+)2
. (5)

Using the spectral representation of the self-energy

�k(ω) =
∫

dν

π

|Im�k(ν)|
ω − ν + i0+ , (6)

and the contour integration over ω, Eq. (5) simplifies to [19]

Ck(t ) = 1

π

∫ ∞

−∞
dω

|Im�k(ω + εk )|
ω2

(e−iωt + iωt − 1). (7)

The corresponding spectral function satisfies the first two
sum rules, irrespective of �k(ω). This is a consequence of
the behavior of Ck(t ) for small t ; see Sec. III C. In gen-
eral, Ck(t = 0) = 0 is sufficient for the first spectral sum
rule

∫
Ak(ω)dω = 1 to be satisfied. The second sum rule
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∫
Ak(ω)ωdω = εk can also be satisfied if we additionally

impose that the cumulant’s first derivative at t = 0 is van-
ishing, dCk

dt (0) = 0. Both of these conditions are satisfied by
the cumulant function in Eq. (7), as it is a quadratic function
of time for small arguments e−iωt + iωt − 1 ≈ −ω2t2/2 for
t → 0.

The application of Eq. (7) is facilitated by the fact that
it does not contain any iterative self-consistent calculations.
However, one needs to overcome the numerical challenges
caused by the removable singularity at ω = 0 and by the
rapidly oscillating trigonometric factor e−iωt for large t . The
latter is important for the weak electron-phonon couplings,
where it is necessary to propagate Ck(t ) up to long times until
the Green’s function is sufficiently damped out. The same
problem occurs in other regimes as well (e.g., close to the
atomic limit), where the Green’s function does not attenuate
at all; see Sec. II A 4.

The numerical singularity at ω = 0 can be completely
avoided if we consider the cumulant’s second derivative

d2Ck(t )

dt2
=

∫ ∞

−∞

dω

π
Im�k(ω + εk ) e−iωt ≡ 2eiεkt σ̃k(t ), (8)

where we used Im�k(ω) < 0 and introduced σ̃k(t ) ≡∫ ∞
−∞ Im�k(ω)e−iωt dω

2π
. Then, Ck(t ) is obtained as a double

integral over time of Eq. (8),

Ck(t ) = 2
∫ t

0
dt ′

∫ t ′

0
dt ′′eiεkt ′′

σ̃k(t ′′), (9)

where the lower boundaries of both integrals have to be zero,
as guaranteed by the initial conditions Ck(0) = dCk

dt (0) = 0.
Using the Cauchy formula for repeated integration, this can
also be written as a single integral:

Ck(t ) = 2
∫ t

0
(t − x)eiεkxσ̃k(x)dx. (10)

This completely removed the problem of numerical sin-
gularities. Still, the problem of rapid oscillations of the
subintegral function remains due to the presence of eiεkx term.
In Sec. II A 3, we provide an elegant solution for this issue,
focusing on the case of the Holstein model.

2. Asymptotic expansion for cumulant when t → ∞
The asymptotic expansion of Ck(t ) for large times, as

we now demonstrate, completely determines the quasiparticle
properties within this method. This is one of the main moti-
vations for studying the t → ∞ limit. From Eq. (8), we see
that

i
dCk

dt
(t → ∞) = i

∫ ∞

0

d2Ck(t )

dt2
dt

= − i

π

∫ ∞

−∞
dω|Im�k(ω + εk )|

∫ ∞

0
dte−iωt

= �k(εk ), (11)

where we used the identity
∫ ∞

0 dte−iωt = πδ(ω) − iP 1
ω

and
the Kramers-Kronig relations for the self-energy. Hence, the
cumulant function Ck(t ), and also the whole exponent in
Eq. (3) is a linear function of time Ck(t ) − iεkt ≈ −iẼkt +

const for t → ∞, where

Ẽk = εk + �k(εk ). (12)

As a consequence, the Green’s function in Fourier space has a
simple pole situated at Ẽk, as seen from the following expres-
sion:

Gk(ω) = −i
∫ ∞

0
eit (ω−εk− iCk (t )

t )dt . (13)

Therefore, quasiparticle properties are encoded in Ẽk: its real
and imaginary parts correspond to the quasiparticle energy
and scattering rate, respectively. We note that, in our present
analysis, we implicitly assumed that dCk

dt (t → ∞) exists and
is finite. Although this is generally true, there are a few excep-
tions. In the Holstein model, the first assumption is violated
at the atomic limit [t0 = 0; see Eq. (28)], while the second
assumption is violated at the adiabatic limit (ω0 = 0) for
k = 0 or k = ±π ; see Eqs. (18) or (19).

The knowledge that we gained about the analytic properties
of the Ck(t ) provides us with an intuitive understanding of
how the shape of the cumulant determines the shape of the
spectral function. The asymptotic limits t → ∞ [where Ck(t )
is linear] and t → 0 [where Ck(t ) is quadratic] by them-
selves, to a large extent, describe only the simple one-peak
spectral functions, while the crossover between these limits
is responsible for the emergence of satellite peaks. This can
be explained as follows: If the cumulant was quadratic over
the whole t domain Ck(t ) = ct2, the spectral function would
have a simple Gaussian shape. Similarly, the Lorentzian shape
would be obtained from the linear cumulant Ck(t ) = ct . This
suggests that the simple crossover between quadratic (at small
t ) and linear (at large t ) behaviors would also give a sim-
ple one-peak shape of the spectral function. The information
about phonon satellites is thus completely encoded in the
Ck(t ) for intermediate times t , which depends on the system
and approximation in which the cumulant function is calcu-
lated.

3. Second-order cumulant expansion for the Holstein model

Let us now concentrate on a specific example, the Holstein
model on a hypercubic lattice in n dimensions. The second-
order cumulant is given by Eq. (7), where the self-energy is
taken to be in the MA �k(ω) = �MA(ω), i.e., of the second
(lowest) order with respect to the electron-phonon coupling
g. This is in accordance with the derivation from Sec. II A 1,
since we restricted ourselves to the lowest order terms in the
Taylor expansion of the Dyson equation and of eCk (t ). An alter-
native derivation of this expression is given in Sec. I of the SM
[54]. MA is briefly discussed in Sec. II B 1. For our present
purpose, we only need the expression for the imaginary part
of the self-energy

Im�MA(ω) = −πg2[(nph + 1)ρ(ω − ω0) + nphρ(ω + ω0)],

(14)

where nph = 1/(eω0/T − 1) is the Bose factor, ρ(ω) =
1
N

∑
k δ(ω − εk ) is the density of electron states for the system

of size N , which we take in the thermodynamic limit N → ∞,
and εk = −2t0

∑n
j=1 cos k j is the noninteracting dispersion

relation.
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FIG. 1. (a)–(f) The cumulant, Green’s, and spectral function on
the example of the one-dimensional Holstein model with the follow-
ing values of the model parameters: ω0 = 0.2, g = 0.2, T = 0.3, and
t0 = 1.

The expression for the cumulant function, as seen from
Eq. (10), is related to the inverse Fourier transform of
Im�MA(ω), which in turn is completely determined by the
inverse Fourier transform of the density of states ρ̃(t ). The
latter admits a closed-form solution

ρ̃(t ) =
∫ ∞

−∞

dωe−iωt

(2π )n+1

∫
[0,2π )n

dnk δ

⎛
⎝ω + 2t0

n∑
j=1

cos k j

⎞
⎠

= 1

2π

(
1

2π

∫ 2π

0
dke2it0t cos k

)n

= J0(2t0t )n

2π
, (15)

where J0 is the Bessel function of the first kind of order
zero. Hence, Eqs. (10), (14), and (15) imply that the cumulant
function can be written as

Ck(t ) = −g2
∫ t

0
dx(t − x)iD(x)eixεk J0(2t0x)n, (16)

where iD(t ) = (nph + 1)e−iω0t + npheiω0t is the phonon prop-
agator in real time (for t > 0). In Fig. 1, we illustrate the
cumulant function, as well as the corresponding Green’s func-
tion and spectral function. Figures 1(a) and 1(b) show the
second derivative of the cumulant

d2Ck(t )

dt2
= −g2iD(t )eitεk J0(2t0t )n (17)

to demonstrate the rapid oscillations that are also present in
the cumulant itself. These are not easily observed by inspect-

FIG. 2. Quasiparticle lifetime τk in the CE method for T/t0 = 2
and g/t0 = 1.

ing Ck(t ) directly, as the linear behavior dominates for large
times. We observe that the k = 0 and k = π results possess an
oscillating envelope with period 2π/ω0, while intermediate
momenta have a much less regular structure. This can have
direct consequences on the spectral functions, as the satellite
peaks are expected to be at a distance ω0 from each other.
To be more explicit, oscillating envelopes suggest that there
is a much higher chance for the occurrence of satellite peaks
near the bottom (k ≈ 0) and the top (k ≈ π ) of the band, than
otherwise. However, that does not guarantee that the satellite
peaks will in fact occur. Figure 1(c) shows that ReCk(t ) is
declining faster for k > 0 than for k = 0. As a consequence,
eCk (t ) in Fig. 1(d) attenuates slower for k = 0, having enough
time to complete a full period, while k = π results are remi-
niscent of an overdamped oscillator. A similar, although much
less evident, effect can be seen in the Green’s function itself;
see Fig. 1(e). This is why the k = π spectral function in
Fig. 1(f) has a simple one-peak shape, while only the k = 0
result captures one small satellite peak.

From a numerical point of view, Eq. (16) is treated using
Levin’s collocation method [55], which is reviewed in Ap-
pendix A. It provides a controlled, accurate, and numerically
efficient way to integrate the product of trigonometric, Bessel,
and some slowly varying function. This approach avoids using
a dense t grid, which would otherwise be required, as the
subintegral function in Eq. (16) has the same type of rapid
oscillations present in d2Ck(t )/dt2.

4. Lifetime

Another question of practical importance is how long we
should propagate the cumulant function in real time until the
corresponding Green’s function attenuates. A rough estimate
of such quantity is given by the quasiparticle lifetime τk. The
lifetime is given by τk = 1/(2|ImẼk|), where Ẽk is given by
Eq. (12) and the self-energy is taken in the MA [see Eq. (14)]:

τ−1
k = 2|ImẼk| = 2g2 θ

(
4t2

0 − (εk − ω0)2
)√

4t2
0 − (εk − ω0)2

(nph + 1)

+ 2g2 θ
(
4t2

0 − (εk + ω0)2
)√

4t2
0 − (εk + ω0)2

nph. (18)

This is illustrated in Fig. 2. We observe that there is a con-
siderable part of the parameter space where the lifetime is
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FIG. 3. Feynman diagrams in the Migdal approximation and the
self-consistent Migdal approximation.

infinite, which means that the corresponding Green’s function
never attenuates. This occurs for ω0 > 2t0 + 2t0| cos k| in the
case of finite temperatures, and for ω0 > 4t0 sin2 k/2 in the
T = 0 case. In these regimes, one could presume that this is
reflected in the spectral functions through the appearance of
Dirac delta peaks, which is not expected at finite temperatures.
This illustrates one of the limitations of this method.

B. Benchmark methods

1. Migdal and self-consistent Migdal approximation

The Migdal approximation [56] is the simplest perturba-
tion approach, whose self-energy is represented with a single,
lowest order Feynman diagram, as shown in Fig. 3(a). The
imaginary part of the self-energy is given by Eq. (14) in the
case when there is just a single electron in the band, regardless
of the dispersion relation or the number of dimensions of
the system. The corresponding real part is obtained using the
Kramers-Kronig relations, and in 1D reads as

Re�MA(ω) = g2(nph + 1)
θ
(
(ω − ω0)2 − 4t2

0

)
sgn(ω − ω0)√

(ω − ω0)2 − 4t2
0

+ g2nph
θ
(
(ω + ω0)2 − 4t2

0

)
sgn(ω + ω0)√

(ω + ω0)2 − 4t2
0

.

(19)

The range of validity of the MA can be extended if we sub-
stitute the noninteracting electron propagator in Fig. 3(a) with
an interacting one. At the same time, the interacting propaga-
tor itself is expressed through the self-energy via the Dyson
equation. These relations constitute the SCMA. Figure 3 il-
lustrates that the SCMA self-energy consists of a series of
noncrossing diagrams, whose lowest order coincides with the
MA. Figure 3(b) shows the second-order contribution, while
the third-order contributions are shown in Figs. 3(c) and 3(d).

Mathematically, the self-consistency relations are straight-
forwardly derived and, in our case, read as

�SCMA(ω) = g2(nph + 1)G(ω − ω0) + g2nphG(ω + ω0),

(20a)

G(ω) = 1

(2π )n

∫ π

−π

dnk
1

ω − εk − �SCMA(ω)
, (20b)

where G(ω) is the local Green’s function. We see that in
the case of the Holstein model, the SCMA self-energy is k
independent.

2. Dynamical mean-field theory

Dynamical mean-field theory is a nonperturbative approx-
imate method, that represents a natural generalization of the
traditional mean-field theory [57]. It simplifies the original
lattice problem by mapping it to a single site impurity prob-
lem, embedded into an external bath that is described with
a frequency-dependent (i.e., dynamical) field G0(ω), which
needs to be determined self-consistently. This simplification
is reflected on the self-energy, which is assumed to be k-
independent �k(ω) = �(ω). The DMFT becomes exact in the
limit of infinite dimensions or, equivalently, infinite coordina-
tion number.

In practice, G0(ω) and �(ω) are determined self-
consistently, by imposing that the local Green’s function of
the lattice problem

G(ω) =
∫ ∞

−∞

ρ(ε)dε

ω − �(ω) − ε
, (21)

and the self-energy �(ω) coincide with the corresponding
quantities of the impurity problem. Here, ρ(ε) is the nonin-
teracting density of states. The self-consistent loop is closed
using the Dyson equation G0(ω) = (G−1(ω) + �(ω))−1. In
the case of the Holstein model, the (polaron) impurity problem
can be solved exactly, directly on the real-frequency axis, in
terms of the continued fraction expansion [53]. Furthermore,
in the one-dimensional case, Eq. (21) assumes a closed-form
solution and reads as

G(ω) = Re
1

2t0B(ω)
√

1 − 1
B(ω)2

+ iIm
−i

2t0
√

1 − B(ω)2
, (22)

where B(ω) = (ω − �(ω))/(2t0); see Supplemental Material
of Ref. [52]. We note that Eq. (22) can also be used for the
SCMA in Eq. (20).

We have very recently shown [52], by using extensive
comparisons with several numerically exact methods cover-
ing various parameter regimes, that the DMFT can provide
a rather accurate solution for the Holstein polaron even in
low dimension. Hence, the DMFT has emerged as a unique
numerical method that gives close to exact spectral functions
in practically the whole space of parameters, irrespective of
the number of dimensions. This makes the DMFT an ideal
benchmark method for comparisons with the CE results for
the Holstein model.

III. SPECTRAL FUNCTIONS

In this section, we present the CE spectral functions of
the 1D Holstein model. The DMFT is used as a benchmark,
while MA and SCMA represent the main competitors and
alternatives to the CE method. Section III A shows the results
for k = 0, whereas heat plots and the k = π results are shown
in Sec. III B. High-temperature spectral functions and spec-
tral sum rules are presented in Sec. III C. The behavior near
the atomic limit is discussed in Sec. III D. We present only
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FIG. 4. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5 and
k = 0. In the left panels T = 0.3, while T = 0.7 in the right panels.
Insets show the integrated spectral weights Ik(ω) = ∫ ω

−∞ Ak(ν )dν.

the results for ω0 = 0.5, while the results for other phonon
frequencies and various momenta are shown in Sec. II of SM
[54]. The 2D spectral functions are presented in Appendix B.

A. Low and intermediate temperatures for k = 0

In the weak-coupling limit α → 0, all these approximate
methods (DMFT, CE, SCMA, MA) provide accurate results.
In Fig. 4, we investigate how far from this strict limit each
of our methods continues to give reasonably accurate spectral
functions. In Fig. 4(a), we see that for α = 1 all methods
correctly capture the quasiparticle peak, which dominates in
the structure of the spectrum. The MA satellite peak is slightly
shifted towards higher frequencies, which becomes signifi-
cantly more pronounced at higher temperatures; see Fig. 4(b).
The limitations of the MA become more obvious for stronger
couplings, where even the position and weight of the quasi-
particle peak are inaccurate; see Figs. 4(c)–4(h).

While the quasiparticle properties of the CE and SCMA
seem to be quite similar if α is not too large, some difference
in satellite peaks is already visible in Figs. 4(b) and 4(c).
Figure 4(c) shows that SCMA gives broader satellites than
the DMFT benchmark, whereas CE slightly underestimates
the position of the satellite. Neither CE nor SCMA can be
characterized as distinctly better in this regime. On the other
hand, Figs. 4(e) and 4(g) display a clear advantage of the CE.

FIG. 5. (a)–(h) Heat maps of Ak(ω) for t0 = 1, ω0 = 0.5, and
T = 0.3. In the left panels, we present CE results, while the DMFT
benchmark is presented in the right panel. All plots use the same
color coding.

We see that it captures rather well the most distinctive features
of the solutions, which are the first few satellites. This is not
the case for SCMA.

Figures 4(f) and 4(h) demonstrate that the CE gives a
rather quick crossover toward the high-temperature limit, as
it predicts a simple broad one-peak structure for the spectral
function already for T = 0.7. This large difference between
the spectral functions for T1 = 0.3 and T2 = 0.7 can be
understood by examining the ratio of their corresponding
lifetimes τ (T1)/τ (T2) = nph(T2)/nph(T1) ≈ 8.5. This implies
that ReCk(t ) for T = 0.7 has a much steeper slope as a func-
tion time, which suppresses the appearance of satellites, as
explained in Sec. II A 3.

B. Low and intermediate temperatures for k �= 0

To proceed with the analysis of the CE ,we want to answer:
(i) Whether the conclusions that we reached for k = 0 can be
carried over to other momenta as well? (ii) Does CE continue
to be better than SCMA at much higher temperatures? The
first question is answered in Fig. 5, where we compare CE
and DMFT heat plots. Figures 5(a) and 5(b) demonstrate
that CE results are quite reminiscent of the DMFT results
for α = 1, even at nonzero momenta. The same conclusion
holds for weaker couplings as well. On the other hand, there
are differences between the results for somewhat stronger
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FIG. 6. (a)–(h) Spectral functions for t0 = 1, ω0 = 0.5, and
k = π . In the left panels T = 0.3, while T = 0.7 in the right panels.

coupling α = 1.5, as shown in Figs. 5(c) and 5(d). While the
polaron bands in both of these figures are convex, the CE
predicts the first satellite to be concave, unlike the DMFT.
In other words, CE predicts that the distance between the
polaron peak and the satellites decreases as we increase the
momentum. This is counterintuitive, as the satellites are per-
ceived as the quasiparticle that absorbed or emitted a phonon,
which should consequently be just at energy distance ω0 apart.
These limitations of the CE are much more pronounced for
stronger electron-phonon couplings. While the DMFT solu-
tion in Figs. 5(f) and 5(h) exhibits a series of distinct bands,
Figs. 5(e) and 5(g) demonstrate that the polaron and satellite
bands of the CE merge into a single band at higher momenta.
However, the most noticeable feature here is the fact that the
CE is too smeared, as if the temperature is too high. This is
a consequence of the fact that the lifetime in Eq. (18) scales
as τk ∼ 1/g2. While the heat maps reveal noticeable discrep-
ancies between the DMFT and CE for k �= 0, it seems that
these differences are much less pronounced around k = π . A
more detailed comparison is presented in Fig. 6 that shows
the results for the same regimes as in Fig. 4. The DMFT
solution in Figs. 6(a)–6(d) shows that the main feature of the
spectral function is a single broad peak for α � 1.5, which
is in agreement with the CE results. This is also the case for
the SCMA, although we observe a slight tendency of the main
peak to lean toward higher frequencies at higher temperatures.
For larger interaction strengths, CE cannot fully reproduce the
sharp peaks at lower frequencies of the low-temperature spec-
tral function or the fine structure of the main peak at higher

temperatures; see Figs. 4(e)–4(h). Similarly, CE misses the
quasiparticle peak as well, situated at low energy, although it
is typically tiny and not (clearly) visible in Figs. 6(a)–6(h) (see
Appendix C). A detailed comparison of the spectral functions
for other momenta and phonon frequencies is presented in
Sec. II of the SM [54].

Overall, we find that the CE gives the most accurate results
for k = 0 and k = π and that it is less accurate for other mo-
menta. Although it cannot fully reproduce a tiny quasiparticle
peak for k = π , it describes well a wide single-peak structure,
which is the most prominent feature of the spectrum. A much
larger discrepancy for k = π , between the CE and a reliable
benchmark, was reported in Ref. [50] by examining the sys-
tem on a finite lattice system with N = 6. In Appendix C,
we examine the same parameter regime as in Ref. [50] and
show that these discrepancies are significantly reduced in the
thermodynamic limit.

C. Spectral functions at high temperatures
and spectral sum rules

In Fig. 7, we show CE, SCMA, and DMFT spectral
functions at high temperatures for the same electron-phonon
couplings as in Figs. 4 and 6. We see that CE performs very
well both for k = 0 and k = π . There are only small discrep-
ancies at stronger interactions [see, e.g., Fig. 7(c)]. In contrast,
the SCMA solution gets tilted relative to the DMFT and CE.
In addition, it poorly reproduces the low-frequency part of the
spectrum. It is not obvious whether the CE method is exact in
the high-temperature limit T → ∞. As we now demonstrate,
this can be answered by examining the spectral sum rules:

Mn(k) =
∫ ∞

−∞
Ak(ω)ωndω. (23)

These can be calculated both exactly,

Mexact
n (k) =

〈
[. . . [[ck, H], H] . . . , H]︸ ︷︷ ︸

n times

c†
k

〉
T

, (24)

and within the CE approximation, where by combining
Eqs. (4) and (23) we find

MCE
n (k) = Re

[
in

(
d

dt

)n

eCk (t )

]∣∣∣∣
t=0

−
n∑

p=1

(
n

p

)
(−εk )pMCE

n−p(k). (25)

The difference between these quantities MCE
n (k) − Mexact

n (k)
is zero for n = 0 and n = 1, as noted in Sec. II A 1. Higher
order sum rules for the CE method are easily calculated,
while the evaluation of the exact sum rules quickly becomes
cumbersome for increasing n. The first five (0 � n � 4) sum
rules were already calculated by Kornilovitch [58]

M2(k) = ε2
k + (2nph + 1)g2, (26a)

M3(k) = ε3
k + g2ω0 + 2g2(2nph + 1)εk, (26b)

M4(k) = ε4
k + 2g2εkω0 + g2(2nph + 1)

×(
2t2

0 + 3ε2
k + ω2

0

) + 3g4(2nph + 1)2. (26c)
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FIG. 7. (a)–(h) CE, DMFT, and SCMA spectral functions in 1D for t0 = 1, ω0 = 0.5, and k = 0, π .

All of these are correctly predicted by the CE. However, the
disagreement between Mexact

n and MCE
n appears for n = 5,

where we find

Mexact
5 (k) = ε5

k + 3g2ω0
(
2t2

0 + ε2
k

) + g2ω3
0

+ 2g2(2ε3
k + 5g2ω0 + εkω

2
0 + 2t2

0 εk
)
(2nph + 1)

+ 7g4εk(2nph + 1)2, (27a)

MCE
5 (k) = Mexact

5 (k) − 2g4εk(2nph + 1)2. (27b)

Hence, CE cannot be exact in the limit T → ∞. However, we
see that there are two limits where CE can potentially be exact:
the weak-coupling limit g → 0 and the atomic limit εk → 0.
It turns out that CE is actually exact in both of these limits,
as seen from Eqs. (3), (7), and (14) for the weak-coupling and
Sec. III D for the atomic limit. We note that the SCMA gives
correct sum rules only for n � 3 [42]. This is a consequence
of the fact that SCMA ignores one of the fourth-order dia-
grams (∼g4) since it includes only the noncrossing diagrams.
Also, we numerically checked that the DMFT results are in
agreement with all of the sum rules that we listed above.

D. Atomic limit

In the atomic limit (t0 = 0), the cumulant function can be
evaluated exactly:

C(t ) = α2(−2nph − 1 + itω0 + iD(t )). (28)

This follows from Eq. (16), using J0(0) = 1. If we express
the phonon propagator as iD(t ) = 2

√
nph(nph + 1) cos[ω0(t +

i
2T )] and use the modified Jacobi-Anger identity

e2α2
√

nph (nph+1) cos[ω0(t+ i
2T )]

=
∞∑

l=−∞
Il (2α2

√
nph(nph + 1))e−ilω0t e

lω0
2T , (29)

where Il are the modified Bessel functions of the first kind,
the spectral function [see Eqs. (3) and (4)] can be calculated

analytically and reads as

A(ω) = e−α2(2nph+1)

×
∞∑

l=−∞
Il (2α2

√
nph(nph + 1))e

lω0
2T δ(ω + α2ω0 − lω0).

(30)

In the limit T → 0, the previous expression reduces to

A(ω) = e−α2
∞∑

l=0

α2l

l!
δ(ω + ω0(α2 − l )). (31)

This proves that CE gives correct results in the atomic limit,
as Eqs. (30) and (31) coincide with the known exact results
[1,44].

In contrast, the SCMA (let alone the MA) does not share
this property, which is easy to show at zero temperature. In
this case, Eq. (20a) and the Dyson equation imply that

G(ω) = 1

ω − g2G(ω − ω0)
. (32)

The previous equation can be solved by the iterative applica-
tion of itself in terms of the continued fraction

G(ω) = 1

ω − g2

ω−ω0− g2

ω−2ω0− g2
ω−3ω0−...

. (33)

This does not coincide with Eq. (35) from Ref. [53], which
represents the exact solution. Thus, SCMA cannot reproduce
the correct result in the atomic limit.

While the CE is exact in the atomic limit (t0 = 0), it is
not immediately obvious how far from this limit it continues
to give reliable results. This is why we now examine the
regimes with small hopping parameter t0. Since the lifetime
is infinitely large in some of these regimes (see Fig. 2), we
introduce artificial attenuation η for the Green’s function in
real time by making a replacement G(t ) → G(t )e−ηt . The
results are presented in Fig. 8. Here, the dotted line is the
analytic solution in the atomic limit (t0 = 0), determined by
Eq. (30), where the Dirac delta functions have been replaced
by Lorentzians of half-width η. It is used as a measure to see
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FIG. 8. (a)–(f) CE, DMFT, and SCMA spectral functions close to
the atomic limit. Here, we use artificial Lorentzian broadening with
half width set to η = 0.05.

how far the regime we are examining is from the exact atomic
limit. In Fig. 8(a), we see that DMFT, SCMA, and CE spectral
functions are in agreement. This regime is quite far from the
atomic limit, as indicated by the dotted line. Figure 8(b) shows
that the DMFT spectral function already consists of a series of
peaks for t0 = 0.5, while the CE and SCMA spectral functions
are too flattened out. While the CE solution significantly im-
proved in Fig. 8(c), it is still not giving satisfactory results,
even though the DMFT suggests that we are already close to
the atomic limit. Only for t0 � 0.005 does the CE solution
give accurate results; see Fig. 8(d). However, this is practically
already at the atomic limit. It is interesting to note that while
both the DMFT and the CE are exact in the weak-coupling
and in the atomic limit, their behavior in other regimes can be
quite different.

IV. QUASIPARTICLE PROPERTIES

We now investigate the quasiparticle properties obtained
from the CE method and compare them extensively to the
results obtained from the DMFT and SCMA. We note that

the lifetime within the CE was already studied in Sec. II A 4,
so we supplement that study here with the results for the
ground-state energy and the effective mass. Here we show the
results in one, two, and three dimensions. Comparison with
the MA ground-state energy, in the 1D case, is presented in
Sec. III of the SM [54].

A. Ground-state energy

The polaron band dispersion Ep,k within the CE is given by
the real part of Eq. (12), where the self-energy is taken in the
MA:

Ep,k = εk + Re�MA(εk ). (34)

Since we deal with a single electron in the band, the
ground-state energy Ep is given by Ep,k=0 evaluated at zero
temperature. In the 1D case, Ep is straightforwardly evaluated
using Eq. (19) and reads as follows:

E1D
p = −2t0 − α2ω2

0√
ω2

0 + 4ω0t0
. (35)

For the expression in higher dimensions, we need to go back
to Eq. (14) that holds in any number of dimensions. At T = 0,
it reads as

Im�MA(ω) = −πα2ω2
0ρ(ω − ω0). (36)

The real part of �MA(ω) is obtained using the Kramers-
Kronig relation

Re�MA(ω) = πα2ω2
0H[ρ](ω − ω0), (37)

where H[ρ](ω) = P
∫ ∞
−∞

dν
π

ρ(ν)
ω−ν

is the Hilbert transform of
the density of states ρ(ω) and P is the Cauchy principle value.
The evaluation of the Hilbert transform may be reduced to
the evaluation of the Fourier transform F , using the following
identity:

F−1H[ρ](t ) = −i sgn(t ) F−1[ρ](t ). (38)

The inverse Fourier transform of the density of states on the
right-hand side was already calculated in Eq. (15) for the case
of the hypercubic lattice with the nearest-neighbor hopping.
Hence, H[ρ](ω) is obtained by applying F on both sides of
Eq. (38),

H[ρ](ω) = 1

π

∫ ∞

0
dxJ0(2t0x)n sin(xω), (39)

where n is the number of dimensions. The polaron band dis-
persion then reads as

Ep,k = εk + α2ω2
0

∫ ∞

0
dxJ0(2t0x)n sin (x(εk − ω0)). (40)

Ep is thus a linear function with respect to α2, whose intercept
is εk, while its slope can be calculated accurately using the
numerical scheme described in Appendix A. In the 2D case, it
admits an analytical solution

E2D
p = −4t0 − 2α2ω2

0

π (4t0 + ω0)
K

(
4t0

4t0 + ω0

)
, (41)

where K (k) = ∫ π/2
0 dθ/

√
1 − k2 sin2 θ is the complete ellip-

tic integral of the first kind. In the case n = 3, the integral
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FIG. 9. Ground-state energy within the DMFT (solid line), CE
(dashed line), and SCMA (dotted line). Here, t0 = 1 and T = 0.

in Eq. (40) does not admit a closed-form solution and thus
requires numerical calculation.

The polaron band dispersion Ep,k (and thus the ground state
Ep) within the DMFT and SCMA is obtained numerically, as
the smallest solution of the following equation:

Ep,k = εk + Re�(Ep,k ). (42)

Results for the 1D, 2D, and 3D case are presented in Fig. 9.
The DMFT benchmark, which is known to be very accurate
[52], always gives the lowest ground-state energy predictions
in comparison to the CE and SCMA. We see that CE always
outperforms the SCMA, despite the fact that its predictions
of the energy are always a linear function of α2. In the 1D
case, we see that CE results for ω0 = 0.5 start to deviate more
significantly from the DMFT just around α = 2.5. Hence, the
range of validity for the CE is similar as for the spectral
functions in Fig. 4. The analogous conclusions can also be
drawn from ω0 = 1 data as well. In contrast, all three methods
seem to be in agreement for ω0 = 0.2 in the whole range
of presented values of α. This is a consequence of the fact
that the ground-state energy correction is small, as seen from
Eqs. (35), (40), and (41) by fixing α and decreasing ω0. How-
ever, if we fix g = ω0α and then decrease ω0, the ground-state
energy would change substantially [see, e.g., Eq. (35)], and
the CE would certainly give poorer results.

Similar trends are observed in higher dimensions as well.
Seemingly, the range of validity of the CE is increased in
higher dimensions. However, one should keep in mind that the
hopping parameter is always taken to be unity, which means
that the bandwidth of the 2D and 3D systems are, respectively,
two and three times larger than their 1D counterpart. There-
fore, the correlation is weaker for a given coupling α.

B. Effective mass

Around the bottom (|k| ≈ 0) of the conduction band, the
dispersion Ep,k assumes the following parabolic form:

Ep,k ≈ const + k2

2m∗ , (43)

where m∗ is the effective mass, which we now calculate.
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FIG. 10. Effective mass results within the DMFT, CE, and
SCMA for t0 = 1 and T = 0.

In the 1D case, one obtains the analytical result for the
effective mass using Eqs. (19) and (34),

m∗

m0

∣∣∣∣
1D,T =0

= 1

1 − (2t0+ω0 )α2√ω0

(4t0+ω0 )3/2

, (44)

where m0 = 1/(2t0) is the band mass which remains the same
irrespective of the number of dimensions. Results for the
higher number of dimensions are evaluated using Eq. (40).
As for the ground-state energy, the 2D case admits an analytic
solution

m∗

m0

∣∣∣∣
2D,T =0

= 1

1 − 2α2ω0
π (8t0+ω0 ) E

( 4t0
4t0+ω0

) , (45)
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where E (k) = ∫ π/2
0 dθ

√
1 − k2 sin2 θ is the complete elliptic

integral of the second kind. Results in the n-dimensional case
are given by

m∗

m0

∣∣∣∣
T =0

= 1

1 + πα2ω2
0

dH[ρ]
dω

∣∣
ω=−2nt0−ω0

, (46)

and require numerical calculation in the general case. From
Eq. (46) we see that m0/m∗ is a linear function of α2. This
linear behavior has to break down at one point, as m0/m∗
cannot be negative. This happens for strong interaction, where
the CE is certainly not expected to be reliable. The mass
renormalization within the DMFT and SCMA is calculated
numerically as

m∗

m0

∣∣∣∣
T =0

= 1 − d�(ω)

dω

∣∣∣∣
ω=Ep

, (47)

where Ep is the ground-state energy. Results for the DMFT,
CE, and SCMA effective mass in different parameter regimes
and for different number of dimensions are presented in
Fig. 10. In the 1D case, we see that the CE always under-
estimates, while the SCMA overestimates the results from the
DMFT benchmark. Still, CE clearly outperforms the SCMA
for ω0 = 1 and ω0 = 0.5, while the results in the vicinity of
the adiabatic limit (ω0 = 0.2) seem to be equally well (poor)
represented by both methods.

In the higher-dimensional case, we see that the CE is al-
ways a clearly better approximation than the SCMA, while
both of them overestimate the DMFT predictions. As for the
ground-state energy, we emphasize again that the hopping pa-
rameter was set to 1. As a consequence, the system has a larger
bandwidth in the higher-dimensional case and, therefore, the
correlations are weaker.

V. MOBILITY

The mobility is defined as the DC conductivity, normalized
to the concentration of charge carriers ne (and their unit charge
which we set to e = 1), i.e., μ = σ DC/ne. It can be calculated
using the Kubo formalism, which relates μ to the current-
current correlation function [1]. The latter can be written
as a sum of the so-called bubble part, which is completely
determined by the spectral functions Ak(ω) and the vertex
corrections. Within the DMFT, the vertex corrections vanish
[57,59], while estimating their contribution in the general
case is beyond the scope of this paper. In the following, we
calculate the mobility solely from the bubble part.

In the case of a 1D system with a single spinless electron
in the band, the mobility in the bubble approximation can be
written as [1,60]

μ = 4πt2
0

T

∑
k

∫ ∞
−∞ dνAk (ν)2e−ν/T sin2 k∑

k

∫ ∞
−∞ dνAk (ν)e−ν/T

. (48)

The processing time required for the calculation of μ within
the CE method rises linearly with the number of k points we
sum over. This is not the case for the DMFT and SCMA, as
their self-energies are k independent and thus need to be calcu-
lated only once for a given parameter set. In every parameter
regime the CE was applied to, we checked that 64 sampling
points in the Brillouin zone are enough to be representative of

FIG. 11. Temperature dependence of the mobility for the CE,
DMFT, and SCMA. The dotted red (black) lines are auxiliary lines
with the power law behavior μ ∝ T −2 (μ ∝ T −3/2). Here t0 = 1.

the thermodynamic limit. This was also crosschecked using
the DMFT.

The exponential term e−ν/T in Eq. (48) has some impor-
tant implications. Despite the factor sin2 k, it implies that the
largest contribution to the mobility most commonly comes
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from the spectral functions around the bottom of the band
(k ≈ 0), as they are typically situated at lower frequencies
with respect to their higher momentum counterparts. This is
actually helpful, as we have seen that the CE is more reliable
for k ≈ 0 than for 0 < k < π . However, e−ν/T also introduces
numerical instabilities, as even a small numerical noise of
Ak (ν) at ν � −1 will be inflated and give an enormous overall
error in the mobility. This is why the integrals in Eq. (48)
require introducing some kind of negative frequency cutoff∫ ∞
−∞ → ∫ ∞

−�
. We always check that the mobility results con-

verge with respect to �. This is easily done in both the DMFT
and SCMA due to the high numerical accuracy of our numer-
ical implementations. The convergence with respect to � is
much harder to achieve within the CE, as the Green’s func-
tions are initially calculated in the time domain and require
the use of numerical Fourier transform. We have implemented
a well-known interpolation scheme [61] to increase the pre-
cision of the Fourier transform. Still, the numerical noise at
low temperatures and strong interactions prevented us from
precisely calculating the mobility in these regimes. We show
only the data where an accurate calculation was possible.

In Fig. 11, we present numerical results for the temperature
dependence of the electron mobility. For weak electron-
phonon coupling, all methods are in agreement; see Fig. 11(a)
for α � 1 and Figs. 11(b) and 11(c) for α � 0.5. Electron-
phonon scattering is weak in these regimes, which is why
the quasiparticle lifetime τk is long, and the linear time de-
pendence dominates in the cumulant function. The spectral
function and its square can thus be approximated as Ak (ω) ≈
δ(ω − Ep,k ) and A2

k (ω) ≈ τk
π
δ(ω − Ep,k ), where δ is the Dirac

delta function and Ep,k is given by Eq. (34). The mobility from
Eq. (48) thus simplifies to

μweak ≈ 4t2
0

T

∑
k τke−Ep,k/T sin2 k∑

k e−Ep,k/T
. (49)

At high temperatures, Eq. (49) further simplifies as e−Ep,k/T ≈
1. In this case, the lifetime is inversely proportional to the tem-
perature τk ∝ 1/T , as seen from Eq. (18), which implies the
power-law behavior of the mobility μweak ∝ 1/T 2. This con-
clusion holds only for very weak electron-phonon couplings,
where the assumption of weak scattering is still satisfied de-
spite the high temperatures; see Figs. 11(a) and 11(b) for
α = 0.25 and Fig. 11(c) for α = √

2/10. This assumption is
also violated at extremely high temperatures T → ∞.

For stronger couplings, in the limit of high-temperatures
T � t0, ω0, the Green’s function in the time domain is quickly
damped, which is why Ck (t ) can be approximated with just
the lowest order (quadratic) Taylor expansion around t = 0.
Hence, Eqs. (3) and (17) imply that the Green’s function can
be written as

Gk (t ) = −iθ (t )e−iεkt e− g2

2 (2nph+1)t2
, (50)

while the corresponding spectral function is given by the
Gaussian:

Ak (ω) = e
− (ω−εk )2

2g2 (2nph+1)√
2πg2(2nph + 1)

. (51)

Plugging this back into Eq. (48) and changing the sum over
momenta to integral, we obtain

μhigh−T = t0
g

√
π

2nph + 1
exp

(
−g2(2nph + 1)

4T 2

)
I1

( 2t0
T

)
I0

( 2t0
T

) ,

(52)

where I0 and I1 are modified Bessel functions of the first kind,
of zeroth and first orders, respectively. Equation (52) can be
simplified by using the following approximations: 2nph + 1 ≈
2T/ω0 and I1(2t0/T )/I0(2t0/T ) ≈ t0/T , that are valid for
large T . Such a simplified formula coincides with the mobil-
ity obtained by combining the Einstein relation, between the
mobility and diffusion coefficient, with the Marcus formula
[45,62]. Furthermore, Eq. (52) implies the power-law behav-
ior for the mobility μhigh−T ∝ T −3/2, in the limit T � t0, ω0.
This is confirmed by our numerical results for a wide range of
the electron-phonon coupling strengths, where all three meth-
ods are in agreement; see Fig. 11(a) for 1/

√
2 � α � 2.5,

Fig. 11(b) for 0.5 � α � 2, and Fig. 11(c) for 0.5 � α � 1.
While the SCMA gives satisfactory results for high temper-

atures and intermediate electron-phonon couplings, it deviates
from the DMFT at lower temperatures [see, e.g., Fig. 11(a) for
α = 2.5 and Fig. 11(b) for α = 2] and also for stronger cou-
pling strengths [see, e.g., Fig. 11(a) for α > 2.5 and Fig. 11(b)
for α > 2]. At these stronger couplings, the DMFT predicts
the nonmonotonic mobility, where a region of decreasing mo-
bility with decreasing temperature is ascribed to the hopping
transport in phenomenological theories [38,62]. The strong
coupling mobility is better described by the CE than SCMA,
although low-temperature results are missing due to our in-
ability to converge the results with respect to the cutoff �. In
Appendix D, we also give mobility predictions of the MA.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have presented a comprehensive analysis
of the CE method in the context of the Holstein model. The
second-order cumulant C(t ) is calculated in a broad tempera-
ture range for three vibrational frequencies ω0/t0 = 0.2, 0.5,
and 1, covering a regime from a weak to strong electron-
phonon coupling. We mostly focused on the 1D system in the
thermodynamic limit but some of the results are shown also in
2D and 3D. To avoid numerical instabilities and to reach high
numerical precision, we derived a number of analytical ex-
pressions and we used the collocation method in calculations
of the cumulant, as well as an interpolation scheme for the
Fourier transform in corresponding calculations of the spectral
functions. The quasiparticle properties, spectral functions, and
charge mobility are shown in comparison to the DMFT and
SCMA results. The DMFT, which gives close to the exact
solution for the Holstein polaron throughout the parameter
space [52], gave a valuable benchmark and facilitated a de-
tailed analysis of the validity of the CE method.

At weak coupling (roughly corresponding to m0/m∗�0.9)
CE, DMFT, and SCMA give very similar spectral functions.
Most of the spectral weight for k = 0 is in the quasiparticle
peak, while even a small sideband (satellite) spectral weight
is rather well reproduced in all three methods. As the inter-
action increases, a clear difference in the spectral functions
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emerges. Nevertheless, the positions of the CE and DMFT
quasiparticle and the first satellite peak at low temperatures
are in rather good agreement. Furthermore, the overall spectral
weight distribution is in a decent agreement even though the
satellite peaks are more pronounced in DMFT for stronger
electron-phonon coupling. Roughly speaking, there is a de-
cent agreement in 1D up to the interactions corresponding
to m0/m∗ ∼ 0.5. Interestingly, the agreement between the
CE and DMFT spectral functions persists also for k = π ,
although CE does not capture a tiny quasiparticle peak. In
this case, the DMFT spectral weight almost merges to a single
broad peak. We note that the difference for k = π observed in
Ref. [50] is solely due to considering a lattice of finite N = 6
size. The deviation of CE from the exact solution is most obvi-
ous for intermediate momenta where the CE solution merges
to a single peak, while the satellite structure is seen in DMFT.
At high temperatures, one might suspect that the CE would
give the exact spectral functions. However, this is not the case,
as we showed that the CE gives the exact spectral moments
only up to the order n = 4. We note that in all these regimes,
the CE gives slightly better results than the SCMA, while a
single-shot MA is adequate only for very weak interactions.

The spectral functions were used to calculate the charge
mobility from the Kubo formula without the vertex correc-
tions. The agreement between DMFT and CE is quite good.
This is the case even for stronger electron-phonon coupling
where the CE even indicates nonmonotonic behavior of μ(T ),
with a region of increasing mobility with temperature which
is usually assigned to hopping conduction in phenomeno-
logical theories. For strong electron-phonon coupling, the
CE mobility results are shown only for T � t0 since a very
small numerical noise at frequencies ω � Ep affects a pre-
cise calculation of mobility at lower temperatures. For high
temperatures, the mobility assumes a universal form: For
weak electron-phonon coupling μ ∝ T −2, while for stronger
coupling μ ∝ T −3/2. These high-temperature limits can be
obtained also analytically from the CE.

The CE method can be easily applied to different Hamilto-
nians, which makes it a particularly attractive method for the
calculation of electronic properties beyond the weak-coupling
limit in various systems. In particular, we argue that it will
be most useful in calculations of charge mobility, as has
already been done in ab initio calculations for SrTiO3 [16]
and naphthalene [17]. While our analysis may suggest that
the DMFT appears computationally superior to CE, we note
that the numerical efficiency that we achieved with DMFT
is restricted to the Holstein model by virtue of the analytic
solution for the impurity problem [53] and the local Green’s
function [52]. For predicting the properties of real materials,
the numerical resources within the DMFT are vastly increased
and also the issue of nonlocal correlations may emerge, while
the CE remains simple and relatively inexpensive. Of course,
for a definitive answer on the range of validity of CE in
connection with ab initio calculations, one needs to perform a
similar analysis for the Fröhlich model and for other models
which can be used for realistic description of the electronic
spectra and charge transport in real materials. A useful hint in
this direction is provided by Ref. [51], which shows that the
CE, around the bottom of the band, gives promising results
for the spectral function even in the case when the phonons

have a dispersion [63]. Another very interesting question that
we leave for further work is a possible contribution of vertex
corrections to conductivity. Based on the weak coupling result
[64], one might assume that their contribution is small for
optical phonons, but this remains to be determined in the
case of stronger coupling. Our high-temperature results for
mobility may also be quite useful when analyzing a dominant
type of electron-phonon coupling in real materials. Still, one
needs to be cautious in such analyses since we see that at lower
temperatures μ(T ) does not assume a simple universal form.
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APPENDIX A: NUMERICAL INTEGRATION SCHEME
FOR THE HIGHLY OSCILLATING FUNCTIONS

IN THE CE METHOD

We present a numerical integration scheme for the calcula-
tion of the cumulant function from Eq. (16). Since Ck(t ) will
be expressed numerically on some t-grid [t0 = 0, t1 . . . tG−1],
it is much better to divide the integral

∫ t
0 from Eq. (16) into a

sum of integrals of the form
∫ ti

ti−1
, where ti are times from the

previously defined t grid. In this manner, we do not integrate
over the same interval multiple times. To shorten the notation,
from now on, we denote a ≡ ti−1 and b ≡ ti. There are two
different types of integrals in Eq. (16), and both of them have
the following form:

I =
∫ b

a
dx g(x)eir1xJ0(r2x)n, (A1)

where g(x) is either a linear or a constant function, r1 =
εk ± ω0, and r2 = 2t0. Numerical integration of Eq. (A1) has
already been studied by Levin for arbitrary r1 and r2 and
slowly varying g(x) [55]. In the rest of this Appendix, we
review this method in the 1D (n = 1), 2D (n = 2), and 3D
(n = 3) cases. The main idea is to rewrite the subintegral
function as a scalar product of two columns |g̃(x)〉 and |J̃ (x)〉,
whose elements are functions:

I =
∫ b

a
dx〈g̃(x)|J̃ (x)〉. (A2)

Column |g̃(x)〉 consists exclusively of slowly varying func-
tions, while |J̃ (x)〉 contains highly oscillating functions, with
the property that

d|J̃ (x)〉
dx

= Â(x)|J̃ (x)〉, (A3)
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where Â(x) is a matrix of slowly varying functions. Then, the
integral from Eq. (A2) can be written as

I =
∫ b

a
dx

d

dx
〈 f̃ (x)|J̃ (x)〉 = 〈 f̃ (b)|J̃ (b)〉 − 〈 f̃ (a)|J̃ (a)〉,

(A4)

where | f̃ (x)〉 satisfies(
d

dx
+ Â†(x)

)
| f̃ (x)〉 = |g̃(x)〉. (A5)

This is then, following Levin [55], solved by formally ex-
panding | f̃ (x)〉 = ∑M

k=1 uk (x)[ck dk . . . ]T into a basis set of
polynomials uk (x) = (x − a+b

2 )k−1 and determining the un-
known polynomial coefficients ck, dk . . . by imposing that
Eq. (A5) is exactly satisfied at M uniformly distributed
collocation points x j = a + ( j−1)(b−a)

M−1 , j = 1 . . . M. The ini-
tial problem is thus reduced to a simple linear algebra
problem.

1. 1D case

In the 1D case (n = 1), columns |g̃(x)〉 and |J̃ (x)〉 assume
the following form:

|g̃(x)〉 = [g(x) 0]T , (A6a)

|J̃ (x)〉 = eir1x[J0(r2x) J1(r2x)]T , (A6b)

where J0(x) and J1(x) are the Bessel functions of the first kind,
of zeroth and first order. The matrix Â(x), such that Eq. (A3)
holds, is given by

Â(x) =
[

ir1 −r2

r2 ir1 − 1
x

]
. (A7)

The unknown coefficients ck and dk , which determine the
column function

| f̃ (x)〉 =
M∑

k=1

uk (x)[ck dk]T , (A8)

are obtained from the following set of 2M linear equations:

[
C Cd

Dc D

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

cM

d1
...

dM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xM )

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A9)

Here, C, Cd ,Dc,D are M×M matrices that read as

Ci j = u′
j (xi ) − ir1u j (xi ); Cd

i j = r2u j (xi ), (A10a)

Di j = u′
j (xi ) −

(
ir1 + 1

xi

)
u j (xi ); Dc

i j = −r2u j (xi ).

(A10b)

2. 2D case

In the 2D case, the relevant quantities are given by

|g̃(x)〉 = [g(x) 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)2 J0(r2x)J1(r2x) J1(r2x)2]T ,

Â(x) =

⎡
⎢⎣

ir1 −2r2 0

r2 ir1 − 1
x −r2

0 2r2 ir1 − 2
x

⎤
⎥⎦. (A11)

The column | f̃ (x)〉 = ∑M
k=1 uk (x)[ck dk ek]T is determined

by ck , dk , and ek , which are obtained as a solution of the
following system of 3M linear equations:

⎡
⎣ C Cd Ce

Dc D De

Ec Ed E

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

cM

d1
...

e1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xM )

0
...

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A12)

Here, C, Cd . . . E are M×M matrices. Elements of Ci j and Cd
i j

are the same as in Eq. (A10), while Ce
i j = Ec

i j = 0. All the
other elements are given by

Di j = u′
j (xi ) −

(
ir1 + 1

xi

)
u j (xi ),

Ei j = u′
j (xi ) −

(
ir1 + 2

xi

)
u j (xi ),

Dc
i j = −2r2u j (xi ); De

i j = 2r2u j (xi ); Ed
i j = −r2u j (xi ).

(A13)

3. 3D case

The procedure that was presented so far is actually quite
easily generalized to the 3D case as well. Here, the quantities
of interest are easily derived and read as

|g̃(x)〉 = [g(x) 0 0 0]T ,

|J̃ (x)〉 = eir1x[J0(r2x)3 J0(r2x)2J1(r2x)

J0(r2x)J1(r2x)2 J1(r2x)3]T ,

Â(x) =

⎡
⎢⎢⎢⎢⎣

ir1 −3r2 0 0

r2 ir1 − 1
x −2r2 0

0 2r2 ir1 − 2
x −r2

0 0 3r2 ir1 − 3
x

⎤
⎥⎥⎥⎥⎦,

f̃ (x) =
M∑

k=1

uk (x)[ck dk ek fk]T , (A14)
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where the coefficients ck , dk , ek , and fk satisfy

⎡
⎢⎢⎢⎢⎣

C Cd Ce C f

Dc D De D f

Ec Ed E E f

F c Fd F e F

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

cM

d1
...

e1
...

f1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x1)
...

g(xM )

0
...

0
...

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A15)

Here Ci j , Cd
i j , Ce

i j , Di j , De
i j , Ec

i j , and Ei j are the same as in

Eqs. (A10) and (A13), while C f
i j = F c

i j = D f
i j = Fd

i j = 0. All
other elements are given by

Ed
i j = −2r2u j (xi ); E f

i j = 3r2u j (xi ),

Dc
i j = −3r2u j (xi ); F e

i j = −r2u j (xi ),

Fi j = u′
j (xi ) −

(
ir1 + 3

xi

)
u j (xi ). (A16)

Thus, our numerical scheme has been completely specified.
We note that Eqs. (A10), (A13), and (A16) explicitly demon-
strate that our numerical scheme is singular at x = 0. This
does not pose any problems, as the subintegral function in
our initial expression Eq. (A1) is not highly oscillatory around
x = 0. Therefore, the trapezoid scheme can be applied there.

APPENDIX B: 2D SPECTRAL FUNCTIONS

We now examine the CE spectral functions in two di-
mensions and compare them to the results from DMFT and
SCMA. We investigate the Hamiltonian from Eq. (1) on a
square lattice and set h̄, kB and lattice constant to 1.

In the 2D case, the cumulant function is calculated from
Eq. (16) by setting n = 2, and by exploiting the numerical
integration scheme from Appendix A. The procedure for the
implementation of the DMFT and SCMA is the same as
explained in Sec. II B, with the only difference being that
Eq. (22) no longer represents the solution for the local Green’s
function from Eqs. (20b) and (21). The local Green’s function
for the square lattice is obtained as follows. Let us introduce
B(ω) ≡ (ω − �(ω))/(2t0) and rewrite Eq. (21) as

G(ω) = −
∫ ∞

−∞
dxρ̂(x)

∫ ∞

−∞
dε

eixε

ε − 2t0B(ω)
. (B1)

The integral over ε can be solved using the residue theorem. It
is thus important to note that the subintegral function has only
a single pole at εpole = 2t0B(ω) that is situated at the upper
half-plane, i.e., ImB(ω) > 0 (since Im�(ω) < 0). Hence

G(ω) = −2π i
∫ ∞

−∞
dxρ̃(x)e2ixt0B(ω)θ (x). (B2)

Here ρ̃(x) is given by Eq. (15) for n = 2. Substituting this into
Eq. (B2) and solving the integral gives

G(ω) =
K

(
2

B(ω)

)
B(ω)πt0

, (B3)

where K (k) ≡ ∫ π/2
0 dθ/

√
1 − k2 sin2 θ is the complete elliptic

integral of the first kind.
Results are presented in Fig. 12. We note that in

Figs. 12(a)–12(d) [Figs. 12(i)–12(l)] the phonon frequency
ω0 = 0.2 (ω0 = 1) is smaller (larger) than both of the tem-
peratures T1 = 0.3 and T2 = 0.7 that we are considering.
Therefore, we focus on Figs. 12(e)–12(h) where T1 < ω0 <

T2, while other regimes can be analyzed analogously. We
see that most of the spectral weight is concentrated in a
smaller range of frequencies than in the 1D case; see Figs. 4
and 12(e)–12(h). This is a consequence of the fact that the
hopping parameter is always set to unity, while the 2D band-
width is twice as large in comparison with the bandwidth
in the 1D system. Spectral functions from Figs. 12(e)–12(g)
exhibit qualitatively similar behavior as results for the 1D
system in Figs. 4(a)–4(d). Here, all methods are in agree-
ment and predict that the quasiparticle peak dominates,
while there is only a single tiny satellite structure that is
more pronounced at higher temperatures. However, it seems
that the satellites are more pronounced in the 1D spectral
functions. A much more complicated multipeak structure is
predicted by the DMFT in Fig. 10(h), where a large dis-
crepancy can be observed in comparison to the CE and
SCMA results. A better agreement is observed for higher
temperatures.

It is interesting to note that while the DMFT frequently
gave sharper peaks than other methods in 1D (see Fig. 4), here
the roles are reversed. This is a consequence of the strong Van
Hove singularity at the bottom of the band of a 1D system,
which is highly relevant in our case when the concentration of
electrons is very low, while the singularity in the 2D system is
weaker and shifted to the center of the band.

APPENDIX C: A DETAILED STUDY OF THE SPECTRAL
FUNCTION FOR t0 = ω0 = g = 1 and k = π

In Sec. III, we concluded that the CE successfully captures
the main features of the spectral functions both at the bottom
of the band (k ≈ 0) and at top of the band (k ≈ ±π ) if the
electron-phonon coupling is not too strong. Less promising
results were reported in Ref. [50], where CE was examined on
a finite lattice with N = 6 sites in the regime t0 = ω0 = g =
1 and k = π , using the finite-temperature Lanczos method
(FTLM) [44] as a benchmark. They found that the CE, in
addition to the fact that it does not correctly reproduce a
quasiparticle peak, predicts that the most prominent feature
of the spectrum consists of only a single broad peak, whereas
two distinct peaks are present in the FTLM solution. Here
we show that this discrepancy between the CE and FTLM is
significantly reduced in the thermodynamic limit.

Reference [50] emphasized that previous conclusions are
valid only for low-temperature solutions, while CE becomes
accurate for T � ω0. This was confirmed by the FTLM,
whose spectral functions in this case look like a single broad
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FIG. 12. (a)–(h) Comparison of the CE, DMFT, and SCMA spectral functions in 2D for k = 0 and t0 = 1. The main panels show the results
for T1 = 0.3, while T2 = 0.7 results are shown in the insets.

peak; see Fig. 1(c) from Ref. [50]. However, Fig. S9 in the
Supplemental Material of Ref. [52] demonstrates that the
spectral function in the thermodynamic limit for t0 = ω0 =
g = 1, k = π consists of a broad single-peak structure even at
T = 0. This conclusion was reached by carefully examining
the finite-size effects using the numerically exact hierarchi-
cal equations of motion method (HEOM). It was established
that the system with N = 10 lattice sites is representative
of the thermodynamic limit, although much smaller systems
are required for the k = 0 results. Furthermore, the same
figure shows that two distinct peaks emerge for N = 6 and
k = π , in accordance with the FTLM results. Hence, CE
will provide much better results in the thermodynamic limit
than previously expected. We note that for t0 = ω0 = g = 1
and finite temperatures, one might expect that the required
lattice size, representative of the thermodynamic limit, does
not exceed N = 10, as the electron experiences much more
scattering compared to the T = 0 case. This will be cross-
checked independently (using the DMFT) in the rest of this
Appendix for finite T , which satisfies the T < ω0 condi-

tion. In that case, we analyze the overall performance of
the CE.

In Fig. 13(a), we show the FTLM data, (originally from
Ref. [44]) used in Ref. [50], and compare them to the DMFT
applied on a system of finite lattice size. We exploit the
fact that the corresponding spectral functions (although cer-
tainly not as accurate in comparison with the exact solution)
provide a rough estimate of how large N should be to faith-
fully represent the thermodynamic limit; see Sec. IV from
the Supplemental Material of Ref. [52] for more details. In
accordance with the FTLM results, we see that the DMFT
spectral function for N = 6 also predicts distinct peaks around
ω ≈ 1.5 and ω ≈ 2.5, although there is an additional peak
around ω ≈ 2. Nevertheless, these results change drastically
with increasing N and practically converge for N = 10. This
is the same N as predicted by HEOM at T = 0. Therefore, the
presented FTLM results are not representative of the thermo-
dynamic limit. Additionally, Fig. 13(a) also shows that FTLM
results for T = 0.6 and T = 0.8 are quite similar. Hence, our
further analysis will be conducted for T = 0.7 case.
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FIG. 13. CE, DMFT, FTLM, and HEOM spectral functions for
t0 = ω0 = g = 1. (a) Analysis of the finite-size effects. (b) Inspecting
the convergence of HEOM data with respect to hierarchy depth D.

In Fig. 13(b), we present HEOM results for N = 10 and
compare them to CE and DMFT. We note that HEOM has
one additional parameter, the so-called hierarchy depth D.
For details, we refer the reader to Ref. [47], but we only
briefly mention that the numerically exact results are formally
obtained in the limit D → ∞. In practice, we always check
whether the results converge with respect to D, which cannot
be increased indefinitely, as finite computer memory presents
a limiting factor. We see that the HEOM results have prac-
tically converged for N = 10 and D = 8. Here, the HEOM
solution does not possess the two-peak structure predicted by
the FTLM on a smaller lattice size (N = 6). It actually gives
only a single, broad peak around ω ≈ 2, which is correctly
reproduced by both the CE and the DMFT. Although the CE
misses the quasiparticle peak around ω ≈ −1.5, we conclude
that CE gives much more accurate results for the thermody-
namic limit than for a finite system.

APPENDIX D: MOBILITY RESULTS FROM THE
ONE-SHOT MIGDAL APPROXIMATION

In Sec. V, we presented and analyzed the mobility pre-
dictions from the CE, DMFT, and SCMA methods. Here,
we supplement that study with the data from the one-shot
MA (i.e., SCMA without self-consistency). The results are
shown in Fig. 14. Since the mobility results have already been

FIG. 14. Temperature dependence of the mobility within CE,
DMFT, and MA. Here t0 = 1.

thoroughly analyzed in Sec. V, we will here give only brief
comments about the performance of the MA. Figure 14(a)
shows that MA is practically useless for α � 2.5. Here, the
results are not even qualitatively correct, regardless of the tem-
perature. Even for α = 1, the results are still not satisfactory:
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PETAR MITRIĆ et al. PHYSICAL REVIEW B 107, 125165 (2023)

the predictions for T < 4 (T > 9) overestimate (underesti-
mate) the DMFT benchmark. MA proves to be reliable only
for very weak interactions α � 1/

√
2. Here, the results are

better for higher temperatures. This is expected as the MA

takes into account only the lowest-order Feynman diagram,
while the relevance of higher-order diagrams decreases as the
temperature is increased. Similar analysis can be repeated for
other phonon frequencies in Figs. 14(b) and 14(c).
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systems with local electron-phonon interaction, Phys. Rev. B
99, 104304 (2019).
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