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Topological invariants for interacting systems:
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Beyond the well-known topological band theory for single-particle systems, it is a great challenge to char-
acterize the topological nature of interacting multiparticle quantum systems. Here, we uncover the relation
between topological invariants defined through the twisted boundary condition (TBC) and the center-of-mass
(c.m.) momentum state in multiparticle systems. We find that the Berry phase defined through the TBC can be
equivalently obtained from the multiparticle Wilson loop formulated by c.m. momentum states. As the Chern
number can be written as the winding of the Berry phase, we consequently prove the equivalence of Chern
numbers obtained via TBC and c.m. momentum state approaches. As a proof-of-principle example, we study
topological properties of the Aubry-André-Harper model. Our numerical results show that the TBC approach
and c.m. approach are well consistent with each other for both the many-body case and the few-body case. Our
work lays a concrete foundation and provides insights for exploring multiparticle topological states.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect [1], topolog-
ical quantum states have been widely and intensively studied.
Owing to topological band theory, various quantum topo-
logical states have been successfully found in noninteracting
systems [2–5]. However, in the presence of particle-particle
interaction, because the single-particle quasimomentum is not
a good quantum number, topological band theory usually fails.
In interacting many-body quantum systems, different theoret-
ical frameworks are developed to explore fascinating strongly
correlated topological phases such as the fractional quantum
Hall effect [6–8].

The first attempt is to introduce the twisted boundary
condition (TBC) to define a topological invariant [9–18]
for interacting many-body quantum systems. Similar to the
periodic boundary condition (PBC), under the TBC, the
boundaries along the same direction are glued together. The
essential difference is that particles gain extra phases when
they go through the boundaries under the TBC. The extra
phase, which is known as the twist angle, can be considered a
result of inserting magnetic flux [19,20] whose change will
induce the flow of current [21,22]. Topological invariants
defined via the twist angle have successfully explained topo-
logical features related to the system’s response to external
fields, such as the polarization (Berry phase) [23–26] and the
quantized Hall conductance [27].
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In recent years, a new approach has been proposed via
the co-translation symmetry [28–30], with which the total
energy remains unchanged when all particles as a whole
are shifted by unit cells. The co-translation symmetry sup-
ports the c.m. quasimomentum as a good quantum number,
and enables few-body topological band theory, in which
topological invariants of gapped few-body Bloch bands can
be defined via c.m. quasimomentum states [28–30]. Here,
“few-body” means that the total particle number is fixed
as a finite value N (even in the thermodynamic limit
L → ∞). With this approach, exotic interacting topological
phases have been uncovered, such as topological bound edge
states [28,29,31], topologically resonant tunnelings [30], and
interaction-induced Thouless pumping [31].

While extensive interests have appeared in few-body topo-
logical states [28–39], it is more challenging and appealing
to study topological states in many-body systems, where the
filling factor ν = N/L keeps a finite value (even in the ther-
modynamic limit L → ∞). In fact, the number of gapped
many-body ground states strongly depends on the filling
factor [40]. In contrast to the continuous band structure in few-
body systems, a many-body gapped ground-state manifold
may only consist of finite degenerate eigenstates with certain
quasimomenta, as depicted in Fig. 1(a). It seems that there
is no well-defined band structure for many-body systems. To
date, how to utilize quasimomentum states to characterize
many-body topological states remains vague.

Although the TBC approach and the center-of-mass (c.m.)
momentum approach seem apparently different, they can in-
dependently and faithfully define topological invariants for
interacting multiparticle systems. To date, there has been no
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FIG. 1. Illustrative diagram for low-lying energy spectra of
(a) many-body systems and (b) few-body systems under the PBC. For
many-body systems, the degeneracy of the gapped ground-state man-
ifold is finite, which strongly depends on the filling factor ν = N/L.
Here, we show the fourfold-degenerate ground states as an example.
For few-body systems, there appears bandlike structure. Bands are
dispersive and continuous in the thermodynamic limit. When the
interaction is strong enough, there appears a gapped isolated band
emerging from the continuum band, which usually corresponds to
bound states.

comparison of the physics obtained from applying the two
approaches to the same system. Understanding the relation
between the two approaches can give insights into the foun-
dation of interacting topological states. It is already known
that threading a magnetic field to a system will induce a shift
of the c.m. quasimomentum, indicating that the twisted angle
has the same status of the c.m. quasimomentum. However, it is
unclear whether the topological invariants defined with these
two approaches are equivalent.

In this work, we generalize the c.m. momentum approach
to many-body systems by introducing the multiparticle Wilson
loop, and systematically clarify the relation between the TBC
approach and the c.m. momentum approach, as depicted in

Fig. 2. Under the TBC, we classify two different gauges as
(i) a boundary gauge in which the twist angle is only gained
at the crossing boundary, and (ii) a periodic gauge in which
the twist angle is uniformly distributed at each hopping term.
With the periodic gauge under the TBC, the co-translation
symmetry is restored, and the c.m. momentum is related to the
twist angle. The Berry phases defined via the twist angle under
boundary and periodic gauges only differ by a trivial classical
polarization, dubbed the TBC Berry phase for brevity. Un-
der the PBC, by introducing the multiparticle Wilson loop,
the Berry phase can be obtained from the c.m. momentum
states, dubbed the c.m. Berry phase for brevity. The multipar-
ticle Wilson loop is a generalization from the single-particle
Wilson loop, applicable to both few-body and many-body
systems. By employing perturbative analysis, we uncover that
the TBC Berry phase in periodic gauge can be equivalently
obtained via c.m. quasimomentum states and is related to the
c.m. Berry phase. Since the Chern number can be expressed as
the winding of Berry phases in two-dimensional (2D) systems,
the Chern numbers obtained via the TBC approach and the
c.m. momentum approach are therefore equivalent. To verify
our general arguments, we consider a Aubry-André-Harper
(AAH) model and numerically compute the topological prop-
erties of the gapped state. Our results clearly show that the two
Berry phases as well as the Chern numbers defined through
the twist angle and the c.m. momentum state are consistent
with each other in both the few-body and many-body cases.

The rest of this article is organized as follows. In Sec. II,
we introduce and review some key properties of the twisted
boundary condition and the co-translation symmetry. We then
discuss the relation between the twist angle and the center-
of-mass momentum. In Sec. III, we discuss the Berry phase
and the Chern number defined through the twist angle and
the c.m. momentum state. We derive the relation between
the TBC Berry phase and the c.m. Berry phase by using

FIG. 2. Schematic demonstration of the simple tight-binding one-dimensional (1D) lattice under different boundary conditions and their
corresponding Berry phases. (a) The general TBC with boundary gauge, (b) the TBC with periodic gauge, and (c) the periodic boundary
condition. Under the boundary gauge (a), a particle only gains the phase when it crosses the boundary. Under the periodic gauge (b), a particle
gains a “diluted” and homogeneous phase everywhere during the tunneling. The arrows indicate the tunneling of particles. Here t is the
tunneling strength, θ is the twist angle, and L is the total number of cells. In both (b) and (c), the system possesses co-translational symmetry.
The Berry phases corresponding to these three configurations as well as their relations are given below the diagrams. The central result is that
the TBC Berry phase can be formulated by the c.m. momentum states.

125161-2



TOPOLOGICAL INVARIANTS FOR INTERACTING … PHYSICAL REVIEW B 107, 125161 (2023)

perturbative expansion, and we discuss it respectively for
many-body and few-body systems. In Sec. IV, we illustrate
our general framework through the AAH model numerically
and verify our arguments. In Sec. V, we briefly summarize
and discuss our results.

II. TWISTED BOUNDARY CONDITION
AND CENTER-OF-MASS MOMENTUM

In this section, we focus on discussing the relation between
the twist angle under the TBC and the c.m. momentum state
under the PBC. We will review the concepts of the twisted
boundary condition, introduce the co-translation symmetry
and the c.m. momentum, and then show the relation between
the twist angle and the c.m. momentum state for both few-
body and many-body systems.

A. Twisted boundary condition

To illustrate the TBC, we consider a generic form of the
one-dimensional (1D) Hubbard-like Hamiltonian with two-
body interaction,

ĤTBC(θ ) = −
∑
x,d

(td ei�x+d,x ĉ†
x+d ĉx + H.c.)

+
∑
x,d

Vd n̂x+d n̂x,

�x+d,x =
{
θ, 〈x + d, x〉 cross the boundary
0 otherwise, (1)

in which ĉ†
x (ĉx ) is the creation (annihilation) operator at the

xth site, and td and Vd are the tunneling strength and the
two-body interaction strength, respectively. Tunneling and
interaction are both finite range and only dependent on the
relative distance d , which ensures the co-translation symmetry
when θ = 0. For simplicity, the lattice constant (i.e., the dis-
tance between two neighboring lattice sites) is set as a = 1.
Meanwhile, the boundary is positioned between the Lth and
first cells, and particles will gain phase only when tunneling
through this boundary. Hence, the TBC can be viewed as a
generalized periodic boundary condition [see Fig. 2(a) for a
schematic demonstration]. It can be noted that Hamiltonian
(1) is a periodic function of θ with the period 2π , that is,

ĤTBC(θ + 2π ) = ĤTBC(θ ). (2)

The twist angle θ can be seen as a consequence of the
insertion of a magnetic field, and particles feel gauge field in
the lattice. Due to the gauge freedom, there are numerous con-
ventions to determine how the vector potential (gauge field)
distributes. Here, we choose a particular gauge by introducing
the twist operator [41],

Ûθ = exp

(
i
θ

L
x̂

)
, (3)

in which x̂ = ∑
x xn̂x is the position operator and L is length of

the system. It can be checked that Ûθ ĉ†
xÛ −1

θ = ei θ
L xĉ†

x . Under
this twist transformation, the interaction type considered here
remains unchanged. Then, the unitarily equivalent Hamilto-

nian reads as

ĤTPG(θ ) = Ûθ ĤTBC(θ )Û −1
θ

= −
∑
x,d

(
td ei θ

L d ĉ†
x+d ĉx + H.c.

)

+
∑
x,d

Vd n̂x+d n̂x. (4)

The above transformation is generally called the large gauge
transformation [42]. This particular unitary transformation
means that we have chosen a gauge such that the vector field
distributes uniformly, which is beneficial for us to establish
the relation between the c.m. momentum and the twist angle
later.

For convenience, we refer to the gauge choice in the trans-
formed Hamiltonian (4) as the periodic gauge [see Fig. 2(b)],
since the system satisfies the PBC. Notably, the periodicity of
the Hamiltonian with respect to the twist angle θ is no longer
2π under this gauge. For the twist angle appearing only at the
boundary [see Hamiltonian (1)], we call it the boundary gauge
[see Fig. 2(a)]. In Fig. 2, we give a simple demonstration
to show the essential differences among the TBC with the
boundary gauge, the TBC with the periodic gauge, and the
PBC without the twist angle. We would like to stress that the
energy spectrum under the TBC is independent of the gauge
choice.

B. Co-translation symmetry and center-of-mass momentum

In a general interacting multiparticle system, the single-
particle translation symmetry is broken. However, the periodic
system remains invariant after the translation of all particles
when the interparticle interaction depends only on their rela-
tive distance. The translation of all N particles in a 1D lattice
[28] can be expressed as

T̂ |x1, x2, . . . , xN 〉 = |x1 + 1, x2 + 1, . . . , xN + 1〉, (5)

where T̂ is the co-translation operator translating all particles
for a unit cell, and |x1, x2, . . . , xN 〉 is the multiparticle basis
in position space, with x j referring to the position of the jth
particle. In our analysis, we assume the particles to be bosonic.
For fermions, although the translation is similar, one should
take care of the periodic boundary condition and the anticom-
mutation relation (see Appendix A for detailed discussions).

Alternatively, we can use a c.m. position basis to expand
the N-particle states,

|R, β〉 ⇔ |x1, x2, . . . , xN 〉, (6)

where R = ∑
j x j/N is the c.m. position of the N particles,

and β is an abstract label corresponding to the relative dis-
tribution of the N particles. Mathematically, β is uniquely
determined by the set of all relative positions: {xi, j}β , xi, j =
xi − x j, 1 � i < j � N . That is, {xi, j}β contains the informa-
tion of all relative positions between any pairs of particles.
States labeled with the same β share the same relative distribu-
tion and can be translated to each other via the co-translation
operation. In other words, these states form an invariant sub-
space for the representation of co-translation operator. The
value of β depends on the geometry of the lattice and the total
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number of particles, which grows rapidly with the system size
and the total number of particles.

Since the co-translation operation will not change the rela-
tive positions between particles, we have

T̂ |R, β〉 = |R + 1, β〉. (7)

The co-translation symmetry is defined by the commuta-
tion between the co-translation operator and the Hamiltonian:
[Ĥ , T̂ ] = 0. If a multiparticle system under the PBC has co-
translation symmetry, although the co-translation symmetry is
broken under the TBC with boundary gauge, it can be restored
under the TBC with periodic gauge.

Eigenstates of the co-translation operator can be expressed
as

|K, β〉 = 1√
Cβ

∑
R

eiKR|R, β〉, (8)

where K is a good quantum number and Cβ is the normaliza-
tion factor. The summation in Eq. (8) is over all multiparticle
position bases having the same relative distribution character-
ized by β, and the normalization factor depends on the number
of these position bases. Here, similar to the single-particle
quasimomentum, we can identify K as the c.m. quasimo-
mentum, which is referred to as the c.m. momentum for
brevity. Although K corresponds to the total momentum of
all particles, we will use the terminology “c.m. momentum”
to stress that it is the reciprocal lattice vector with respect to
the center-of-mass position. It is easy to verify that Eq. (8)
obeys

T̂ |K, β〉 = 1√
Cβ

∑
R

eiK ·RT̂ |R, β〉

= 1√
Cβ

∑
R

eiKR|R + 1, β〉

= e−iK 1√
Cβ

∑
R

eiKR|R, β〉

= e−iK |K, β〉. (9)

Consequently, the Hamiltonian can be block-diagonalized
into the direct sum of c.m. Bloch Hamiltonians h(K ),

Ĥ =
∑

K

∑
β ′,β

|K, β ′〉[h(K )]β ′,β〈K, β| =
⊕

K

h(K ), (10)

where [h(K )]β ′,β = 〈K, β ′|Ĥ |K, β〉. Thus, the eigenstate can
be expressed as the linear combination of c.m. momentum
basis |K, β〉, ∣∣ψn

K

〉 =
∑

β

un
K,β |K, β〉, (11)

in which un
K,β is the eigenvector of h(K ) satisfying

h(K )|un
K 〉 = En

K |un
K〉, and n is the eigenenergy index of h(K ).

We will call |un
K 〉 the c.m. momentum state.

Under the PBC, applying the co-translation operator for L
times will yield the same state: T̂ L|ψ〉 = |ψ〉. Hence, from
Eq. (9), there is K = 2πm/L, m ∈ Z. However, for a many-
body system of indistinguishable particles, some specific
distributions may reduce the needed times of co-translation
symmetry to yield the same state. For example, let us consider

two specific states in a simple one-dimensional lattice: (i) the
state of all particles distributed uniformly, | . . . , 1, 1, 1, . . . 〉,
and (ii) the state of the particles distributed uniformly only
at odd or even sites, | . . . , 0, 2, 0, 2, . . .〉. Any co-translation
operation will not change this state: T̂ | . . . , 1, 1, 1, . . .〉 =
| . . . , 1, 1, 1, . . .〉. According to Eq. (8), | . . . , 1, 1, 1, . . .〉 can
only be used to construct the c.m. momentum basis with
K = 0. For the state | . . . , 0, 2, 0, 2, . . .〉, applying the co-
translation operator twice will bring the state back to the
original state, and therefore it can only be used to construct the
c.m. momentum basis with K = 0 or K = π . This fact means
that for different c.m. momenta, the number of the eigenstates
of the co-translation operator can be different and therefore
the matrix dimensions of the Bloch Hamiltonian h(K ) may
be different. In dealing with the summation of different rela-
tive distributions in Eq. (10), we should carefully distinguish
which states should be involved for a certain c.m. momentum.

In addition, the definition of position is essential in con-
structing the c.m. momentum basis. The c.m. position can be
expressed as R = Ri + Rβ with an integer part Ri ∈ Z and a
decimal part Rβ ∈ [0, 1). Thus, according to Eq. (8), we have

|K + 2π, β〉 = ei2πRβ |K, β〉. (12)

In multiparticle systems, Rβ is generally nonvanishing. The
c.m. Bloch Hamiltonian then satisfies

[h(K + 2π )]β ′,β = [h(K )]β ′,βei2π(Rβ−Rβ′ ). (13)

In matrix notation, there is h(K + 2π ) = R2πh(K )R−1
2π ,

where [R2π ]β ′,β = δβ ′,βe−i2πRβ . Hence, the c.m. momentum
state satisfies un

K+2π,β = e−i2πRβ un
K,β , and we have∣∣un

K+2π

〉 = R2π

∣∣un
K

〉
. (14)

Such a kind of relation is very similar to the discussion for the
TBC in Sec. II A. On the other hand, it can be checked that the
eigenstate always satisfies the periodic condition∣∣ψn

K+2π

〉 =
∑

β

un
K+2π,β |K + 2π, β〉

=
∑

β

un
K,β |K, β〉

= ∣∣ψn
K

〉
. (15)

The above discussion for c.m. momentum states is very simi-
lar to the band theory for single-particle systems, and can also
be generalized to higher-dimensional systems.

C. Connection between the twist angle and
the center-of-mass momentum states

Below we show how the twist angle connects with the c.m.
momentum states. First, we would like to discuss the general
characteristics for both many-body and few-body systems.
It can be noted that the co-translation symmetry is broken
under the TBC with boundary gauge, i.e., [ĤTBC(θ ), T̂ ] 	= 0.
Nevertheless, when the periodic gauge is imposed on the
TBC, the system satisfies the PBC, and the co-translation
symmetry is restored, i.e., [ĤTPG(θ ), T̂ ] = 0. As discussed in
Sec. II B, we can block-diagonalize the Hamiltonian in this
situation and obtain the Bloch Hamiltonian h(K, θ ) from the
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c.m. momentum approach discussed above. Using Eq. (4), we
can find that the matrix elements of the Bloch Hamiltonian
satisfy the following relation:

[h(K, θ + 2π )]β ′,β

= 〈K, β ′|ĤTPG(θ + 2π )|K, β〉
= 〈K, β ′|Û2πÛθ ĤTBC(θ )Û −1

θ Û −1
2π |K, β〉

= 〈K − NδK, β ′|Ûθ ĤTBC(θ )Û −1
θ |K − NδK, β〉

= 〈K − NδK, β ′|ĤTPG(θ )|K − NδK, β〉
= [h(K − NδK, θ )]β ′,β , (16)

where δK = 2π/L is the minimum increment of the c.m.
momentum, and we have used the relation

Û −1
2π |K, β〉 = 1√

Cβ

∑
R

eiKRe−i 2π
L x̂|R, β〉

= 1√
Cβ

∑
R

eiKRe−i 2π
L NR|R, β〉

= 1√
Cβ

∑
R

ei(K−NδK )R|R, β〉

= |K − NδK, β〉. (17)

Here Û2π is also called the twist operator [43] and it satisfies
T̂ (Û −1

2π |K, β〉) = ei(K−NδK )(Û −1
2π |K, β〉).

From Eq. (16), we find that the Bloch Hamiltonian h(K )
satisfies the important relation

h(K, θ + 2π ) = h(K − NδK, θ ), (18)

and the corresponding c.m. momentum state [the eigenstate of
h(K, θ )] will satisfy the following relation:∣∣un

K (θ + 2π )
〉 = ∣∣un

K−NδK (θ )
〉
. (19)

This means that the twist angle continuously connects c.m.
momentum states in different sectors under the periodic
gauge. Moreover, eigenstates of the Hamiltonian under the
TBC with periodic gauge (4) satisfy a rather different relation:∣∣ψn

K+NδK (θ + 2π )
〉

=
∑

β

un
K+NδK,β (θ + 2π )|K + NδK, β〉

=
∑

β

un
K,β (θ )|K + NδK, β〉

=
∑

β

un
K,β (θ )Û2π |K, β〉

= Û2π

∣∣ψn
K (θ )

〉
. (20)

By multiplying Û −1
θ+2π on both sides of Eq. (20), one can

transform the periodic gauge back to the boundary gauge,∣∣ψ̃n
K+NδK (θ + 2π )

〉 = ∣∣ψ̃n
K (θ )

〉
, (21)

where |ψ̃n
K (θ )〉 are the eigenstates of the TBC Hamiltonian

under boundary gauge ĤTBC(θ ). Note that the co-translation
symmetry is broken under the boundary gauge, and the c.m.
momentum K is not a good quantum number for ĤTBC(θ ).
However, there is still a one-to-one correspondence between

the eigenstates of the periodic-gauge Hamiltonian and the
boundary-gauge Hamiltonian since they are related by the uni-
tary transformation: |ψμ(θ )〉 = Ûθ |ψ̃μ(θ )〉. Here, μ denotes
the index of eigenstates. Thus, we can still assign the quantum
numbers {K, n} to the eigenstates of ĤTBC(θ ) such that

|ψ̃μ(θ )〉 ≡ ∣∣ψ̃n
K (θ )

〉
. (22)

Under the boundary gauge, a notable consequence of Eq. (21)
is that when the twist angle θ flows from 0 to 2π , each of
the eigenstates will flow adiabatically to another eigenstate if
N/L is not an integer, although the TBC Hamiltonian under
the boundary gauge flows back to the same Hamiltonian.

According to Eq. (18), the eigenenergy will also follow the
relation

En
K (θ + 2π ) = En

K−NδK (θ ). (23)

From Eq. (23), we can see that the eigenenergies change
continuously from En

K (0) to En
K−NδK (0) when the twist angle

θ changes adiabatically 2π . It has been proven that the finite
excitation gap is not affected by the twist angle θ in the
thermodynamic limit [41]. Physically, it can be understood
that the change of the twist angle at the boundary will not
affect the bulk when the system is away from the critical
point. This means that if En

K (0) is the eigenenergy of the
gapped ground state, then the eigenstate whose eigenenergy is
En

K−NδK (0) also belongs to the ground-state manifold. Thus,
the degeneracy of the gapped ground-state manifold depends
on the filling factor ν = N/L. For example, consider the case
of a filling factor ν = N/L = p/q with p and q being co-prime
numbers. The degeneracy of the ground states must be the
multiple of q.

The above discussion on the relation between the twist an-
gle and the c.m. momentum is general, and the results can be
applied to both many-body and few-body systems. Actually,
this result is in agreement with the celebrated Lieb-Shultz-
Mattis (LSM) theorem [40,43–47].

III. BERRY PHASE AND CHERN NUMBER

In this section, we study the Berry phases and the Chern
numbers defined with the TBC and the c.m. momentum states,
respectively. In noninteracting lattice systems, it is known that
the Berry phase defined through the single-particle quasimo-
mentum is related to polarization [24–26,48]. By choosing
an appropriate gauge for the Berry connection (Berry vector
potential), the Chern number for 2D systems can be expressed
as the winding of the Berry phase. The adiabatic change of
Berry phase reflects the flow of the current induced by mod-
ulation. The periodic modulation may result in a nontrivial
Chern number, corresponding to the number of particles being
pumped. Periodic modulations can be a time-dependent lattice
potential applied to a 1D system, or a magnetic flux inserted in
the 2D system in a cylinder geometry. The many-body Berry
phase has been studied extensively [49]. In particular, when
the system has some symmetries, the Berry phase is used as an
order parameter to characterize the symmetry-protected topo-
logical phase [50,51]. Therefore, it is essential to investigate
the Berry phase for interacting multiparticle systems.
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A. Twisted boundary condition approach to Berry phase

In this section, we will present the Berry phase defined
through the twist angle under two different gauges: the
boundary gauge and the periodic gauge. We also discuss
the gauge-invariant condition. Although the two cases are
unitarily equivalent, their Berry phases differ by a classical
polarization. Particularly, with the periodic gauge, one can
expand the eigenstate up to the first order of θ/L, which allows
us to relate the Berry phases respectively defined with the
twist angle and the c.m. momentum later.

1. Boundary gauge

First, let us consider a 1D system under the TBC with the
boundary gauge. Given a set of target states G̃(θ ) = {|ψ̃μ(θ )〉}
(which are gapped to other states), we write them as a vector
�̃θ = (|ψ̃1(θ )〉, . . . , |ψ̃N (θ )〉), in which N is the number of
the target states. One can use the non-Abelian form to define
the Berry phase with the twist angle,

φTBC = −i
∫ 2π

0
dθ Tr[Ã(θ )],

Ã(θ ) = �̃
†
θ ∂θ �̃θ , (24)

where the minus sign is imposed for convenience.
Next, it is of importance to discuss when the Berry phase

(24) is gauge invariant. Supposing a U (N ) gauge transforma-
tion, �̃θ → �̃

′
θ = �̃θ Ũθ with Ũθ being a continuous function

of θ , there is

φTBC → φTBC − i
∫ 2π

0
dθ Tr(Ũ†

θ ∂θ Ũθ ). (25)

Note that the 2π periodicity of the Hamiltonian ĤTBC(θ ) does
not mean its eigenstate will flow back to the original state
when the twist angle varies 2π . According to Eq. (21), when
the twist angle varies 2π , the boundary-gauge eigenstates
will flow to a different eigenstate if N/L is not an integer.
Therefore, the extra gauge term in Eq. (25) may not be zero. In
other words, it seems that the TBC Berry phase (24) is gauge
dependent. As discussed in the previous section, the twist
angle will not change the spectral gap in the thermodynamic
limit, and we have G̃(θ + 2π ) = G̃(θ ). This means that, under
the gapped condition, any target state |ψ̃μ(θ )〉 ∈ G̃(θ ) will
finally evolve into another eigenstate which still belongs to
the same set of target states when the twist angle changes 2π ,
that is,

|ψ̃μ(θ + 2π )〉 = |ψ̃μ′ (θ )〉 ∈ G̃(θ ). (26)

Hence, we would like to impose �̃θ+2π = �̃θ in practical
calculations, and this leads to Ũθ+2π = Ũθ . Then, the extra
term satisfies∫ 2π

0
dθ Tr(Ũθ

†
∂θ Ũθ ) = 2mπ, m ∈ Z, (27)

where we have used the fact that this integral produces the
winding number of the unitary matrix Ũθ . Therefore, we arrive
at the conclusion that the TBC Berry phase modulo 2π is
U (N ) gauge invariant as long as the target states are gapped.

2. Periodic gauge

On the other hand, one may wonder if we can define the
Berry phase under the periodic gauge via the same form,

φTPG = −i
∫ 2π

0
dθ Tr[A(θ )],

A(θ ) = �†
θ ∂θ�θ , (28)

where �θ = (|ψ1(θ )〉, . . . , |ψN (θ )〉) corresponds to a set of
eigenstates under periodic gauge. In fact, the Berry phase in
Eq. (28) is generally not gauge invariant, since the period
of the Hamiltonian under periodic gauge, ĤTPG(θ ), is not
2π . Similarly, consider a U (N ) gauge transformation �θ →
�′

θ = �θUθ for a set of target states G(θ ) = {|ψμ(θ )〉} gapped
to other states. This gauge transformation leads to

φTPG → φTPG − i
∫ 2π

0
dθ Tr(U†

θ ∂θUθ ). (29)

Apparently, the period of Uθ is not 2π , which means the
integral in Eq. (29) modulo 2π is not necessarily zero, im-
plying that Eq. (28) is not gauge invariant. To make the Berry
phase (28) gauge invariant, one can manually fix the gauge.
As discussed in previous sections, the gapped target states sat-
isfy |ψμ(θ + 2π )〉 = Û2π |ψμ′ (θ )〉, in which |ψμ′ (θ )〉 ∈ G(θ ).
With this, we can also impose the following relation,

�θ+2π = Û2π�θ , (30)

and then the U (N ) gauge transformation will satisfy the peri-
odic relation Uθ+2π = �†

θ+2πÛ2π�θUθ = Uθ . Hence, similar
to Eq. (27), the extra gauge term will only produce an integer
multiple of 2π ,

i
∫ 2π

0
dθ Tr(U†

θ ∂θUθ ) = 2mπ, m ∈ Z, (31)

and the Berry phase under periodic gauge [Eq. (28)] is gauge
invariant modulo 2π now. This is particularly useful in prac-
tical computation.

3. Relation of the Berry phases for different gauges

By using the relation between the eigenstates under the two
different gauges, �θ = Ûθ �̃θ , the Berry phase (28) becomes

φTPG = −i
∫ 2π

0
dθ Tr[A(θ )]

= −i
∫ 2π

0
dθ Tr[Ã(θ )]

− i
∫ 2π

0
dθ Tr[�̃

†
θÛ †

θ (∂θÛθ )�̃θ ]

= φTBC + 2π P̄, (32)

where

P̄ = 1

2πL

∫ 2π

0
dθ Tr(�̃

†
θ x̂�̃θ ) (33)

corresponds to the classical polarization averaged over the
twist angle. Formula (32) reveals that the two TBC Berry
phases differ by a classical polarization, which is consistent
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with the results of Ref. [14] where the target state only consists
of one unique eigenstate.

On the other hand, it is known that the definition of the
position is somewhat arbitrary due to the TBC. Equation (32)
suggests that the TBC Berry phases under either the boundary
gauge or the periodic gauge are affected by the choice of the
position operator x̂. Apparently, the TBC Berry phase under
the boundary gauge [Eq. (24)] does not involve any posi-
tion information except for the determination of boundary. It
should be irrelevant to how the position operator is defined.
Thus, we can conclude that only the TBC Berry phase under
the periodic gauge (φTPG) depends on the definition of the
position operator. This is similar to the single-particle situa-
tion, where the Berry phase can be split into the intercellular
and intracellular parts [52]. Correspondingly, the intercellular
Berry phase in the single-particle case corresponds to the TBC
Berry phase (24), and the intracellular Berry phase corre-
sponds to the classical polarization part. Unlike Ref. [52], the
relation obtained here is purely based on the TBC, and can
be applied to both single-particle and multiparticle systems
without requiring translation symmetry.

4. Perturbative analysis for periodic gauge

To see the perturbative nature of the TBC Berry phase, let
us consider a system described by the Hamiltonian under the
TBC with periodic gauge, as introduced in Eq. (4). In this con-
dition, the co-translation symmetry is preserved. We can label
the eigenstate by good quantum numbers: |ψμ(θ )〉 ≡ |ψn

K〉.
Since the tunneling is assumed to be finite range, it can be seen
from Hamiltonian (4) that the twist angle always appears as
an extremely small quantity θ/L in the thermodynamic limit.
Hence, provided the tunneling is finite range, the eigenstate
can be expanded in terms of θ/L:

∣∣ψn
K (θ )

〉 = ∣∣ψn
K (0)

〉 + θ

L

∣∣∂θ/Lψn
K (θ )

〉
θ=0 + O

(
1

L2

)
. (34)

By taking derivatives for both sides, we have

∂θ

∣∣ψn
K (θ )

〉 = 1

L

∣∣∂θ/Lψn
K (θ )

〉
θ=0 + O

(
1

L2

)
,

= ∣∣∂θψ
n
K (θ )

〉
θ=0 + O

(
1

L2

)
. (35)

Therefore, up to the first order of θ
L , we obtain

〈
ψn′

K ′ (θ )
∣∣∂θψ

n
K (θ )

〉 = 〈
ψn′

K ′ (0)
∣∣∂θψ

n
K (θ )

〉
θ=0 + O

(
1

L2

)
. (36)

This means that, up to the first order of 1
L , the quantity

〈ψn′
K ′ (θ )|∂θψ

n
K (θ )〉 is independent of the twist angle θ . Then,

we can set θ = 2π in Eq. (34),

∣∣∂θψ
n
K (θ )

〉
θ=0 = 1

2π

[∣∣ψn
K (2π )

〉 − ∣∣ψn
K (0)

〉] + O

(
1

L2

)
, (37)

and therefore
〈
ψn′

K ′ (θ )
∣∣∂θψ

n
K (θ )

〉 = 1

2π

〈
ψn′

K ′ (0)
∣∣ψn

K (2π )
〉

− 1

2π
δn′,nδK ′,K + O

(
1

L2

)
. (38)

Furthermore, according to Eq. (20), one can use |ψn
K (2π )〉 =

Û2π |ψn
K−NδK (0)〉 and find

〈
ψn′

K ′ (θ )
∣∣∂θψ

n
K (θ )

〉 = 1

2π

〈
ψn′

K ′ (0)
∣∣Û2π

∣∣ψn
K−NδK (0)

〉

− 1

2π
δn′,nδK ′,K + O

(
1

L2

)
. (39)

Hence, we can approximate the Berry connection as

A(θ ) ≈ M − IN , (40)

where IN is an N×N identity matrix and M is an N×N
matrix with elements

M(n′,K ′ ),(n,K ) = 〈
ψn′

K ′ (0)
∣∣Û2π

∣∣ψn
K−NδK (0)

〉
. (41)

In the above, N is the number of target states and we have
dropped the notation of the twist angle since θ = 0. This
means that the Berry connection A(θ ) in Eq. (28) is indepen-
dent of the twist angle θ up to the first order of 1

L . Similarly,
up to the first order of 1

L , we can approximate the classical
polarization (33) as

P̄ ≈
∑
n,K

〈
ψn

K

∣∣ x̂

L

∣∣ψn
K

〉
. (42)

We also find that, in the thermodynamic limit, the matrix
M is approximately a unitary matrix in the subspace spanned
by target states (see the detailed discussion in Appendix B).
Then, in the thermodynamic limit, the TBC Berry phase (28)
can be written as [53]

φTPG = Im[Tr(M − IN )] ≈ Arg[det (M)]. (43)

A similar approximation has been used in Ref. [15].
The above formula (43) is related to the polarization for-

mula proposed by Resta [13], which has been widely applied
to investigate the polarization of various systems, from non-
interacting [54–57] to interacting [58,59] systems. It can be
found that

M = �†
0Û2π�0S, (44)

where S is an orthogonal matrix that permutes the order of the
eigenstates in �0 depending on the flow of the target states.
Since the orthogonal matrix satisfies det(S ) = ±1, the Berry
phases obtained from the TBC method and the Resta formula
may at most have a π phase difference.

B. Center-of-mass momentum approach to Berry phase

Next, let us discuss the Berry phase defined through c.m.
momentum states. In few-body systems, the filling number
tends to zero, ν = N/L → 0, while the total particle number
N is fixed. In analogy to the single-particle system, the band
structure appears, as demonstrated in Fig. 1(b). Hence, in the
same fashion, it is desirable to define the Berry phase through
c.m. momentum states

φ = i
∫ 2π

0
dK Tr(AK ), (45)

in which [AK ]m,n = 〈um
K |∂K un

K〉. To guarantee the gauge in-
variance, we have to impose |un

2π 〉 = R2π |un
0〉 according to

Eq. (14). Equation (45) reflects the geometric phase gained by
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the few-body system after traveling through the Brillouin zone
adiabatically. This reveals the topological property of the Bril-
louin manifold with respect to the c.m. momentum state. In
particular, Eq. (45) has been successfully used to investigate
the topological properties of few-body bound states [28–31].

However, Eq. (45) cannot be applied to the many-body
system, as the number of gapped ground states is finite, and
therefore we cannot use the integral formulation. To unify
the c.m. approach for few-body and many-body systems, it is
desirable to use the Wilson loop to calculate the Berry phase.
Recall that in the single-particle case, the Wilson loop reads as
W (1)

K→K−2π = F (1)
K F (1)

K−δK · · · F (1)
K−2π+δK , in which [F (1)

K ]n′,n =
〈un′

K |un
K−δK 〉 and the superscript denotes the particle number.

For the N-particle system with the filling number ν = N/L =
p/q, we propose that the N-particle Wilson loop should be
modified as

W (N )
K→K−2pπ = F (N )

K F (N )
K−NδK · · · F (N )

K−2pπ+NδK , (46)

in which [F (N )
K ]n′,n = 〈un′

K |un
K−NδK〉. We can consider the N-

particle Wilson loop as a generalization of the single-particle
Wilson loop. The increment of the quasimomentum is NδK
for the N-particle system, and the range of the Wilson loop
depends on the filling factor ν = N/L = p/q. The Brillouin
zone is now expanded p times to complete the loop. The c.m.
Berry phase is therefore defined as

φc.m.(K ) = Arg
[
det

(
W (N )

K→K−2pπ

)]
, (47)

where K is the starting point of the Wilson loop. Note that one
should impose the relation in Eq. (14) to guarantee the gauge
invariance.

C. Connection between the TBC Berry phase
and the center-of-mass Berry phase

From Eq. (41), one can find that the matrix M has a block-
diagonal structure

M(n′,K ′ ),(n,K )

= 〈
ψn′

K ′
∣∣Û2π

∣∣ψn
K−NδK

〉
=

∑
β ′,β

(
un′

K ′,β ′
)∗

un
K,β〈K ′, β|Û2π |K − NδK, β〉

= 〈
un′

K

∣∣un
K−NδK

〉
δK ′,K , (48)

and we can write M = ⊕
K F (N )

K with [F (N )
K ]n′,n =

〈un′
K |un

K−NδK〉 and the indices running over all c.m. momenta
of the target states K ∈ {Ktarget}. For convenience, we use the
superscript (N ) in F (N )

K to emphasize that the increment of the
c.m. momentum is NδK . Then, under the periodic gauge, the
TBC Berry phase can be written as

φTPG = Arg[det (M)]

=
∑

K∈{Ktarget}
Arg

[
det

(
F (N )

K

)]
. (49)

As the matrix M is defined via the states for θ = 0 (i.e.,
the states for the Hamiltonian under the PBC), the above
formula implies that the TBC Berry phase can be equivalently
formulated by the c.m. momentum states under the PBC.

FIG. 3. Illustrative example for the TBC Berry phase and the
multiparticle Wilson loop. [(a), (b)] Two different cases of the target
states at ν = 1/2 filling. The color distinguishes two different sets
of the c.m. momentum states, as defined in Eq. (50). In each set,
c.m. momenta only differ by an integer multiple of NδK . In (a), the
target states only form one single multiparticle Wilson loop. In (b),
the target states form two multiparticle Wilson loops.

As discussed in Sec. II C, the twist angle continuously
connects certain c.m. momentum sectors. We can collect these
c.m. momenta to form a subset

{K̃ j} =
{

K|K = Kj − 2nπ
p

q
, n = 0, 1, . . . , q − 1

}
, (50)

where Kj is one of the c.m. momenta in the target states.
Hence, the c.m. momenta in the target states can be written
as the union of these subsets, {Ktarget} = ∪ j{K̃ j}. Based upon
this arrangement, Eq. (49) can be written as

φTPG =
∑

j

∑
K∈{K̃ j}

Arg
[
det

(
F (N )

K

)]

=
∑

j

Arg
[
det

(
W (N )

Kj→Kj−2pπ

)]

=
∑

j

φc.m.(Kj ). (51)

In this manner, we have proven that the TBC Berry phase is
related to the Berry phase defined through the c.m. momentum
state [Eq. (47)].

To better illustrate the relation in Eq. (51), let us consider
a fictitious ν = 1/2 system in one dimension. Two specific
cases are assumed: there appear (i) twofold-degenerate ground
states [Fig. 3(a)] and (ii) fourfold-degenerate ground states
[Fig. 3(b)]. For twofold-degenerate ground states, all these
c.m. momentum states are connected by the twist angle. The
TBC Berry phase only consists of one single multiparti-
cle Wilson loop. For fourfold-degenerate ground states, the
ground states can be classified into two sets, and the c.m.
momentum states in each set are connected by the twist an-
gle. These c.m. momentum states will form two multiparticle
Wilson loops, respectively, and the TBC Berry phase is con-
tributed from these two parts according to Eq. (51).
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D. Discussions for few-body systems and many-body systems

For a few-body system in the thermodynamic limit,
Eq. (47) can be equivalently written as

φc.m. = i
∫ 2pπ

0
dK Tr(AK ). (52)

It can be seen that the N-particle Wilson loop in Eq. (47) cov-
ers p Brillouin zones. Thus, it is p times the result in Eq. (45),
and these two methods are equivalent up to a constant factor.
According to Eq. (14), different choices of position definition
lead to different relations of unitary transformation for the
c.m. momentum state. Similar to the derivation in Sec. III A 3,
it can be proved that the change of position definition only
leads to an extra constant term. On the other hand, it is proved
that this c.m. momentum Berry phase is related to the c.m.
position of the multiparticle Wannier state [30,31]. This is
also very similar to the single-particle case. In particular, the
few-body bound state can be considered an effective single
particle [28–37]. The relative distribution is treated as the
internal degree of freedom of the effective single particle. It
can also be seen that, for few-body systems, the integral with
respect to the twist angle is equivalent to the integral with
respect to the c.m. momentum when calculating the Berry
phase.

For a many-body system, the N-particle Wilson loop only
consists of finite eigenstates in the thermodynamic limit, as
discussed above. According to Eq. (19), we can find that the
c.m. momentum states are connected by the twist angle. The
perturbative analysis in Sec. III A 4 implies that, in the many-
body case, all these c.m. momentum states only differ by a
phase up to the first order of 1/L as long as they are connected
by the twist angle. Hence, we do not have to calculate the full
Wilson loop in this condition. It is sufficient to only calculate
the overlap between the starting point Kj and the ending point
Kj − 2pπ :

W (N )
Kj→Kj−2pπ ≈ F (qN )

Kj
, (53)

where [F (qN )
Kj

]m,n=〈um
Kj

|un
Kj−qNδK〉=〈um

Kj
|un

Kj−2pπ 〉 (recall that
δK = 2π/L and N/L = p/q). According to Eq. (14), there
is |un

Kj−2pπ 〉 = R−2pπ |un
Kj

〉. Hence, we have a rather simple
expression: [

F (qN )
Kj

]
m,n = 〈

um
Kj

∣∣R−2pπ

∣∣un
Kj

〉
. (54)

This result means that we only need to compute one of the
target states to obtain the Berry phase, which is more efficient
when the target states are multifold degenerate.

E. Chern number

Having investigated the Berry phase, below we show that
the Chern number can be written as the winding of the Berry
phase. Let us consider a 1D system with a time-periodic mod-
ulation, dubbed the (1+1)D system, since the time-periodic
modulation can be viewed as an artificial dimension [5]. In
such a system, the modulation adiabatically changes the lat-
tice potential and results in an adiabatic current [23]. After
a pumping period, the Hamiltonian returns to its original
form. Under the TBC, we consider a set of gapped target
states �̃(θ, τ ) = (|ψ̃1(θ, τ )〉, . . . , |ψ̃N (θ, τ )〉). Thus we have

�̃(θ + 2π, τ ) = �̃(θ, τ + T ) = �̃(θ, τ ). The Chern number
can be written as [9]

C(1+1)D = − 1

2π

∫ T

0
dτ

∫ 2π

0
dθ Tr[F̃ (θ, τ )],

F̃ (θ, τ ) = i∂τ Ãθ (θ, τ ) − i∂θÃτ (θ, τ )

+ [Ãτ (θ, τ ), Ãθ (θ, τ )]. (55)

The commutator term in the non-Abelian Berry curvature
F̃ (θ, τ ) will vanish after the trace operation; therefore, the
Chern number reads as

C(1+1)d = − 1

2π

∫ T

0
dτ

∫ 2π

0
dθ i∂τ [Tr(Ãθ )]

+ 1

2π

∫ T

0
dτ

∫ 2π

0
dθ i∂θ [Tr(Ãτ )], (56)

where we have exchanged the orders of trace and partial
derivative operations. Now, if one integrates the twist angle
θ first, the second term will vanish,

∫ 2π

0
dθ i∂θ [Tr(Ãτ )] = iTr[Ãτ (2π, τ ) − Ãτ (0, τ )]

= 0, (57)

since the Berry connection Ãτ (θ, τ ) is a single-valued peri-
odic function. Finally, by exchanging the orders of integral
and partial derivative, one can find that the Chern number can
be written as a winding of the Berry phase,

C(1+1)d = − 1

2π

∫ T

0
dτ

∫ 2π

0
dθ i∂τ [Tr(Ãθ )]

= 1

2π

∫ T

0
dτ ∂τ

{
−

∫ 2π

0
dθ i[Tr(Ãθ )]

}

= 1

2π

∫ T

0
dτ ∂τ [φTBC(τ )], (58)

where the minus sign is relevant to the form of the twist angle.
As for 2D systems under the TBC, one can consider one of
the twist angles as a modulation parameter, which leads to the
same result. Equation (58) suggests that the Chern number can
be derived from the Berry phase. According to Eq. (32), we
know that the Berry phase under periodic gauge and boundary
gauge only differ by a classical polarization P̄, which vanishes
after a pumping cycle:

∫ T

0
dτ ∂τ P̄(τ ) = P̄(T ) − P̄(0) = 0. (59)

Since we have established the relation between the TBC Berry
phase and the c.m. Berry phase in Sec. III C, we can use
the c.m. momentum state to equivalently calculate the Chern
number.

IV. DEMONSTRATION VIA INTERACTING
AUBRY-ANDRÉ-HARPER MODEL

In this section, we employ a simple but typical 1D topolog-
ical model, the Aubry-André-Harper (AAH) model [60,61],
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to demonstrate the above general framework for both many-
body and few-body situations. The AAH model consists of
spatial modulations on either the tunneling strength or on-site
potentials. The noninteracting AAH model can be viewed as
a reduction of the 2D Hofstadter model [62,63], and has been
realized in various experimental platforms [64–66]. Thouless
points out that adiabatic cyclic modulation in the 1D lattice
may lead to quantized pumping of particles, provided that
the spectral gap is preserved [9,23]. The topological ori-
gin of this quantized pumping much resembles the quantum
Hall effect. Later, the charge pumping is associated with
the modern theory of polarization [24–26]. By changing the
modulation phase, one is able to achieve the well-known
Thouless pumping [23,67] via the AAH model. Notably, a
special case of AAH model, called the Rice-Mele model [68],
has been experimentally realized by loading ultracold atoms
into a superlattice [69,70], in which the quantized topological
pumping is observed. Recently, the interaction effect in such
a model has been experimentally studied [71,72]. During the
pumping cycle, the Berry phase will change with the modu-
lation parameter, corresponding to the existence of adiabatic
current. Therefore, it is desirable to calculate and compare the
TBC and c.m. Berry phases in the same system.

Below we only consider the spatial modulation on the
tunneling strength, dubbed the off-diagonal AAH model. The
Hamiltonian reads as

ĤAAH(�) = −
∑

j

(t j (�)â†
j+1â j + H.c.), (60)

in which âi (â†
i ) are the annihilation (creation) operators of

hard-core bosons,and τ is the modulation parameter. The
hopping strengths and the on-site energies are modulated re-
spectively according to t j (�) = t0[1 − λ cos(2πb j + �)], in
which φ is the modulation phase and b controls the period of
the tunneling strength. Moreover, there may appear gapped
eigenstates in both many-body and few-body situations if
interaction among particles is added, and we can calculate
the Berry phases for them. In the following, the modulated
tunneling strength is chosen as λ = 0.5t0 with t0 = 1, which
is essential to open the energy gap. We also set b = 1/3 so
that the system’s period is 1/b = 3. Within these parame-
ters, we can obtain three energy bands with Chern number
C = {−1, +2, −1} in the single-particle case.

A. Many-body AAH model with long-range interaction

First, let us focus on many-body ground states of the
noninteracting AAH model. When the interaction is absent,
it is known that the ground state is gapped at integer filling
ν = N/L = 1 with nonzero t0, λ for hard-core bosons. Under
the PBC, we utilize the method introduced in Sec. II B to
construct and diagonalize the c.m. Bloch Hamiltonian using
the exact diagonalization method. One can use the numer-
ical method dubbed the seed-state algorithm introduced in
Ref. [30] to efficiently achieve it. The low-lying energy spec-
trum of the noninteracting AAH model under the PBC is
shown in Fig. 4(a). It can be seen that there is a unique and
gapped ground state with c.m. momentum K = 0. This ground
state corresponds to an insulating phase where the lowest
band in the single-particle AAH model is occupied. Next,

FIG. 4. (a) Low-lying spectrum of the noninteracting off-
diagonal AAH model at ν = 1 filling when � = 0. The unique
gapped ground state is marked by red. (b) Berry phase of the ground
state as a function of modulation phase �. Red circles are calculated
through the TBC [Eq. (24)]. Blue dots are calculated using the
c.m. momentum states [Eq. (51)]. We have subtracted the classical
polarization for convenience. Parameters are chosen as N = 7, L = 7
(the total length of lattice is L/b = 21), V = 0. Other parameters are
fixed as b = 1/3, t0 = 1, and λ = 0.5.

we calculate the Berry phase of this instantaneous ground
state via the TBC method [Eq. (24)] and the c.m. momentum
method [Eq. (51)]. By applying the c.m. method, according to
Eq. (47), the multiparticle Wilson loop for this unique ground
state reads as

φc.m. = Arg(〈uK=0|uK=−2π 〉). (61)

Numerical results are shown in Fig. 4(b), in which both meth-
ods agree well with each other, despite some tiny differences
attributed to the finite-size effect. The Berry phase is a func-
tion of the modulation phase and continuously changes from
0 to 2π . According to Eq. (58), the Chern number for this
adiabatic pumping process is C = −1, indicating a quantized
shift of all particles. It can also be confirmed that this result is
consistent with the single-particle topological band theory.

To further verify the relation between the two Berry phases,
we introduce a long-range interaction among particles,

ĤInt (�) = ĤAAH(�) + V
∑
i< j

n̂in̂ j

|i − j|3 , (62)

which is known to support gapped ground states at fractional
filling ν 	= 1 [73–75]. Here, we consider a case of ν = 1/2
filling. The low-lying energy spectrum under the PBC with
strong interaction |t0/V | � 1 is presented in Fig. 5(a), where
two gapped ground states appear at K = 0 and K = π with
near-degenerate energy. Next, we proceed to compute the
Berry phases through the c.m. momentum state method and
the TBC method numerically [see Fig. 5(b)]. Note that the
multiparticle Wilson loop for this twofold ground state reads
as

φc.m. = Arg(〈uK=0|uK=−π 〉〈uK=−π |uK=−2π 〉). (63)

It can be seen that the two methods are still in agreement.
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FIG. 5. (a) Low-lying spectrum of the noninteracting off-
diagonal AAH model at ν = 1/2 filling when � = 0. The two
gapped ground states are marked by red. (b) Berry phase of the
twofold ground states as a function of modulation phase �. Red
circles are calculated through the TBC [Eq. (24)]. Blue dots are
calculated using the c.m. momentum states [Eq. (51)]. We have
subtracted the classical polarization for convenience. Parameters are
chosen as N = 4, L = 8 (the total length of lattice is L/b = 24),
V = 50. Other parameters are fixed as b = 1/3, t0 = 1, and λ = 0.5.

B. Few-body AAH model with nearest-neighbor interaction

Now, let us verify the relation between the TBC Berry
phase and the c.m. Berry phase in the few-body system with
the total number of particles fixed to N = 2. For simplicity, let
us consider a nearest-neighbor interaction between particles,

ĤInt (�) = ĤAAH(�) + V
∑

j

n̂ j n̂ j+1. (64)

The band structures at � = 0 with different interaction
strengths are shown in Fig. 6. In the absence of interaction
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FIG. 6. Instantaneous band structures of the two-particle AAH
model at � = 0. [(a), (b)] The spectrum under different values of in-
teraction strength V = 0, 5. Isolated bands corresponding to strongly
bound states are marked by blue in (b). The number of cells is
set to L = 43 (the total length of lattice is L/b = 129), and other
parameters are the same as Fig. 4.
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FIG. 7. (a) Energy spectrum of isolated bands in the two-particle
AAH model as a function of the modulation phase �. [(b)–(d)] Berry
phases of the three gapped isolated bands (from top to bottom) as a
function of the modulation parameter �. Red circles are calculated
through the TBC [Eq. (24)]. Blue dots are calculated using the
c.m. momentum states [Eq. (51)]. Other parameters are the same as
Fig. 6(b).

[Fig. 6(a)], the spectrum is a combination of two single-
particle spectra. Because the single-particle system has three
gapped bands when b = 1/3, there are five continuum bands
in the two-particle spectrum. The continuum band corre-
sponds to the nearly independent movement of the two
particles. From the top to the bottom, these five continuum
bands correspond to five cases: (i) both particles are in the
highest (single-particle) band; (ii) either of the particles is in
the middle band, while the other one is in the highest band;
(iii) both particles are in the middle band; (iv) either of the
particles is in the middle band, while the other one is in the
lowest band; and (v) both particles are in the lowest band.
When the interaction strength is sufficiently strong compared
to the band width, isolated bands emerge from continuum
bands [see Fig. 6(b)]. These isolated bands correspond to
the bound states induced by the particle-particle interaction.
Notably, some isolated bands are well separated from the con-
tinuum bands, while others are close to the continuum band.
The upmost three isolated bands are strongly bound states, and
those isolated bands emerging between the continuum bands
are weakly bound states.

Next, we investigate the pumping process for the upmost
three isolated bands. For simplicity, we fix the interaction
strength V/t0 = 10. The spectrum of the three isolated bands
presented in Fig. 6(b) is plotted as a function of the modula-
tion phase in Fig. 7(a). It can be seen that the three isolated
bands stay gapped during the pumping process. These gapped
isolated bands allow us to apply the TBC method [Eq. (24)]
and the c.m. momentum method [Eq. (51)] to calculate
the instantaneous Berry phases as a function of modulation
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phase, respectively [see Figs. 7(b)–7(d). Here, the two-particle
Wilson loop reads

W (2)
K→K−4π = F (2)

K F (2)
K−2δK · · · F (2)

K−4π+2δK , (65)

where we have chosen that the particle number N = 2 and
the cell length L = 43 are co-prime. Clearly, the TBC ap-
proach and the c.m. momentum approach are again in good
agreement. According to Eq. (58), the Chern number can be
extracted from the winding of the Berry phase. Therefore,
from top to bottom in Figs. 7(b)–7(d), we can obtain the
Chern number of the three cases, C = {−2,+4,−2}, which
are twice the values of the single-particle bands, respectively.

V. SUMMARY AND DISCUSSIONS

In this article, we have systematically studied the topo-
logical invariants defined through the TBC method and the
c.m. momentum method in the presence of co-translational
symmetry. Under the TBC, one can define a TBC Berry phase
through the twist angle. Such a definition is based on the
modern polarization theory, where polarization is related to
the adiabatic current induced by the change of lattice potential
[23–26]. The gauge invariance is discussed in detail, and we
provide a useful method to fix the gauge in practical calcula-
tions. Notably, we have considered the non-Abelian form of
the Berry phase to study the topological property of multiple
gapped eigenstates. Hence, it can be applied to noninteracting
and interacting systems. Since the twist angle is shown to
adiabatically relate different eigenstates, one should involve
all these related states to calculate the Berry phase instead of
computing them separately.

On the other hand, we have discussed how to construct the
c.m. momentum basis according to the co-translation sym-
metry. To investigate the topological property of the c.m.
momentum state, we introduce the multiparticle Wilson loop,
which is a generalization of the single-particle version. It
allows us to define the c.m. Berry phase, and later it is shown
to capture the gauge-invariant geometric phase among gapped
multiparticle states. Such a definition makes the c.m. Berry
phase applicable for both few-body systems and many-body
systems. In addition, this method is also commensurate with
the single-particle case.

It is shown that the twist angle connects different c.m.
momentum sectors adiabatically. By utilizing the perturbative
nature of the twist angle, we uncover the fact that the TBC
Berry phase can be equivalently formulated by c.m. momen-
tum states. Importantly, we prove that the TBC Berry phase is
deeply related to the c.m. Berry phase obtained from the mul-
tiparticle Wilson loop. Since the Chern number can be written
as the winding of the Berry phase, the Chern number defined
through the TBC can be equivalently computed through the
c.m. momentum state. The use of the c.m. momentum state is
beneficial for numerical calculations. We can work in the c.m.
momentum subspace, which greatly reduces the dimension of
the multiparticle Hilbert space. In particular, Eq. (53) suggests
a method to efficiently calculate the Berry phase for many-
body systems with degenerate ground states.

To verify our arguments, we apply our methods to the
AAH model. In the many-body condition, we use the TBC
method and the c.m. momentum method to compute the Berry

phase of the unique gapped ground state at ν = 1 filling. In
the few-body condition, similarly, we investigate the isolated
bound-state band induced by interactions through these two
methods. In both cases, the c.m. approach is consistent with
the conventional TBC method. The numerical results show
that the multiparticle Wilson loop can well capture the topo-
logical property of the many-body ground state even if there
is only one state. This is quite different from the generic
single-particle Wilson loop in a noninteracting system or few-
body system, in which one needs a number of states to form
the loop. With the multiparticle Wilson loop, one can avoid
the integration of the twist angle and reduce the computation
effort in multiparticle systems.

The equivalence between the topological invariant defined
through the TBC and the c.m. momentum state is of impor-
tance. It can be seen that the c.m. momentum states of the
gapped ground state are correlated, which plays a fundamental
role in formulating the topological invariant. This offers a ben-
efit to the understanding of multiparticle topological states.
Since the multiparticle Wilson loop formulated by the c.m.
momentum states can be applied to both many-body ground
states and few-body bands, it is appealing to investigate the
relation between the few-body and many-body topological
states in future. Meanwhile, the emergence of topological
bound states in few-body systems may have some relations
to the many-body fractional topological state [76,77]. It is
worthwhile to investigate the nature of fractional topological
states through the c.m. momentum state method in future.
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APPENDIX A: CO-TRANSLATION SYMMETRY AND
CENTER-OF-MASS MOMENTUM FOR FERMIONS

In this section, we demonstrate how to construct the c.m.
momentum basis through the co-translation symmetry when
the particle is fermionic. In one dimension, we write the N-
fermion basis in position space as

|x1, x2, . . . , xN 〉 = ĉ†
x1

ĉ†
x2

· · · ĉ†
xN

|0〉, (A1)

in which the position of the particle is in ascending order,
x1 < x2 < · · · < xN , and ĉ†

x j
is the fermionic creation opera-

tor satisfying the anticommutation relation. Under the PBC,
there is ĉ†

L+1 = ĉ†
1. When particles are translated across the

boundary, we should permute the order of the creation op-
erator to the left-most side. For example, let us consider the
co-translation of the following case:

T̂ (ĉ†
1ĉ†

2 · · · ĉ†
L )|0〉 = (ĉ†

2ĉ†
3 · · · ĉ†

L+1)|0〉
= (ĉ†

2ĉ†
3 · · · ĉ†

1)|0〉. (A2)
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To make sure the position of the particle is in ascending order,
we have to permute the last creation operator to the left-most
side, which yields an overall phase

ĉ†
2ĉ†

3 · · · ĉ†
1|0〉 = e

iπ
L∑

j=2
n̂ j

ĉ†
1ĉ†

2ĉ†
3 · · · |0〉. (A3)

In other words, for even particle number N ∈ 2Z in one
dimension, the co-translation operation obeys a twisted
boundary condition with θ = π , which is also called the an-
tiperiodic boundary condition. This can be also derived by
performing the Jordan-Wigner transformation to transform the
fermionic system to the hard-core bosonic system.

To take into account the quantum statistic effect of
fermions in a multiparticle system when constructing the c.m.
momentum basis, we should modify Eq. (8) for even parti-
cle number. In this case, the antiperiodic boundary condition
breaks general co-translation symmetry since [Ĥ, T̂ ] 	= 0. As
demonstrated in Sec. II, it is helpful to transform the twisted
boundary condition here from the boundary gauge to the peri-
odic gauge, and then the co-translation symmetry is restored.
The fermionic c.m. momentum basis can be thus written as

|K, β〉F = 1√
Cβ

∑
R

eiKRei π
L x̂|R, β〉. (A4)

On the other hand, for odd particle number, the c.m. momen-
tum basis remains the same form as the bosonic one. With this
method, our framework on the c.m. momentum state is valid
for fermions, and our results on the relation between the TBC
and c.m. momentum in Sec. II is still applicable.

In addition, we give a brief discussion for the 2D system.
Similarly, one can specify the order of the creation oper-
ator in a 1D manner when constructing the position basis
in 2D systems. Under the PBC, the co-translation operation
for fermions leads to a complicated antiperiodic boundary
condition depending on the particle distribution in the lattice.
Nevertheless, it is still possible to introduce the periodic gauge
to restore the co-translation symmetry, and thus the c.m. mo-
mentum basis can be constructed in the same vein.

APPENDIX B: QUASIUNITARITY OF M

Below, we show that the matrix M mentioned in Eq. (40)
is a unitary matrix in the thermodynamic limit. According to
Eq. (44), there is

M = �†Û2π�′, M† = �′†Û −1
2π �, (B1)

in which �′ = �S and S is an orthogonal matrix that trans-
forms the index μ to μ′ according to how the eigenstate flows
after the twist angle θ changes for 2π . The vector is nor-
malized: �†� = �′†�′ = IN , and N is the number of target
states. Meanwhile, we have ��† = �′�′† = ∑

μ |ψμ〉〈ψμ| =
1 in the subspace spanned by target states. There is

MM† = �†Û2π�′�′†Û −1
2π �

= �†Û2π

⎛
⎝∑

μ

|ψμ〉〈ψμ|
⎞
⎠Û −1

2π �

= �†

⎛
⎝∑

μ

|ψμ(2π )〉〈ψμ(2π )|
⎞
⎠�, (B2)

where |ψμ(ϕ)〉 is the eigenstate under periodic gauge, as al-
ready mentioned in the main text. Using the expansion (34)
for these states, we find

∑
μ

|ψμ(2π )〉〈ψμ(2π )| =
∑

μ

|ψμ〉〈ψμ| + O

(
1

L

)

= 1 + O

(
1

L

)
, (B3)

which implies that
∑

μ |ψμ(2π )〉〈ψμ(2π )| is close to the iden-
tity matrix in this subspace. Hence, we find MM† = IN in
the thermodynamic limit. One can also prove that M†M =
IN using the same analysis. In summary, we have shown
that the matrix M is approximately a unitary matrix in the
thermodynamic limit. Similar conclusions can be found in
Refs. [78,79].
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