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In quantum spin-1 chains, there is a nonlocal unitary transformation known as the Kennedy-Tasaki trans-
formation UKT, which defines a duality between the Haldane phase and the Z2 × Z2 symmetry-breaking
phase. In this paper, we find that UKT also defines a duality between a topological Ising critical phase and
a trivial Ising critical phase, which provides a “hidden symmetry breaking” interpretation of the topolog-
ical criticality. Moreover, since the duality relates different phases of matter, we argue that a model with
self-duality (i.e., invariant under UKT) is natural to be at a critical or multicritical point. We study concrete
examples to demonstrate this argument. In particular, when H is the Hamiltonian of the spin-1 antiferromag-
netic Heisenberg chain, we prove that the self-dual model H + UKTHUKT is exactly equivalent to a gapless
spin-1/2 XY chain, which also implies an emergent quantum anomaly. On the other hand, we show that the
topological and trivial Ising critical phases that are dual to each other meet at a multicritical point which is
indeed self-dual.

DOI: 10.1103/PhysRevB.107.125158

I. INTRODUCTION

Symmetry-protected topological (SPT) phases are distinct
from trivially gapped phases, provided that certain symmetry
is imposed. A paradigm of SPT phases is the Haldane phase
in the spin-1 antiferromagnetic (AFM) Heisenberg model in
(1+1) dimension (D) [1–3]. Protected by the Z2 × Z2 spin
rotation symmetry, the Haldane phase is characterized by
a unique gapped ground state (GS) in the bulk, nonlocal
string order, and gapless edge states [1,2]. These properties
generally hold for SPT phases of (1+1)D quantum systems
protected by an on-site, unitary, and linear representation of
an arbitrary symmetry group G, and the most general under-
standing of the (1+1)D SPT phases protected by G is based
on the projective representations classified by the second co-
homology group H2[G,U (1)] [4–7]. Nevertheless, a broad
class of (1+1)D SPT phases including the Haldane phase
can also be understood from a different perspective: hidden
symmetry breaking [2,8–11]. For example, for any short-range
interacting odd-integer-spin chains respecting the Z2 × Z2

symmetry, a nonlocal unitary transformation, known as the
Kennedy-Tasaki (KT) transformation UKT, defines a duality
between the Haldane phase and the Z2 × Z2 spontaneous
symmetry-breaking (SSB) phase [2,9–11]. The SPT order
of the Haldane phase is thus interpreted as hidden Z2 × Z2

symmetry breaking.
While it has been a well-known fact that gapped phases

can be further classified with additional symmetries imposed,
it was recently realized that for critical systems, a uni-
versality class can also split into distinct subclasses when
additional symmetries are imposed, yielding the concept of
symmetry-protected (or symmetry-enriched) quantum criti-

cality [12–18]. In particular, when two subclasses can be
distinguished by symmetry properties of certain nonlocal op-
erators, an SPT/trivial classification of quantum criticalities
becomes possible [12]. In this work, we find that the KT
transformation also defines a duality between an SPT Ising
criticality and a trivial Ising criticality. We thus argue that the
“topological” nature of the SPT Ising criticality can also be
interpreted as hidden symmetry breaking.

When a duality becomes a symmetry (i.e., the system is
self-dual), the self-duality must force the system to stay on the
phase boundary between the two duality-related phases, often
leading to criticality or multicriticality [19–23]. A prominent
example is the quantum transverse field Ising chain HIsing =
−∑

j (σ
z
j σ

z
j+1 + hσ x

j ), in which the Kramers-Wannier dual-
ity [24,25] exchanges the symmetric phase and the Z2 SSB
phase. At the self-dual point h = 1, HIsing is at a critical point
described by the Ising conformal field theory (CFT).

In this paper, we focus on the KT duality and study
a Hamiltonian of the form H (λ) = (1 − λ)HHal + (1 +
λ)UKTHHalUKT, where HHal is an SO(3) symmetric and short-
range interacting spin-1 chain in the SPT Haldane phase
(for example, the AFM Heisenberg model). In other words,
H (λ) with −1 � λ � 1 interpolates between the Haldane
phase and its KT-dual phase (Z2 × Z2 SSB phase). Note that
UKTH (λ)UKT = H (−λ). Surprisingly, we find that the self-
dual model H (0) is exactly equivalent to a (1 + 1)D spin-1/2
XXZ model doped by immobile holes, and the holes are
completely absent from the low-energy theory. This means
that the self-dual point is indeed a critical point described by
a Gaussian CFT (with central charge c = 1). Furthermore, we
find that the effective model for H (|λ| � 1) is given by the
famous (1 + 1)D spin-1/2 XYZ model, which implies that
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FIG. 1. (a) Schematic phase diagram of H (λ, θ ) in the re-
gion (λ, θ ) ∈ [−1, 1] × (−π/4, arctan 1

2 ]. There is an emergent
Lieb-Schultz-Mattis (LSM) anomaly when |λ| � 1. Note that Zy

2 is

a normal subgroup of Zy
4, while Zy′

2 = Zy
4/Z

y
2. Due to the global Zy

4

symmetry, Ox
str = Oz

str and Ox
FM = Oz

FM. The Zy′
2 SSB phase can also

be viewed as a Zz
2 SSB phase, while the Zy

2 × Zz
2 SSB phase is also a

fully Zy
4 � Zz

2 breaking phase. (b) DMRG results at θ = arctan(1/3).
The total hole number 〈Nh〉 is obtained by infinite DMRG, while the
correlation functions are calculated on an open chain with L = 64
and r = 40. Due to Eq. (36), Oy

str ≈ Oy
AFM when −λc � λ < 0. It

is also clear that Oy
str > 0 at the SPT Ising critical point −λc. The

half-chain entanglement entropy (L = 64) shows a sudden change at
the critical points.

there is an emergent quantum anomaly around the self-dual
point λ = 0. To our knowledge, the idea of emergent anomaly
can be found in Refs. [18,26–29].

In fact, H (λ) hosts more phases other than the Haldane
and the Z2 × Z2 SSB phases: there are two Z2 SSB phases in
the region −λc < λ < 0 and 0 < λ < λc (with λc < 1), where
±λc are two Ising critical points; the former one is a Z2 × Z2

trivial Ising criticality, while the latter is a Z2 × Z2 SPT Ising
criticality. This means that the KT transformation also defines
a duality between the SPT and trivial Ising criticalities. If we
introduce an additional parameter θ to the model, then the two
critical lines ±λc(θ ) meet at (λ, θ ) = (0, arctan 1

2 ), on which
the model H (λ, θ ) is exactly equivalent to a spin-1/2 ferro-
magnetic (FM) Heisenberg chain doped by immobile holes.
This means that the two KT duality-related Ising critical lines
meet at a self-dual point which is indeed multicritical. See
Fig. 1(a) for the phase diagram of H (λ, θ ).

II. KENNEDY-TASAKI (KT) TRANSFORMATION

For a quantum spin-S chain where S is a nonzero integer,
let S j = (Sx

j , Sy
j , Sz

j ) be the spin-S operator on the lattice site
j ∈ {1, 2, . . . , L}. The on-site spin rotation operators can be
written as

Yθ =
∏

j
exp

( − iθSy
j

)
,

Zθ =
∏

j
exp

( − iθSz
j

)
,

Xπ = YπZπ =
∏

j
exp

( − iπSx
j

)
.

(1)

We define several rotation groups as [30]

Zy
4 = {1,Yπ/2,Yπ ,Y3π/2},

Zy
2 = {1,Yπ },

Zz
2 = {1, Zπ },

Zy
2 × Zz

2 = {1, Xπ ,Yπ , Zπ },
Zy

4 � Zz
2 = {1, Xπ ,Yπ , Zπ ,Yπ/2,Y3π/2, ZπYπ/2,Yπ/2Zπ }.

(2)

The “symmetry flux” of Zy
2 × Zz

2 is a nonlocal operator de-
fined as

Fα
j = exp

(
− iπ

∑
k< j

Sα
k

)
Sα

j , α = x, y, z. (3)

The correlation of two symmetry fluxes gives the nonlocal
string order parameter [31],

Oα
str = − lim

r→∞
〈
Fα

j Fα
j+r

〉
, α = x, y, z. (4)

It is known that Oα
str > 0 serves as an order parameter for the

Haldane phase protected by Zy
2 × Zz

2, while Oα
str = 0 for the

trivial phase [9–11,32,33].
The KT transformation is defined on a spin-S chain with

open boundary condition (OBC) as [9–11,34]

UKT =
∏

1�u<v�L

exp
(
iπSz

uSx
v

)
, (5)

which satisfies UKT = U †
KT and U 2

KT = 1. The operator UKT

obviously has the on-site Zy
2 × Zz

2 symmetry, which guaran-
tees a nice property of UKT: If a (1 + 1)D Hamiltonian H
has the on-site Zy

2 × Zz
2 symmetry, then the dual Hamiltonian

H̃ = UKT H UKT must also have the same on-site Zy
2 × Zz

2
symmetry. Spin operators transform under UKT as [10,35]

Sx
j

UKT←→ UKTSx
jUKT = Sx

j eiπ
∑L

k= j+1 Sx
k ,

Sy
j

UKT←→ UKTSy
jUKT = eiπ

∑ j−1
k=1 Sz

k Sy
j eiπ

∑L
k= j+1 Sx

k ,

Sz
j

UKT←→ UKTSz
jUKT = eiπ

∑ j−1
k=1 Sz

k Sz
j .

(6)

We can thus see that in the x and z directions, the following
duality holds:

−Fα
j Fα

j+r = −Sα
j eiπ

∑ j+r−1
k= j+1 Sα

k Sα
j+r

UKT←→
α=x,z

Sα
j Sα

j+r . (7)

[As for the y direction, see Eq. (35).] It is thus clear that the
Haldane phase with Oα

str > 0 is KT dual to a Zy
2 × Zz

2 SSB
phase with an FM order Oα

FM = limr→∞〈Sα
j Sα

j+r〉 > 0 (α =
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x, z) [9–11]. As an example, it can be easily seen that for the
S = 1 case, an AFM Heisenberg interaction S j · S j+1 is KT
dual to an FM interaction in both the x and z directions [36],

S j · S j+1
UKT←→
S=1

−Sx
j S

x
j+1 + Sy

j e
iπ (Sz

j+Sx
j+1 )Sy

j+1 − Sz
jS

z
j+1. (8)

On the contrary, Eq. (7) suggests that the KT dual of a triv-
ial phase with Oα

str = 0 is again a trivial phase with Oα
FM = 0.

This means that the trivial phase is distinct from the SPT phase
in that the former has no hidden symmetry breaking. As a
simple example, it can be seen that the trivial model

Htriv =
∑

j

(
Sz

j

)2
(9)

is invariant under the KT transformation.

III. MODEL

From now on, let us focus on the case with S = 1. For a
spin-1 chain with only nearest-neighbor interaction and SO(3)
spin rotation symmetry, the most general Hamiltonian is the
bilinear-biquadratic (BLBQ) model [37–39],

HBLBQ(θ ) =
L−1∑
j=1

[cos θ (S j · S j+1) + sin θ (S j · S j+1)2]. (10)

In particular, θ = 0 and arctan(1/3) correspond to the
Heisenberg model and the Affleck-Kennedy-Lieb-Tasaki
(AKLT) model [40,41], respectively. In fact, the GS of
HBLBQ(θ ) is in the SPT Haldane phase protected by Zy

2 × Zz
2

as long as −π/4 < θ < π/4 [38], and in that case the dual
Hamiltonian H̃BLBQ(θ ) = UKTHBLBQ(θ )UKT is in the Zy

2 × Zz
2

SSB phase. In the following, we study a one-parameter inter-
polation between the two duality-related models as

H (λ, θ ) = (1 − λ)HBLBQ(θ ) + (1 + λ)H̃BLBQ(θ ), (11)

where we have assumed the model is defined on a chain of
length L with OBC and −1 � λ � 1. The Hamiltonian actu-
ally has the on-site Zy

4 � Zz
2 symmetry due to the fact that the

right-hand side of Eq. (8) respects the on-site Zy
4 � Zz

2 sym-
metry [42]. In the thermodynamic limit L → ∞, the model
has translation symmetry (denote the group as Ztrn), and thus
the whole symmetry group G of H (λ, θ ) is

G = Zy
4 � Zz

2 × Ztrn. (12)

A phase diagram for H (λ, θ ) is presented in Fig. 1(a). Note
that the Zy

2 × Zz
2 SSB phase can alternatively be regarded as

a fully Zy
4 � Zz

2 breaking phase since both Zy
2 × Zz

2 and Zy
4 �

Zz
2 have four different 1D representations which give rise to

four (quasi)degenerate GSs.

IV. SELF-DUALITY

Since UKTH (λ, θ )UKT = H (−λ, θ ), the model HSD(θ ) =
H (0, θ ) is self-dual at λ = 0. Let {|+〉 j, |0〉 j, |−〉 j} be a basis
of local Hilbert space satisfying Sz

j |±〉 j = ±|±〉 j and Sz
j |0〉 =

0. We define a “p-wave basis” {|↑〉 j, |↓〉 j, |h〉 j} as [43,44]

|↑〉 j = 1√
2

(|+〉 j − |−〉 j ),

|↓〉 j = |0〉 j,

|h〉 j = 1√
2

(|+〉 j + |−〉 j ).

(13)

In the following, we will often abbreviate |·〉 j to |·〉 for sim-
plicity. Let us treat |↑〉/|↓〉 as the up/down spin of a spin-1/2
particle (qubit) and |h〉 as a hole. Define Pauli operators as

σ x
j = |↑〉〈↓| + |↓〉〈↑|,

σ
y
j = −i|↑〉〈↓| + i|↓〉〈↑| = Sy

j ,

σ z
j = |↑〉〈↑| − |↓〉〈↓|.

(14)

Also define two number operators

n j = |↑〉〈↑| + |↓〉〈↓|,
h j = |h〉〈h| (15)

satisfying n j + h j = 1. The self-dual Hamiltonian can then be
exactly written as

HSD(θ ) = HXXZ + sin θ

L−1∑
j=1

(2h jh j+1 + n jn j+1 + 2), (16)

where

HXXZ = (cos θ − sin θ )
L−1∑
j=1

( − σ x
j σ

x
j+1 + σ

y
j σ

y
j+1

)

+ sin θ

L−1∑
j=1

σ z
j σ

z
j+1

(17)

is the spin-1/2 XXZ model. The minus sign in front of σ x
j σ

x
j+1

can be eliminated by a unitary transformation,

V =
∏

k=odd

σ
y
k . (18)

The Hilbert space of a spin-1 chain is given by

H1 =
L⊗

j=1

span(|+〉 j, |0〉 j, |−〉 j ), (19)

while we define the Hilbert space of a spin-1/2 chain by

H1/2 =
L⊗

j=1

span(|↑〉 j, |↓〉 j ). (20)

For HSD, the holes are completely decoupled from the qubits,
making H1/2 an invariant subspace. We emphasize that a
system is specified by a pair consisting of the Hamiltonian and
its underlying Hilbert space. The pair (HSD,H1) completely
specifies the self-dual model. On the other hand, (HSD,H1/2)
is equal to (HXXZ,H1/2) up to a constant, meaning that

PHSDP = PHXXZP + 3(L − 1) sin θP, (21)
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FIG. 2. An intuitive picture of the case −∞ < � < 1 de-
scribed in the Proposition. According to Eq. (21), the spectrum of
(HXXZ, H1/2) is completely embedded in that of (HSD, H1). When
−∞ < � < 1, in the thermodynamic limit, eigenstates of (HSD, H1)
with holes are separated from the GS by a finite-energy gap, making
the low-energy physics of (HXXZ, H1/2) and (HSD, H1) identical. In
this figure, we have ignored the constant energy shift 3(L − 1) sin θ .

where

P =
L⊗

j=1

n j =
L⊗

j=1

(|↑〉〈↑| + |↓〉〈↓|) (22)

is the projection operator onto H1/2. Luckily, (HXXZ,H1/2) is
exactly solvable by the Bethe ansatz [45,46]: Let

�(θ ) = sin θ

| cos θ − sin θ | . (23)

The GS of (HXXZ,H1/2) is
(i) a Gaussian CFT (c = 1) when −1 � � < 1;
(ii) gapped and degenerate when |�| > 1;
(iii) gapless, degenerate, and has a dynamical critical expo-

nent zdyn = 2 when � = 1. (In this case, the model is unitarily
equivalent to the FM Heisenberg chain.)

For the low-energy theory of (HSD,H1) in the thermody-
namic limit, we have the following:

Proposition. When −∞ < � < 1, holes do not appear in
the low-energy eigenstates of (HSD,H1), meaning that states
with holes are “gapped degrees of freedom (DOF).” On the
other hand, when � � 1 or � → −∞, let W1 and W1/2 be the
GS eigenspace of (HSD,H1) and (HSD,H1/2), respectively.
Then W1 � W1/2, implying that holes appear in W1.

An intuitive picture of the case −∞ < � < 1 is shown in
Fig. 2. A “general proof” of the Proposition is presented in
Appendix A, but let us take a look at two special points as
intuitive examples. At θ = 0, (V HSDV,H1) simply becomes a
spin-1/2 XX model doped by immobile holes. A spin-1/2 XX
chain in H1/2 can be exactly mapped to a free fermion chain.
When L → ∞, the GS energy density of the fermion chain
is given by e∞ = −4/π [45,46]. In this case, if we cut the
fermion chain somewhere, two edges will be created, which
will raise the GS energy by f = 2 − 4/π [47]. Now at certain
site j, if we replace a qubit by a hole |h〉 j , the total length
of the spin-1/2 chain will be shortened by one, and in the
meantime two edges will be created on both sides of j. This in
total changes the GS energy by f − e∞ = 2 > 0. Therefore,
holes are energetically unfavorable when θ = 0. On the other
hand, at θ = π/4, (HSD,H1) is precisely the classical AFM

three-state Potts model when representing in the p-wave basis
[see Eq. (A12)], implying that {|h〉 j} are involved in the GS
eigenspace.

A direct corollary of the Proposition is that following the
same � dependence of the spin-1/2 XXZ model, the GS of
(HSD,H1) can only be in any of the three cases (i), (ii), and
(iii) as (HXXZ,H1/2). Let us now focus on the region where
−∞ < �(θ ) < 1; in such a case, the low-energy theories of
(HSD,H1) and (HXXZ,H1/2) are identical. Let

Y ′
π = Yπ/2 =

∏
j

exp
( − iπσ

y
j

/
2
)
,

Z ′
π =

∏
j

exp
( − iπσ z

j

/
2
)
.

(24)

Since

exp
( − iπσ

y
j

) = exp
( − iπσ z

j

) = −n j + h j, (25)

we see that Yπ = (Y ′
π )2 and (Z ′

π )2 can only act nontrivially on
the gapped DOF. We thus call Zy

2 a “gapped symmetry.” In
the low-energy theory (which lies in H1/2), Zy

4 reduces to the
quotient group

Zy′
2 = Zy

4/Z
y
2. (26)

Similarly, one can also define

Zz′
2 = {1, Z ′

π , (Z ′
π )2, (Z ′

π )3}/{1, (Z ′
π )2}. (27)

The fact that the GS of (HXXZ,H1/2) always belongs
to the cases (i), (ii), and (iii) is nowadays understood as a
Lieb-Schultz-Mattis (LSM) anomaly. The anomaly essentially
states that a spin-1/2 system with certain symmetries can
never have a unique gapped GS [48–54]. The LSM anomaly
of HXXZ (and also HSD) is a result of the Zy′

2 × Zz′
2 × Ztrn

symmetry in H1/2 [51–54]. Since a self-duality in various
cases implies a quantum phase transition, one may wonder
if the anomaly of HSD can also be regarded as a result of
the KT self-duality ZKT

2 = {1,UKT}. Let us consider a trivial
model Htriv = ∑

j (S
z
j )

2 satisfying [Htriv,UKT] = 0. Clearly,
(Htriv,H1/2) has a unique gapped GS because PHtrivP =∑

j P(σ z
j /2 + 1/2)P. This tells us that neither ZKT

2 nor ZKT
2 ×

Ztrn in H1/2 has an anomaly. However, a direct calculation
shows that PY ′

πUKTY ′
πUKTP = (−i)LPZ ′

π P when L is even,
which means that within H1/2, a system with both ZKT

2 and

Zy′
2 symmetries must also have Zy′

2 × Zz′
2 symmetry. There-

fore, we claim that the anomaly of HSD is protected by ZKT
2 ,

Zy′
2 , and Ztrn symmetries together in H1/2. This is actually an

emergent anomaly; details will be discussed in Sec. VI.
The remainder of this paper will focus on the θ where

H (−1, θ ) is in the Haldane phase while HSD(θ ) is critical,
namely,

θ ∈ R =
(

− π/4, arctan
1

2

)
, (28)

which is included in the region −∞ < �(θ ) < 1.
Within R, it follows from (V HXXZV,H1/2) that the low-

energy theory of (V HSDV,H1) can be exactly mapped to a
spinless fermion chain with U(1) symmetry. See Appendix B
for the details of UKT in the spinless fermion language.
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V. PERTURBATION THEORY

Our model can be written as

H (λ, θ ) = HSD(θ ) + λHpert(θ ), (29)

where, in the p-wave basis, HSD is given by Eq. (16), and the second term reads

Hpert(θ ) = UKTHBLBQ(θ )UKT − HBLBQ(θ )

= − cos θ
∑

j

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) − 2 cos θ
∑

j

(|↑ h〉〈h ↑| + |↓ h〉〈h ↓| + |h ↑〉〈↑ h| + |h ↓〉〈↓ h|)

− 2(cos θ − sin θ )
∑

j

(|↑↑〉〈hh| + |↓↓〉〈hh| + |hh〉〈↑↑| + |hh〉〈↓↓|), (30)

where |·〉 stands for a two-site state |·〉 j, j+1. Around the self-dual point, we can treat λHpert as a perturbation to HSD. Thanks
to the Proposition and Eq. (30), we know that holes are absent from the low-energy states of (H (λ, θ ),H1) when |λ| � 1
and θ ∈ R. Let Nh = ∑

j h j . Holes being absent means that limλ→0〈Nh〉GS = 0, which is also verified by our numerical

calculations; see Fig. 1(b). Up to first order in λ, we find that the effective theory for
(
H (λ, θ ),H1

)
is given by (HXYZ,H1/2),

where

HXYZ(λ, θ ) = −[(1 + λ) cos θ − sin θ ]
L−1∑
j=1

σ x
j σ

x
j+1 + [(1 − λ) cos θ − sin θ ]

L−1∑
j=1

σ
y
j σ

y
j+1 + sin θ

L−1∑
j=1

(
σ z

j σ
z
j+1 + 3

)
. (31)

The spin-1/2 XYZ model HXYZ obviously has Zy′
2 × Zz′

2 × Ztrn symmetry in H1/2. Let us note that

PZπ P = iLPZ ′
π P, (32)

which means that we can identify Zπ with Z ′
π in the low-energy theory. The exact solutions by Bethe ansatz [55–58] tell us that

when λ < 0, (HXYZ,H1/2) is in a phase with

Oy
AFM = lim

r→∞(−1)r
〈
σ

y
j σ

y
j+r

〉 = lim
r→∞(−1)r

〈
Sy

j S
y
j+r

〉
> 0,

(33)

implying the breaking of Zz′
2 in H1/2 (or, equivalently, Zz

2 SSB in H1). On the other hand, when λ > 0, the XYZ model is in the

Zy′
2 SSB phase with

Ox′
FM = lim

r→∞
〈
σ x

j σ
x
j+r

〉
> 0. (34)

In fact, from the following duality:

−F y
j F y

j+r
UKT←→ σ x

j σ
x
j+r, (35)

it is clear that the two Z2 SSB phases are dual to each other because

−PF y
j F y

j+rP = (−1)rPσ
y
j σ

y
j+rP. (36)

The whole phase diagram for (λ, θ ) ∈ [−1, 1] × R is determined by density matrix renormalization group (DMRG) calcula-
tions, and the results are presented in Fig. 1. The DMRG results suggest that a direct transition between the Zy

2 SSB phase and
the Zy

2 × Zz
2 SSB phase happens at λc(θ ) > 0. Due to the KT duality, there is also a direct transition between the Haldane phase

and the Zz
2 SSB phase at −λc(θ ) < 0.

On the other hand, when θ ∈ S = [arctan 1
2 , π/2], although the GS eigenspace of HSD contains holes, Eq. (A16) tells us that

two holes are never adjacent. Therefore, the effective Hamiltonian around the self-dual point is given by (HtJ ,H1), where

HtJ (λ, θ ∈ S ) = −[(1 + λ) cos θ − sin θ ]
∑

j

σ x
j σ

x
j+1 + [(1 − λ) cos θ − sin θ ]

∑
j

σ
y
j σ

y
j+1 + sin θ

∑
j

(
σ z

j σ
z
j+1 + n jn j+1 + 2

)
+ 2λ cos θ

∑
j

(|↑ h〉〈h ↑| + |↓ h〉〈h ↓| + |h ↑〉〈↑ h| + |h ↓〉〈↓ h|). (37)

We can see that HtJ is like a t-J model without double oc-
cupancy. A detailed study of HtJ will be a future direction.

In the following, we will keep focusing on the region R =
(−π/4, arctan 1

2 ).
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VI. EMERGENT ANOMALY

The G = Zy
4 � Zz

2 × Ztrn symmetry of the complete theory
reduces to

G′ = Zy′
2 × Zz′

2 × Ztrn (38)

in the low-energy theory. In other words, in the low-
energy theory, G = Zy

4 � Zz
2 × Ztrn leads to an LSM anomaly,

which accounts for the absence of a unique gapped GS for
(HXYZ,H1/2) [51–54]. However, G in H1 has no anomaly,
which can be seen from the toy model Htoy = ∑

j (S
y
j )

2 whose
GS is trivially gapped. In other words, H (|λ| � λc, θ ∈ R)
has an emergent anomaly. In order to recover the complete
anomaly-free theory in H1, the emergent anomaly has to be
canceled by some mechanism. Note that for the gapped sym-
metry, Zy

2, exp(−iπSy
j ) is identical to −1 in the low-energy

theory. This indicates that the GS is “stacked” on a gapped
(weak) SPT phase protected by Zy

2 × Ztrn. It is this SPT phase
that cancels the emergent anomaly because Y ′

πZ ′
π = YπZ ′

πY ′
π .

Below we will explain how this works in detail.
The model H (|λ| � 1, θ ∈ R) is effectively described by

(HXYZ,H1/2) and hence has an emergent LSM anomaly pro-
tected by G′ in the low-energy eigenspace. Let Md be a dD
manifold in the real space and S1 be a circle standing for
the imaginary time with periodic boundary condition (PBC).
Now let us put the model on a circle M1 = S1 [i.e., a chain
with PBC. In the low-energy theory, the KT duality also holds
for PBC; see Eq. (B3).], and consider the anomaly as the
boundary of an SPT phase defined on M2 × S1 with ∂M2 =
M1. Due to the bulk-boundary correspondence [59,60], the
SPT phase is also protected by G′ = Zy′

2 × Zz′
2 × Ztrn. The

partition function on M2 × S1 coupled to the G′-gauge field
should be [61–63]

Z[Ay′
, Az′

, Atrn]

= Z[0, 0, 0] exp

(
iπ

∫
M2×S1

Ay′ ∧ Az′ ∧ Atrn

)
, (39)

where Z[0, 0, 0] is the partition function in the absence of
the G′-gauge field. Ay′

, Az′
, and Atrn are gauge fields associ-

ated with Zy′
2 , Zz′

2 , and Ztrn, respectively [64]. In general, a
Z2-gauge field should satisfy the following restriction (taking
Ay′

as an example) [65]:∫
Ay′

μ dxμ = 0, 1 mod 2, ∀μ,

dAy′ = 0 (almost everywhere),

dAy′ �= 0 (at monodromy defects),∫
N2

dAy′ = 0 mod 2, ∀N2 ⊂ M2 × S1,

(40)

where N2 is any 2D closed submanifold and the gauge field
Ay′

is a 1-form [66],

Ay′ =
3∑

μ=1

Ay′
μ(x1, x2, x3) dxμ. (41)

On the other hand, the Z-gauge field Atrn satisfies the
restriction ∫

Atrn
μ dxμ = 0, 1, 2, 3, . . . , ∀μ,

dAtrn = 0.

(42)

Equation (39) is not gauge invariant due to the (emergent)
anomaly on ∂M2. Be aware that introducing the G′-gauge field
is sort of “illegal” because G′ is not really the symmetry of the
complete theory, which is anomaly free. The true symmetry
of the complete theory is G = Zy

4 � Zz
2 × Ztrn in H1. Never-

theless, G reduces to G′ in the low-energy theory. Therefore,
for consistency, the partition function coupled to the G-gauge
field should take the form

Z[Aȳ, Az, Atrn] = Z[Ay′
, Az′

, Atrn] Zothers, (43)

where Aȳ is a Zy
4-gauge field, and Zothers is some other phase

factor that should be able to cancel the emergent anomaly
on ∂M2 × S1 and thus guarantees the gauge invariance of
Z[Aȳ, Az, Atrn].

Recall that Zy
2 is a symmetry associated with gapped DOF.

An important observation is that exp(−iπSy
j ) is identical to

−1 in the low-energy theory, which means that each lattice
site is in a (0+1)D “gapped” SPT phase protected by Zy

2.
Together with the translation symmetry, the GS of our model
can be regarded as “stacking” on a (1+1)D gapped SPT phase
protected by the Zy

2 × Ztrn symmetry [5,6]. [This is a weak
SPT phase because it is essentially equivalent to a transla-
tional copy of (0+1)D SPT phases.] Under the G-gauge field,
this (1+1)D weak SPT phase manifests itself via the following
contribution to Zothers:

exp

(
iπ

∫
∂M2×S1

Ay ∧ Atrn

)
, (44)

where Ay is a Zy
2-gauge field. We now show that Eq. (44)

cancels the emergent anomaly in Eq. (39). Note that there is
an identity

Y ′
πZ ′

π = YπZ ′
πY ′

π , (45)

which implies that [67]∫
N2

dAy −
∫

N2

Ay′ ∧ Az′ = 0 mod 2, (46)

where N2 refers to any 2D closed submanifold of M2 × S1.
Using Eq. (46) and the Stokes theorem, Eq. (39) becomes

Z[Ay′
, Az′

, Atrn] = Z[0, 0, 0] exp

(
iπ

∫
∂M2×S1

Ay ∧ Atrn

)
.

(47)
Since the two phases in Eq. (44) and Eq. (47) combine into

exp

(
2π i

∫
∂M2×S1

Ay ∧ Atrn

)

= exp

(
2π i

∫
∂M2

Ay
1dx1

∫
S1

Atrn
3 dx3

− 2π i
∫

S1
Ay

3dx3
∫

∂M2

Atrn
1 dx1

)
= 1, (48)

125158-6



DUALITY, CRITICALITY, ANOMALY, AND TOPOLOGY … PHYSICAL REVIEW B 107, 125158 (2023)

it is now clear that Eq. (43) is indeed gauge invariant and
anomaly free.

In fact, Eq. (45) can also be written as Y ′
πZπ = YπZπY ′

π ,
which implies the following short exact sequence:

1 → Zy
2 → Zy

4 � Zz
2 → Zy′

2 × Zz′
2 → 1. (49)

We say that Zy
4 � Zz

2 is the extension of Zy′
2 × Zz′

2 . We also
notice that the idea of the anomaly cancellation by symmetry
extension can be found in Refs. [18,26–29].

At the end of this section, we note that a higher-
dimensional emergent anomaly might be realized by simply
defining our model H (λ, θ ) on higher-dimensional lattices,
where H̃BLBQ(θ ) is defined by the right-hand side of Eq. (8). If
one can show that holes are absent from the low-energy theory
(though that might not be an easy task), then the effective
spin-1/2 Hamiltonian HXYZ in Eq. (31) holds regardless of
dimensions. In that case, we have emergent LSM anomaly
protected by Zy′

2 × Zz′
2 × (crystalline symmetry) in higher di-

mensions.

VII. DUALITY OF SPT/TRIVIAL ISING CRITICALITY

From Eq. (34), one can see that the Zy′
2 SSB phase also

breaks the Zz′
2 symmetry. Furthermore, since the two symme-

tries Zz′
2 and Zz

2 are the same in the low-energy theory [see

Eq. (32)], the Zy′
2 SSB phase is also a Zz

2 SSB phase. Thus
the Zy

2 symmetry is broken or restored every time we cross
the critical line λc(θ ) > 0, indicating the Ising universality
class. Similarly, −λc(θ ) < 0 is also an Ising critical line. See
Appendix C 2 for numerical evidence.

The transition at λc > 0 is a trivial Ising criticality (pro-
tected by Zy

2 × Zz
2) in the sense that the phases on both sides

have SSB. At λc, Zy
2 is the “critical symmetry,” and thus [68]〈

Sx
j S

x
j+r

〉 = 〈
Sz

jS
z
j+r

〉 ∼ r−1/4. (50)

Due to the duality in Eq. (35), we know that Ox′
FM > 0 for the

Zy
2 × Zz

2 SSB phase. Since Ox′
FM is also nonzero for the Zy′

2
SSB phase, it is easy to believe that at the Ising critical point
between the two SSB phases (λc > 0),

Ox′
FM = lim

r→∞
〈
σ x

j σ
x
j+r

〉
> 0. (51)

It then directly follows from Eq. (7) and Eq. (35) that
at −λc < 0, 〈

F x
j F x

j+r

〉 = 〈
F z

j F z
j+r

〉 ∼ r−1/4, (52a)

Oy
str = − lim

r→∞
〈
F y

j F y
j+r

〉
> 0. (52b)

Since the nonlocal symmetry fluxes F x
j and F z

j carry non-
trivial charges under Zy

2 × Zz
2 (for example, ZπF x

j Zπ = −F x
j )

[69], we claim that the transition at −λc represents a Zy
2 × Zz

2
SPT Ising criticality [12]. Since Zz

2 is broken as long as
0 < λ � 1, it is obvious that the GS has twofold degeneracy
at λc; so is that at −λc due to the KT duality (remember that
we always assume OBC). The twofold degeneracy at −λc is
actually associated with topological edge states [12]; this can
be seen by noting that 0 �= 〈F y

1 F y
L 〉 = 〈Sy

1eiπSy
1YπeiπSy

L Sy
L〉 =

±〈Sy
1eiπSy

1 eiπSy
L Sy

L〉 implies edge magnetization 〈Sy
1eiπSy

1〉 =
−〈Sy

1〉 �= 0 and 〈Sy
L〉 �= 0, where we have used the clustering

FIG. 3. Phase diagram for the GS of HSD(θ ) in Eq. (16). Holes
are absent from the low-energy eigenstates when θ ∈ (π/2, 2π +
arctan 1

2 )\{5π/4}, which means that the low-energy physics of HSD

in this region is exactly the same as the spin-1/2 XXZ model.
Note that an FM (AFM) GS of HSD corresponds to an AFM (FM)
GS of H ′

SD.

property 〈Sy
1eiπSy

1 eiπSy
L Sy

L〉 ≈ 〈Sy
1eiπSy

1〉〈eiπSy
L Sy

L〉 [18]. More-
over, Oy

str > 0 at −λc indicates that the topological criticality
is partially protected by the gapped symmetry Zy

2, which
further implies that the twofold (quasi)degenerate GS has an
energy splitting proportional to e−L/ξ [12]. From the above
discussions, we can see that the KT duality also provides
a hidden Zy

2 × Zz
2 symmetry breaking picture for the SPT

criticality: The algebraic decay or the long-range order of
〈Fα

j Fα
j+r〉 at −λc can be easily understood from the classical

Landau transition at λc. For more details about the interpreta-
tion of hidden symmetry breaking, see Appendix D.

In Fig. 1(a), one can see that the trivial and topolog-
ical Ising criticalities related by the KT duality meet at
the self-dual point (λ, θ ) = (0, arctan 1

2 ), forcing the model
HSD(arctan 1

2 ) to be at a multicritical point. Indeed, θ =
arctan 1

2 corresponds to � = 1, in which case (HSD,H1) is
equivalent to a spin-1/2 FM Heisenberg model doped by
immobile holes, which has zdyn = 2. On the other direction,
the Ising critical lines terminate at H (±1,−π/4), whose low-
energy physics is the CFT with c = 3/2 [70–72].

VIII. DISCUSSION

We have been focusing on the spin-1 chains, but in fact,
the KT transformation directly applies to any integer spin
quantum number S, as long as we take Sz

u and Sx
v in Eq. (5)

to be the spin-S operators [11]. Let HS = ∑
j S j · S j+1 be the

spin-S AFM Heisenberg chain; it is believed that the GS of
HS is in the Zy

2 × Zz
2 SPT phase when S is odd, while the

GS is trivial when S is even [11,35]. Note that the KT dual
of the trivial phase is still trivial. Therefore, we propose the
following:
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Conjecture. Let H (S)
SD = HS + UKTHSUKT; the GS of H (S)

SD
is gapless when S is odd, while it is trivially gapped when
S is even.

Moreover, the KT transformation can be generalized to
(1+1)D systems with a broad class of symmetries beyond
Z2 × Z2, such as Zn × Zn and SO(2n − 1) [8,73–75], thus
providing the hidden symmetry breaking picture for the SPT
phases in such systems. Exploring the relationship between
the KT duality, criticality, anomaly, and topology in such
systems will also be interesting.
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APPENDIX A: EXISTENCE OR ABSENCE OF HOLES

A proof of the Proposition is presented here. Although
our proof might not be entirely rigorous from a mathematical
point of view, it nevertheless makes sense for physicists. Let
us begin by first noting that by properly rotating the spins, HSD

in Eq. (16) is always unitarily equivalent to

H ′
SD(θ ) = 2

√
2

∣∣∣∣sin

(
π

4
− θ

)∣∣∣∣ × HXXZ(θ )

+ sin θ

L−1∑
j=1

(2h jh j+1 + n jn j+1 + 2), (A1)

where

HXXZ(θ ) = 1

2

L−1∑
j=1

[
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 − �(θ )σ z

j σ
z
j+1

]
. (A2)

Note that the definition of HXXZ here is different from the main
text, and within this Appendix we will adapt the definition in
Eq. (A2). The parameter

�(θ ) = sin θ

| cos θ − sin θ | (A3)

determines the phase of HXXZ(θ ) and hence HSD(θ ). The
results are summarized in Fig. 3.

1. Absence of holes

Let

A =
[

− π

2
, arctan

1

2

)
∪

(
π

2
, arctan

1

2
+ π

]
, (A4)

B =
(

arctan
1

2
− π,−π

2

)∖{
− 3π

4

}
. (A5)

When θ ∈ A, we have −1 � �(θ ) < 1, and thus HXXZ is gap-
less and the low-energy physics is described by a c = 1 CFT.
When θ ∈ B, �(θ ) < −1 and HXXZ has two degenerate and
AFM ground states in the thermodynamic limit L → ∞. Let
γ = arccos[−�(θ )] when θ ∈ A and ξ = arccosh[−�(θ )]
when θ ∈ B. The ground-state (GS) energy density of HXXZ in
the thermodynamic limit, denoted as e∞, was exactly obtained
by Yang and Yang back in 1966 [45,46],

e∞(θ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
cos γ − (sin γ )2

∫ ∞

−∞

dx

cosh(πx)[cosh(2γ x) − cos γ ]
, −1 � − cos γ = �(θ ) < 1,

1

2
cosh ξ −

[
1 + 4

∞∑
n=1

1

1 + e2ξn

]
sinh ξ, − cosh ξ = �(θ ) < −1.

(A6)

When 1 � L < ∞, we need to consider finite-size corrections. For OBC, the finite-size GS energy density eOBC
L takes the form

[47,76]

eOBC
L = e∞ + f

L
+ o

(
1

L

)
, (A7)

where f is called the “surface energy” and is given by

f (θ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π sin γ

2γ
− cos γ

2
− sin γ

4

∫ ∞

−∞
dx

[
1 − tanh

(πx

4

)
tanh

(γ x

2

)]
, −1 � − cos γ = �(θ ) < 1,

−1

2
cosh ξ + 4

[
1

4
+

∞∑
n=1

e2nξ − 1

1 + e4nξ
+

∞∑
n=1

(−1)n

1 + e2nξ

]
sinh ξ, − cosh ξ = �(θ ) < −1.

(A8)

Note that Eq. (A1) is defined on a chain with OBC. For a sufficiently long chain, in H1/2 (the subspace without holes), the
GS energy of HSD (up to the order of L0) is given by

E0 = 2
√

2

∣∣∣∣sin

(
π

4
− θ

)∣∣∣∣ (Le∞ + f ) + 3(L − 1) sin θ. (A9)
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FIG. 4. (a) �E1 > 0 for all θ ∈ (π/2, arctan 1
2 + 2π ). (b) En-

ergy density of the hole domain is higher than that of the qubit
domain when θ ∈ A ∪ B = (π/2, arctan 1

2 + 2π )\{5π/4}, implying
the absence of the phase separation.

Now consider the subspace of m holes. When the m holes are
disjoint, sufficiently far away from each other and sufficiently
far away from the boundary, the GS energy of HSD in this
subspace is (up to the order of L0)

Em = 2
√

2

∣∣∣∣sin

(
π

4
− θ

)∣∣∣∣ [(L − m)e∞ + (m + 1) f ]

+ (L − 1 − 2m) sin θ + 2(L − 1) sin θ. (A10)

The energy difference is given by

�Em = Em − E0

= m

[
2
√

2

∣∣∣∣sin

(
π

4
− θ

)∣∣∣∣ ( f − e∞) − 2 sin θ

]
= m�E1.

(A11)

As long as �E1 = 2
√

2| sin(π/4 − θ )|( f − e∞) − 2 sin θ >

0, eigenstates with disjoint holes are gapped from the ground
state. The value of �E1 can be easily obtained numerically;
see Fig. 4(a). We can see that �E1 is indeed positive when
θ ∈ A ∪ B.

We have not yet ruled out the possibility of “phase
separation,” meaning that holes form a domain, like
|. . . ↑↑ hhh . . . hh ↓↑ . . .〉. In fact, the energy density of the
hole domain is given by 4 sin θ , while the energy density of

the spin-1/2 domain is 2
√

2| sin(π/4 − θ )|e∞ + 3 sin θ (up to
the order of L0). We can numerically show that the former en-
ergy density is always higher than the latter when θ ∈ A ∪ B
[see Fig. 4(b)], which means that the phase separation does
not occur.

To sum up, holes {|h〉 j} are gapped from the ground state
of HSD(θ ) when θ is in the region described by Eq. (A4) and
Eq. (A5), which is in accordance with our DMRG results.

2. Existence of holes

At two special points θ = π/4 and −3π/4, HSD (but not
H ′

SD) reduces to the classical three-state Potts model. This can
be seen by noting that

σ z
j σ

z
j+1 + 2h jh j+1 + n jn j+1

= 2(|↑↑〉〈↑↑| + |↓↓〉〈↓↓| + |hh〉〈hh|), (A12)

where θ = π/4 is AFM and θ = −3π/4 is FM. The ground
states at these two points are thus degenerate, and holes {|h〉 j}
appear in the GS eigenspace.

In the region

θ ∈
[

arctan
1

2
,
π

2

]
, (A13)

�(θ ) � 1, and the ground state of HXXZ is FM. The GS energy
of HXXZ exactly equals −(L − 1)�(θ )/2. In the subspace
without holes, the GS energy of HSD is then given by

E0 = 2
√

2

∣∣∣∣ sin

(
π

4
− θ

)∣∣∣∣
× [−(L − 1)�(θ )/2] + 3(L − 1) sin θ

= 2(L − 1) sin θ. (A14)

In the subspace of m holes, when the holes are all disjoint, the
GS energy becomes

Em = 2
√

2

∣∣∣∣ sin

(
π

4
− θ

)∣∣∣∣ × [−(L − 1 − 2m)�(θ )/2]

+ (L − 1 − 2m) sin θ + 2(L − 1) sin θ

= 2(L − 1) sin θ = E0, (A15)

which means that adding disjoint holes to the ground state
does not cost energy. On the other hand, if the m holes form a
domain,

Em = 2
√

2

∣∣∣∣ sin

(
π

4
− θ

)∣∣∣∣ × [−(L − m − 2)�(θ )/2]

+ 2(m − 1) sin θ + (L − m − 2) sin θ + 2(L − 1) sin θ

= 2(L + m − 2) sin θ. (A16)

We see that Em > E0 as long as m � 2. In other words, phase
separation does not occur in the ground state.

APPENDIX B: KT DUALITY IN LOW-ENERGY THEORY

As shown in the previous sections, when

|λ| � 1, θ ∈ R =
(

−π

4
, arctan

1

2

)
, (B1)
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the low-energy eigenspace of the model
(
H (λ, θ ),H1

)
com-

pletely lies in H1/2. The projection onto H1/2 gives

P UKTP =
∏

1�u<v�L

P exp

[
iπ

4

(
1 + σ z

u

)(
1 − σ z

v

)]
P. (B2)

From Eq. (B2), it can be shown that within H1/2, the follow-
ing duality holds:

−σ
y
j σ

y
j+1

UKT←→
1� j<L−1

σ x
j σ

x
j+1,

(−1)L−1σ
y
Lσ

y
1

UKT←→ σ x
Lσ x

1 .

(B3)

Interestingly, although we have been dealing with the case of
OBC, Eq. (B3) shows that even if we impose PBC on Eq. (31),
the effective theory around the self-dual point still respects the
KT duality as long as L is even.

Within R, it follows from (HXXZ,H1/2) that the low-
energy theory of (HSD = V HSDV,H1) can be exactly mapped
to a U(1) symmetric spinless fermion chain by the Jordan-
Wigner transformation,

c†
j = σ+

j

∏
k< j

( − σ z
k

)
, (B4)

where V is defined in Eq. (18) and c†
j is a fermion creation op-

erator. Let UKT = VUKTV satisfying [HSD,UKT] = 0. It then
follows from Eq. (B2) that within H1/2, the following duality
holds for fermions:

c†
j

UKT←→ (−1)L(L−1)/2 c†
j (−1)F , (B5)

where F = ∑
j c†

j c j . Note that (−1)F cannot be simply re-

garded as a phase because it anticommutes with c†
j .

APPENDIX C: NUMERICAL RESULTS

1. Gaussian criticality

The fact that the self-dual point in the region θ ∈ R stands
for a Gaussian criticality (c = 1 CFT) is also supported by our
density matrix renormalization group (DMRG) calculations of
the critical exponent η. According to (HXXZ,H1/2) in Eq. (17)
[see, also, the effective Hamiltonian in Eq. (31) with λ = 0)],
the spin correlation function behaves as〈

σ x
j σ

x
j+r

〉 ∼ r−η(θ ), (C1)

where [77]

η(θ ) = 1

2
− 1

π
arcsin[�(θ )]. (C2)

In particular, η(0) = 1/2 and η(arctan 1
3 ) = 1/3, which are

consistent with the numerical results presented in Fig. 5.

2. Ising criticality

Our DMRG results in Fig. 6 show that 〈Sz
jS

z
j+r〉 =

〈Sx
j S

x
j+r〉 ∼ r−1/4 at the critical point λc > 0, which indeed

suggests the Ising universality class [68]. The fact that Ox′
FM >

0 at −λc and Oy
str > 0 at λc is also supported by DMRG

calculations; see Fig. 1(b).

FIG. 5. The correlation function 〈σ x
j σ

x
j+r〉 on an open chain with

length L is calculated with various L at θ = 0 (left) and arctan(1/3)
(right). From the log-log plots, it is clear that the data are well fitted
by r−η(θ ) when 1 � r � L.

3. Direct transition between the SPT phase and the
Zy

2 × Zz
2 SSB phase

To numerically show that there is indeed a direct transi-
tion between the Haldane phase and the Zy

2 × Zz
2 SSB phase

at (λ, θ ) = (0, arctan 1
2 ), we estimate Ox,z

str and Ox,z
FM around

that point; see Fig. 7. Compared to Fig. 1(b), the result in
Fig. 7 suggests that the two Z2 SSB phases vanish at θ =
arctan(1/2).

APPENDIX D: HIDDEN SYMMETRY BREAKING

The KT transformation UKT provides a hidden symmetry-
breaking interpretation of gapped SPT phases, not only
because it defines an SPT-SSB duality, but also because the
KT dual of a trivially gapped phase is again trivial, meaning
that a trivially gapped phase has no hidden symmetry breaking
[see Eq. (D1)],

Z2 × Z2 gapped SPT
UKT←→ Z2 × Z2 SSB,

Z2 × Z2 gapped trivial
UKT←→ Z2 × Z2 gapped trivial.

(D1)

Can UKT also provide a hidden symmetry breaking in-
terpretation of SPT Ising critical phases? To answer this
question, let us first briefly review the classification of Ising
criticalities with Z2 × Z2 symmetry. There are nine different
Z2 × Z2 Ising criticalities, which can be divided into three
subclasses A, B, and C [12]; see Fig. 8. Subclass A contains
the criticalities between the trivially gapped phase and a Z2

FIG. 6. The correlation function 〈Sz
jS

z
j+r〉 on an open chain with

length L is calculated with various L at θ = 0 and arctan(1/3). From
the log-log plots, it is clear that the data are well fitted by r−1/4 when
1 � r � L.
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F x
j F x

j+r = F z
j F z

j+r

Sx
j Sx

j+r = Sz
j Sz

j+r

λ

θ = arctan(1/2)

FIG. 7. DMRG calculations at θ = arctan(1/2) and −0.05 �
λ � 0.05. The order parameters Ox,z

str and Ox,z
FM are estimated by

taking L = 1024 and r = 512.

SSB phase. There are three Z2 SSB phases represented by

Hx =
∑

j

Sx
j S

x
j+1, Hy =

∑
j

Sy
j S

y
j+1, Hz =

∑
j

Sz
jS

z
j+1. (D2)

Subclass B contains the criticalities between the gapped SPT
phase and a Z2 SSB phase. Subclass C contains the criticali-
ties between the fully Z2 × Z2 symmetry-breaking phase and
a Z2 SSB phase. The critical line −λc(θ ) < 0 in Fig. 1(a) be-
longs to subclass B, while the critical line λc(θ ) > 0 belongs
to subclass C.

An example of subclass A is given by [78,79]

HA =
∑

j

[(
Sz

j

)2 + a Sx
j S

x
j+1

]
, (D3)

with a = ±2. According to Eq. (6), we have

HA
UKT←→ H̃A =

∑
j

[(
Sz

j

)2 − a Sx
j S

x
j+1

]
, (D4)

where H̃A still belongs to subclass A. It is thus clear that as
summarized in Eq. (D5), the Z2 × Z2 SPT Ising criticalities
(subclass B) have hidden symmetry breaking, while subclass

trivial Z2 × Z2

Z2 × Z2

Z2 × Z2 Z2 × Z2

gapped

SPTgapped

FIG. 8. With Z2 × Z2 symmetry, the Ising universality class
splits into three subclasses, and each subclass contains three
symmetry-enriched criticalities [12]. Subclasses A and C are trivial,
while subclass B is SPT.

FIG. 9. Zigzag chain with a spin-1/2 on each vertex.

A has no hidden symmetry breaking,

Subclass B
UKT←→ Subclass C,

Subclass A
UKT←→ Subclass A.

(D5)

APPENDIX E: KT TRANSFORMATION,
KRAMERS-WANNIER DUALITY, AND DOMAIN WALL

DECORATION

In this section, we show that the KT transformation, the
Kramers-Wannier (KW) duality, and the domain wall (DW)
decoration are closely related to each other.

Let us consider spin-1/2 models defined on a zigzag chain;
see Fig. 9. We require the models to have Z2 × Z2 symmetry,
where

Z2 × Z2 = {1, A, B, AB},

A =
∞∏

k=1

σ x
2k−1, B =

∞∏
k=1

σ x
2k .

(E1)

On the zigzag chain, the trivially gapped phase is represented
by the Hamiltonian

Htriv = −
∑

j

σ x
j . (E2)

The gapped SPT phase is represented by the cluster model
[7,80,81],

HSPT = −
∑

j

σ z
j−1σ

x
j σ

z
j+1. (E3)

FIG. 10. Three Z2 × Z2 gapped phases and the dualities between
them. KT transformation can be defined as a combination of KW
duality and UDW. Note that the KW duality in the figure applies to
both Z2 symmetries.
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The fully Z2 × Z2 symmetry-breaking phase is
represented by

HSSB = −
∑

k

(
σ z

2k−1σ
z
2k+1 + σ z

2kσ
z
2k+2

)
. (E4)

It is well known that Htriv and HSSB can be transformed into
each other by applying the KW duality to both Z2 symmetries
[24,25]. In fact, Htriv can also be transformed into HSPT via the
so-called DW decoration [21,82,83],

U †
DWHtrivUDW = HSPT, (E5)

where

UDW = exp

[
iπ

4

∞∑
j=2

(−1) jσ z
j−1σ

z
j

]
. (E6)

KT transformation is a duality between the SPT and SSB
phases. One may realize that by properly combining KW
duality and DW decoration, the KT transformation can be
defined. Indeed, if we define [84,85]

KT = KW × UDW × KW, (E7)

then KT in Eq. (E7) gives the correct SPT-SSB and trivial-
trivial mappings. The relations between KT, KW, and DW are
summarized in Fig. 10. For more details about Eq. (E7), see
Refs. [84,85].
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