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Motivated by recent interest in fracton topological phases, we explore the interplay between gapped 2D ZN

topological phases which admit fractional excitations with restricted mobility and geometry of the lattice on
which such phases are placed. We investigate the properties of the phases in a geometric context—graph theory.
By placing the phases on a 2D lattice consisting of two arbitrary connected graphs, Gx � Gy, we study the
behavior of fractional excitations of the phases. We derive the formula of the ground-state degeneracy of the
phases, which depends on invariant factors of the Laplacian.
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I. INTRODUCTION

The importance of the discovery of topologically or-
dered phases can hardly be overstated [1–6]. They provide
a paradigm shift in understanding phase transitions away
from one based purely on symmetry breaking. Topologically
ordered phases also admit exotic phenomena, such as frac-
tionalized quasiparticle excitations (i.e., anyons) [2,7] and
topologically protected ground-state degeneracy, independent
of the local geometry of the system [8]. These phases also
have a great advantage for the purposes of quantum comput-
ing, as operation on a state in a subspace of degenerate vacua,
realized by braiding anyons, is immune to local perturbations
[9,10]. Theoretical frameworks to describe these phases have
been well developed, such as the topological quantum field
theory [8,11,12] and the modular tensor category [13].

Recently, other types of topological phases have been
proposed, which are beyond these frameworks, often called
fracton topological phases [14–16]. A unique feature of these
phases is that they exhibit the subextensive ground state
degeneracy (GSD) dependence. Due to the UV/IR mixing
propriety, one cannot have effective field theory description in
the long wavelength limit. The key insight to understand such
unusual GSD dependence is that mobility of the quasiparticle
excitations is sensitive to the local geometry of the system,
which is contrasted with conventional topologically ordered
phases where the properties of the excitations depend only on
the global topology of the system. Therefore, fracton topo-
logical phases hold value for exploring additional geometric
phases. A theoretical formalism of these phases has yet to be
completed.

Due to the sensitiveness of the UV physics in fracton topo-
logical phases, it would be interesting to study the phases on a
curved geometry. Indeed, several works studied gapless theory
with fractoniclike mobility constraint on a curved geometry
[17–19], and gapped fracton topological phases on generic
lattices [20–22].

In this paper, we introduce unusual gapped ZN topological
phases where deconfined fractional excitations are subject to
the mobility constraint in a similar fashion as the fracton
topological phases and explore the geometric properties of

the fractional excitations by placing the phases on the generic
lattices beyond the typical square one. In particular, we high-
light the behavior of the fractional excitations of the phases
in a geometric context—graph theory. (There have been a
few attempts at tackling the problem in this direction, see,
e.g., Refs. [23–25].) Introducing a 2D lattice composed of
an arbitrary two connected graphs, we study the behavior of
the excitations and the superselection sectors (i.e., distinct
types of excitations) of the model on this lattice. By making
use of formalism of the graph theory, one can systematically
study the properties of the excitations. As we will see in the
later section, the properties of the fractional excitations are
determined by the Laplacian matrix (the Laplacian in short),
which is the graph theoretical analog of the second order
spatial derivative.

The Laplacian plays a pivotal role in the graph theory. For
instance, one can study the connectivity of the graph by eval-
uating eigenvalues of the Laplacian [26]. In our context, the
fusion rules of the fractional excitations follows from the form
of the Laplacian of the graph and that the GSD depends on the
N and the invariant factors of the Laplacian. Our study might
contribute to a better understanding of the fracton topological
phases in view of graph theory.

The outline of this paper is as follows. In Sec. II, we
introduce the model Hamiltonian. We demonstrate that our
simple model of the topological phase is obtained by gapping
the gauge group from U (1) to ZN via Higgs mechanism in
the unusual Maxwell theory. After obtaining the Hamiltonian,
in Sec. III, we consider placing the phase on the 2D lattice
constructed of the product of two arbitrary graphs. Section IV
is devoted to elucidating the properties of fractional excita-
tions of the model and identifying GSD. We show that the
fusion rules of the fractional excitations are determined by the
form of the Laplacian of the graph and that the superselec-
tion sectors are associated with the kernel and cokernel (the
Picard group) of the Laplacian. We further show that the GSD
depends on the invariant factors of the Laplacian. In Sec. V,
we give a simple example of the lattice to see how our result
works. Physical intuition of our result is also given. Finally,
in Sec. VI, we conclude our work with a few future research
directions.

2469-9950/2023/107(12)/125154(14) 125154-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8856-8562
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.125154&domain=pdf&date_stamp=2023-03-28
https://doi.org/10.1103/PhysRevB.107.125154


HIROMI EBISU PHYSICAL REVIEW B 107, 125154 (2023)

II. MODEL HAMILTONIAN

In this section, we introduce the model Hamiltonian. For
the sake of clearer illustration, we first focus on the Hamilto-
nian on the flat space. The key insight to obtain the model
is gapping the gauge group from U (1) to ZN via Higgs
mechanism in the unusual Maxwell theory, referred to as the
higher rank Maxwell theory in this paper, where the kinetic
and potential terms are described by the second-order spatial
derivative of the gauge potential instead of the first order.
Accordingly, we dub the phases obtained by this procedure as
higher rank topological phases. This procedure is contrasted
with the case where the ZN topological phase (toric code)
is obtained from the conventional Maxwell theory via Higgs
mechanism. See Refs. [27–31] for more explanations on other
types of higher rank Maxwell theories and their Higgs phases.

A. Higher rank Maxwell theory

Before going into the details of the model Hamiltonian, it is
useful to discuss the U (1) higher-rank Maxwell theory in the
continuum limit. The difference between this theory and the
usual Maxwell theory is that the first-order spatial derivative
operator, which enters in the Gauss law or gauge-invariant
operators in the conventional Maxwell theory, is replaced with
the second-order derivative. We start by introducing U (1)
gauge fields in 2D, Ak (x), Ek (x) (k = x, y, x: spatial coordi-
nate), which are a canonical conjugate pair:

[Ak (x), El (y)] = iδk,lδ(x − y). (1)

Introducing the charge density operator ρ(x) and the second-
order spatial derivative operator, Dk = ∂2

k , the Gauss law is
given by

ρ(x) = DkEk (x), (2)

where the repeated indices are summed over. We define mag-
netic flux which is invariant under the Gauss-law Eq. (2) by

B(x) = DxEy(x) − DyEx(x). (3)

An interesting property of this theory is that not only charge
but also dipole and quadrupole moments are conserved, which
is in contrast to the conventional Maxwell theory where only
the charge is conserved. To see how, transform the dipole
moment

∫
d2x(xρ) as∫

d2x(xρ) =
∫

d2x(xDkEk (x))

= (boundary term) +
∫

d2x
(
∂2

x (x)Ex
)

= (boundary term). (4)

Here we have referred to Eq. (2) and implemented the
partial integration twice, yielding only the boundary term
(which is constant). Likewise, one can show that

∫
d2xρ,∫

d2x(yρ), and
∫

d2x(xyρ), corresponding to charge, dipole,
and quadrupole, are conserved. As we see later, depending
on the geometry, conservation of these moments corresponds
to the conservation of dipole and quadrupole moments of the
fractional excitations in the higher rank ZN topological phase.

Now we place this theory on the 2D square lattice and gap
it to ZN via Higgs mechanism, which can be accomplished by
two steps. First, discretize the spatial coordinate x by intro-
ducing the lattice coordinate so x → (x, y) ∈ λ(Z,Z), with
λ being lattice spacing. The two pairs of gauge potential and
electric field, which are canonical conjugate, are now labeled
by (Ak

(x,y), El
(x,y) ) with relation[

Ak
(x,y), El

(x′,y′ )
] = iδk,lδx,x′δy,y′ .

We transform the second-order spatial derivative into the dis-
cretized form (Dk → ∇2

k ). The Gauss law Eq. (2) becomes

ρ(x,y) = ∇2
x Ex

(x,y) + ∇2
y Ey

(x,y)

= (
Ex

(x+1,y) + Ex
(x−1,y) − 2Ex

(x,y)

)
+ (

Ey
(x,y+1) + Ey

(x,y−1) − 2Ey
(x,y)

)
. (5)

Similarly, the magnetic flux operator, corresponding to
Eq. (3), is defined as

B(x,y) = ∇2
x Ay

(x,y) − ∇2
y Ax

(x,y)

= (
Ay

(x+1,y) + Ay
(x−1,y) − 2Ay

(x,y)

)
− (

Ax
(x,y+1) + Ax

(x,y−1) − 2Ax
(x,y)

)
. (6)

The second step is condensing charge N excitations, reducing
the U (1) gauge group down to ZN . As a consequence, the
gauge fields take ZN value: Ak

(x,y) = 2πZ
N (mod 2πZ). The

gauge and electric fields are expressed via

Z1,(x,y) = eiAx
(x,y) , X1,(x,y) = ωEx

(x,y) , Z2,(x,y)

= eiAy
(x,y) , X2,(x,y) = ωEy

(x,y) , (7)

where ω denotes the N th root of unity, i.e., ω = ei2π/N . These
operators act on the local N × N dimensional Hilbert space
|a〉(x,y) |b〉(x,y) (a, b ∈ ZN ) as

Z1,(x,y) |a〉(x,y) |b〉(x,y)

= ωa |a〉(x,y) |b〉(x,y) ,

Z2,(x,y) |a〉(x,y) |b〉(x,y)

= ωb |a〉(x,y) |b〉(x,y) ,

X1,(x,y) |a〉(x,y) |b〉(x,y)

= |a + 1〉(x,y) |b〉(x,y) ,

X2,(x,y) |a〉(x,y) |b〉(x,y)

= |a〉(x,y) |b + 1〉(x,y) , (8)

indicating that Eq. (7) represents the ZN Pauli algebra. From
the expression Eq. (7), we can define the ZN Gauss and flux
operator as [see Fig. 1(a)]

V(x,y) ≡ ωρ(x,y)

= X1,(x+1,y)X1,(x−1,y)(X
†
1,(x,y) )

2

× X2,(x,y+1)X2,(x,y−1)(X
†
2,(x,y) )

2,

P(x,y) ≡ eiB(x,y)

= Z†
1,(x,y+1)Z

†
1,(x,y−1)Z

2
1,(x,y)Z2,(x+1,y)Z2,(x−1,y)(Z

†
2,(x,y) )

2.

(9)
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FIG. 1. (a) Two terms defined in Eqs. (9) on 2D square lattice. (b) These two terms has the simple form Eqs. (11) in the case of N = 2,
each of which resembles the ones defined in the Z2 toric code. (c) Configuration of the mutually commuting terms belonging to I-IV defined
in Eqs. (12). (d) Configuration of the terms which belong to I and the one of V(x,y) belonging to II (pink dashed lines and red dots), in the
case where periodic boundary condition is imposed with (nx, ny ) = (odd, even) [top] and the one with (nx, ny ) = (even, even) [bottom]. For
illustration purposes, we slightly extend the geometry, identifying the vertices with the same symbols (yellow star and rhombus) due to the
periodic boundary condition.

By construction, these two operators commute. It is important
to note that the form of the operators Eqs. (9) is determined by
the discretized second order derivative, ∇2

k . The Hamiltonian
of the ZN Higgs phase whose ground state is a state without
charge and flux, is defined by

HZN = −
∑
x,y

(V(x,y) + P(x,y) ) + H.c.. (10)

This model shares several features as the toric code [9], in
that the ground state |�〉 is the stabilized state satisfying
V(x,y) |�〉 = P(x,y) |�〉 = |�〉. Also, the model admits the two
types of deconfined excitations, carrying ZN electric and mag-
netic charges. However, there is a crucial difference between
our model and the toric code. There is a mobility constraint on
the fractional excitations, yielding unusual GSD dependence
on the lattice.

B. The simplest example: N = 2 on the square
lattice—decoupled toric codes

To get a handle on the physical intuition behind the Hamil-
tonian Eq. (10) and see how the GSD of the model drastically
changes depending on the lattice, it is useful to take a closer
look at the model in the simplest case by setting N = 2 on
the square lattice before considering the phases on generic
lattices constructed by graphs. For a moment, we consider a

2D square lattice without boundary. In the case of N = 2, the
two terms Eqs. (9) are simplified [Fig. 1(b)]:

V(x,y) = X1,(x+1,y)X1,(x−1,y)X2,(x,y+1)X2,(x,y−1),

P(x,y) = Z1,(x,y+1)Z1,(x,y−1)Z2,(x+1,y)Z2,(x−1,y). (11)

The Hamiltonian Eq. (10) with Eqs. (11) resembles the Z2

toric code [9] with a crucial difference that the terms V(x,y) and
P(x,y) involve four next-nearest-neighboring Pauli operators in
the horizontal and vertical direction, not nearest neighbors.
Due to this property, one can classify the mutually commuting
terms Eqs. (11) into the following four groups:

I : {V(2m,2n), P(2m′−1,2n′−1)}, II : {V(2m−1,2n), P(2m′,2n′−1)},
III : {V(2m,2n−1), P(2m′−1,2n′ )},
IV : {V(2m−1,2n−1), P(2m′,2n′ )}(m, n, m′, n′ ∈ Z). (12)

We portray these configurations of the terms in Fig. 1(c),
which are reminiscent of the ones found in the Z2 surface code
[32].

Now we impose the boundary condition on the lattice and
evaluate the GSD. Suppose we impose the periodic boundary
condition with lattice length, nx, ny, being even number of
sites in both of the x and y directions, which is schematically
described by (nx, ny) = (even, even). In this case, the Hamil-
tonian Eq. (10) with Eqs. (11) can be decomposed into four
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according to Eqs. (12), i.e., the Hamiltonian consists of four
decoupled Z2 toric codes. Since the GSD of each Z2 toric
code on torus is given by 4, the GSD of the model is found
to be 44 = 256. The situation differs when the length of the
lattice is set to be odd. For instance, when the length of the
lattice in the x direction is odd while keeping the one in the y
direction being even, i.e., (nx, ny) = (odd, even), one cannot
separate the terms belonging to I and II as well as III and IV.
Indeed, the terms which belong to I are connected with the
ones belonging to II. For instance, as demonstrated in the top
geometry in Fig. 1(d), the terms P(nx−2,2n′−1) which belong to I
and P(nx+1,2n′−1) belonging to II are located adjacent with each
other, which is opposed to the case with nx being even where
P(nx−2,2n′−1) and P(nx+1,2n′−1) are decoupled [bottom geometry
in Fig. 1(d)]. A similar argument holds for the terms V(x,y).
Analogous lines of thought lead to that one cannot separate
terms belonging to III and IV. Therefore, the mutually com-
muting terms fall into two groups:

I′ : {V(m,2n), P(m′,2n′−1)} III′ : {V(m,2n−1), P(m′,2n′ )},
implying that we have two decoupled Z2 toric codes. Thus,
the GSD is given by 42 = 16. One can similarly discuss the
GSD in other cases of the length of the lattice. Overall, we
have

GSD =

⎧⎪⎨
⎪⎩

256 [(nx, ny) = (even, even)]
16 [(nx, ny) = (odd, even), (even, odd)]
4 [(nx, ny) = (odd, odd)].

(13)

To summarize this subsection, in the simplest case, we learn
that each term which constitutes the Hamiltonian involves
the next-nearest neighbors corresponding to the second-order
derivative of the higher rank Maxwell theory and, due to this
property, the GSD drastically changes depending on whether
the length of the lattice is even and odd. As we will see in
the later section, this feature can be understood in terms of
graph theory. Indeed, the GSD depends on N and the invariant
factors of the Laplacian.

III. PUTTING THE THEORY ON GRAPHS

In this section, we introduce a lattice consisting of two
arbitrary connected graphs and place the model Hamiltonian
Eq. (10) on it. The central idea is that when placing the Hamil-
tonian Eq. (10) on a graph, we replace the derivative operators
∇2

k defined on the square lattice with the Laplacian, which
is the graph theoretical analog of the second-order derivative
[26]. In accordance with this replacement, the Gauss law and
the flux operator given in Eqs. (9) is modified.

A. Notations from graph theory

Let us first give a formal definition of a graph G = (V, E ).
It is a pair consisting of a set of vertices V and a set of edges E
composed of pairs of vertices {vi, v j}. Throughout this paper,
we assume that the graph is connected, i.e., there is a path
from a vertex to any other vertex (there is no isolated vertex),
and that the graph does not have an edge that emanates from
and terminates at the same vertex. We also define two quan-
tities, deg(vi ) and li j , which play pivotal roles in this paper.
The former one, deg(vi), denotes the degree of the vertex vi,

i.e., the number of edges emanating from the vertex vi and
the latter one, li j represents the number of edges between two
vertices vi and v j (we have li j = 0 when there is no edge
between two vertices, vi and v j .). Using these two quantities,
the Laplacian matrix of the graph is defined. For a given graph
G = (V, E ), the Laplacian matrix L (which we abbreviate as
Laplacian in the rest of this paper) is the matrix with rows and
columns indexed by the elements of vertices {vi} ∈ V , with

Li j =
{

deg(vi ) (i = j)
−li j (i �= j). (14)

The Laplacian is singular due to the connectivity of the graph.
(Summing over all rows or columns gives zero.) As an ex-
ample, the Laplacian of the cycle graph C3 (i.e., a triangle)
consisting of three vertices and three edges, where there is a
single edge between a pair of vertices, is given by

L =
⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠.

B. 2D lattice and Hamiltonian

With these preparations, now we introduce the 2D lattice.
Let Gx(Vx, Ex ) and Gy(Vy, Ey) be two connected graphs. We
denote vertices of these two graphs as vx

i and v
y
j (1 � i �

nx, 1 � j � ny), where nx(ny) represents the total number
of vertices in graph Gx(Gy). Moreover, the Laplacian of the
graph Gx(G)y is denoted as Lx(Ly) whose matrix elements are
defined by Eq. (14), i.e., the Laplacian Lx is defined by

(Lx )i,i′ =
{

degx(vx
i ) (i = i′)

−lx
ii′ (i �= i′) (1 � i, i′ � nx ),

and the Laplacian Ly is similarly introduced.
The 2D lattice is introduced by the product of the two

graphs, Gx � Gy, where each coordinate of the vertex is rep-
resented by (vx

i , v
y
j ). Intuitively, the lattice is constructed by

stacking the graph Gx along the graph Gy, meaning the graph
Gx is attached at each vertex of the graph Gy, v

y
j and how

these Gx’s are connected follows from edges of the graph Gy.
We portray examples of such lattices in Figs. 1(a) and 1(b).
(Note that the lattice considered here is defined on an abstract
2D cell complex. Indeed, each graph consists of vertices and
edges, corresponding to zero- and one-simplices. Due to this
fact, we regard Gx � Gy as the 2D lattice.) The square lat-
tice (without taking into the account the boundary) can be
reproduced by setting degx(vx

i ) = degy(vy
j ) = 2, lx

i,i′ = δi,i′±1,
ly

j, j′ = δ j, j′±1.
We place the higher rank ZN topological phase on this lat-

tice Gx � Gy by defining the U (1) higher rank Maxwell theory
on the graph and gapping the gauge group to ZN similarly to
the case of the square lattice presented in the previous section.
Since the procedure closely parallels the one in the previous
section except that we define the second-order derivative via
the Laplacian Lx and Ly, we outline the procedure succinctly.
In the 2D lattice Gx � Gy, we introduce two pairs of the
U (1) gauge potential and electric field, which are canonical
conjugate, (Ak

(vx
i ,v

y
j ), Ek

(vx
i ,v

y
j ) ) acting on the coordinate (vx

i , v
y
j )

with relation [
Ak

(vx
i ,v

y
j ), El

(vx
i′ ,v

y
j′ )

] = iδk,lδi,i′δ j, j′ .
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FIG. 2. (a), (b) Two examples of the 2D lattice comprised of two connected graphs, Gx � Gy. (c) Two terms given in Eq. (17) which are
defined on the lattice Gx � Gy given in (a).

Replacing ∇2
k with −Lk , the Gauss law and magnetic flux is

defined by

ρ(vx
i ,v

y
j ) = −LxEx

(vx
i ,v

y
j ) − LyEy

(vx
i ,v

y
j )
,

B(vx
i ,v

y
j ) = −LxAy

(vx
i ,v

y
j )

+ LyAx
(vx

i ,v
y
j ). (15)

We gap the gauge group from U (1) to down to ZN via Higgs
mechanism. Introducing two types of generalized ZN qubit
states (ZN clock states) on each vertex of the 2D lattice,
labeled by |a〉(vx

i ,v
y
j ) |b〉(vx

i ,v
y
j ) (a, b ∈ ZN ), we define the opera-

tors acting on these qubits as

Z1,(vx
i ,v

y
j ) = e

iAx
(vx

i ,v
y
j )
, X1,(vx

i ,v
y
j ) = ω

Ex
(vx

i ,v
y
j )
,

Z2,(vx
i ,v

y
j ) = e

iAy

(vx
i ,v

y
j )
, X2,(vx

i ,v
y
j ) = ω

Ey

(vx
i ,v

y
j )
. (16)

Analogously to Eq. (7), they form the ZN algebra. Similarly
to Eqs. (9), we define the ZN Gauss and flux terms at each
vertex (vx

i , v
y
j ) by

V(vx
i ,v

y
j ) = ω

ρ(vx
i ,v

y
j )
, P(vx

i ,v
y
j ) = e

iB(vx
i ,v

y
j )
.

Referring to Eqs. (14) and (15), one can rewrite these terms as

V(vx
i ,v

y
j ) = (

X †
1,(vx

i ,v
y
j )

)degx (vx
i ) ∏

s �=i

X
lx
s j

1,(vx
s ,v

y
i )

× (
X †

2,(vx
i ,v

y
j )

)degy (vy
j ) ∏

t �= j

X
ly
t j

2,(vx
t ,v

y
j )
,

P(vx
i ,v

y
j ) = (

Z†
2,(vx

i ,v
y
j )

)degx (vx
i ) ∏

s �=i

Zlx
si

2,(vx
s ,v

y
j )

× Z
degy (vy

j )

1,(vx
i ,v

y
j )

∏
t �= j

(
Z†

1,(vx
i ,v

y
t )

)ly
t j . (17)

We portray these terms in Figs. 2(c) in the same 2D lattice as
Fig. 2(a).

It is straightforward to check every term given in Eq. (17)
commute with one another. Using these mutual commuting
terms, we introduce the Hamiltonian by

H = −
∑
i, j

V(vx
i ,v

y
j ) −

∑
i, j

P(vx
i ,v

y
j ) + H.c.. (18)

The ground state is the stabilized state satisfying V(vx
i ,v

y
j ) |�〉 =

P(vx
i ,v

y
j ) |�〉 = |�〉. In the next section, we discuss the proper-

ties of the excitations.

IV. SUPERSELECTION SECTORS

Now we come to the main part of this paper. In this section,
we discuss the properties of the excitations of the model on the
graphs defined in Sec. III.

A. Fusion rules

Similarly to the toric code, there are two types of ex-
citations of our model, carrying ZN electric and magnetic
charges, which violates the condition V(vx

i ,v
y
j ) |�〉 = |�〉 and

P(vx
i ,v

y
j ) |�〉 = |�〉, respectively. We label these two excitations

at coordinate (vx
i , v

y
j ), whose eigenvalue of V(vx

i ,v
y
j ) and P(vx

i ,v
y
j )

is ω, by e(vx
i ,v

y
j ) and m(vx

i ,v
y
j ). Also, we label their conjugate with

eigenvalue ω−1 by e(vx
i ,v

y
j ) and m(vx

i ,v
y
j ).

One can systematically discuss the fusion rules of these
fractional excitations. Let us focus on the fusion rules of the
electric charges. Applying the ZN operator Z1,(vx

i ,v
y
j ) on the

ground state at the coordinate (vx
i , v

y
j ), it violates the condition

of V(vx
i ,v

y
j ) = 1 at the vertex with coordinate (vx

i , v
y
j ) and the
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FIG. 3. The fusion rule of the electric charges in the case of the
square lattice (without boundary). When a single operator Z1,(vx

i ,v
y
j )

acts on the ground state, the condition of V(vx
i ,v

y
j ) = 1 is violated at

the vertex with coordinate (vx
i , v

y
j ) (pink star) and the adjacent ones,

i.e., the ones with (vx
i±1, v

y
j ) (blue star), giving excitations. The fusion

rule induced by the applying the operator Z1,(vx
i ,v

y
j ) is schematically

described by I → ē2
(vx

i ,v
y
j )

⊗ e(vx
i−1,v

y
j ) ⊗ e(vx

i+1,v
y
j ).

ones connected with edges in the horizontal direction, namely,

V(vx
i ,v

y
j )

(
Z1,(vx

i ,v
y
j ) |�〉 )

= ω−degx (vi )
(
Z1,(vx

i ,v
y
j ) |�〉 ),

V(vx
s ,v

y
j )

(
Z1,(vx

i ,v
y
j ) |�〉 )

= ωlx
si
(
Z1,(vx

i ,v
y
j ) |�〉 ) (s �= i).

The fusion rule is schematically described by (see also Fig. 3
for an example)

I → (
e(vx

i ,v
y
j )

)degx (vi ) ⊗
∏
s �=i

(
e(vx

s ,v
y
j )

)lx
si , (19)

where I denotes the vacuum sector. Likewise, if we apply
Z2,(vx

i ,v
y
j ) on the ground state, we have fusion rule

I → (
e(vx

i ,v
y
j ) )

degy (v j ) ⊗
∏
t �= j

(
e(vx

i ,v
y
t )

)ly
jt . (20)

The fusion rules Eqs. (19) and (20) are a generalization of
the ones in 2D topologically ordered phases where a pair of
anyons are created. One can rewrite the fusion rules Eqs. (19)
and (20) more succinctly by using the Laplacian. On a lattice
Gx � Gy at given v

y
j , we define the nx-dimensional vector

where each entry takes the ZN value by

rv
y
j
= (r1, r2, · · · , rnx )T ∈ Znx

N , (21)

from which we introduce multiple sets of Z1 operators,
Zr1

1,(vx
1,v

y
j )

Zr2

1,(vx
2,v

y
j )

· · · Zrnx

1,(vx
nx ,v

y
j )

acting on the ground state. For

the sake of the simplicity, in the following, we omit the
subscript of rv

y
j

on the left-hand side of Eq. (21) and write

it as r till the point where it is necessary to mention the v
y
j

dependence.
Introducing the fundamental basis of vectors {λi} as λi =

(0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
nx−i

)T ∈ r, the fusion rule Eq. (19) is rewritten

as

I → e
ax

1

(vx
1,v

y
j )

⊗ e
ax

2

(vx
2,v

y
j )

⊗ · · · ⊗ e
ax

nx

(vx
nx ,v

y
j )

(
ax

i ∈ ZN
)
, (22)

with

f x
e := (

ax
1, ax

2, · · · , ax
nx

)T = −Lxλi. (23)

Note that in the fusion rule Eq. (22), charge conservation
is satisfied, i.e.,

∑
i ax

i = 0 (modN ) as the Laplacian Lx is
singular (summing over matrix elements along the ith column
gives zero). One can similarly describe the fusion rule Eq. (20)
in terms of the Laplacian Ly.

We can also systematically discuss the fusion rules of the
electric charges induced by applying multiple sets of Z1 or
Z2 operators on the ground state instead of applying a single
operator. When we apply Zr1

1,(vx
1,v

y
j )

Zr2

1,(vx
2,v

y
j )

· · · Zrnx

1,(vx
nx ,v

y
j )

on the

ground state, characterized by vector r Eq. (21), the fusion
rule of the electric charges has the same form as Eq. (22) by
setting

f x
e = −Lxr. (24)

One can write the fusion rules by applying sets of Z2 operators
as well as the ones for magnetic charges in a similar manner.
Since discussion of these fusion rules closely parallels what
we have just discussed, we do not present it here.

As we will see in the next subsection, the way we describe
the fusion rules Eqs. (22) and (24) turn out to be useful to
discuss the number of distinct fractional charges in our model
on the graph.

B. Ground-state degeneracy

In this subsection, we derive the formula of the GSD of our
model on the graph. To this end, we count the distinct types
of quasiparticle excitations. The spirit behind such counting is
analogous to Ref. [24]. In the derivation, we will use the key
property of the Laplacian; introducing the invertible integer
matrices P and Q, the Laplacian can be transformed into the
diagonal form (Smith normal form) via

PLQ = diag(u1, u2, · · · , un−1, 0) := D, (25)

where ui represents positive integers, satisfying ui|ui+1 for all
i (i.e., ui divides ui+1 for all i) [33]. Since the Laplacian is
singular, the last diagonal entry is zero. The diagonal element
ui, referred to as the invariant factors of the Laplacian, plays
a pivotal role in the graph theory. In what follows, we will
see the GSD is characterized by these invariant factors of
the Laplacian. This can be achieved by two steps. First, we
count the number of distinct loops in the horizontal direction.
Second, we evaluate the distinct number of configurations of
such loops up to deformation in the vertical direction.

1. The number of closed loops in the horizontal direction

To start, we first count the number of distinct loops of
electric charges in the horizontal direction, i.e., the num-
ber of closed loops of the electric charges at given v

y
j .

The loop is constructed by a “string” of the Z1 operators,
Zr1

1,(vx
1,v

y
j )

Zr2

1,(vx
2,v

y
j )

· · · Zrnx

1,(vx
nx ,v

y
j )

characterized by the vector, r

Eq. (21). The loops must commute with terms V(vx
i ,v

y
j ) defined

in Eq. (17), which means the composite of the operators
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Zr1

1,(vx
1,v

y
j )

Zr2

1,(vx
2,v

y
j )

· · · Zrnx

1,(vx
nx ,v

y
j )

does not create an excitation.

This condition amounts to be that the fusion rule induced by
such a product of the operators becomes trivial. Referring to
Eqs. (22) and (24), such condition is rewritten as

Lxr = 0 mod N. (26)

Therefore, to count the distinct loops of the electric charges
in the horizontal direction, we need to evaluate the kernel
of the Laplacian, Lx. Note that since the graph is connected,
meaning the summing over the entries of the Laplacian along
any row gives zero, there are at least N solutions of Eq. (26),
r = h(1, 1, · · · , 1)T (h ∈ ZN ).

To proceed, we transform the Laplacian Lx into the Smith
normal form Eq. (25). Introducing integer matrices Px and
Qx whose absolute value of the determinant is one, we can
transform the Laplacian into the Smith normal form,

PxLxQx = diag
(
ux

1, · · · , ux
nx−1, 0

)
:= Dx, (27)

from which we have

Eq. (26) ⇔ P−1
x DxQ−1

x r = 0 mod N

⇔ Dx r̃ = 0 mod N. (28)

When moving from the second to the third equation, we have
used the fact that Px is the integer matrix, and we have defined
r̃ := Q−1

x r.
Suppose there are mx invariant factors of Lx which are

greater than one, i.e.,

Dx = diag(1, · · · , 1︸ ︷︷ ︸
nx−1−mx

, p1, · · · , pmx︸ ︷︷ ︸
mx

, 0), (29)

then, from Eq. (28), it follows that the first nx − 1 − mx com-
ponents of the vector r̃ are zero:

r̃a′ = 0 mod N (1 � a′ � nx − 1 − mx ). (30)

Regarding the elements r̃a+nx−1−mx (1 � a � mx ), one finds

par̃a+nx−1−mx = 0 mod N ⇔ par̃a+nx−1−mx

= Nta (1 � a � mx, ta ∈ Z). (31)

Decompose N and pa into two integers as

N = N ′
i gcd(N, pa), pa = p′

a gcd(N, pa), (32)

where gcd stands for the greatest common divisor and N ′
a and

p′
a are coprime, Eq. (31) becomes

p′
ar̃a+nx−1−mx = N ′

ata.

Since N ′
a and p′

a are coprime, one finds

r̃a+nx−1−mx = N ′
aαa (1 � a � mx ), (33)

where integer αa takes gcd(N, pa) distinct values, i.e., αa =
0, 1, · · · , gcd(N, pa) − 1. There is no constraint on the last
element of r̃, r̃nx as the last diagonal entry of Dx is zero. This
implies that r̃nx takes N distinct values.

Overall, with the assumption of Eq. (29), the condition
Eq. (28) gives

r̃ = (r̃1, · · · , r̃n−1−mx︸ ︷︷ ︸
nx−1−mx

, r̃nx−mx , · · · , r̃nx−1︸ ︷︷ ︸
mx

, r̃nx )T

= (0, · · · , 0︸ ︷︷ ︸
nx−1−mx

, N ′
1α1, · · · , N ′

mx
αmx︸ ︷︷ ︸

mx

, αmx+1)T mod N, (34)

where 0 � αa � gcd(N, pa) − 1(1 � a � mx ), 0 � αmx+1 �
N − 1. Thus, the kernel of the Laplacian, which is associated
with the closed loops of electric charges, is labeled by

Zgcd(N,p1 ) × Zgcd(N,p2 ) × · · · × Zgcd(N,pmx ) × ZN

=
∏

a

Zgcd(N,pa ) × ZN . (35)

Recalling r̃ := Q−1
x r, the form of the loop, r, is obtained by

multiplying Qx from the left in Eq. (34). Writing the nx × nx

matrix Qx as

Qx = (q1, · · · , qnx−1−mx︸ ︷︷ ︸
nx−1−mx

, q̃1, · · · , q̃mx︸ ︷︷ ︸
mx

, q̃mx+1), (36)

where each column is given by an nx dimensional vector, we
have

r = Qx r̃ = α1N ′
1q̃1 + · · · + αmx N

′
mx

q̃mx
+ αmx+1q̃mx+1

:= α1�1 + · · · + αmx �mx + αmx+1�mx+1. (37)

2. Deformation of the closed loops—analogy to
the chip-firing game

After identifying the loops of electric charge in the hor-
izontal direction, we need to count the number of distinct
configurations of such loops up to the deformation in the y di-
rection by the sets of P(vx,vy ). This feature is contrasted with the
toric code, where the noncontractible loop in the horizontal
direction is deformed so it is shifted up or downward. In our
case, the way of the loops being deformed is not so immediate
as the toric code. We will see that to describe the deformation
of the loops, the Laplacian comes into play.

For the sake of the illustration, we focus on the case where
the 2D lattice is Cnx �Cny for the moment and then move on to
more general cases of the graph later. Here, Cp represents the
cyclic graph consisting of p vertices in a cyclic order where
the adjacent vertices are connected with an edge. In particular,
we set N = 3 and consider the case with C6 �C6. The coordi-
nate of the lattice is labeled by (vx

i , v
y
j ) (1 � i, j � 6), where

vertex vx
i (vy

j ) is aligned in cyclic order along the horizontal
(vertical) direction. This geometry is nothing but the 2D torus.
As explained in more detail in the next section (Sec. V), the
Smith normal form of the Laplacian of C6 reads

Dx = diag(1, 1, 1, 1, 6, 0),

from which the closed loop of the electric charge at v
y
j is

labeled by Z3 × Z3 [Eq. (35)]. Furthermore, by evaluating
Qx, and referring to Eq. (37), the form of the closed loop at
v

y
j , Zr1

1,(vx
1,v

y
j )

Zr2

1,(vx
2,v

y
j )

· · · Zrnx

1,(vx
nx ,v

y
j )

characterized by vector r, is

found to be

rv
y
j
= α1,v

y
j
(2, 1, 0, 2, 1, 0)T + α2,v

y
j
(1, 1, 1, 1, 1, 1)T

:= α1,v
y
j
�1,v

y
j
+ α2,v

y
j
�2,v

y
j
, (α1,v

y
j
, α2,v

y
j
) ∈ Z2

3, (38)
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FIG. 4. Closed loops of the electric charge in the case of Gx � Gy = C6 �C6 and N = 3. The periodic boundary condition is imposed so
left and right edges as well as top and bottom edges are identified. (a) Left two: Two closed loops of the electric charge in the horizontal
direction at v

y
4, corresponding to Eq. (39). Right two: Sets of operators P(vx

i ,v
y
j ) defined in Eq. (40) with which the closed loops are deformed.

(b), (c) Deformation of the loops in accordance with Eq. (41).

where we retrieve the subscript, emphasizing v
y
j dependence.

Defining

We1,v
y
j
=

nx∏
i=1

Z
(�1,v

y
j
)i

1,(vx
i ,v

y
j )

= Z2
1,(vx

1,v
y
j )Z1,(vx

2,v
y
j )Z

2
1,(vx

4,v
y
j )Z1,(vx

5,v
y
j ),

We2,v
y
j
=

nx∏
i=1

Z
(�2,v

y
j
)i

1,(vx
i ,v

y
j )

= Z1,(vx
1,v

y
j )Z1,(vx

2,v
y
j )Z1,(vx

3,v
y
j )Z1,(vx

4,v
y
j )Z1,(vx

5,v
y
j )Z1,(vx

6,v
y
j ),

(39)

the closed loop of the electric charge at v
y
j , We,vy

j
is generated

by these two terms, i.e., We,vy
j
= W

α1,v
y
j

e1,v
y
j
W

α2,v
y
j

e2,v
y
j
. We depict these

two loops Eq. (39) in Fig. 4(a).
Now we deform the loops in the vertical direction. Cor-

responding to the two vectors �1,v
y
j

and �2,v
y
j
, we define the

following two operators:


1,v
y
j

:=
nx∏

i=1

P
(�1,v

y
j
)i

(vx
i ,v

y
j )

, 
2,v
y
j

:=
nx∏

i=1

P
(�2,v

y
j
)i

(vx
i ,v

y
j )

.

From Eq. (17), these terms are rewritten as


1,v
y
j
= Z2

1,(vx
1,v

y
j+1 )Z1,(vx

2,v
y
j+1 )Z

2
1,(vx

4,v
y
j+1 )Z1,(vx

5,v
y
j+1 )

× Z2
1,(vx

1,v
y
j )Z1,(vx

2,v
y
j )Z

2
1,(vx

4,v
y
j )Z1,(vx

5,v
y
j )

× Z2
1,(vx

1,v
y
j−1 )Z1,(vx

2,v
y
j−1 )Z

2
1,(vx

4,v
y
j−1 )Z1,(vx

5,v
y
j−1 ),


2,v
y
j
=
(

6∏
i=1

Z1,(vx
i ,v

y
j−1 )

)
×
(

6∏
i=1

Z1,(vx
i ,v

y
j )

)

×
(

6∏
i=1

Z1,(vx
i ,v

y
j+1 )

)
, (40)

which are portrayed in Fig. 4(a). From Eqs. (39) and (40), it
follows that [see also Figs. 4(b) and 4(c)]:


1,v
y
j
We1,v

y
j
= We1,v

y
j+1

W 2
e1,v

y
j
We1,v

y
j−1

,


2,v
y
j
We2,v

y
j
= We2,v

y
j+1

W 2
e2,v

y
j
We2,v

y
j−1

. (41)

We need to evaluate the distinct configurations of the loops up
to such deformation.

To this end, it is useful to draw the side view of the geome-
try and see how such deformation of the loops is implemented.
One such example, corresponding to Fig. 4(c), is shown in
Fig. 5. Viewing from the side, we have Gy, which is C6 in the
present case. At each vertex v

y
j , one can assign a Z3 number,

α2,v
y
j
∈ Z3 corresponding to the closed loops of the electric

charge, We2,v
y
j
. In Fig. 5, the charge α2,v

y
4
= 1 is located at v

y
4

with charges at other vertices being absent. By applying 
2,v
y
4
,

the loop is deformed, yielding the configuration on the right
in Fig. 5: the charge located at v

y
4 is decreased by two, i.e..,

1 → −1 � 2(mod3) whereas the charge is increased by one
at the adjacent vertices, v

y
3 and v

y
5, i.e., 0 → 1.

What we have just described has an intimate relation with
the chip-firing game invented in the context of the graph
theory [34,35]. In the chip-firing game, for a given graph
G(V, E ), a chip is defined as an integer located at each ver-
tex of the graph. Also, the process of fire is defined as the
movement of sending one chip at given vertex, say v0 to each
of its neighbors, which are vertices connected with v0 by an
edge. In the process of the fire, chip is decreased by deg(v0)
at v0 and at adjacent vertices the chip is increased by one. In
our context, the chip introduced at each vertex corresponds to
the closed loops with electric charge labeled by α2,v

y
j
, whereas

the process of the fire is nothing but the deformation of the
loop. Important distinction between the chip-firing game and
our consideration is that while the chip is defined as an integer
number in the chip-firing game, in our case, what corresponds
to the chip is labeled by a finite group, corresponding to
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FIG. 5. Deformation of closed loops of magnetic charges in the case of C3 �C3 and N = 3 corresponding to Fig. 4(c). Top: The same
figure of the deformation of the loop given in Fig. 4(c). Bottom: The side view of Fig. 4(c), where one assigns Z3 number on each vertex,
corresponding to the configuration of the loops. These numbers are regarded as chips located at each vertex. By applying 
2,v

y
4
, the closed loop

is deformed, which corresponds to the one of the firing process where the chip at vertex v
y
4 is transferred into the adjacent ones, v

y
3 and v

y
5 (red

arrows).

the charge of the fractional excitation. (In this sense, we are
dealing with an anyonic analog of the chip-firing game.)

One of the motivations of the chip-firing game is to clas-
sify the distinct configurations of the chips up to the firing
processes and find an optimal configuration of chips. For
instance, associating the chips to dollars and the vertices to
money borrowers and lenders with interpreting the minus
value of the chips as debt, one would be interested in finding
a configuration of the chips so everyone is debt-free. (It is
often referred to as the dollar game in the context of the graph
theory [35,36].) It turns out that distinct configurations of the
chips are characterized by the cokernel of the Laplacian, aka
the Picard group, Pic(G) [34,35].

To see this in a more formal fashion, we now turn to
the generic cases of the 2D lattice given by Gx � Gy. As
we have seen in Sec. IV B 1, the closed loops of the elec-
tric charge in the horizontal direction at v

y
j are labeled by

(α1,v
y
j
, · · · , αmx+1,v

y
j
) ∈ ∏a Zgcd(N,pa ) × ZN . At v

y
j , the form

of the loops of the electric charge is given by

rv
y
j
= α1,v

y
j
�1,v

y
j
+ · · · + αmx,v

y
j
�mx,v

y
j
+ αmx+1,v

y
j
�mx+1,v

y
j
.

(42)

We focus on the deformation of the loop labeled by αa,v
y
j
,

which we dub the loop with type a (1 � a � mx + 1). Look-
ing at the geometry from the side, at each vertex of graph
Gy, v

y
j , one can assign a number αa,v

y
j

associated with the
configuration of the closed loops with type a. We define a

vector αa as

αa = (
αa,v

y
1
, · · · , αa,v

y
ny

)T ∈ [Zgcd(N,pa )]
ny . (43)

(For the sake of notational simplicity, we conventionally
set pmx+1 = 0 so αmx+1 ∈ Z

ny

N .) Corresponding to vector
�a,v

y
j
(1 � a � mx + 1), we define the following composite of

the operators P(vx
i ,v

y
j ),


a,v
y
j

:=
nx∏

i=1

P
(�a,v

y
j
)i

(vx
i ,v

y
j )

,

which is rewritten as


a,v
y
j
=
⎛
⎝∏

t �= j

[
nx∏

i=1

Z
(�a,v

y
j
)i

1,(vx
i ,v

y
l )

]ly
t j

⎞
⎠×

[
nx∏

i=1

Z
(�a,v

y
j
)i

1,(vx
i ,v

y
j )

]−degy (vy
j )

.

(44)

Using 
a,v
y
j
, we deform the loops with configuration αa.

Suppose we deform the loop by the operator 

σa,v

y
1

a,v
y
1

× · · ·

σa,v

y
ny

a,v
y
ny

characterized by the vector σa = (σa,v
y
1
, · · · , σa,v

y
ny

)T ∈
[Zgcd(N,pa )]ny . Using the Laplacian of the graph Gy, the
configuration of the deformed loop with type a, α̃a reads

α̃a = αa − Lyσa. (45)

The distinct configuration of the loop with type a up to the
deformation is found to be

[Zgcd(N,pa )]
ny/im(Ly), (46)
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which is nothing but the cokernel of the Laplacian, the Picard
group.

To proceed, we need to evaluate im(Ly). Recalling the
Laplacian is transformed into the Smith normal form

PyLyQy = diag
(
uy

1, · · · , uy
ny−1, 0

)
, (47)

we have

im(Ly) = Lyη, ∀η ∈ Z
ny

gcd(N,pa )

= P−1
y Dyη̃

(
η̃ := Q−1

y η
)

= span(π ′
1, π

′
2, · · · , π ′

ny
). (48)

Here, π ′
j represents the vector corresponding to the jth col-

umn of P−1
y Dy. Since Dy is the diagonal with the last entry

being zero, Eq. (48) is further written as

im(Ly) = span
(
uy

1π1, uy
2π2, · · · , uy

ny−1πny−1
)
, (49)

where π j represents the vector which corresponds to the jth
column of P−1

y .
Now we write sαa ∈ Z

ny

gcd(pa,N )/im(Ly) in this basis:

sαa =
ny∑

j=1

ca, jπ j (ca, j ∈ Zgcd(pa,N ) ). (50)

From Eq. (49), ca, j is subject to (the symbol ∼ represents
identification)

ca, j ∼ ca, j + uy
j (1 � j � ny − 1). (51)

By definition, it also must satisfy

ca, j ∼ ca, j + gcd(N, pa) (1 � j � ny). (52)

The algebraic structure of the Picard group is determined by
the number of distinct s with the two constraints Eqs. (51) and
(52). Assuming the Smith normal form of the Laplacian Ly

has my invariant factors greater than 1, i.e.,

Dy = diag(1, · · · , 1︸ ︷︷ ︸
ny−1−my

, q1, · · · , qmy︸ ︷︷ ︸
my

, 0), (53)

then we have

ca,b′ ∼ ca,b′ + 1 (1 � b′ � ny − 1 − my),

implying the coefficients of the first ny − 1 − my basis are
trivial.

As for the coefficients ca,b+ny−1−my (1 � b � my), they sat-
isfy the following two conditions:

ca,b+ny−1−my ∼ ca,b+ny−1−my + qb,

ca,b+ny−1−my ∼ ca,b+ny−1−my + gcd(N, pa) (1 � b � my),

from which it follows that ca,b+ny−1−my (1 � b � my) takes
gcd(qb, gcd(N, pa)) = gcd(pa, qb, N ) distinct values. To-
gether with the fact that the last coefficient ca,ny takes
gcd(N, pa) distinct values, we find that

ca := (ca,1, · · · , ca,ny−1−my︸ ︷︷ ︸
ny−1−my

, ca,ny−my , · · · , ca,ny−1︸ ︷︷ ︸
my

, ca,ny )T

= (0, · · · , 0︸ ︷︷ ︸
ny−1−my

, βa,1, · · · , βa,my︸ ︷︷ ︸
my

, βa,my+1)T mod N, (54)

with βa,b ∈ Zgcd(N,pa,qb), βa,my+1 ∈ Zgcd(N,pa ). Therefore, dis-
tinct configurations of the closed loops of the charges with
type a are labeled by

Zgcd(N,pa,q1 ) × · · · × Zgcd(N,pa,qmy ) × Zgcd(N,pa )

=
ny∏

b=1

Zgcd(N,pa,qb) × Zgcd(N,pa ). (55)

Since

sαa =
ny∑

j=1

ca, jπ j = P−1
y ca, (56)

the explicit form of the configuration of the loops sαa is ob-
tained by multiplying P−1

y from the left in Eq. (54).
Taking the deformation of the loops with all of the types

into the consideration, distinct configurations of the closed
loops are labeled by

mx+1∏
a=1

[ ny∏
b=1

Zgcd(N,pa,qb) × Zgcd(N,pa )

]

= ZN ×
mx∏

a=1

Zgcd(N,pa ) ×
my∏

b=1

Zgcd(N,qb)

×
mx∏

a=1

my∏
b=1

Zgcd(N,pa,qb). (57)

So far, we have considered closed loops of the electric
charges. Regarding the closed loops of the magnetic charges,
the similar argument follows as the electric charges, thus they
are labeled by the same quantum numbers Eq. (57).

To recap the argument, we have considered distinct loops
of electric and magnetic charges in our model placed on the
2D lattice Gx � Gy. The GSD is obtained by counting the
number of such distinct loops. Assuming there are mx and my

invariant factors of the Laplacian Lx and Ly which are greater
than one [Eqs. (29) and (53)], indexed by pa (1 � a � mx ),
qb (1 � b � my), respectively, we finally arrive at

GSD =
[

N ×
∏

a

gcd(N, pa) ×
∏

b

gcd(N, qb) ×
∏
a,b

gcd(N, pa, qb)

]2

. (58)

As opposed to fracton topological phases, where the GSD
exhibits the subextensive dependence on the system size, the

GSD of our model depends on N and the greatest common
divisor of N and invariant factors of the Laplacian.
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V. EXAMPLE

Our result Eq. (58) is applicable to arbitrary connected
graphs, yet it is still useful to take a closer look at the simple
example of the 2D lattice, torus geometry, for an illustrative
example to see how our formula works.

A. Torus geometry Cnx �Cny

The cycle graph Cn consists of n vertices placed in a cyclic
order so adjacent vertices are connected by a single edge. We
consider the 2D lattice constructed by the product of cycle
graphs, Cnx �Cny .

We need to find the Smith normal form of the Laplacian of
the cyclic graph. We concentrate on the transformation of Lx

into the Smith normal form. The Laplacian Lx is described by
the following nx × nx matrix:

Lx =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2 . . .
. . .

. . . −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠. (59)

Adding the first nx − 1 columns to the last one and doing the
same procedure for the rows, the Laplacian is transformed as

Lx →
(

L̃x 0nx−1

0T
nx−1 0

)
, (60)

with

L̃x =

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 . . .
. . .

. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠

nx−1×nx−1

. (61)

Any Laplacian of the connected graph is transformed into the
form Eq. (60), where L̃x is obtained by removing the last row
and column from the Laplacian Lx. We further transform L̃x as

L̃x →

⎛
⎜⎜⎜⎜⎜⎝

1 −2 1
2 −1

−1 2 . . .
. . .

. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
2 3 −2

−1 2 . . .
. . .

. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠, (62)

where in the first transformation, we have exchanged the first
and second rows and multiply (−1) in the first rows, and in the
second transformation we have added the first column to the
second one twice and subtract the first column from the third
one. By subtracting the first row from the second one twice,

the matrix is further transformed as

Eq. (62) →

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
0 3 −2

−1 2 . . .
. . .

. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠. (63)

The last form of Eq. (63) has a diagonal element in the (1,1)
entry. We iteratively implement the similar transformation on
the subdiagonal matrix below the (1,1) entry by swapping the
first and second rows of the subdiagonal matrix followed by
multiplying (−1) in the first row, and adding the first columns
and rows to or subtracting those from other columns and rows.
Finally, one arrives at

PxLxQx = diag(1, 1, · · · , nx, 0), (64)

where matrix Px (Qx) corresponds to the operations involving
switching between rows (columns), negating, and adding or
subtracting the rows (columns). The Smith normal form of
the Laplacian Ly is obtained analogously:

PyLyQy = diag(1, 1, · · · , ny, 0). (65)

Based on the formula Eq. (58), the GSD is given by

GSD = [N × gcd(N, nx ) × gcd(N, ny) × gcd(N, nx, ny)]2.

(66)

By evaluating the form of the matrix Qx, and referring to
Eqs. (36) and (34), the form of the closed loops of the frac-
tional charges in the horizontal direction at v

y
j is described by

rv
y
j
= N ′α1,v

y
j

⎛
⎜⎜⎜⎜⎝

nx − 1
nx − 2

...

1
0

⎞
⎟⎟⎟⎟⎠+ α2,v

y
j

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠ mod N, (67)

where α1,v
y
j
∈ Zgcd(N,nx ), α2,v

y
j
∈ ZN , N ′ = N/ gcd(N, nx ).

Note that rv
y
j

is an nx-dimensional vector, indexed by ver-

tices of the graph Gx at v
y
j . For each loop labeled by α1,v

y
j

and α2,v
y
j
, there are two distinct configurations up to the de-

formation in the y direction. The distinct configurations of
loops labeled by α1,v

y
j

are described by the cokernel sα1 =
[Zgcd(N,nx )]ny/im(Ly). By evaluating the form of P−1

y and re-
ferring to Eq. (56), these configurations are described by

sα1 = β1,1

⎛
⎜⎜⎜⎜⎝

1
0
...

0
−1

⎞
⎟⎟⎟⎟⎠+ β1,2

⎛
⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎠ mod N, (68)

where β1,1 = Zgcd(N,nx,ny ) and β1,2 = Zgcd(N,nx ). Note that s1

is ny-dimensional vector, indexed by vertices of the graph Gy

and each entry corresponds to the loops going in the horizontal
direction. We portray these two configurations in Fig. 6(a) in
the case of N = 3 and nx = ny = 6. Likewise, the distinct con-
figurations of loops labeled by α2,v

y
j

are given by the cokernel
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FIG. 6. (a) [(b)] Distinct configurations of closed loops labeled by α1,v
y
j
[α2,v

y
j
], corresponding to Eq. (68) [(69)] in the case of N = 3 and

nx = ny = 6. The periodic boundary condition is imposed in such a way that left and right edges as well as top and bottom edges are identified.
(c) Left: A closed loop of dipole of the fractional charge which corresponds to Eq. (72) in the case of N = 3 with nx being divisible by three.
Regarding the pattern 2,1,0 as the dipole of the fractional charges, one can make an interpretation on this loop as the arrays of such dipoles.
Right: Schematic picture of the quadrupole consisting of a pair of closed loops of dipole.

sα2 = [ZN ]ny/im(Ly), which is found to be

sα2 = β2,1

⎛
⎜⎜⎜⎜⎝

1
0
...

0
−1

⎞
⎟⎟⎟⎟⎠+ β2,2

⎛
⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎠ mod N, (69)

with β2,1 = Zgcd(N,ny ), β2,2 = ZN . These configurations are
depicted in Fig. 6(b).

B. Physical interpretation

In this subsection, we try to interpret the physical meaning
of the configurations of the loops, especially the ones given
in Eq. (68) (portrayed in Fig. 6(a)), i.e., the configurations of
loops labeled by α1,v

y
j
. We warn the readers that discussion

presented in this subsection is schematic, yet it conveys phys-
ical intuition behind these loops.

For simplicity, suppose we set nx so it is divisible by N , i.e.,
nx = Nd (d ∈ Z). Then the form of the closed loop labeled by
α1,v

y
j

which corresponds to the first term of Eq. (67) becomes

(nx − 1, nx − 2, · · · , 1, 0)T

= (N − 1, N − 2, · · · , 1, 0, N − 1,

N − 2, · · · , 1, 0, · · · , )T mod N, (70)

where, on the right-hand side, the entry repeats the pattern
N − 1, N − 2, · · · , 0 d times. Renaming the vertex of the
cyclic graph Cnx as x (1 � x � nx ), we define the following
vector:

ρ f
x = (0, · · · , 0︸ ︷︷ ︸

x

, 1, 0, · · · , 0︸ ︷︷ ︸
nx−x−1

)T , (71)

which is associated with the charge density operator of the
fractional excitation, where a single fractional excitation is
located at the coordinate x, Eq. (70) is rewritten as

Eq. (70) = −
d−1∑
b=0

[
N∑

x=1

(x + b)ρ f
x+b

]
. (72)

This form looks familiar to us, recalling the argument of
the conservation of the dipole of charges in the higher rank
Maxwell theory discussed in Eq. (4). It is tempting to regard
the term inside the braket in Eq. (72) as the dipole of the frac-
tional charges, as this term shows the charge monotonically
decreasing as function of x, inducing the polarization [see
also Fig. 6(c)]. Since the form of the loop Eq. (72) repeats
the pattern N − 1, N − 2, · · · , 0 d times, one can interpret it
as the loops formed by the trajectories of the dipole of the
fractional charges around in the x direction, analogously to
the fact that the Wilson loops are formed by the trajectory of
the anyons in the topologically ordered phases.

Having interpreted the form of the loop Eq. (72) as the
trajectory of the dipole of the fractional charges, now we turn
to the distinct configurations of such loops up to the deforma-
tion. According to Eq. (68), any configuration of the loops is
generated by two configurations. One configuration is a single
loop of the dipole located at a given vertex, which corresponds
to the second term of Eq. (68). Another configuration, corre-
sponding to the first term of Eq. (68), is a pair of loops of
the dipole with opposite signs located adjacent to each other
in the y direction, yielding a “dipole of dipoles,” which is a
quadrupole of the fractional charges [Fig. 6(c)]. In summary,
depending on the kernel and cokernel of the Laplacian, the
phase admits closed loops of a dipole or quadrupole of frac-
tional charges, which accounts for the unusual behavior of the
GSD.
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TABLE I. Digest of this paper. We consider the topological phases obtained by gapping the higher rank Maxwell theory via Higgs
mechanism on the 2D lattice Gx � Gy. If we instead place the ZN topologically ordered phases, obtained from the conventional Maxwell
theory via Higgs mechanism, on the same lattice, the GSD is given by N2gxgy , where gx/y represents the number of genus of the graph Gx/y,
gx/y := |Ex/y| − |Vx/y| + 1.

Continuum U (1) theory Higgs phase GSD on Gx � Gy

Conventional Maxwell theory ZN topologically ordered phase (ZN toric code) N2gxgy

Other type higher-rank Maxwell theory higher-rank ZN topological phase Eq. (58)

VI. CONCLUSION

Motivated by recent interest in fracton topological phases,
especially in those phases on curved geometry, in this
paper, we explore the geometric aspect of the unusual
topological phases which admit fractional excitations with
mobility constraint in a unique context, graph theory. Due
to the second-order derivative introduced in the higher rank
Maxwell theory with which our model is defined via Higgs
mechanism, the GSD of our model exhibits unusual depen-
dence on the lattice.

Placing the phases on the 2D lattices beyond the reg-
ular square one, composed of two arbitrary graphs, we
demonstrate that physical properties of the phases can be sys-
tematically studied by analyzing the Laplacian of the graph.
We show that the fusion rules of the fractional excitations
are determined by the form of the Laplacian of the graph.
Furthermore, we show that the closed loops of the excitations
are associated with the kernel of the Laplacian. Such loops
are deformed analogously to the process of the firing in the
chip-firing game, studied in the context of the graph theory. By
making use of such analogy, we count the number of distinct
configurations of the loops up to the deformation by evaluat-
ing the cokernel of the Laplacian. Based on this analysis, we
derive a formula of the GSD of our phases on graphs, which
depends on N and invariant factors of the Laplacian. Depend-
ing on the graph, the phases admit a closed loop of dipole
or quadrupole of fractional charges, which seemingly corre-
sponds to the fact that the dipole and quadruple of charges are
conserved in the higher rank Maxwell theory. Our study may
contribute to understanding fracton topological phases in view
of graph theory.

Our result is contrasted with conventional topological
phases whose GSD depends on global topology of the lattice,
i.e., the number of genus. For instance, if we introduce the
ZN toric code, which is obtained by gapping the gauge group
via Higgs mechanism in the usual Maxwell theory, and place
it on the 2D lattice Gx � Gy, the GSD depends on the total
number of genus, thus GSD = N2gxgy , where gx/y represents
the genus of the graph Gx/y, gx/y := |Ex/y| − |Vx/y| + 1. Such
comparison is summarized in Table I.

There are several future directions regarding the research
presented in this paper. It is important to address the stability
of the closed loops of fractional charges in view of quantum

information as these can be utilized for logical operators. The
stability can be analyzed by evaluating invariant factors of
the submatrix of the Laplacian. It would be interesting to see
whether the condition of having the stable loops is associated
with other quantities of the graph such as connectivity.

Recently, it was proposed that the fracton topological
phases can be constructed by networks of defects in topolog-
ically ordered phases [37–39]. It would be interesting to see
how our model on graphs can be realized by the topologically
ordered phases with defects. As we have seen in Sec. II B,
the model with N = 2 on the square lattice can be decom-
posed into copies of the toric codes. (See also Refs. [28,40].)
It would be intriguing to see whether or not our model is
regarded as copies of the toric codes in the generic case of
N on generic lattices.

In this paper, we have considered Abelian higher rank
topological phases. One would naively wonder the case with
non-Abelian topological phases. To study the closed loops
of non-Abelian fractional charges systematically, one would
consider the non-Abelian chip-firing game, the chip-firing
game with each chip associated with non-Abelian fractional
charges, which is interesting on its own right in both of graph
theoretical and physical point of view. While intensive studies
have been done in the case of bosonic fracton phases, much is
not elucidated in the fermionic theories (and even more exotic
supersymmetric theories [41]). Extension of our study to the
fermionic cases would be another direction.

One could investigate other topological quantities of the
model. For example, it would be intriguing to study entangle-
ment entropy of our phases on graphs and see how different it
is from the case of the topologically ordered phases [42]. It is
well-known that in the topologically ordered phases, the total
quantum dimension is related to the topological entanglement
entropy [43,44], which is the subleading constant term of
the entanglement entropy. Since the total quantum dimension
crucially depends on the geometry in our model, it is worth
studying to see whether such a number enters in entanglement
entropy of various geometries of subsystems.

ACKNOWLEDGMENTS

The author thanks Bo Han and Masazumi Honda for help-
ful discussion.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional
Magnetotransport in the Extreme Quantum Limit, Phys. Rev.
Lett. 48, 1559 (1982).

[2] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incom-
pressible Quantum Fluid with Fractionally Charged Excitations,
Phys. Rev. Lett. 50, 1395 (1983).

125154-13

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.50.1395


HIROMI EBISU PHYSICAL REVIEW B 107, 125154 (2023)

[3] V. Kalmeyer and R. B. Laughlin, Equivalence of the resonating-
valence-bond and fractional quantum Hall states, Phys. Rev.
Lett. 59, 2095 (1987).

[4] X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and
superconductivity, Phys. Rev. B 39, 11413 (1989).

[5] X. G. Wen, Topological order in rigid states, Int. J. Mod. Phys.
B 04, 239 (1990).

[6] N. Read and S. Sachdev, Large-N expansion for frustrated quan-
tum antiferromagnets, Phys. Rev. Lett. 66, 1773 (1991).

[7] J. M. Leinaas and J. Myrheim, On the theory of identical parti-
cles, Il Nuovo Cimento B (1971-1996) 37, 1 (1977).

[8] S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg,
Remarks on the canonical quantization of the Chern-Simons-
Witten theory, Nucl. Phys. B 326, 108 (1989).

[9] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[11] E. Witten, Quantum field theory and the jones polynomial,
Commun. Math. Phys. 121, 351 (1989).

[12] X.-G. Wen, Quantum Field Theory of Many-Body Systems: From
the Origin of Sound to an Origin of Light and Electrons (OUP,
Oxford, 2004).

[13] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[14] C. Chamon, Quantum glassiness in strongly correlated clean
systems: An example of topological overprotection, Phys. Rev.
Lett. 94, 040402 (2005).

[15] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[16] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory, and duality, Phys. Rev. B 94, 235157
(2016).

[17] F. Peña-Benitez, Fractons, symmetric gauge fields and geome-
try, arXiv:2107.13884.

[18] L. Bidussi, J. Hartong, E. Have, J. Musaeus, and S. Prohazka,
Fractons, dipole symmetries and curved spacetime, SciPost
Phys. 12, 205 (2022).

[19] A. Jain and K. Jensen, Fractons in curved space, SciPost Phys.
12, 142 (2022).

[20] K. Slagle and Y. B. Kim, X-cube model on generic lattices:
Fracton phases and geometric order, Phys. Rev. B 97, 165106
(2018).

[21] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Fracton Mod-
els on General Three-Dimensional Manifolds, Phys. Rev. X 8,
031051 (2018).

[22] K. T. Tian, E. Samperton, and Z. Wang, Haah codes on general
three-manifolds, Ann. Phys. 412, 168014 (2020).

[23] K. Sun, K. Kumar, and E. Fradkin, Discretized Abelian Chern-
Simons gauge theory on arbitrary graphs, Phys. Rev. B 92,
115148 (2015).

[24] H. Ebisu and B. Han, Anisotropic higher rank zn topological
phases on graphs, arXiv:2209.07987.

[25] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, Gapped
lineon and fracton models on graphs, arXiv:2210.03727.

[26] F. R. Chung and F. C. Graham, Spectral Graph Theory (Ameri-
can Mathematical Society, Providence, 1997), Vol. 92.

[27] M. Pretko, Higher-spin Witten effect and two-dimensional frac-
ton phases, Phys. Rev. B 96, 125151 (2017).

[28] D. Bulmash and M. Barkeshli, Higgs mechanism in higher-
rank symmetric U(1) gauge theories, Phys. Rev. B 97, 235112
(2018).

[29] H. Ma, M. Hermele, and X. Chen, Fracton topological order
from the Higgs and partial-confinement mechanisms of rank-
two gauge theory, Phys. Rev. B 98, 035111 (2018).

[30] S. D. Pace and X.-G. Wen, Position-dependent excitations and
UV/IR mixing in the zN rank-2 toric code and its low-energy
effective field theory, Phys. Rev. B 106, 045145 (2022).

[31] Y.-T. Oh, J. Kim, E.-G. Moon, and J. H. Han, Rank-2 toric code
in two dimensions, Phys. Rev. B 105, 045128 (2022).

[32] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[33] D. Lorenzini, Smith normal form and Laplacians, J. Comb.
Theory Ser. B 98, 1271 (2008).

[34] A. Björner, L. Lovász, and P. W. Shor, Chip-firing games on
graphs, Eur. J. Comb. 12, 283 (1991).

[35] N. L. Biggs, Chip-firing and the critical group of a graph, J.
Algebraic Comb. 9, 25 (1999).

[36] M. Baker and S. Norine, Riemann-Roch and Abel-Jacobi theory
on a finite graph, Adv. Math. 215, 766 (2007).

[37] D. Aasen, D. Bulmash, A. Prem, K. Slagle, and D. J.
Williamson, Topological defect networks for fractons of all
types, Phys. Rev. Res. 2, 043165 (2020).

[38] X.-G. Wen, Systematic construction of gapped nonliquid states,
Phys. Rev. Res. 2, 033300 (2020).

[39] J. Wang, Nonliquid cellular states: Gluing gauge-higher-
symmetry-breaking versus gauge-higher-symmetry-extension
interfacial defects, Phys. Rev. Res. 4, 023258 (2022).

[40] D. J. Williamson, Z. Bi, and M. Cheng, Fractonic matter
in symmetry-enriched U (1) gauge theory, Phys. Rev. B 100,
125150 (2019).

[41] M. Honda and T. Nakanishi, Scalar, fermionic and super-
symmetric field theories with subsystem symmetries in d+1
dimensions, arXiv:2212.13006.

[42] H. Ebisu, Entanglement entropy of higher rank topological
phases, arXiv:2302.11468.

[43] M. Levin and X.-G. Wen, Detecting topological order in
a ground state wave function, Phys. Rev. Lett. 96, 110405
(2006).

[44] A. Kitaev and J. Preskill, Topological entanglement entropy,
Phys. Rev. Lett. 96, 110404 (2006).

125154-14

https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1007/BF02727953
https://doi.org/10.1016/0550-3213(89)90436-7
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1007/BF01217730
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevB.94.235157
http://arxiv.org/abs/arXiv:2107.13884
https://doi.org/10.21468/SciPostPhys.12.6.205
https://doi.org/10.21468/SciPostPhys.12.4.142
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1016/j.aop.2019.168014
https://doi.org/10.1103/PhysRevB.92.115148
http://arxiv.org/abs/arXiv:2209.07987
http://arxiv.org/abs/arXiv:2210.03727
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.106.045145
https://doi.org/10.1103/PhysRevB.105.045128
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1016/j.jctb.2008.02.002
https://doi.org/10.1016/S0195-6698(13)80111-4
https://doi.org/10.1023/A:1018611014097
https://doi.org/10.1016/j.aim.2007.04.012
https://doi.org/10.1103/PhysRevResearch.2.043165
https://doi.org/10.1103/PhysRevResearch.2.033300
https://doi.org/10.1103/PhysRevResearch.4.023258
https://doi.org/10.1103/PhysRevB.100.125150
http://arxiv.org/abs/arXiv:2212.13006
http://arxiv.org/abs/arXiv:2302.11468
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110404

