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Half-quantized Hall effect at the parity-invariant Fermi surface
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Condensed matter realization of a single Dirac cone of fermions in two dimensions is a long-standing issue.
Here we report the discovery of a single gapless Dirac cone of half-quantized Hall conductance in a magnetically
doped topological insulator heterostructure. It demonstrates that the Hall conductance is half-quantized in the
unit e2/h when the parity symmetry is preserved near the Fermi surface. The gapless Dirac point is stable and
protected by the local parity symmetry and the topologically nontrivial band structure of the topological insulator.
The one-half Hall conductance observed in a recent experiment [M. Mogi et al., Nat. Phys. 18, 390 (2022)] is
attributed to the existence of the gapless Dirac cone and the parity invariance of the Fermi surface. The results
suggest a condensed matter realization of a topological phase with a one-half topological invariant.
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I. INTRODUCTION

The search for a single gapless Dirac cone of fermions
is a long-standing issue in condensed matter physics [1–3].
In quantum field theory, an ideal massless two-dimensional
Dirac fermion coupled to a U(1) gauge field gives rise to the
parity anomaly, characterized by a half-quantized Hall (HQH)
conductance [4–8]. Lattice regularization of a single gapless
Dirac cone on a lattice is not realizable if the parity symmetry
is preserved according to the fermion doubling theorem [9].
One possible scheme is Wilson fermions, which possess lin-
ear dispersion near the energy crossing point, but break the
time-reversal symmetry at higher energy [10,11]. The pro-
posal for the condensed matter realization of parity anomaly
dates back to the 1980s [12–14]. In his seminal paper [14],
Haldane proposed that when the band gap of one valley on a
honeycomb lattice is finely tuned to be closed while another
one remains open, a single flavor of massless Dirac fermion
with parity anomaly can be realized. In graphene, the parity
anomaly with HQH effect is masked in view of the fourfold
degeneracy from the spin and valley in the system [15]. Due
to the presence of the parity symmetry, the paired Dirac cones
give rise to contributions to the anomaly terms with opposite
signs and thus exhibit no anomaly as a whole [16,17]. A
three-dimensional topological insulator hosts a single Dirac
cone of fermions on its surface [18–21]. It provides a possible
platform to observe the HQH conductance and many attempts
have been made in that direction [22–29]. Recently, the obser-
vation of the HQH conductance in transport at zero magnetic
field was reported as a signature of the parity anomaly in a
semi-magnetic topological insulator heterostructure [30]. The
paired gapless Dirac cones in a topological insulator thin
film are located separately on the top and bottom surfaces.
The local time-reversal symmetry breaking on one surface
by magnetic doping may open an energy gap for the Dirac
surface fermions while the Dirac fermions remain gapless on
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the other surface. Existing theories suggest that the massive
Dirac fermions in the continuum give rise to HQH conduc-
tance [22,23]. However, it is known that all the independent
bands on a two-dimensional finite Brillouin zone just have an
integer Chern number [31,32]. Thus massive Dirac fermions
with an HQH conductance cannot exist on a lattice. Contrarily,
the gapless Wilson fermions in two dimensions have an HQH
conductance and form a quantum anomalous semimetal when
the valence bands are fully filled [33,34]. Thus the semi-
magnetic topological insulator becomes a potential candidate
to realize a single gapless Dirac cone in condensed matter.

In this work, we report the discovery of the gapless Dirac
cone of HQH conductance in a semi-magnetic topological
insulator heterostructure. The main results are summarized
in Fig. 1. The gapless Dirac cone always has the HQH con-
ductance in the units of e2/h when the parity symmetry is
preserved at the Fermi surface. The gapless Dirac point is
protected by the local parity symmetry and the topologically
nontrivial band structure of the topological insulator, although
the parity symmetry was broken at high energy. The gapped
Dirac cone has a nonzero Hall conductance, but becomes zero
when the band is fully filled. So the massive Dirac fermions
alone do not contribute an HQH conductance to the system.
The system has a minimal longitudinal conductance and ex-
hibits a flat plateau of the HQH conductance when the Fermi
level sweeps the Dirac cone. The plateau is very robust against
the disorders. We term the gapless Dirac cone as a parity
anomalous semi-metal, a semi-metal with a half-quantized
Hall conductance. The results suggest a condensed matter re-
alization of the topological phase with a one-half topological
invariant.

II. BAND STRUCTURE OF A SEMI-MAGNETIC
TOPOLOGICAL INSULATOR

A semi-magnetic topological insulator film consists of
topological insulator (Bi, Sb)2Te3 and Cr-doped (Bi, Sb)2Te3

grown by molecular-beam epitaxy. (Bi, Sb)2Te3 is a
topological insulator with an energy gap of about 0.3 eV and
hosts a single Dirac cone of the surface electrons [35–37]. As
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FIG. 1. Four types of two-dimensional Dirac fermions and par-
ity anomalous semi-metal in a semi-magnetic topological insulator.
(a) Ideal Dirac fermions with the Hall conductance C = 0 in the units
of e2

h , which cannot be realized on a lattice according to the fermion
doubling theorem [9]. (b) Topologically trivial gapped Dirac fermion
with C = 0. (c) The gapless Dirac fermions of linear dispersion at
the Dirac point with C = ±1/2. (d) Topologically nontrivial gapped
Dirac fermion with C = ±1, i.e., Chern insulator. (e) Schematic of a
semi-magnetic topological insulator film. (f) Schematic of the band
structure in a semi-magnetic topological insulator.

shown in Fig. 1(e), the magnetic element Cr was doped on the
top surface. The exchange interaction between the magnetic
ion and the surface electrons leads to nonzero magnetiza-
tion and makes the top surface electrons open an energy gap
[38–41]. The Fermi energy can be finely tuned by changing
the ratio of Bi and Sb such that it locates within the band
gap of the top surface Dirac cone. The topological nature of
(Bi, Sb)2Te3 has been investigated extensively and can be well
described by a tight-binding model for the electrons of Pz,↑
and Pz,↓ orbitals from (Bi, Sb) and Te atoms near the Fermi
energy [25,35,42]

HT I =
∑

i

�
†
i M�i +

∑
i,α=x,y,z

(�†
i Tα�i+α + �

†
i+αT †

α �i ), (1)

where M = (m0 − 2
∑

α tα )σ0τz, Tα = tασ0τz − i λα

2 σατx, �
†
i

and �i are the four-component creation and annihilation op-
erators at position i. The Pauli matrices σα and τα act on the
spin and orbital indices, respectively. All bands are doubly
degenerate due to the coexistence of both time-reversal and
inversion symmetries in the absence of magnetic doping. It
can produce the linear dispersion of the surface states near
the � point in an open boundary condition [43]. The ex-
change interaction caused by Cr doping is given by a Vexch =∑

i �
†
i V (i)σzτ0�i, which is only present on the top layers

with the magnitude Vz. In experiments, the thickness of the
Cr-doped (Bi, Sb)2Te3 is about 2 nm and (Bi, Sb)2Te3 layer
is about 8 nm [30]. We take the periodic boundary condition
in the x and y directions and the open boundary condition
in the z direction, the calculated dispersions are presented in
Fig. 2(a). It is noted that there exist a gapless Dirac cone and
a gapped Dirac cone within the bulk gap. The dispersions for
the gapless Dirac cone cross at the � point and are linear in
k around the crossing point. The gapped Dirac cone opens
an energy gap of about 2Vz. Numerical calculation shows that

FIG. 2. The band structure of a semi-magnetic topological insu-
lator. (a) The dispersions of well-separated gapless (red line) and
gapped (violet line) Dirac cone in a topological insulator thin film
of eight nonmagnetic layers plus two magnetic layers. Inset (1):
The dispersions near the � point. Inset (2): The antiband crossing
point between the gapless and gapped Dirac cones. (b) The energy
separation between the gapless and gapped Dirac cones. (c) The
energy difference of the gapless Dirac cone at the � point as a
function of the thickness Lz for several values of exchange interaction
Vz on the top layer. Model parameters: λx = λy = λ‖ = 0.41 eV,
λz = λ⊥ = 0.44 eV and tx = ty = t‖ = 0.566 eV, tz = t⊥ = 0.40 eV,
and m0 = 0.28 eV. Vz = 0.1 eV if no specific indication.

the gapless and gapped states within the bulk band gap are
mainly located on the bottom and top surfaces, respectively.
We check the energy separation between the two bands along
the high symmetric lines and find that the gapless Dirac cone
and gapped Dirac cone are well separated. The dip at kc

indicates that there exists a band mixture. Finite thickness of
the film may cause a tiny gap at the � point, which decays
exponentially in the thickness approximately [44,45]. With
increasing exchange interaction, the gap is further suppressed
by several orders of magnitude to negligibly small [about
10−10 eV for a thickness Lz = 10 nm, see Fig. 2(c)]. It will be
smeared out easily by temperature broadening (1K is about
0.086 meV) in experimental measurements.

III. HALL CONDUCTANCE AND THE BERRY
CURVATURE

Using the Kubo formula for the electric conductivity [46],
we calculate the Hall conductance as a function of the chemi-
cal potential μF numerically based on the tight-binding model
in Eq. (1) with a thickness Lz = 10 nm. A fairly flat plateau of
− e2

2h appears within the band gap as shown in Fig. 3(a). To
figure out the origin of the plateau of the Hall conductance,
we first note that there exists a full band separation between
the four lowest energy bands and the rest at all k. These
four bands form well-separated band subspaces and the Hall
conductance can be calculated for each band. We then only
focus on the gapless and gapped Dirac cones denoted by the
red and violet lines in Fig. 2(a). For the gapped Dirac cone,
we have a nonzero Hall conductance as μF varies, which has
its maximal about 0.4 e2

h , but decays to zero quickly when the
band is fully occupied. The maximal value may increase for a
thicker film, but is always lower than 0.5 e2

h . This is consistent
with the fact that the Chern number of a well-defined band
in a finite Brillouin zone is always an integer (including zero)
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FIG. 3. (a) The Hall conductance as a function of the chemical
potential μF for the thin film. The green dashed line is the combina-
tion of the Hall conductance of the gapless and gapped Dirac cones.
(b) The Hall conductance of the gapless and gapped Dirac cones.
(c) The gapless Dirac cone in a two-dimensional Brillouin zone.
The color indicates the value of the Berry curvature of the states.
(d) The Berry curvature of the gapless valence band as a function of
kx (ky = 0). (e) The Berry curvature and the parity-invariant regime
(PIR) in the Brillouin zone.

[21,32]. This contrasts to the picture that the gapped Dirac
cone leads to 0.5 e2

h of the Hall conductance [22,23,30]. For

the gapless Dirac cone, the Hall conductance becomes −0.5 e2

h
within the bulk band gap, which is larger than the gap of the
gapped Dirac cone. Thus the total Hall conductance within the
bulk band gap is mainly contributed to by these two bands and
the Hall conductance plateau is attributed to the gapless Dirac
cone instead of the gapped Dirac cone.

To explore the topological nature of the gapless Dirac
cone and its relation to the Hall conductance, we studied
the Berry curvature of the gapless bands. In the Bloch states
|un,k〉, the Berry connection and the Berry curvature are de-
fined as An,α (k) = i〈un,k|∂kα

un,k〉 and 	n
z (k) = ∂kxAn,y(k) −

∂kyAn,x(k), respectively [32]. For the gapless Dirac cone, it is
found that the Berry curvature 	n

z (k) = 0 within the regime
of k < kc (parity-invariant regime which we will define in

the next section). Beyond the regime, it becomes negative
and finally vanishes for a larger k. Combined with the band
structure, the nonzero Berry curvature mainly originates from
hybridization of the states from the top and bottom layers. It
happens because the states are no longer localized near the
surfaces and merge into the entire bulk in the regime of k > kc.
The conductance plateau appears when the chemical potential
lies in the regime where the Berry curvature vanishes. For
comparison, the Berry curvatures of the gapped bands are
presented in Appendix A 4.

We would like to show that the Hall conductance is pre-
cisely quantized as a plateau by numerically calculating the
precision of the half-quantized Hall conductance. The Berry
curvature distribution in the parity-invariant regime is pre-
cisely zero, as shown in Fig. 4(a), in which the Berry curvature
is negligibly tiny up to 10−10. Hence the Hall conductance will
not change when the Fermi level sweep through this regime.
Numerically, the deviation of the Hall conductance from one
half σ + e2

2h is also zero. As we can see in Fig. 4(b), the
precision is 10−6, and still can be enhanced if we continue
increasing the density of the k points.

IV. ON THE PARITY-INVARIANT REGIME

Now we come to discuss the origin of the parity-invariant
regime based on the tight-banding model in Eq. (1). For
each wave vector k, the Hamiltonian can be divided into
two parts, HT I (k) = H1d (k) + HS (k). H1d is equivalent to a
one-dimensional lattice model with an effective mass m0(k) =
m0 − 4t‖(sin2 kxa

2 + sin2 kya
2 ) [21],

H1d (k) =
∑

iz

(
�

†
iz,k

M(k)�iz,k + �
†
iz,k

Tz�iz+1,k + H.c.
)
,

(2)

with M(k) = [m0(k) − 2t⊥]σ0τz and HS (k) =
λ‖

∑
iz,α=x,y �

†
iz,k

sin(kαa)σατx�iz,k. For m0(k) > 0, i.e.,

k < kc � √
M/t‖/a, H1d is topologically nontrivial. There

exist a pair of zero energy modes at each side or near
the top surface and bottom surface. Denote ξs and χt the
two eigenvectors of σz and τy with eigenvalues s = ±1
and t = ±1. The zero energy modes are the eigenvectors
ξs ⊗ χt of the operator σzτy with the eigenvalue S = st .
The spatial part of the two states of S = 1 (s = t = 1

FIG. 4. (a) The logarithm of the Berry curvature depending on kx (ky = 0). (b) The logarithm of the deviation of the Hall conductance from
one half. The k points used in the calculation are Nk × Nk in the two-dimensional Brillouin zone.
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and s = t = −1) are mainly located near the top surface
and the two states of S = −1 are located near the top
surface, and decay exponentially to its opposite side [21].
By mapping HS (k) + Vexch into the basis of the four states,
one obtains the effective Hamiltonian the gapless Dirac
cone Hb(k) = −λ‖[sin(kxa)σy − sin(kya)σx] which is mainly
located at the bottom layer and the gapped Dirac cone
Ht (k) = +λ‖[sin(kxa)σy − sin(kya)σx] + V (k)σz which
is at the top layer. V (k) is given by the expectation
of the exchange interaction Vexch, and varies with the
wave vector, especially when m0(k) → 0 where the
wave function of zero energy modes evolve to distribute
broadly in space. In two dimensions, the parity symmetry
is defined by PH (k)P−1 = H (M̂k), where P = iσy and
M̂ is the mirror operator in momentum space transforming
k → M̂k = (kx,−ky ). Thus in the regime the gapless Dirac
cone PHb(k)P−1 = Hb(M̂k) respects the parity symmetry
while the gapped Dirac cone PHt (k)P−1 �= Ht (M̂k) breaks
the symmetry due to the presence of V (k). Thus the nontrivial
condition of m0(k) > 0 defines a parity-invariant regime
for the gapless Dirac cone. In addition to the local parity
symmetry, Hb also respects a space-time operator IST = C2zT
where C2z is a twofold rotation about the z axis and T is local
time-reversal operator. I2

ST = +1 imposes a further constraint
on the Berry curvature, leading to 	n

z (k) = 0.
When m0(k) < 0, H1d becomes topologically trivial. The

zero energy modes evolve into the bulk states. Approximately,
the states can be regarded as the ones confined in a quantum
well of thickness Lz with nonzero energy ±m0(k). The states
are no longer the eigenvectors of the operator σzτy, and break
the parity symmetry. Based on this picture, we obtain an
effective four-band model

HF = λ||(sin kxaσy − sin kyaσx )γz + V (k)σz(γz + 1) + H eff
 ,

(3)

where H eff
 = f (k)m0(k)γx. A Fermi-Dirac-distribution-like

factor or the sigmoid function f (k) = [exp( m0(k)
T ∗ ) + 1]−1 is

introduced to describe the procedure that the surface states
evolve into the bulk states with the wave vector moves out of
the parity invariant regime. γx,z are the Pauli matrices asso-
ciated with the top and bottom surface states. A small T ∗ is
a model-specific parameter. The calculated results show that
the model can reproduce the key features of the band structure.
The Hall conductance as a function of μF is given by σ S

H =
e2

2h [S − cos φS (kS
F )]. The part of S is mainly attributed to the

term H eff
 and the band splitting V (k). For the gapless band of

S = −sgn(Vz ), cos φS (kS
F ) = 0 in the parity-invariant regime

and σ S
H = −sgn(Vz ) e2

2h . For the gapped band of S = sgn(Vz ),
cos φS = sgn(Vz ) for the full occupancy and σ S

H = 0. They are
in good agreement with the numerical results in Fig. 3(b). It
is noted that the Hall conductance is only dependent on the
sign of Vz. The details are referred to in Appendix A 3. In the
regime of k < kc, H eff

 ∼ 0 and V (k) ∼ Vz, the Hamiltonian
is reduced to HF = λ‖a(k × σ )zγz + Vzσz(γz + 1) which is
similar with Eq. (S16) of Ref. [30]. In that paper, the HQH
conductance was attributed to the gapped Dirac cone due to
the missing of the constant S in the expression of σ S

H , which
is contrary to numerical results that the Chern number of the
gapped Dirac cone is always 0. The inclusion of an ultravio-

let regulator H eff
 guarantees a lattice regularization and also

leads to different topologies of the band structure. It is worth
pointing out that the anomalous Hall conductance should be
determined by the entire occupied band in the entire Brillouin
zone. Also in an ultra thin film, H eff

 is not zero for k < kc due
to the strong overlapping of the top and bottom surface states,
which is beyond the scope of this work and needs further
investigation.

V. HALF-QUANTIZATION AND PARITY SYMMETRY

Now we present a relation between the half-quantization
of the Hall conductance and the parity symmetry. In the
Haldane model and the Wilson fermions, it was found that
the Hall conductance is half-quantized when the chemical
potential is located at the energy crossing point [14,33]. Here
we prove that the Hall conductance is one half of an integer
if the parity symmetry is respected at the Fermi level μF . In
two dimensions, the Berry connection for band n is defined
as An(k) = −i〈un(k)|∇k|un(k)〉 and the Berry curvature is
defined as 	n,z(k) = −iεi j〈∂iun(k)|∂ jun(k)〉 where |un(k)〉 is
the Bloch function of band n with the eigenvalue as εn(k),
εi j is the Levi-Civita symbol, and indexes i, j run only over
x, y. The Hall conductance of the system equals the integral
of the Berry curvature of the filled bands over the Brillouin
zone (BZ) [32]

σxy = e2

2πh

∑
n

ˆ
BZ

d2k	n,z(k)θ (εn,k − μF ).

Here we consider the situation that the Fermi energy μF

intersects one or more bands and there are a certain number of
completely filled bands (C.F.B.). For each partially filled band
(P.F.B.), there will be one or more surfaces (Fermi surfaces)
in momentum space separating the occupied levels from the
unoccupied levels, which are closed loops in two dimensions.
Using the Stokes theorem, for the partially filled bands the
Berry curvature integral over the occupied states can be con-
verted into the line integral with respect to the Fermi surfaces
(FSs). Thus, we have

σxy = e2

h

∑
n∈C.F.B.

ˆ
BZ

d2k
2π

	n,z(k)

+ e2

h

∑
n∈P.F.B.

˛
∪aFSn

a

dk
2π

· An(k), (4)

where FSn
a is the ath Fermi surface of band n. According to

the Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
theorem, the first term in the bracket must be an integer for all
the completely filled bands. The second term in the bracket
is the sum of the Berry phases (divided by 2π ) along all the
Fermi surfaces for the partially filled bands, which can take an
arbitrary value without additional symmetry constraint.

Let us now prove that the line integral is equal to a half
integer when the parity symmetry is respected at the Fermi
surface FSn

a. The Fermi surface with parity symmetry obeys

PH (k)P−1 = H (M̂k),

where P is the momentum-independent unitary operator that
acts on the internal degrees of freedom, M̂ is an operator
in momentum space transforming k → M̂k. Since we have
PH (k)|un(k)〉 = εn,kP|un(k)〉 = H (M̂k)P|un(k)〉, the state
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P|un(k)〉 must be the eigenstate of H (M̂k) with eigenenergy
as εn,k. Thus, the presence of the parity symmetry at FSn

i
connects two states which have the same energy

|un(k)〉 = eiθn (k)P†|un(M̂k)〉,
where eiθn (k) is a U (1) phase. From which the Berry connec-
tion has the relation

An,i(k) = −i〈un(k)|∂ki |un(k)〉
= −i

〈
un(M̂k)

∣∣Pe−iθn (k)∂ki

(
eiθn (k)P†|un(M̂k)

〉)
= ∂kiθn(k) − i

∑
j

Ji j〈un(M̂k)|∂(M̂k) j
|un(M̂k)〉

= ∂kiθn(k) +
∑

j

Ji jAn, j (M̂k),

where Ji j = ∂ (M̂k) j/∂ki. Then we have˛
FSn

a

dk
2π

· An(k) =
˛

FSn
a

dk
2π

· ∇kθn(k)

+
∑
i, j

˛
FSn

a

dki

2π
Ji jAn, j (M̂k). (5)

On the left-hand side of Eq. (5), the line integral of the Berry
connection is performed in an anticlockwise direction. Using∑

i dkiJi j = d (M̂k) j and DetJ = −1, the second term on the
right-hand side of Eq. (5) transforms into

¸
FSn

a

dk
2π

· An(k)
where the line integral is performed in the clockwise direction,
which leads to

2 ×
‰

FSn
a

dk
2π

· An(k) =
‰

FSn
a

dk
2π

· ∇kθn(k).

The U (1) phase advances by 2πN with N being an integer
when k winds around a closed contour. The line integral of the
Berry connection over the Fermi surface with parity symmetry
is a half integer ‰

FSn
a

dk
2π

· An(k) = N

2
. (6)

With this result, we then return to the discussion of the Hall
conductance [Eq. (4)]. If the Fermi surface consists of a
single loop which is the case of the semimagnetic topolog-
ical insulator and line integral of the Berry connection over
the Fermi surface is quantized to π , the Hall conductance
is half quantized. Here we want to emphasize that the half
quantization in Eq. (6) is subjected to the symmetry of the
Fermi surface. The extension to multiple loops is straight-
forward. The simplest example is graphene, which possesses
the time-reversal symmetry and features a pair of massless
Dirac cones. In the absence of magnetic field, we do not
expect an anomalous Hall current to occur. This result can
be understood from Eq. (6) that the two independent Fermi
surfaces in graphene give rise to one half contributions to
the Hall conductance which alternates in sign and exhibits no
net effect. In a semi-magnetic topological insulator thin film,
according to the proof, all the contributions from the massive
Dirac cone are contained in the completely filled bands below
the Fermi surface [the first term in the bracket of Eq. (4)],
which only gives an integer-valued Hall conductance with the
inclusion of the high-energy states as required by the TKNN
theorem, and thereby is entirely irrelevant to determining the

FIG. 5. The Hall conductance as a function of the strength of
nonmagnetic disorders Uiσ0τ0 for several lattice sizes Lx × Ly × Lz

for a fixed Lz = 10nm. The Fermi level μF = 0.01 eV and the lattice
spacing a = 1nm. Two hundred random configurations are adopted
to average for each value.

half-quantization of the Hall conductance. We thus conclude
the one-half Hall conductance is attributed to the existence of
a single (i.e., undoubled) species of massless Dirac and the
parity invariance of the Fermi surface.

VI. DISORDERS AND ROBUSTNESS OF THE QUANTIZED
HALL CONDUCTANCE

The robustness of the HQH conductance comes from two
aspects. One is the local parity invariance for the gapless
Dirac cone. The exchange interaction is only present at the top
surface. The low-energy dispersion of the gapless Dirac cone
is mainly located at the bottom layer and is less affected by the
exchange interaction, although the part of the high energy is
modified. The other aspect is that the presence of the surface
states is mainly attributed to the t topological insulator. It is
known that the topology of its band structure is very robust
against the disorders. If the strength of disorders is not strong
enough to induce a topological phase transition, the gapless
surface states are still present. In this way the Dirac point is
very stable against the disorders before the phase transition
occurs. To illustrate the robustness of the single Dirac cone in
this quasi-two-dimensional system, we calculate the Hall con-
ductance as a function of the strength of disorders. We follow
the common practice in the study of Anderson localization
to introduce disorder through random nonmagnetic on-site
energy with a uniform distribution with [−W/2,+W/2]. We
calculate the Hall conductance of a disordered square of size
Lx × Ly × Lz for a fixed thickness Lz by means of the noncom-
mutative Kubo formula [47]

σH = i2πTr{P[−i[x, P],−i[y, P]]}e2

h
, (7)

with the periodic boundary conditions along the x and y direc-
tions. Here, x and y are the coordinate operators and Tr{· · · }
is the trace over the occupied bands. P is the projector onto the
occupied states of the system. Figure 5 shows the numerically
calculated disorder-averaged Hall conductances as functions
of the disorder strength. In the clean limit, the system exhibits
the HQH conductance as expected. With increasing disorder
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strength, the Hall conductance remains about 0.5 e2

h until the
disorder strength W exceeds about 0.83 eV. The critical dis-
order strength is much larger than the exchange interaction
and also larger than the bulk energy gap of the topological
insulator. Further increasing the disorder strength, the conduc-
tance drops quickly and the system is expected to be localized
by disorders. Thus, the HQH conductance is robust against
the disorder. This demonstrates explicitly that the gapless
Dirac cone is quite stable against the disorders. It is further
confirmed by calculating the self-energy in the self-consistent
Born approximation based on the effective four-band model
in Eq. (3) (see Appendix A 6).

The presence of impurities will cause the scattering be-
tween electron wave functions which leads to an energy-level
repulsion effect [48]. The stability of the Dirac point is thus
equivalent to examine the relative energy-level repulsion be-
tween the two states at the Dirac point from all other surface
and bulk states. The scatterings between the two bottom
surface states will not introduce Dirac mass renormalization
due to the presence of the local time-reversal symmetry. The
scatterings from the top surface states can also be neglected
due to the fact that the two opposite surface states have ex-
ponentially small overlap. The magnetic doping on the top
surface will cause an energy splitting ∼VzL

mag
z /Lz for the

two degenerate bulk states with Lmag
z as the thickness of the

magnetic layers. For sufficiently small Lmag
z /Lz, the energy

level repulsion effect from two nearly degenerate bulk states
will be canceled out. This picture is verified by a self-energy
calculation in the self-consistent Born approximation based
on the effective four-band model (Appendix A 6). Compared
with the two-band model [49], the contributions to the Dirac
mass renormalization from the gapped and gapless bands in
the four-band model alternate in sign and cancel each other out
at high energy. As a consequence, the Dirac point is still stable
even in the presence of disorder due to the local time-reversal
symmetry and the accompanying gapped bands.
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APPENDIX

1. Model Hamiltonian

Following the k · p model for the electrons of Pz ↑ and Pz ↓
orbitals from (Bi,Sb) and Te atoms of the topological insulator
(Bi, Sb)2Te3 [35], we construct the tight-binding model on a
cubic lattice in the basis of � = [Pz1 ↑, Pz1 ↓, Pz2 ↑, Pz2 ↓]T

[21],

H =
∑

i

�
†
i M0(i)�i +

∑
i,α=x,y,z

(�†
i Tα�i+α + �

†
i+αT †

α �i ),

(A1)

where

M0(i) =
(

m0 − 2
∑

α

tα

)
σ0τz + V (i)σzτ0;

Tα = tασ0τz − i
λα

2
σατx.

We take λx = λy = λ‖, λz = λ⊥, and tx = ty = t‖, tz = t⊥.
V (i) = Vz is the exchange interaction in the Cr-doped layers
and V (i) = 0 in the nondoped layers. For a thin film, we take
a periodic boundary condition in the x and y directions and
the open boundary condition in the z direction. The model is
reduced to

HFilm =
∑
iz,k

(
�

†
iz,k

[m0(k) − 2t⊥]�iz,k

+ �
†
iz,k

Tz�iz+1,k + H.c.
)

+
∑
iz,k

�
†
iz,k

[HP + V (iz )σzτ0]�iz,k,

with

m0(k) =
[

m0 − 4t‖

(
sin2 kxa

2
+ sin2 kya

2

)]
σ0τz;

HP = +λ‖[sin(kxa)σxτx + sin(kya)σyτx].

In the calculation, the parameters are set to be m0 = 0.28
eV; t⊥ = 0.4 eV; t|| = 0.566 eV; λ⊥ = 0.44 eV; λ|| = 0.41 eV.
The lattice constants are set to be a = b = 1.0 nm and c =
0.5 nm. For a film of finite thickness Lz = Nzc, iz = 1, . . . , Nz.

The energy dispersions can be obtained by diagonalizing
the Hamiltonian for a finite number of layers Nz. A finite gap
0 opens for the gapless Dirac cone and decays exponentially
in the thickness of the film. A finite exchange interaction can
reduce the gap further. For Lz = 10 nm, 0 = 2.21 × 10−6 eV
for Vz = 0, and 0 = 2.17 × 10−10 eV for Vz = 0.1 eV. Thus
the gap is negligibly tiny.

2. Zero modes

To gain an intuitive picture about the surface states of the
topological insulator, we put aside the λ|| term and reduce
the Hamiltonian for a thin film to the k-dependent one-
dimensional lattice model

H1d(k) =
∑

iz

�
†
iz,k

M0(k)σ0τz�iz,k

+ �
†
iz,k

(
t⊥σ0τz − i

λ⊥
2

σzτx

)
�iz+1,k + H.c.,

where M0(k) = m0(k) − 2t⊥ = m0 − 2t⊥ − 4t‖(sin2 kxa
2 +

sin2 kya
2 ). The Hamiltonian has the good quantum number

s = ±1, which is the eigenvalue of σz. In each block of
Hamiltonian Hs

1d, one can obtain the zero modes of the model
in the open boundary condition.

We now solve the zero modes of a semi-infinite chain (iz =
1, 2, 3, . . . ,). With the basis [�1,k, �2,k, �3,k, . . . , ]T , the
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Hamiltonian is

Hs
1d(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M0(k)τz t⊥τz − i λ⊥
2 sτx 0 0 · · ·

t⊥τz + i λ⊥
2 sτx M0(k)τz t⊥τz − i λ⊥

2 sτx 0 · · ·
0 t⊥τz + i λ⊥

2 sτx M0(k)τz
. . .

. . .

0 0 . . .
. . .

. . .

...
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)

The zero modes are the solution of the recurrence equations(
t⊥τz + i

λ⊥
2

sτx

)
�iz−1,k + M0(k)τz�iz,k +

(
t⊥τz − i

λ⊥
2

sτx

)
�iz+1,k = 0. (A3)

Set the trial function �iz,k = β�iz−1,k = β iz�k. The equa-
tion is reduced to[(

t⊥τz + i
λ⊥
2

sτx

)
+ M0(k)τzβ +

(
t⊥τz − i

λ⊥
2

sτx

)
β2

]
�k

= 0. (A4)

Multiplied by τz, it follows that �k should be the eigenstate
of τy, �k = χt�k, where χt is the eigenvector of τy with the
eigenvalue t = ±1. Thus(

t⊥ − λ⊥
2

st

)
+ M0(k)β +

(
t⊥ + λ⊥

2
st

)
β2 = 0. (A5)

Two roots of β are

β± =
−M0(k) ±

√
M2

0 (k) − 4
(
t2
⊥ − λ2

⊥
4

)
2
(
t⊥ + λ⊥

2 st
) . (A6)

The boundary conditions �iz=0,k = 0 and �iz→∞,k → 0 re-
quire |β±| < 1. Thus

|β+β−| =
∣∣∣∣ t⊥ − λ⊥

2 st

t⊥ + λ⊥
2 st

∣∣∣∣ < 1, (A7)

which leads to st = sgn[t⊥λ⊥]. Hence, the zero modes are the
eigenvectors of σzτy with eigenvalues st = 1 (s = t = 1 and
s = t = −1).

|β±| < 1 further requires

∣∣∣∣ − M0(k) ±
√

M2
0 (k) − 4

(
t2
⊥ − λ2

⊥
4

)∣∣∣∣ < 2

(
t⊥ + λ⊥

2

)
,

(A8)

which leads to −2t⊥ < M0(k) < 2t⊥. Hence, the zero modes
exist for k satisfying

0 < m0 − 4t‖

(
sin2 kxa

2
+ sin2 kya

2

)
< 4t⊥. (A9)

Thus, the wave function of the zero modes are

�iz,k = (β iz
+ − β

iz
−)�kξs ⊗ χt , (A10)

with st = 1, and (k2
x + k2

y )a2 < k2
c a2 � m0/t||.

By the same token, the condition of st = −1 gives two zero
modes in the opposite end. One can notice that β± have an

interesting property, i.e., when M2
0 (k) − 4(t2

⊥ − λ2
⊥
4 ) < 0, β±

are complex. In this regime, as shown in Fig. 6, their modulus
is a constant

|β±|2 =
(
t2
⊥ − λ2

⊥
4

)
(
t⊥ + λ⊥

2

)2 . (A11)

In this regime, the zero modes in every k point are as localized
as the zero modes at the � point. Hence, the exchange field on
one surface will not affect the other surface. We called this
regime the “parity-invariant regime.” The property of β± in
this regime explains why the Hall conductance is quantized as
a plateau.

3. Effective model

The lowest four bands of the semi-magnetic topological
insulator thin film can be effectively described by a 4 × 4

FIG. 6. The modulus of β± depending on kx with ky = 0. The

plateau of the modulus equals to
√

t2
⊥ − λ2

⊥
4 /(t⊥ + λ⊥

2 ).
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Hamiltonian in a two-dimensional Brillouin zone

HF =
(

λ||(sin kxaσy − sin kyaσx ) + V (k)σz f [m0(k)/T ∗]m0(k)

f [m0(k)/T ∗]m0(k) −λ||(sin kxaσy − sin kyaσx )

)
, (A12)

where V (k) = V0 f [−m0(k)/T ∗] + V1 f [m0(k)/T ∗] and
m0(k) = m0 − 4t‖(sin2 kxa

2 + sin2 kya
2 ). The Fermi-Dirac-

distribution-like factor f (x) = [exp(x) + 1]−1 describes the
process that the surface states merge into the bulk states. The
coefficient T ∗ is a model-specific parameter. The Brillouin
zone is divided into two regimes by the sign of m0(k). Here
kca � 0.69, which is given by m0(kc) = 0. f (k) = 0 in a
wide range area of momentum space k2

|| < k2
c , which is the

parity-invariant regime as we mentioned above. f (k) = 1 in
the outside k2

|| > k2
c , where the top and bottom surface states

are coupled via the term m0(k).
The top surface states experience the exchange field V0

and the field decays to a constant V1 when momentum ex-
ceeds kc. The parameters are V0 = Vz = 0.1eV, and V1/V0 �
LMag

z /Lz � 1 where LMag
z is the thickness of the magnetically

doped film. Figure 7 compares the results of the effective
model to the numerical results of the thin film by setting T ∗ =
0.05t‖ here. The energy separation between the gapped and
gapless bands shows the same dip at kc. The Hall conductance
of the gapless band exhibits the half-quantized Hall conduc-
tance in a wider range as a function of the Fermi energy level,
and the gapped band shows the zero Hall conductance when
the valence bands are fully filled. The total Hall conductance
is half quantized near the energy crossing point as expected.

The eigenstates for Hamiltonian (A12) are

|�S=+,s〉 =
(

cos ϕk
2 |ψS=+,s〉

− sin ϕk
2 σz|ψS=+,s〉

)
,

|�S=−,s〉 =
(

sin ϕk
2 σz|ψS=−,s〉

cos ϕk
2 |ψS=−,s〉

)
,

FIG. 7. Comparison between numerical calculated spectra and
the spectra of the effective model. The circles are the numerical
results, the solid line are the results of effective model. Left: The
gapped bands. Right: The gapless bands. The numerical calculation
is on the 10-nm film where the top 2-nm layers are Cr dopped with
Vz = 0.1eV. The parameters are m0 = 0.28 eV; t⊥ = 0.4 eV; t|| =
0.566 eV; λ⊥ = 0.44 eV; λ|| = 0.41 eV [35]. The thickness Lz =
10 nm. The lattice constants are a = b = 1.0 nm and c = 0.5 nm.
The parameter for the effective model is T ∗ = 0.05t‖.

with the two-component spinors

|ψS,−〉 =
(

iS sin φS

2
cos φS

2 eiθk

)
, |ψS,+〉 =

(−iS cos φS

2
sin φS

2 eiθk

)
,

and the corresponding eigenvalues are sεS with εS =√
λ2

‖[sin2(kxa) + sin2(kya)] + M2
S (k) where s = ± denote the

conduction and valence bands, respectively, and S = ± de-
note the two states in the conduction and valence band.
Here MS = 1

2V (k) + S
√

{ f [ m0(k)
T ∗ ]m0(k)}2 + 1

4V 2(k), ϕk =
arctan

f [ m0 (k)
T ∗ ]m0(k)
1
2 V (k)

and cos φS = MS
εS

.

We then evaluate the Berry connection and the Berry cur-
vature in the continuum limit, which allows us to perform the
calculations in polar coordinates. Since the radial component
of the Berry connection is only a function of radial coordinate
k and thus does not contribute to the Berry curvature along the
z direction. We only need to evaluate the angular part of the
Berry connection

AS,s;S,s
θ = −i

1

k
〈�S,s|∂θ |�S,s〉 = 1

k

1 − s cos φS

2
.

Then the Berry curvature along the z direction is given by

	S,s;S,s
z = 1

k

(
∂
(
kAS,s;S,s

θ

)
∂k

− ∂AS,s;S,s
k

∂θ

)
= − s

2k
∂k cos φS.

(A13)

The total Hall conductance is σH = ∑
S,s σ S,s

H with the Hall
conductance for each band as

σ S,s
H = e2

h

ˆ
d2k
2π

	S,s;S,s
z θ [μF − sεS (k)].

From Eq. (A13), for the valence bands s = −, we have

σ S,−
H = e2

2h

[
S − cos φS

(
kS,−

F

)]
,

where kS,s
F is the Fermi wave vector for each band and kS,s

F = 0
for a fully filled band.

4. Comparison between numerical results
and the effective model

In this section, we present the spectra and the Berry curva-
ture of the numerical results for the model in Eq. (1) and the
effective model in Eq. (3). The numerical results are obtained
by solving the quasi-two-dimensional tight-binding model nu-
merically. We focus on the four bands which are associated
with the surface states of the thin film. The energy spectra of
the effective Hamiltonian (A12) are

ε2
S = λ2

||(sin2 kxa + sin2 kya)

+
(

V (k)/2 + S
√

V 2/4 + [ f [m0(k)/T ∗]m0(k)]2

)2

,

with S = ±. There are two gapped and two gapless bands. The
analytical and numerical results are in excellent agreement as
shown in Fig. 7.
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FIG. 8. Comparison of the Berry curvatures of the gapless and gapped bands. (a) The Hall conductance of the gapped band depending on
Fermi level. (b) The Berry curvature distribution of the gapped valence band by numerical calculation. (c) The Berry curvature distribution
of the gapped valence band using the effective model. (d) The Hall conductance of the gapless band depending on Fermi level. (e) The Berry
curvature distribution of the gapless valence band by numerical calculation. (f) The Berry curvature distribution of the gapless valence band
using the effective model.

We further present the Hall conductance and the Berry
curvature for the gapped and gapless bands in Fig. 8. The Hall
conductance is zero for the gapped bands when the Fermi level
lies between the band gap caused by the exchange interaction
while the Hall conductance is −1/2 for the gapless bands
when the Fermi level lies between the bulk band gap. The later
is much larger. The Berry curvatures for the two bands are also
presented for comparison.

5. Laughlin-like argument for the half-quantized Hall
conductance in semi-magnetic topological insulator

In this section, we discuss how to understand the half-
quantized Hall conductance in a semi-magnetic topological
insulator following Laughlin’s argument. Here we consider
the periodic direction x is bent into a Corbino disk and pierced
by a magnetic flux � for three different cases as shown in
the upper panel of Fig. 9: (a) the quantum anomalous Hall
state that the topological insulator thin-film is coated by mag-
netic layers on both its top and bottom surfaces with parallel
magnetization; (b) the semimetal state that only top surface
is coated with magnetic layers; and (c) the axion insulating
state that the magnetizations of the coated two magnetic layers
are antiparallel. Then we discuss the charge transfer between
inner and outer perimeters (green surfaces in in the upper
panel of Fig. 9) if the flux changes by a quantum flux � =
�0 = h/e over time t .

For a changing flux, an electric field along the circumferen-
tial direction is induced according to Faraday’ s law, E (t ) =

1
2πR∂t� with R as the radial distance from the center of the
Corbino disk. Due to the boundary confinement effect along
the y directions, the energy spectra of the surface states for
such a geometry become a series of discrete one-dimensional
subbands. As shown in the lower panel of Fig. 9(a), in the
quantum anomalous Hall state there exist counterpropagating
chiral edge modes localized at the inner and outer surfaces
within the magnetic gap (denoted by the green shadow re-
gion). The wave-function distribution in the y direction for
each state 〈y/Ly〉 is indicated by the blue to red color gradient.
If we now change the threading flux, this corresponds to a
change in the vector potential in the circumferential direction
x. This gauge change shifts the center of the wave function
by an amount eA with A being the gauge change. In par-
ticular, the Hamiltonian and the spectra remain the same after
changing the flux of �0. The shift moves each state precisely
to an adjacent center. The only change induced by the adia-
batic insertion of a quantized flux is to carry the system from
one eigenstate to another, denoted by the dashed blue and red
arrows. In this situation, the net effect is to move one electron
from one edge to the other. The entire charge transfer of one
electron is Q = e between the edges as the flux changes by
� = �0 which corresponds a quantized Hall conductance
from Q = σH� [26,50]. However, in the semi-metal case,
as shown in the lower panel of Fig. 9(b), the Fermi level μF

(denoted by the blue dashed line) crosses a series of subbands
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FIG. 9. The upper panel shows the setups for Laughlin’s argument for (a) the quantum anomalous Hall state, (b) the semi-magnetic
topological insulator, and (c) the axion insulator state. A time-dependent flux �(t ) threads in the ring’s hole. The lower panel shows the energy
spectrum for the corresponding cases. The blue-to-red color gradient represents the wave-function distribution 〈y/Ly〉 in the y direction for
each state. The dashed arrows indicate the movement of the relevant states as the adiabatic change of a quantum flux. The blue dashed lines
indicate the Fermi level μF . The exchange-field-induced magnetic gap for the surface states are indicated by the green shadow region.

from the gapless bottom surface states instead of only two
edge states in the quantum anomalous Hall state. These states
are distributed extensively over the bottom surface. By exam-
ining the position expectation of each state 〈y/Ly〉, one finds
that the clockwise-propagating states are located close to the
inner perimeter and the anticlockwise-propagating states are
located close to the outer perimeter. The adiabatic change of
quantum flux moves the states for all the subbands crossed by
the chemical potential (denoted by the arrows) and the charge
transfer from outer side to the inner side can be evaluated from
the spatial imbalance difference between all the states with
opposite velocity at the Fermi level [34] Q = − e

2 . Thus,
the change of a quantum flux moves a half charge from one
edge to the other. This one-half charge transfer is a collective
result from all the bands intersecting the Fermi level. It is
in sharp contrast to the quantum anomalous insulator where
the contribution comes only from the two chiral edge states
and there are no net particle creations or annihilations in the
other modes. For the axion-insulating state shown as the lower
panel of Fig. 9(c), the Fermi level crosses no bands, there
is no charge transfer as the change of the flux, and the Hall
conductance is zero.

6. Robustness of the Hall conductance in the presence
of disorder

We study the robustness of the half-quantized Hall conduc-
tance in the presence of disorder by means of the effective

model and the self-consistent Born approximation. Here
we consider the randomly distributed, spin- and orbital-
independent scalar-type disorder potential: Hdis = V (r)14

with V (r) = ∑Ni
i=1 u0δ

2
r,ri

δz,zi , the scatterers of ±u0 are ran-
domly distributed with equal probability, and Ni impurities
are randomly located among N = NxNyNz lattices with the
impurity density as ni = Ni/N . To facilitate the calculation,
we first perform a unitary transformation U (k) = e−iτyσzϕk/2

with ϕk = arctan
f [ m0 (k)

T ∗ ]m0(k)
1
2 V (k)

such that the Hamiltonian can be

brought into a block-diagonalized form

H ′
F = UHFU −1 =

(
H+ 0
0 H−

)
, (A14)

where

HS′ = S′λ||(sin kxaσy − sin kyaσx ) + MS′ (k)σz.

Here MS′ (k) = g(k)(S′ + cos ϕk ) and g(k) =√
[ f [ m0(k)

T ∗ ]m0(k)]2 + 1
4V (k)2. The basis is transformed as

|� ′
S′,s′ (k)〉 = ∑

S,s US′,s′;S,s(k)|�S,s〉 where the symbols with a
prime denote the new basis for H ′

F after the transformation.
In the original basis, the capital letters S = ± denotes the top
and bottom surfaces, respectively, and the lowercase letters
s = ± denote the two bases for each surface. The scattering
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matrix in the transformed basis is

V R′,r′;S′,s′
k,k′ = 〈� ′

R′,r′ (k)|V (r)|� ′
S′,s′ (k′)〉

=
Ni∑

i=1

u0
e−i(k−k′ )·ri

NxNy

∑
S,s

U ∗
R′,r′;S,s(k)US′,s′;S,s(k′)φ∗

S (zi )φS (zi ),

where we use 〈ξr |ξs〉〈χRr |χSs〉 = δRSδrs for the scalar potentials and φS (z) is the wave function in the z direction with∑
z φ∗

R(z)φS (z) = δRS , which is orthonormal in surface subspace. The disorder averaging of two scattering matrix elements
can be evaluated as [46]

〈
V R′,r′;S′,s′

k,k′ V S′,s′;R′,r′
k′,k

〉
dis = niu2

0

N

⎛
⎝∑

S,s

U ∗
R′,r′;S,s(k)US′,s′;S,s(k′)

⎞
⎠

⎛
⎝∑

Q,q

UR′,r′′;Q,q(k)U ∗
S′,s′′;Q,q(k′)

⎞
⎠.

From U (k)U −1(k′) = e−iτyσz (ϕk−ϕk′ )/2, the intra and intersubblock disorder-averaged scattering amplitude can be obtained as〈
V R′,R′

kk′ ⊗ V R′,R′
k′k

〉
dis = 1 + cos(ϕk − ϕk′ )

2
σ0 ⊗ σ0,

〈
V R′,−R′

kk′ ⊗ V −R′,R′
k′k

〉
dis = 1 − cos(ϕk − ϕk′ )

2
σz ⊗ σz.

In the self-consistent Born approximation (SCBA), the self-energy �R′R′ (E , k) for each subblock is given by [51]

�R′R′ (E , k) =
∑

S′

∑
k′

〈
V R′S′

k,k′
1

E − �S′ (E , k′) − HS′ (k′)
V S′R′

k′,k

〉
dis

.

The subblock self-energy �R′R′ can be decomposed into Pauli matrices �R′R′ = ∑
i=0,x,y,z �i

R′R′σi. The renormalized Dirac mass
for subblock S′ is given by

M̄S′ (k) = MS′ (k) + �z
S′S′ (0, 0) = g(k)

(
S′ + cos ϕk

) + �z
S′S′ (0, 0).

Here we only are interested in mass renormalization for the gapless subblock which restricts us to only consider the self-energy
�−− for the lower subblock in Eq. (A14),

�z
−−(0, 0) = 1

2

∑
S′=±

∑
k′

Tr
[
σz

〈
V −,S′

0,k′ H̄S′ (k′)V S′,−
k′,0

〉
dis

]
−ε̄2

S′ (k′)

= 1

2

niu2
0v0

Lz

ˆ
d2k′

(2π )2

(
1 − cos ϕk′

2

M̄+(k′)
−ε̄2+(k′)

+ 1 + cos ϕk′

2

M̄−(k′)
−ε̄2−(k′)

)
,

where Lz is the thickness of the sample, v0 = a3 is the volume of the unit cell, and ε̄S′ =
√

λ2
||
∑

i=x,y sin kia + M̄2
S′ (k) is the

renormalized dispersion. For weak disorder strength, the renormalized functions in the integral can be approximated by the
unrenormalized ones

�z
−−(0, 0) = 1

2

niu2
0v0

Lz

ˆ
d2k′

(2π )2
g(k′)(1 − cos2 ϕk′ )

1

2

(
1

ε2−(k′)
− 1

ε2+(k′)

)

= niu2
0v0

Lz

ˆ
d2k′

(2π )2
sin2 ϕk′ cos ϕk′

g3(k′)
ε2−(k′)ε2+(k′)

. (A15)

For |k| < kc, we have sin ϕk ∼ 0. In this parity-invariant
regime |k| < kc, the Dirac mass renormalization is attributed
to the impurity scatterings from the undoped bottom surface
states. Since we have sin ϕk ∼ 0 for |k| < kc, this part of the
contribution in Eq. (A15) vanishes as a direct consequence
of the local time-reversal symmetry. In the parity-breaking
regime |k| > kc, the contribution of the integration comes
from the surface-to-bulk scattering. In this regime, there is
no symmetry to guarantee the vanishing of the integral. How-
ever, as the magnetic element is doped on the top few layers
this only causes a Zeeman energy splitting in the order of
V0LMag

z /Lz for the bulk states. In this regime, the gapped and
gapless bands are nearly degenerate and give the contributions
to the integral which alternate in sign. The total contributions
from these two bands yield a prefactor cos ϕk′ . For |k| > kc,

we have ϕk = arctan 2m0(k)
V1

∼ arctan( 2m0(k)
V0

Lz

LMag
z

). The pres-

ence of the factor Lz

LMag
z

� 1 yields the results ϕk ∼ π/2 and

cos ϕk ∼ 0. The integral Eq. (A15) is strongly suppressed due
to the factor sin2 ϕk′ cos ϕk′ . As a consequence, the integral
in Eq. (A15) nearly vanishes for large Lz, which explains
the robustness of the half-quantized Hall conductance in the
presence of weak disorder. The underlying physics can be
understood in a more intuitive way. The presence of impurities
causes the scattering between the electron wave functions
which lead to a level-repulsion effect [48]. The stability of
the Dirac point is thus equivalent to examining the relative
level repulsion between the two states at the Dirac point from
all other surface and bulk states. The scattering between two
bottom surface states will not renormalize the Dirac mass
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due to the presence of the local time-reversal symmetry. The
scattering from the top surface states can also be neglected
due to the fact that the two opposite surface states have an
exponentially small overlap. The magnetic doping on the top
surface will cause an energy splitting ∼VzL

mag
z /Lz for the

two degenerate bulk states with the thickness of the magnetic
layer Lmag

z . For a sufficiently small ratio of Lmag
z /Lz, the level

repulsion effect from two nearly degenerate bulk states will be
canceled out.

To demonstrate how the gapless Dirac cone can be stabi-
lized due to the existence of the massive Dirac cone in the
presence of disorder, we also calculate the disorder-induced
self-energy correction for two-dimensional gapless Wilson
Fermion as a comparison. In momentum representation, the
tight-binding Hamiltonian for a two-dimensional gapless Wil-
son fermion can be expressed as [11]

HWF = d(k) · σ,

with

d =
⎛
⎝ h̄v

a
sin(kxa),

h̄v

a
sin(kya),

4bh̄2

a2

∑
i=x,y

sin2

(
kia

2

)⎞
⎠.

In the self-consistent Born approximation, the self-energy
�WF = ∑

i=0,x,y,z �i
WFσ

i is a 2 × 2 matrix which is given by
the integral [49]

�WF = niu
2
0a2

ˆ
d2k

(2π )2

1

E − HWF(k) − �WF
. (A16)

Here we only consider the mass renormalization Re�z
WF(E =

0), then Eq. (A16) becomes

�z
WF = −niu

2
0a2

ˆ
d2k

(2π )2

bh̄2k2 + �z
WF

h̄2v2k2 + (
bh̄2k2 + �z

WF

)2 ,

where we use the continuum limit d = (h̄vkx, h̄vky, bh̄2k2).
Without introducing the high-energy cutoff, this integral dis-

plays a logarithmic ultraviolet divergence which indicates that
the states with higher energy give larger contributions to the
integral. This behavior is distinctly different from Eq. (A15)
for the four-band model where the higher-energy contribu-
tions are canceled due to the existence of an additional
massive Dirac band. By introducing the high momentum cut-
off � ∼ h̄π/a, the integral can be evaluated as

�z
WF ≈ −sgn(b)

π

4

niu2
0

Ec
ln

(
Ec

|�z
WF|

)
,

where Ec = |b|h̄2�2 � h̄v�,�z
w f is the largest energy scale

in the problem. This transcendental equation can be solved as

�z
WF = −sgn(b)Ec exp

[
−W

(
4

π

E2
c

niu2
0

)]
,

where W is the product logarithm function. For the value of
argument, W (x) is asymptotic as W (x) ∼ ln x − ln ln(x). By

introducing the dimensionless disorder strength κ = π
4

niu2
0

E2
c

,
we have

�z
WF ∼ −sgn(b)Ecκ ln

(
1

κ

)
,

that a sufficiently weak disorder will drive the gapless Wilson
fermion into a topological insulator phase with a Dirac mass
�z

WF.
In comparison with the two-band model [49], the contribu-

tions to the Dirac mass renormalization from the gapped and
gapless bands in the four-band model in Eq. (A14) alternate
in sign and cancel each other out at high energy. As a con-
sequence, the Dirac point is still stable against disorder due
to the local time-reversal symmetry and the accompanying
gapped bands.
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