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Berry-dipole photovoltaic demon and the thermodynamics of photocurrent
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We dismantle the previously held misconception that it is impossible for bulk rectification mechanisms to
induce a net DC electric current when the frequency of the impinging radiation lies within the optical gap
of a metal in the limit of small carrier relaxation rates. We argue that generically such in-gap rectification
mechanisms are irreversible and accompanied by a continuous exchange of energy with a heat bath and must also
be necessarily accompanied by a small but finite absorption of radiation in order to guarantee the positivity of the
net entropy production and abide by the second law of thermodynamics. We show, however, that the intraband
nonlinear Hall effect arising from the Berry curvature is a special kind of in-gap rectification mechanism that
behaves as a “photovoltaic demon,” namely, it can operate as an ideal reversible and dissipationless conveyor
of energy between the radiation and an external circuit. Its reversible nature allows for an interesting mode of
operation as an amplifier of circularly polarized light, whose efficiency can approach 100% and which could be
technologically promising, especially in the infrared frequency range.
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I. INTRODUCTION

Materials with broken inversion symmetry can display bulk
rectification effects, whereby an oscillating electric field pro-
duces an average rectified DC electric current. While these
effects have been investigated for decades [1–4], there is a re-
cent upsurge of interest in investigating their interplay with the
electronic band structure and Berry phase geometry [5–23], as
well as their potential for novel optoelectronic technologies
[8,20,24–28].

Despite all this research activity, the understanding of
how these bulk rectification effects fit within the conceptual
framework of nonequilibrium thermodynamics is relatively
un-explored. Therefore the first major objective of our cur-
rent study is to contribute to fill in this gap by investigating
perturbatively the constraints imposed by the second law of
thermodynamics on the leading nonlinear response functions
that govern such bulk rectification effects.

A second major objective of our work is to demonstrate
that it is possible to have a finite DC rectified current when
the frequency of radiation lies within the optical gap of a
material in the clean limit of small carrier relaxation rates.
While examples of in-gap rectification have been discussed
recently [29–32], other studies [32–36] have advocated for the
impossibility of in-gap rectification in the limit of small relax-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

ation rates.1 Hence, our second major objective is basically to
try to dismantle this fundamental misconception, namely, we
will demonstrate that there can be a net rectified DC current
when the frequency of the driving oscillating electric field lies
within the optical gap of the electronic band structure in the
ideal limit of zero temperature and vanishingly small relax-
ation rates and to second order in the driving electric fields. By
using a microscopically explicit model of an electronic system
coupled to a heat bath, we will show that this possible for
metallic systems with a Fermi surface and we will also discuss
why this is consistent with the laws of thermodynamics.

From the existence of these in-gap rectification effects, one
might be tempted to conclude that such mechanisms could
induce DC electric photocurrents without an accompanying
light absorption. As, we will see, however, despite remain-
ing finite in the limit of small relaxation rates, such in-gap
rectification mechanisms are generically dissipative, in the
sense that they are generically accompanied by a net positive
entropy production. As a consequence, they are generically
accompanied by a small but finite photon absorption, which
must be present in order to abide by the second law of thermo-
dynamics. Therefore it is inaccurate to claim that these in-gap
rectification mechanisms are not accompanied by photon ab-
sorption. We have found however one special limit in which
one particular in-gap rectification mechanism behaves as a
nondissipative reversible mechanism that does not contribute
to the net entropy production and, ideally, does not need to be

1For a detailed discussion of the imprecise statements in previous
literature see Appendix E of Ref. [37].
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accompanied by irreversible light absorption. This mechanism
is the nonlinear Hall effect [7,9,15–17,38].

As we will show, in the limit of frequencies smaller com-
pared to the optical gap but larger than the relaxation rate,
the “Hall” nature of this nonlinear Hall effect allows to trans-
fer the energy of circularly polarized light onto the energy
of an external electric circuit and vice-versa in a reversible
nondissipative fashion, which is why we refer this mechanism
“as a photovoltaic demon.” The third major objective of our
study will be then to illustrate the interesting opportunities that
this mechanism offers for novel optoelectronic technologies.
More specifically, we will show that the efficiency of this
mechanism to convert the energy of circularly polarized light
onto DC electric energy can approach 100% in the limit of
small frequencies compared to the optical gap. However, per-
haps, more interestingly, because of its reversibility, the same
mechanism can be used to transfer energy from at DC circuit
onto the radiation with high efficiency and therefore act as an
effective amplifier of low frequency circularly polarized light.

Our paper is organized as follows. In Sec. II, we setup
the framework that incorporates both thermodynamics and
nonlinear responses, discuss the work performed by the radi-
ation and the circuit, and identify the key quantities that allow
to determine whether an in-gap rectification mechanism is
dissipative or not. In Sec. III, we illustrate these principles and
quantities within a simplified Boltzmann single-band descrip-
tion. Section IV discusses a microscopic description of the
bulk rectification in the presence of a physical heat bath. Sec-
tion V applies the general considerations of Secs. II and IV to
a specific model, and validates the simpler picture of Sec. III.
In Sec. VI, we discuss photovoltaic and light-amplification
devices based on these principles, their efficiency, and the
requirements for their operation.

II. THERMODYNAMIC CONSIDERATIONS

We consider a crystalline electronic system coupled to
a heat bath and subjected to a spatially uniform but time
dependent vector potential A(t ). The energy of the system
can change in two ways: by the work, �W , performed by
the vector potential A(t ), and by the heat, �Q, absorbed or
released into the bath. From the density matrix describing the
system ρS (t ), these two quantities can be computed as follows
[39,40]:

�W =
∫ t f

ti

dt tr

(
ρS

dHS

dt

)
=

∫ t f

ti

dt j(t ) · E(t ), (1)

�Q =
∫ t f

ti

dt tr

(
HS

dρS

dt

)
, (2)

where ti and t f are initial and final times of a process, respec-
tively, and HS is the Hamiltonian of the electronic system. The
second equality of the expression for the work can be obtained
by assuming that the only explicit time dependent parameter
changing in the Hamiltonian of the system is the vector poten-
tial A(t ). The above makes manifest that the change of energy
of the system is �E = �W + �Q.

We would like to investigate the energy exchange of the
system with the radiation and an external electric circuit, as
depicted in Fig. 1. We view the external electric circuit as

radiationcircuit
system

bath

FIG. 1. Schematic of the crystalline electronic system coupled to
a heat bath, connected to an external circuit and subject to a radiation
field.

providing a DC time independent electric field E0 and the
radiation as the source of an oscillating electric field with
frequency ω, Eω(t ) = Eωe−iωt + c.c., where Eω is vector that
can be complex to account for the degree of polarization of
light. The total electric field acting on the system is the sum
of these E(t ) = E0 + Eω(t ), and therefore, from Eq. (1), the
work can be partitioned into the work performed by the circuit
and the radiation �W = �Wcirc + �Wrad, where

�Wcirc =
∫ t f

ti

dt j(t ) · E0, �Wrad =
∫ t f

ti

dt j(t ) · Eω(t ).

(3)

Let us assume the system reaches a well defined steady state of
oscillations periodic in the drive, with period T = 2π/ω. Be-
cause of periodicity the change of the system energy vanishes
over one cycle: �E = 0.2 On the other hand, the Kelvin-
Planck statement of the second law of thermodynamics [41],
implies that during one cycle the system can only release heat
into the bath: �Q � 0. Therefore the second law of thermo-
dynamics implies that the net work performed on the system
must be non-negative:

�W = �Wcirc + �Wrad � 0. (4)

We can compute the above work to leading order in electric
fields from linear response theory, where the electric current
is given by

j(1)(t ) = j(1)
0 + (

j(1)
ω e−iωt + c.c.

)
, j(1)

ω = σ(ω)Eω. (5)

Here σ(ω) is the complex linear conductivity tensor. By in-
serting the above expression onto Eq. (3), we then obtain the
leading expressions for the average power:

�W (2)
circ

T
= ET

0 σ(0)E0,

�W (2)
rad

T
= E†

ω[σ(ω) + σ†(ω)]Eω, (6)

where �W (2)
circ/T is the Joule heating effect and �W (2)

rad /T
accounts for the light absorption at finite frequency. There-
fore the second law of thermodynamics, as stated in Eq. (4),

2Due to the DC electric field, strictly speaking the Hamiltonian is
not periodic in time, but it is periodic up to a gauge transformation
after one period
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implies that the symmetric part of the DC conductivity and the
Hermitian symmetrized finite frequency conductivity must be
non-negative tensors.

Let us now compute the work to the next order of pertur-
bation theory. To second order in fields, the current is given
by

j(2)(t ) = j(2)
0 + (

j(2)
ω e−iωt + j(2)

2ωe−2iωt + c.c.
)
,

j(2)
ω f

=
∑
ω1,ω2

δ(ω1 + ω2 − ω f )σ(ω1, ω2)Eω1 Eω2 (7)

where ω1,2 ∈ {0,±ω}, E−ω ≡ E∗
ω, and σ(ω1, ω2) is the sym-

metrized second-order conductivity tensor, namely,

σabc(ω1, ω2) = σacb(ω2, ω1). (8)

From the above and using Eq. (3) the next order contribu-
tions to the circuit and radiation work can be shown to be

�W (3)
circ

T
= ET

0 σ(0, 0)E0E0 + ET
0 σ(ω,−ω)EωE∗

ω,

�W (3)
rad

T
= E†

ω[σ(ω, 0) + σ†(ω, 0)]EωE0, (9)

Therefore, from Eq. (9), we see that while a pure monochro-
matic electric field does not contribute to the power at the third
order, there is a nonzero contribution to the work performed
by the circuit and the radiation at third order when the DC
and the oscillating electric are concomitantly present. The
contributions from the second-order currents can allow the
system to act either as a solar cell, when the energy is trans-
ferred onto the DC circuit, �Wcirc < 0, or as a light amplifier
when it is transferred onto the radiation, �Wrad < 0, but such
negative work should always be compensated by a positive
work to abide by the second law of thermodynamics from
Eq. (4). We will call a rectification mechanism dissipationless
if the third-order contribution to total power as defined in
Eq. (4) arising from such mechanism vanishes, and we will
call it dissipative if it does not. As we will see, the fact that
a rectification mechanism allows for a rectified current within
the optical gap of a material is not a sufficient condition for it
to be dissipationless, and in fact, we find that generically such
in-gap mechanisms are dissipative. We will show that, one
specific example of these dissipative mechanisms that allows
for in-gap is the semiclassical intraband Jerk effect in metals
[17]. On the other hand, we will demonstrate that the CPGE
associated with the Berry-dipole driven nonlinear Hall effect
allows for a nonzero current within the transparency region
and that it is also a dissipationless mechanism for current
rectification in the ideal intraband limit in which the frequency
is much smaller than the optical gap �0.

Let us now specialize our discussion to the effects in met-
als. To focus on the intraband effects, we imagine that the
interband optical gap �0 is sent to infinity, �0 → ∞. At
zero temperature and in the ideal limit of vanishing carrier
relaxation rates (� → 0), the metal will have a transparency
region in ω where the dissipative part of the conductivity
would vanish as follows:

σ(ω) + σ†(ω) = 2�

ω2
D, � � ω, (10)

where D is the Drude weight tensor (taken to be sym-
metrized). Here � is the relaxation rate that will be defined in
a more explicit microscopic form in the Sec. IV below. From
the above we see that in the limit � → 0 the energy absorption
by the material becomes vanishingly small for the frequencies
within this optical gap. On the other hand, within this same
frequency range, the metal can have finite rectification and
as we will see also a nonzero third-order contribution to the
power as defined from Eq. (9) that remain finite in the limit
of � → 0. Combining Eqs. (6), (9), and (10), then one would
obtain that the leading contributions to the total power are

�W

T
= 1

�
ET

0DE0 + 2�

ω2
E†

ωDEω + ET
0K(ω)EωE∗

ω + · · · ,

(11)

where we replaced σ(0) → D/�, and the sub-leading terms
would contain terms of orders, e.g., O(E3

0), O(E4
ω ), O(E2

0E2
ω ).

We have introduced the tensor K(ω) which captures the third-
order contribution to the total work, and can be obtained from
the second-order conductivity as follows:

Kabc(ω) = σabc(ω,−ω) + σabc(0,−ω) + σcab(0, ω). (12)

When the tensor K(ω) is nonzero, the rectification process
leads to a nonzero contribution to the total work, and, there-
fore, also to the total heat transfer. As a result, a rectification
mechanism operating at a given ω, will be irreversible or
dissipative (namely contributing to the entropy change) if
K(ω) �= 0, and it will be reversible or dissipationless (namely
not contributing to the entropy change) if K(ω) = 0.

Notice from Eq. (11) that if we had not included the sec-
ond term accounting for the small but finite residual light
absorption arising from Eq. (10), the power in Eq. (11) could
be made negative for perturbatively small electric fields E0,
violating the second law of thermodynamics. In fact, the
minimum of the power as a function E0 is obtained for
Emin

0 = −�D−1K(ω)EωE∗
ω/2 (which is small by virtue of the

smallness of � and Eω) and is given by

�W

T

∣∣∣∣
min

= 2�

ω2
E†

ωDEω − �

4
[K(ω)EωE∗

ω]T

× D−1K(ω)EωE∗
ω + · · · . (13)

We see in the above that the second term containing the power
arising from dissipative second-order processes with nonzero
K(ω), is manifestly negative, because the Drude weight is a
positive definite tensor. The first term in Eq. (13) however is
perturbatively larger than the second term and guarantees the
positivity of the total power in the perturbative regime. This is
the term arising from the small residual light absorption from
Eq. (10). Therefore we conclude that the Joule heating term
alone is not enough to perturbatively enforce the positivity
of the total power, and a small but finite radiation absorption
must be present and coexist with the dissipative rectification
processes when these induce in-gap photocurrents in order to
abide by the second law of thermodynamics.

III. SIMPLIFIED BOLTZMANN DESCRIPTION

To illustrate the above considerations in detail within a
simplified model, we consider the single band Boltzmann
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description within the relaxation-time description employed
in Ref. [9]. While this might appear to be a simple-minded
treatment,3 in Secs. IV and V, we will demonstrate that its
predictions are recovered within a fully microscopic descrip-
tion of the system coupled to a heat bath in the intraband limit
of � � ω � �0. In the simplified Boltzmann description, the
electric current density is

j(t ) =
∫

k
f [∂kε + � × E(t )], (14)

where
∫

k ≡ ∫
dk/(2π )d , ε is the dispersion relation and �

is the Berry curvature of the band. The electron distribution
function f satisfies the Boltzmann equation:

∂t f + E(t ) · ∂k f = �( f0 − f ), (15)

where � is a relaxation rate in the simplified Boltzmann de-
scription, and f0 is the equilibrium Fermi-Dirac distribution.
Because the anomalous velocity is always orthogonal to the
electric field, we immediately see that the work associated
with the anomalous current is zero:

janom(t ) · E(t ) =
∫

k
f [� × E(t )] · E(t ) = 0. (16)

To linear order in electric fields, the electric current is

j(1)(ω) = 1

� − iω
DEω + F × Eω, (17)

where F = ∫
k f0� is average of the Berry curvature over

the occupied states and Dab = ∫
k f0∂a∂bε is the Drude weight

tensor with ∂a ≡ ∂ka . It is easy to see that neither the circuit
nor the radiation perform work on the electrons via the Berry
curvature to leading order of perturbation theory:

�W (2)
BC = �W (2)

circ,BC = �W (2)
rad,BC = 0. (18)

To leading order all the energy transfer to the electrons
arises from the Drude weight. More specifically, the work
performed by the radiation (radiation energy absorption) and
the circuit (Joule heating effect) on the electrons to leading
order are given by

�W (2)
rad

T
= j(1)(ω) · E∗

ω + c.c. = 2�

�2 + ω2
EωDE∗

ω, (19)

�W (2)
circ

T
= j(1)(0) · E0 = 1

�
E0DE0. (20)

The sum of the two terms above gives rise to the second-order
part of the expression in Eq. (11) in the limit � � ω.

We will now describe the contributions to the next order in
perturbation theory. Within the current Boltzmann approach,
there are two different mechanism contributing to second-
order conductivities: the semiclassical Jerk term, arising from

3We note that this description does not include the correction to the
Berry curvature introduced in Ref. [51], which can be neglected in
the limit in which the interband energy separation is sent to infinity
�0 → ∞, while keeping the intraband Berry curvature finite so that
a projection into a single band is justified (see Ref. [17]) where
one recovers the familiar expression for the Berry phase induced
anomalous velocity [52].

the nonparabolicity of the band dispersion, and the nonlinear
Hall effect, arising from the Berry curvature dipole (BCD)
[9,17]. The second order conductivities introduced in Eq. (9)
can be then separated into Jerk and BCD contributions as
follows (for details, see Appendix A):

σ Jerk
abc (ω,−ω) = 2

�2 + ω2
Jabc,

σ BCD
abc (ω,−ω) =

∑
d

(
εadcDbd

� − iω
+ εadbDcd

� + iω

)
,

σ Jerk
abc (ω, 0) = 2 − iω/�

(� − iω)2
Jabc,

σ BCD
abc (ω, 0) =

∑
d

(
εadcDbd

� − iω
+ 1

�
εadbDcd

)
, (21)

for jc(ω1 + ω2) = σcab(ω1, ω2)Eω1,aEω2,b, where Jabc =∫
k f0∂a∂b∂cε is the Jerk tensor, Dab = ∫

k f0∂a�b is the
Berry dipole tensor, εabc is the Levi-Civita symbol, and
Eω,a ≡ Eω · ea. We therefore see that both the Jerk and
the Berry dipole indeed give rise to a finite rectification
conductivity when the frequency resides within the optical
gap, even in the limit of � → 0. Despite this shared
interesting feature, there are, however, some key differences
between these mechanisms even at the level of rectification
conductivities. One is that the Jerk rectification conductivity
tensor J vanishes in time reversal invariant systems while the
Berry dipole tensor remains finite. Moreover, inside the gap
and for � → 0, the real part of the BCD rectification
conductivity vanishes, while the real part of the Jerk
rectification conductivity remains finite. This implies that
in this limit the Jerk mechanism leads to in-gap current
rectification driven by linearly polarized light, while the BCD
in-gap current rectification requires light with a nonzero
degree of circular polarization. Finally, we also see a distinct
scaling with frequency, with the BCD and Jerk decaying as
1/ω and 1/ω2 away from the Drude peak, respectively.

After substituting Eqs. (21) into Eq. (9) one can then ob-
tain the third-order contributions to the circuit and radiation
powers, which are given by

�W (3)
rad

T
= 4�2

(�2 + �2)2
E0JEωE∗

ω − 2E0 · Re

[DEω × E∗
ω

� − iω

]
,

(22)

�W (3)
circ

T
= 1

�2
E0JE0E0 + 2

�2 + ω2
E0JEωE∗

ω

+ 2E0 · Re

[DEω × E∗
ω

� − iω

]
. (23)

Therefore we see that there are contributions to the individ-
ual circuit and radiation works from both the BCD and Jerk
terms. Notice, however, that the contributions of the BCD to
the circuit and radiation work are exactly opposite to each
other and therefore disappear in the net work, as expected
from Eq. (16). In contrast the Jerk term contributes to the
total work, and therefore the Jerk term is dissipative according
to the general considerations of Sec. II. More specifically the
tensor K(ω) introduced in Eq. (11), directly depends on J (for
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FIG. 2. Schematic of the crystalline electronic system described
by a tight binding model with physical sites (red balls) which are
tunnel coupled (solid lines) among themselves, and with their own
identical fermionic bath (blue balls).

details, see Appendix A):

KBoltz(ω) = 6�2 + 2ω2

(�2 + ω2)2
J . (24)

When J �= 0, KBoltz(ω) approaches a nonzero limit for
� � ω. Following the general discussion of Sec. II, we there-
fore see that a small but finite radiation absorption from the
1/ω2 tail of the Drude peak in Eq. (19) necessarily needs to
accompany this mechanism in order to not violate the second
law of thermodynamics, see Eq. (13).

IV. QUANTUM DESCRIPTION WITH THE HEAT
BATH—FORMALISM

To investigate to what extent the Boltzmann description we
discussed above is valid in capturing microscopic irreversible
processes, we construct a fully microscopic quantum descrip-
tion of the crystalline electronic system coupled to a heat bath
and subject to a spatially uniform but time dependent vector
potential.

As we will demonstrate, the microscopic description in this
section agrees with the simpler Boltzmann description in the
limit of � � ω � �0, where �0 is the scale controlling the
interband optical gap, and thus it serves as a validation of
the previous description. But in addition, the full quantum
description will allow us to also describe the corrections that
appear for frequencies that are comparable to the interband
optical gap.

We will use a model of a noninteracting free fermionic
bath. This model is in the same class of those noninteracting
fermionic models often described within the Keldysh formal-
ism [13,42–48]. Here we will provide a description of these
baths that avoids the need of second quantization and Keldysh
Greens functions (but which is equivalent).

As depicted in Fig. 2, we take a model of the bath in
which the system sites are tunnel coupled to a collection of
identical bath sites. Thus the system plus bath form a large
tight-binding model as a whole. The single particle Hilbert
space including the system and the bath can be then decom-
posed into a direct sum of system and bath subspaces, namely,
their Hamiltonian and states have block form as follows:

H (t ) =
[

HS (t ) HSB

H†
SB HB

]
, ψ (t ) =

[
ψS (t )
ψB(t )

]
. (25)

The crystalline electronic system is described by a periodic
tight-binding Hamiltonian together with the perturbation from

the time dependent vector potential

HS (t ) = H0 + V (t )

=
∑

n

εn|χn〉〈χn| +
∑
mn

Vmn(t )|χm〉〈χn|, (26)

where |χn〉 and εn are unperturbed system state and energy
with m, n being general indices denoting wave vector, orbital
or spin degrees of freedom, while

V (t ) = H0(k − A(t )) − H0(k). (27)

The bath reads HB = ∑
n,i εi |ϕn,i〉〈ϕn,i| with |ϕn,i〉 being bath

state coupled to the system state |χn〉 and εi its energy. For
simplicity, we set the tunnel coupling λ between any sys-
tem state and bath state to be identical such that HSB =
λ

∑
n,i |χn〉〈ϕn,i|. This model is identical to that employed in

Refs. [10,48]
From Eq. (25), we obtain the coupled Schrödinger equa-

tions for system and bath states: iψ̇S (t ) = HS (t )ψS (t ) +
HSBψB(t ) and iψ̇B(t ) = H†

SBψS (t ) + HBψB(t ) (we set h̄ = 1
throughout the paper). By inserting the second equation into
the first one, one can formally eliminate the bath state ψB(t )
and obtain an integro-differential equation that generalizes the
Schrödinger equation for the open system ψS (t ). Its solutions
only depend on initial states of the bath and the system, ψB(t0)
and ψS (t0). Importantly, we now assume the fermionic bath
initially is in a thermal state with an equilibrium Fermi-Dirac
distribution, namely,

ρB(t0) =
∑
n,i

f0(εi )|ϕn,i〉〈ϕn,i|,

f0(εi ) = 1

exp[β0(εi − μ0)] + 1
, (28)

in which μ0 is the chemical potential of and β0 = 1/kBT0

denotes the temperature of the bath, respectively, and we
send the initial time to minus infinity t0 → −∞. It is possi-
ble then to obtain the density matrix of the system ρS (t ) =∑∞

n=0 ρ (n)(t ) perturbatively in terms of V (t ).
The bath is taken into a thermodynamic limit in which its

spectrum of energies εi becomes continuum and is described
by a density of states:

νB(ω) =
∑

i

δ(ω − εi ). (29)

For simplicity, we take an featureless bath with a flat and in-
finitely broad spectrum, namely, we take its density of states to
be a constant, νB(ω) = ν0. The relaxation rate scale associated
with the bath will then be

γ = ν0λ
2/2. (30)

With the above simplifications it is possible to find relatively
simple closed expressions for the density matrix of the system
expanded in powers of the time dependent perturbation. We
obtain the density matrix expansions to the zeroth order in
V (t ):

ρ (0)
mn = δmn

∫
ωb

2γ

ω2
b + γ 2

f0(εm + ωb), (31)

where we used shorthand notations
∫
ω

≡ ∫ ∞
−∞ dω/2π as well

as εnm ≡ εn − εm. Here the subscripts m and n are generic and
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include both momentum and band (e.g., orbital, spin, valley)
indices. The above distribution accounts for the broadening of
the energy levels of the system due to its coupling to the bath,

and reduces to the ideal Fermi-Dirac distribution in the limit
of γ → 0. Additionally, expanding V (t ) to the first order and
the second order, we obtain

ρ (1)
mn (t ) =

∫
ω

e−iωtVmn(ω) ρ̃ (1)
mn (ω),

ρ (2)
mn (t ) =

∫
ω1

∫
ω2

e−i(ω1+ω2 )t
∑

l

Vml (ω1)Vln(ω2)ρ̃ (2)
mln(ω1, ω2), (32)

in which we have

ρ̃ (1)
mn (ω) =

∫
ωb

2γ

ω2
b + γ 2

f0(εn + ωb) − f0(εm − ωb)

ω + ωb + εnm + iγ
,

ρ̃
(2)
mln(ω1, ω2) =

∫
ωb

2γ

ω2
b + γ 2

[
f0(εm − ωb)

(ω1 + ω2 + ωb + εnm + iγ )(ω1 + ωb + εlm + iγ )

+ f0(εn + ωb)

(ω1 + ω2 + ωb + εnm + iγ )(ω2 + ωb + εnl + iγ )
− f0(εl + ωb)

(ω1 + ωb + εlm + iγ )(ω2 − ωb + εnl + iγ )

]
. (33)

In Appendix B, we provide expressions for the above den-
sity matrices after explicitly integrating over ωb. This allows
to more clearly see why the above expressions go beyond
simpler commonly used accounts of relaxations that add
imaginary parts to the energy denominators, such as the
“adiabatic turn on” of perturbations [21] and the quantum
relaxation time approximation of Refs. [17,29].

In the case of our interest, however, the perturbation
V (t ) = H0(k − A) − H0(k) itself has a nonlinear dependence
on A(t ). In order to calculate the current density along with
the work performed by the circuit and radiation, we also need
expansions of the perturbation V (t ) in terms of A as

V (n)(t ) =
∑

a1···an

(−1)n

n!

∂nH0(k)

∂a1 · · · ∂an

Aω1,a1 · · · Aωn,an , (34)

in which an = x, y, z stands for spatial indices, ∂a ≡ ∂ka , and
Aω,a = Aω · ea.4 Its Fourier transforms are given by

V (n)(ω) =
∑

a1···an

δ(ω − ∑
nωn)Aω1,a1 · · · Aωn,anṼ

(a1···an ), (35)

where we used the notation

Ṽ (a1···an ) ≡ 2π
(−1)n

n!

∂nH0(k)

∂a1 · · · ∂an

. (36)

Similarly, for the current operator Ja(t ) = −∂H0(k −
A)/∂Aa = ∂H0(k − A)/∂ka, its expansions in A are

J (0)
a = ∂aH0(k), J (n)

a (t ) = ∂aV
(n)(t ). (37)

4Expanding perturbation (and current operator below) by deriva-
tives requires applying unitary transformations exp[∓ik · (xα − xβ )]
before and after derivatives, with xα the position for the αth atom in
the unit cell. Here we assumed all atoms have the same position for
simplicity [53].

Their Fourier transforms are J (0)
a (ω) = 2π∂aH0(k) and

J (n)
a (ω) =

∑
a1···an

δ(ω − ∑
nωn) Aω1,a1 · · · Aωn,an J̃ (a1···an )

a ,

(38)

in which we defined

J̃ (a1···an )
a ≡ ∂aṼ

(a1···an ). (39)

From the Eqs. (31) to (39), we are able to calculate current
densities and the corresponding conductivity tensors to linear
order in A,

j (1)
a (ω) = σab(ω)Eω,b,

σab(ω) = i

ω

∑
mn

[
Ṽ (b)

mn ρ̃ (1)
mn (ω)J (0)

a,nm + ρ (0)
mn J̃ (b)

a,nm

]
, (40)

and those to the second order,

j (2)
a (ω1 + ω2) = σabc(ω1, ω2)Eω1,bEω2,c,

σabc(ω1, ω2) = i

ω1

i

ω2

∑
mln

[
Ṽ (b)

ml Ṽ (c)
ln ρ̃

(2)
mln(ω1, ω2)J (0)

a,nm

+ Ṽ (bc)
mn ρ̃ (1)

mn (ω1 + ω2)J (0)
a,nm

+ Ṽ (b)
mn ρ̃ (1)

mn (ω1)J̃ (c)
a,nm

+ ρ (0)
mn J̃ (bc)

a,nm

] +
( b ↔ c

ω1 ↔ ω2

)
. (41)

We note that one needs to take limits, e.g., σab(0) =
limω→0 σab(ω) and σabc(ω,−ω) = limω1→−ω σabc(ω,ω1)
when encountering zero frequencies. Using Eq. (41), we
can then compute arbitrary components of K(ω) from its
definition Eq. (12).

To close this section, we would like to stress that the
above expressions from Eqs. (32) and (33) for the first- and
second-order corrections to the density matrix are distinct
from expressions obtained with simpler commonly used ap-
proaches to model relaxations such as the slow “adiabatic
turn on” of perturbations [21] or quantum relaxation time
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FIG. 3. (a) Dispersion relations for conduction (red) and valence (blue) bands of the time reversal breaking Hamiltonian h(k) in
its Brillouin zone, for a chemical potential μ0 (gray plane) crossing the valence band. [(b), (c), and (d)] Dimensionless conductivities
Re σxx (ω)/σ (1)

0 , σxxx (ω,−ω)/σ (2)
0 , and Im σxxy(ω,−ω)/σ (2)

0 for γ = �0/10 (blue lines), γ = �0/20 (green lines), and γ = �0/40 (red lines).
The characteristic linear and second order conductivities used here are σ

(1)
0 = e2/h̄ and σ

(2)
0 = a0τ0 · e3/h̄2 with τ0 = h̄/�0. Light red areas

denote the energy range in which optical transitions between the conduction and valence bands are allowed, while all other areas are gap
regions. Light orange areas denote the energy range between the chemical potential and top of the valence band. The insets are zoomed-in
views for regions of small values. Dashed circles highlight trends of in-gap conductivities as γ decreases. Parameters used: �0 = 1, a0 = 1,
tx = �0/5, ty = �0/6, φx,1 = π/5, φy,1 = π/7, m = �0/5, φx,2 = π/13, φy,2 = π/11; μ0 = −6�0/5, and β0 = 100/�0.

approaches such as those of e.g., Refs. [17,29]. On the one
hand the “adiabatic turn on” of perturbations provides a rustic
regularization of imaginary parts of energy denominators, but
it does not really capture true irreversible kinetic processes
that are needed to establish relaxation towards a unique steady
state of the driven quantum system (in fact, at second order,
different protocols for turning on perturbations can lead to
different answers for the late time density matrix). On the
other hand, a simple quantum relaxation time approximation
such as that employed in, e.g., Refs. [17,29], can lead to
physically spurious results in certain limits. For example, this
approach leads generically to a spurious prediction a finite
DC rectification conductivity in an insulator in the limit zero
frequency and zero temperature. Since the linear DC conduc-
tivity of an insulator vanishes at zero temperature, it can be
easily shown that the above result is inconsistent with the
criterion of positivity of power discussed in Sec. II and thus
violates the second law of thermodynamics.

V. QUANTUM DESCRIPTION WITH THE HEAT BATH —
NUMERICAL RESULTS

After describing the quantum microscopic formalism, we
now consider a specific two-dimensional tight binding model

h(k) = dx(k)σx + dy(k)σy + dz(k)σz, (42)

in which σx,y,z are Pauli matrices; and we chose the following
expressions for the vector parametrizing the Bloch Hamil-
tonian: dx(k) = tx sin(kxa0 − φx,1) and dy(k) = ty sin(kya0 −
φy,1) represent complex nearest neighbor hoppings in x
and y directions, and dz(k) = �0 + m[2 − cos(kxa0 − φx,2) −
cos(kya0 − φy,2)] with �0 characterizing the band gap size.
We set the lattice constant a0 = 1, and choose a generic set
of phase factors φx(y),1(2) �= 0 such that h(k) does not have the
time-reversal symmetry or any crystalline symmetries.

Figure 3(a) shows a typical dispersion relations for h(k).
The gap size between the valence band and the conduction
band is approximately 2�0 for the parameters chosen for this
figure. To focus on effects in metals, we chose a chemical
potential μ0 that crosses the valence band. Using Eqs. (40)
and (41), and for different γ , we calculated linear and non-
linear conductivities for h(k). Illustrative results are shown in
Figs. 3(b)–3(d).

Figure 3(b) for the linear conductivity Re σxx(ω) shows
that our bath has well-behaved current relaxation: there is
a nonzero DC conductivity for ω → 0 and finite γ , and at
low frequencies, one can observe a Drude peak that becomes
sharper as γ decreases. Also, from the inset of Fig. 3(b), one
can see that when the frequency lies in the gap region (white
areas), namely, regions outside the energy range in which
optical transitions are allowed (light red areas), the linear
conductivity Re σxx(ω) approaches zero as γ → 0 (e.g., see
dashed circles).
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0.01

-0.01
0 2 4 6
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FIG. 4. Time reversal symmetric rectification conductivity
σ TRS

xxx (ω,−ω)/σ (2)
0 (dimensionless) for hTRS(k) at γ = �0/10 (blue

lines), �0/20 (green lines), and �0/40 (red lines). The colored areas,
and markers have the same meaning as in Fig. 3. Parameters used are
also the same with those in Fig. 3. This figure illustrates that this
conductivity vanishes within the optical gap in the limit γ → 0.

The quantitative relation between the bath induced relax-
ation rate, denoted by γ , and the momentum relaxation rate
that enters the simplified Boltzmann description from Sec. III,
denoted by �, can be obtained by comparing the DC limits
({�, γ }  ω → 0) of the linear conductivities obtained from
both formalisms, which display the same Drude behavior, and
we have found to be given by:

� = 2γ . (43)

On the other hand, Figs. 3(c) and 3(d) illustrate that there
are indeed in-gap rectifications, exemplified by nonvanishing
σxxx(ω,−ω) and Im σxxx(ω,−ω) in the gap region in the limit
of γ → 0 (e.g., see dashed circles). This shows that nonva-
nishing rectification currents are not artefacts of the simpler
Boltzmann description.

To be able to isolate more precisely the in-gap rectification
mechanisms that are present in time reversal symmetric sys-
tems, we consider the following related model of time reversal
symmetric Hamiltonian:

hTRS(k) =
[

h(k) 0
0 h∗(−k)

]
. (44)

Namely this model is simply made by adding an additional
time reversed copy to the earlier time reversal breaking model,
making the new model time reversal invariant as a whole.
The idea is that this new model is expected to display Berry
dipole rectification but no Jerk effect. In fact, for the nonlin-
ear conductivity Im σ TRS

xxy (ω,−ω), which contains information
about the rectification of circularly polarized light from the
Berry dipole, one can verify that one simply obtains twice the
previous result, namely, that

Im σ TRS
xxy (ω,−ω) = 2 Im σxxy(ω,−ω). (45)

However, except for this special case, other time reversal
symmetric rectification conductivities behave differently from
their time reversal breaking counterparts, which we exem-
plified by plotting σ TRS

xxx (ω,−ω) in Fig. 4. We can see in
Fig. 4 that, within the gap region, time reversal symmetric
conductivity σ TRS

xxx (ω,−ω) → 0, as γ → 0 (e.g., see dashed
circles). This is in contrast to the nonvanishing of time reversal
breaking conductivity σxxx(ω,−ω) as γ decreases shown in

Fig. 3(c). Importantly, when ω is within the gap region, we
verified that

lim
γ→0

σ TRS
xxx (ω,−ω) = lim

γ→0
σ TRS

xyy (ω,−ω)

= lim
γ→0

Re σ TRS
xxy (ω,−ω) = 0. (ω ∈ gap)

(46)

The above confirms that the rectification conductivities arising
from the Jerk mechanism vanish in time reversal symmetric
crystals, which is consistent with the conclusion in Eq. (21).
However, we also verified that

lim
γ→0

Im σ TRS
xxy (ω,−ω) �= 0 (ω ∈ gap), (47)

namely, the rectification conductivity form the Berry dipole
does not vanish for both time reversal breaking and time
reversal symmetric crystals [see Eq. (21)].

After validating the existence of in-gap rectifications with
and without the time-reversal symmetry, we now turn to an-
alyze the third order total power �W (3)/T in the clean limit
ω  γ → 0, which is controlled by the K(ω) tensor defined
in Eqs. (11) and (12). For the Hamiltonian h(k) without any
symmetries, all components of K(ω) can be nonzero. For
simplicity, we assume that E0 = E0ex such that we can focus
on the components Kxab (a, b ∈ x, y). We note that the real-
ness of the power mandates that Kxxx,Kxyy ∈ R are real; and
due to symmetrized conductivity tensors [see Eq. (8)], using
Eq. (12), we have Kxyx(ω) = Kxxy(−ω) = K∗

xxy(ω). There-
fore the only four independent components for Kxab (a, b ∈
x, y) are Kxxx(ω), Kxyy(ω), ReKxxy(ω), and ImKxxy(ω). We
note that Kxxx(ω), Kxyy(ω) and ReKxxy(ω) correspond to the
work �W (3)/T performed by linearly polarized radiations;
on the other hand, ImKxxy(ω) appears exclusively for work
related to circularly polarized radiation.

To compare in detail the four independent K(ω) compo-
nents for h(k) from the quantum bath description and those
from Boltzmann formalism, in Fig. 5(a), we computed the
ratios between these components calculated from Eqs. (12)
and (41), and those from Eq. (24) in the ω  γ → 0 limit:

K̄xxx = lim
γ→0

Kxxx(ω)

KBoltz
xxx (ω)

, Re K̄xxy = lim
γ→0

ReKxxy(ω)

KBoltz
xxy (ω)

,

K̄xyy = lim
γ→0

Kxyy(ω)

KBoltz
xyy (ω)

, Im K̄xxy = lim
γ→0

ImKxxy(ω)

Dxz/ω
, (48)

where we used [see Eq. (21)]

− lim
γ→0

Im σ Boltz
xxy (ω,−ω) = lim

γ→0
Im σ Boltz

yxx (0, ω)

= Dxz

ω
= 1

ω

∫
k

f0∂x�z, (49)

to normalize ImKxxy(ω), because within the Boltzmann for-
malism limγ→0 ImKBoltz

xxy (ω) = 0. These ratios are plotted in
Fig. 5(a) which demonstrate that our results from the quantum
theory validate the Boltzmann analysis in the ω � �0 → ∞
limit, which reproduce exactly the predictions of Boltzmann
formalism in this regime.

The microscopic multiband formalism allows us also to
characterize the deviations beyond the Boltzmann intraband
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FIG. 5. (a) Ratios between the microscopic bath description and
Boltzmann description of the components of limγ→0 K(ω) which de-
termine the third-order contributions to power �W (3) for E0 = E0ex

in a 2D crystal without the time-reversal symmetry or any crystalline
symmetries. The fact that these curves approach 1 when ω � �0,
validates the Boltzmann theory in the intraband limit. When the
time-reversal symmetry is present so that the Berry dipole is the
only intraband rectification mechanism that is present, we see that
only Im K̄xxy from the Berry dipole Dxz persists and remains finite
(solid line), while the other three components vanish (dashed lines).
The vanishing of all the components of the work tensor K(ω) in the
limit ω � �0, indicates that the intraband Berry dipole rectification
is dissipationless. (b) Plots for three conductivities that constitute
limγ→0 ImKxxy(ω) and are normalized by Dxz/ω. Parameters used
are the same with those in Fig. 3, while all results are obtained at
ω  γ → 0 limit.

description when the frequency is comparable with the inter-
band optical gap: for a finite ω/�0, K̄xxx, K̄xxx, and Re K̄xxy

deviate from the unity; while Im K̄xxy becomes nonzero.
Therefore, in general, all four components lead to nonzero
�W (3)/T and are dissipative when interband effects are taken
into account.

For the time reversal symmetric model from Eq. (44), we
performed the same analysis for the four independent K(ω)
components. In this case, we found

lim
γ→0

KTRS
xxx (ω) = lim

γ→0
KTRS

xyy (ω) = lim
γ→0

ReKTRS
xxy (ω) = 0,

(50)

namely, in time reversal symmetric crystals and in the γ �
ω < �0 limit, total work �W (3)/T related to linearly polar-
ized radiations are zero. Moreover, from Eq. (46), one can
conclude that �W (3)

circ/T = �W (3)
rad /T = 0 vanish simultane-

ously in this circumstances.
On the other hand, ImKTRS

xxy (ω) takes the same value as in
the time reversal broken model, namely, we have that

lim
γ→0

Im K̄TRS
xxy (ω) = limγ→0 ImKTRS

xxy (ω)

DTRS
xz

= 2 limγ→0 ImKxxy(ω)

2Dxz

= lim
γ→0

Im K̄xxy(ω), (51)

The above component is illustrated in Fig. 5(a) using the
solid line. From Fig. 5(a), one can also observe that in the
γ � ω � �0 limit, ImKxxy(ω) = 0. Therefore this demon-
strates that indeed for time reversal symmetric crystals the

total work performed by circularly polarized radiation via
the Berry dipole mechanism exactly vanishes, namely, that
this mechanism of rectification is dissipationless in this limit.
The striking point is that this occurs while in-gap rectifica-
tion conductivity itself remains finite, namely, in this limit
Im σ TRS

xxy (ω,−ω) = 2 Im σxxy(ω,−ω) = −2Dxz/ω remains fi-

nite as we illustrate in Fig. 5(b). This means that �W (3)
circ/T =

−�W (3)
rad /T �= 0, or, in other words, that it is possible to per-

form dissipationless energy transfer between the circuit and
circularly polarized radiation, in agreement with the consider-
ations of Sec. III.

VI. APPLICATIONS

In this section, we will discuss how the dissipationless
nature of the intraband nonlinear Hall effect has a potential
to develop highly efficient photovoltaic and light amplifica-
tion devices. This is because the nonlinear Hall effect arising
from the Berry curvature dipole, behaves as a “photovoltaic
Demon,” namely, it transfers completely the energy from the
radiation onto the circuit in a reversible fashion without any
energy dissipated onto the heat bath. The BCD effect will
necessarily coexist with other dissipative effects, such as Joule
heating, and as a result there will always be a net imperfect
conversion of energy from the radiation onto the circuit. We
will show, however, that the ultimate bound of the efficiency
of energy conversion is 100%, and can be approached when
the nonlinear Hall effect dominates over the Joule heating and
the dissipative photon absorption processes.

The dissipationless nature of the nonlinear Hall effect
arises from the fact that the anomalous velocity is orthogonal
to the total electric field [see Eq. (14)], leading to a perfect
cancellation of the radiation and circuit BCD contributions to
the total work:

�W (3)
BD = �W (3)

circ,BD + �W (3)
rad,BD = 0. (52)

The above is the mathematical statement that the BCD does
not produce heat and behaves as a photovoltaic demon that
transfers completely the energy between the circuit and the
radiation.

The electronic system operates as a solar cell when
�Wrad > 0 and �Wcirc < 0. In this regime the system absorbs
energy from the radiation and transfer it onto the circuit. In
the opposite case, it behaves as an amplifier of light, when the
energy of the circuit is delivered onto the radiation �Wrad < 0.
We therefore introduce two kinds of energy efficiency func-
tions for the two modes of operation of the electronic system:

ηSolar = −�Wcirc

�Wrad
, for �Wrad > 0,�Wcirc < 0, (53)

ηAmp = − �Wrad

�Wcirc
, for �Wrad < 0,�Wcirc > 0. (54)

In the above equations, �Wcirc and �Wrad are understood to
be the respective works of circuit and radiation including all
processes, both dissipative and dissipationless. Notice that the
second law of thermodynamics from Eq. (4) implies that each
of the above efficiencies is always bounded by 1: η � 1. Since
the nonlinear Hall effect is allowed in time reversal invariant
systems [9] and in order to eliminate the dissipative jerk term,
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from here on we assume that our system has time-reversal
symmetry leading to J = 0. In this case, the work to leading
third order in electric field is

�Wcirc

T
= 1

�
E0DE0 − 2E0 · Re

[
E∗

ω × DEω

� + iω

]
, (55)

�Wrad

T
= 2�

E∗
ωDEω

�2 + ω2
+ 2E0 · Re

[
E∗

ω × DEω

� + iω

]
. (56)

The first terms of �Wcirc and �Wrad are the Joule heating
effect and the photon absorption from the Drude peak, respec-
tively, which are both dissipative processes. The second terms
are the BCD contributions, which we see are exactly opposite,
as expected from Eq. (52). We see also that, for ω  �, the
sign of the product of E0 with the vector Im[E∗

ω × DEω],
is what determines whether the work can be negative, and
therefore the sign of this is what ultimately determines if the
system operates as a solar cell or as an amplifier [see the
sign of the work done by a radiation from Eq. (56)]. E0 is
determined by the external circuit, whereas Im[E∗

ω × DEω]
is determined by the radiation. Moreover, Im[E∗

ω × DEω] is
only nonzero when the radiation has a finite degree of circular
polarization and reverses direction when the handedness of
the polarization is reversed. The intuition behind this product,
is that Im[E∗

ω × DEω] is the direction in which the rectified
current would flow when only Eω is present, and therefore we
have a solar cell when E0 is trying to oppose such current flow
and a radiation amplifier when E0 is aiding it (which requires
the circuit to deliver the energy to sustain this).

To estimate quantitatively the efficiency, for simplicity we
will assume a diagonal structure of the Drude weight tensor
D = D I2×2 and introduce the following notation:

Ea ≡ 2

D
Re

[
(E∗

ω × DEω )

1 − iω/�

]
, |Eb|2 ≡ 2

E∗
ω · Eω

1 + ω2/�2
, (57)

and E0 = E0n0. The system can operate as a solar cell for
arbitrarily small E0 and when the sign of the circuit voltage is
chosen so as to satisfy n0 · Ea > 0. Namely �Wcirc in Eq. (53)
can becomes negative for arbitrarily small E0. The maximum
efficiency of the solar cell as a function of E0 is obtained by
finding the maximum of Eq. (53), which occurs at

E0 = ESolar, max =
√

|Eb|2 + |Eb|4
|n0 · Ea|2 − |Eb|2

n0 · Ea
(58)

and the maximal efficiency is given by

ηmax = 1 − 2

⎛
⎝

√
|Eb|2

|n0 · Ea|2 + |Eb|4
|n0 · Ea|4 − |Eb|2

|n0 · Ea|2

⎞
⎠.

(59)

However, in order to operate as a radiation amplifier, the
circuit voltage direction has to be chosen to oppose the cur-
rent induced by the radiation (n0 · Ea < 0) and E0 needs to
overcome a threshold, given by

|Ethreshold| = |Eb|2
|n0 · Ea| . (60)

The maximum of Eq. (54) as a function of E0 can be found
in a similar fashion (see Appendix A for details), and despite

0
0

1

0.5 1

FIG. 6. Maximum solar cell and light amplifier efficiency ηmax

as a function of |Eb|/|n0 · Ea| [see Eq. (57) for the definition of these
electric field scales]. The maximum efficiency is achieved at |n0 ·
Ea|  |Eb| when BCD is much larger than a Drude weight.

differences between requirements for the regimes, the optimal
efficiency of the light amplifier is also described by Eq. (59).
Notice that interestingly, in the limit |n0 · Ea|  |Eb| effi-
ciency of both devices approaches 100% (see Fig. 6) and the
threshold to reach the amplification regime given by Eq.(60)
becomes arbitrarily small and therefore within the expected
validity of the perturbative description.5

The optimization that we just discussed focused on maxi-
mizing the efficiency, but in general this is not equivalent to
maximizing the total delivered power [namely, the maximum
of the numerators of the expressions for η in Eqs. (53) and
(54)], which might be more relevant for practical applications.
The maximum of delivered power in the solar cell regime
occurs at applied voltage E0 = |n0 · Ea|/2, and is given by

�Wcirc,max

T
= D

�

|n0 · Ea|2
4

, (61)

which grows with the radiation intensity and is proportional
to the magnitude of the vector Im[E∗

ω × DEω] for (� � ω).
On the other hand, the delivered power in the light amplifying
regime has no maximum within the third order of the pertur-
bation theory and increases linearly with increasing E0:6

�Wrad

T
= D

�
(E0 · Ea + |Eb|2). (62)

VII. SUMMARY AND DISCUSSION

We have demonstrated that it is possible for certain bulk
rectification effects to induce a nonzero rectified electric cur-
rent in metals when the frequency of the radiation resides
within the optical gap of the material even in the limit of
small relaxation rates, and shown that this is consistent with
the laws of thermodynamics. We have accomplished this by
using a fully microscopic description of the metallic electronic

5We emphasize that even though it can be arbitrarily small, � is
always viewed as finite. This is strictly needed in order to have a
well defined steady state and for quantities such as the Joule heating
to remain finite.

6The optimal value will be controlled by higher order nonlinear
processes.
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system coupled to a fermionic heat bath and shown that this
description reduces to a simpler Boltzmann single-band de-
scription within the relaxation time approximation in the limit
� � ω � �0, where � and �0 are the relaxation rate and the
optical gap for interband transitions, respectively.

By considering the electronic system subjected to the si-
multaneous presence of a DC electric field (e.g., arising from
an external circuit) and an oscillating electric field (e.g.,
arising from the radiation), we have shown that generically
these in-gap rectification processes are irreversible and ac-
companied by a nonzero exchange of heat with the bath,
characterized by the tensor K(ω) from Eq. (11). We have seen
that while always present, the DC Joule heating effect alone
is not enough to guarantee the positivity of the net entropy
production at arbitrarily small DC electric fields. Namely, in
addition to the ubiquitous Joule heating, it is strictly necessary
that these irreversible in-gap rectification processes [those
with K(ω) �= 0] in metals are accompanied by a small but
finite absorption of radiation in order to guarantee the positiv-
ity of the net entropy production and abide by the second law
of thermodynamics. These small absorption of radiation can
be provided by the tails of the Drude peak or the tails of the
interband absorption at the corresponding frequency ω of the
oscillating electric field that exist at small but finite relaxation
rate �.

We have shown, however, that the intraband nonlinear Hall
effect arising from the Berry curvature dipole is special in the
sense that it can be regarded as nondissipative and reversible
effect, whereby the electronic system acts as a perfect and
reversible conveyor of the energy of radiation onto that energy
of the circuit, and thus we have dubbed it a “photovoltaic
demon.” This allows the electronic system to operate either

as a highly efficient solar cell or alternatively as an amplifier
of circularly polarized light. We caution that the “solar cell”
mode of operation requires that the radiation has some circular
polarization, and therefore it is hard to imagine that this could
be technologically relevant as a traditional solar cell, since
sunlight is random and has no net degree of polarization.
However, interestingly the amount of light absorption can be
tuned with an additional DC electric field (and vanishes when
this field is zero), and therefore this principle could be tech-
nologically relevant for detection and for electrical control of
the transparency of circularly polarized light. On the other
hand, the mode of operation in which the electronic system
behaves as an amplifier of circularly polarized light holds
an interesting promise as an amplifier of circularly polarized
light, specially in the range of infrared frequencies.

During the completion of this work, Refs. [32,35] with
some overlapping discussion on the possibility of in-gap rec-
tification appeared, as well as Ref. [49] with a proposal for
using the BCD effect for optoelectronic devices with optical
gain that has some connection with our proposal of the BCD
as a light amplifier. Some of our results had been preliminar-
ily reported in Ref. [50]. We have also recently published a
subsequent paper [37] that further demonstrates the existence
of in-gap rectification through the lens of Floquet theory and
provides additional clarifications on past literature of in-gap
rectification.
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APPENDIX A: BOLTZMANN EQUATION, PERTURBATION THEORY, SOLAR CELL, AND A LIGHT AMPLIFIER

In this section, we will derive corrections to the electron distribution function and electric current in the presence of electric
field, starting from Boltzmann equation:

∂t f + E(t ) · ∂k f = �( f0 − f ), E(t ) = E0 + Eωe−iωt + E−ωe+iωt , (A1)

f =
∞∑

n=0

fn(t ), where f0 = fF-D, and fn ∼ |E|n, E∗
ω = E−ω. (A2)

fF-D stands for the Fermi-Dirac distribution. The iterative solution of equations above brings us to the following conclusion:

f1(t ) = f1(0) + f1(ω)e−iωt + f1(−ω)e+iωt , (A3)

f2(t ) = f2(0) + f2(ω)e−iωt + f2(2ω)e−2iωt + f2(−ω)e+iωt + f2(−2ω)e+2iωt , (A4)

where f (−ω) = f (ω)∗ and

f1(0) = − 1

�
E0 · ∂k f0, f1(ω) = − 1

� − iω
Eω · ∂k f0, (A5)

f2(0) = − 1

�
(E0 · ∂k f1(0) + Eω · ∂k f1(−ω) + E−ω · ∂k f1(ω)), (A6)

f2(ω) = − 1

� − iω
Eω · ∂k f1(0) − 1

� − iω
E0 · ∂k f1(ω), (A7)

f2(2ω) = − 1

� − 2iω
Eω · ∂k f1(ω), where a · ∂k ≡

∑
i

ai ∂

∂ki
, (A8)
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which allows us to compute the electric current response to electric field. In the first order, we obtain

j(1)(t ) = j1(0) + j1(ω)e−iωt + j(1)(−ω)e+iωt , (A9)

j(1)(0) = f1(0)∂kε + f0[� × E0], (A10)

j(1)(±ω) = f1(±ω)∂kε + f0[� × E±ω], (A11)

and in the second order,

j(2)(t ) = j(2)(0) + (j(2)(ω)e−iωt + j(2)(2ω)e−2iωt + c.c.), (A12)

j(2)(0) = f2(0)∂kε + f1(0)[� × E0] + f1(ω)[� × E−ω] + f1(−ω)[� × Eω], (A13)

j(2)(ω) = f2(ω)∂kε + f1(0)[� × Eω] + f1(ω)[� × E0], (A14)

j(2)(2ω) = f2(2ω)∂kε + f1(ω)[� × Eω]. (A15)

Before moving to the computation of the work done by a system, we want to emphasise that the total electric field
has two physically different components: a DC component that represents a circuit voltage and an AC component that
represents incoming radiation. These two components do a work separately and thus we split their contributions accordingly
�W = �Wcirc + �Wrad, where �Wrad is a work/power performed by the radiation, the �Wcirc work done by the circuit, and they
are given by

�Wcirc =
∫ t f

ti

j(t ) · E0dt, �Wrad =
∫ t f

ti

j(t ) · Eω(t )dt . (A16)

The sum of two quantities above has to be non negative, which brings us to three possible regimes.
(1) �Wcirc � 0, �Wrad � 0. In this regime, the system absorbs energy from all the incoming radiation.
(2) �Wcirc � 0, �Wrad � 0, |Wcirc| � |Wrad|. In this regime, the system takes energy from a radiation and delivers part of it to

a circuit. It is a solar cell.
(3) �Wcirc � 0, �Wrad � 0, |Wcirc| � |Wrad|. In this regime, the system takes energy from a circuit and delivers part of it into

a radiation. It is a light amplifier.
First, let us consider the Berry dipole current jBD(t ) and it’s averaged power, which we separated into the absorbed power

�Wrad,BD = jBD(ω) · E∗
ω + jBD(−ω) · Eω done by incident radiation with oscillating field, and the delivered power �Wcirc,BD =

jBD(0) · E0 done on to the electric circuit by the constant electric field. Using solution of the Boltzmann equation from above,
we obtain

jBD(0) =
∫

k
( f1(0)[� × E0] + f1(ω)[� × E−ω] + f1(−ω)[� × Eω]), (A17)

jBD(ω) =
∫

k
( f1(0)[� × Eω] + f1(ω)[� × E0]). (A18)

With these obtained, the Berry dipole related absorbed power and delivered power are

�Wrad,BCD =
∫

k
{ f1(ω)([� × E0] · E−ω ) + f1(−ω)([� × E0] · Eω )} = −2E0 · Re

[DEω × E−ω

� − iω

]
, (A19)

�Wcirc,BCD =
∫

k
{ f1(ω)([� × E−ω] · E0) + f1(−ω)([� × Eω] · E0)} = 2E0 · Re

[DEω × E−ω

� − iω

]
, (A20)

where Dab = ∫
k f0∂a�b is the Berry dipole and [DE]a = ∑

b DabEb is a matrix-vector multiplication. These two powers exactly
cancel each other (a · [b × c] = −c · [b × a]), �Wrad,BD + �Wcirc,BD = 0, which agrees with the above general analysis that total
power from the Berry dipole related current vanishes at any order of the perturbation theory.

Now, let us write the total energy delivered and absorbed up to the second order of the perturbation theory for current (third
order for power), which after slight simplifications, can be written as

�Wrad = 2�

�2 + ω2
E−ωDEω + 4�2

(�2 + ω2)2
E0JEωE−ω − 2E0 · Re

[DEω × E−ω

� − iω

]
, (A21)

�Wcirc = 1

�
E0DE0 + 1

�2
E0JE0E0 + 1

�2 + ω2
E0JEωE−ω + 2E0 · Re

[DEω × E−ω

� − iω

]
, (A22)
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where ADB = ∑
ab AaDabBb, AJBC = ∑

abc AaJabcBbCc, and

Dab =
∫

k
f0∂a∂bε, Jabc =

∫
k

f0∂a∂b∂cε. (A23)

are the Drude weight and Jerk tensors. We see that delivered Eq. (A21) and absorbed Eq. (A22) powers are sensitive to a sign
of a circuit voltage. If the Drude weight is negligible electro-optic effect is dominant, which enables an unexpected regime of
powering the radiation from a circuit. Additionally, if the circuit voltage direction is switched the system transits into a solar cell
regime.

We note that the requirement

�Wrad + �Wcirc = 2�

�2 + ω2
E−ωDEω + 1

�
E0DE0 + 6�2 + 2ω2

(�2 + ω2)2
E0JEωE−ω + 1

�2
E0JE0E0 � 0 (A24)

set’s a limit of perturbation theory validity. We see that BCD current is dissipationless and in not present in Eq.(A24) whereas
Jerk current is dissipative. It is important to notice that both effects are finite in an optical gap even in a clean limit � → 0.
Interestingly, in a limit J → 0 the restriction Eq.(A24) is automatically satisfied due to a positivity of a Drude weight. Yet, in
general, this requirement may not be satisfied for arbitrary value of E0. For example in a limit ω  �, we obtain

�E0DE0 + E0JE0E0 � 0, (A25)

which defines limits for a perturbation theory validity.
In the remaining part of the section, we want to demonstrate how to use our theory to optimize the performance of a system

as a solar cell or a light amplified. First, assuming that �Wrad < 0, �Wcirc > 0 which means that system operates as a solar cell
and time-reversal symmetry (J = 0) we want to analyze an efficiency of the system:

ηS = −�Wcirc

�Wrad
=

E0 · Re
[E−ω×DEω

1−iω/�

] − 1
2 E0DE0

E0 · Re
[E−ω×DEω

1−iω/�

] + E−ωDEω

1+ω2/�2

. (A26)

To simplify the further analysis we also assume that Drude weight is a diagonal tensor D = D I2×2, allowing us to rewrite the
efficiency in a simplified form:

ηSolar = E0 · Ea − |E0|2
E0 · Ea + |Eb|2 , where E0 = E0n0, Ea = 2

D
Re

[
E−ω × DEω

1 − iω/�

]
, |Eb|2 = 2

E−ω · Eω

1 + ω2/�2
, (A27)

which in a limit D  D can approach 1 (it is transparently seen if we also assume diagonal structure of a Berry dipole, however
it is not needed in general). We emphasize that limit of ultimate efficiency is achieved when Drude weight is negligible. This
regime is physically distinct from a clean limit, where Joel heating becomes immense for arbitrary small value of a circuit
voltage. In a clean limit, BCD mechanism is possible, however, one can not use it to power a solar cell.

Next, we study optimization of the device performance by tuning the applied voltage. It can be shown, that maximum
efficiency of a solar cell (which is possible for n0 · Ea > 0 and E0 < n0 · Ea) is expected at the following voltage:

E0 =
√

|Eb|2 + |Eb|4
|n0 · Ea|2 − |Eb|2

n0 · Ea
→ max[ηS] = 1 − 2

⎛
⎝

√
|Eb|2

|n0 · Ea|2 + |Eb|4
|n0 · Ea|4 − |Eb|2

|n0 · Ea|2

⎞
⎠. (A28)

Note that maximization of delivered power occurs at a different voltage max[�Wcirc] ⇒ E0 = n0 · Ea/2 → Wcirc,max = |n0 ·
Ea|2/4.

Similar analysis can be done for maximization of an efficiency of light amplifier with time reversal symmetry (which is
possible for n0 · Ea < 0 and E0 > |Eb|2/|n0 · Ea|). In this case, we have �Wrad < 0 and obtain:

ηAmp = − �Wrad

�Wcirc
= E0 · Ea + |Eb|2

E0 · Ea − |E0|2 . (A29)

Which is maximised at the following electric field with the consequent maximum efficiency:

E0 =
√

|Eb|2 + |Eb|4
|n0 · Ea|2 + |Eb|2

|n0 · Ea| , → max[ηAmp] = 1 − 2

⎛
⎝

√
|Eb|2

|n0 · Ea|2 + |Eb|4
|n0 · Ea|4 − |Eb|2

|n0 · Ea|2

⎞
⎠. (A30)

Interestingly enough, the optimal efficiency of the light amplifier is the same as the solar cell’s, where ultimate efficiency is
achieved when the Drude weight is negligible compared to a Berry dipole. Yet, in amplifying regime, amplifying power has no
optimal regime. The amplifying power linearly increases with the electric field magnitude.
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APPENDIX B: PERTURBATIVE EXPANSIONS OF THE DENSITY MATRIX

In this section, we re-express the perturbative expansions of the density matrices Eqs. (31) and (33) in the main text after
integrating over ωb. Using the Cauchy’s residue theorem, we find

ρ (0)
mn = δmn

1

2
[ f+(εn) + f−(εn)] ≡ ρ̃ (0)

n , f±(ε) = 1

2
± i

π
ψ (0)

(
1

2
± iβ

ε ∓ iγ − μ

2π

)
, (B1)

where ψ (0) is the zeroth-order Polygamma function. Importantly,

lim
γ→0

ρ̃ (0)
n = 1

1 + exp[β(εn − μ)]
, (B2)

which shows that ρ̃ (0)
n reduces to the ideal Fermi-Dirac distribution in the limit of γ → 0. Moreover, for the first- and second-

order expansions, we have

ρ̃ (1)
mn (ω) = ρ̃ (0)

n − ρ̃ (0)
m

ω + εnm + 2iγ
+ r (1)

+ (ω, εm, εn) + r (1)
− (ω, εm, εn)

ω + εnm + 2iγ
, (B3)

with

r (1)
+ (ω, εm, εn) = iγ

f+(εn) − f+(εm − ω)

ω + εnm
, r (1)

− (ω, εm, εn) = iγ
f−(εn + ω) − f−(εm)

ω + εnm
, (B4)

and

ρ̃
(2)
mln(ω1, ω2) = ρ̃

(1)
ln (ω2) − ρ̃

(1)
ml (ω1)

ω1 + ω2 + εnm + 2iγ
+ r (2)

+ (ω1, ω2, εm, εl , εn) + r (2)
− (ω1, ω2, εm, εl , εn)

ω1 + ω2 + εnm + 2iγ
, (B5)

in which

r (2)
+ (ω1, ω2, εm, εl , εn) = r (1)

+ (ω2, εl , εn) − r (1)
+ (ω1, εm − ω2, εl − ω2)

ω1 + ω2 + εnm
, (B6)

r (2)
− (ω1, ω2, εm, εl , εn) = r (1)

− (ω2, εl + ω1, εn + ω1) − r (1)
− (ω1, εm, εl )

ω1 + ω2 + εnm
. (B7)

Higher order expansions have similar recursive structures. From Eqs. (B3) and (B5), it is clear that the perturbative ex-
pansions of the density matrix for the system coupled with the featureless heat bath, obtained by solving the open system
Schrödinger equation exactly, have striking differences with those obtained from conventional perturbation theories assuming
an adiabatic turning-on or a hand-given relaxation. For periodically driven systems, the extra terms such as r (1)

± (ω, εm, εn) and
r (2)
± (ω1, ω2, εm, εl , εn) correspond to contributions from the Floquet states. Equations (B1), (B3), and (B5) are identical to and

numerically more efficient than Eqs. (31) and (33) in the main text.
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