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Quadratic superlattices: A type of nonperiodic lattice with extended states
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Deterministic nonperiodic lattices often exhibit properties intermediate between those of random and periodic
crystals. Properties that have attracted interest include complex heirarchical structure factors, the breaking up of
the band into a dense set of critical states and minigaps, and the interplay between extended and localized states.
In one dimension, considerable attention has focused on nonperiodic lattices showing properties intermediate
between periodic and random. We propose a one-dimensional nonperiodic lattice with lattice sites at 02d , 12d ,
22d , ... with length d playing the rôle of the lattice constant. Here we show that the structure factor S0(k), which
governs how waves are scattered and is reflected in many physical properties, is simply related to the Jacobi
theta function ϑ3(q). S0(k) is periodic in wave vector k and is singular continuous, consisting of a dense set of
peaks with k given by rational-fraction multiples of π

d , though the scaling properties of S0(k) are the same as for
periodic crystals. The electronic structure considered in a tight-binding model shows a bandlike spectrum, but
broken by a dense set of minigaps near peak locations in S0(k). These lattices show novel properties such as the
coexistence of a singular-continuous spectrum with extended states. Quadratic lattices may enable the physical
realization of special functions of mathematical and physical importance as well as for the design of nonperiodic
diffraction gratings, antenna arrays, ad coupled optical resonators to produce complex quasirandom behavior and
are of interest to study quantum interactions in nonperiodic optical lattices.
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I. INTRODUCTION

Periodic crystals, the stuff of textbook solid-state physics,
have been under investigation for over a century. Periodic
order leads to consequences that are familiar to any physics
student, such as the Bloch theorem, delocalized states, and
energy bands and bandgaps [1], and some that are not, such
as the scaling behavior of the structure factor (SF) [2]. The
presence of random disorder in crystals, which breaks strict
periodicity, has also been studied for many years, and overall,
the effect from a purely practical perspective is often to de-
grade the properties associated with the ideal periodic crystal
[3].1

In the 1970’s, the concept of a quasicrystal solidified [4–6].
A quasicrystal can be thought of as a nonperiodic tiling of
the plane by a finite set of tiles. Quasicrystals can have
rotational symmetries, but are not translationally invariant.
While hints of the existence of quasicrystals in nature predated
the first definitive reports, in 1984 Ref. [7] published results
of the x-ray diffraction pattern from Al6Mn and attributed
anomalous features to the fact that the material is a qua-
sicrystal. On the heels of this discovery, it was found that
a one-dimensional chain of atoms spaced by a judiciously
chosen Fibonacci sequence could be produced using a pro-
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1Important and rich physics associated with disorder is related to
localization effects that are qualitatively new behaviors not seen in
the ordered crystal.

jection technique based on a two-dimensional periodic crystal
yielding a one-dimensional quasicrystal [8]. Soon thereafter,
Merlin et al. [9] realized that such a structure could be pro-
duced in a nonperiodic semiconductor superlattice (SL). This
development also gave rise to explosive growth of interest in
other types of nonperiodic, but deterministic, SLs, such as the
Thue-Morse SL, though earlier interest in nonperiodic lattices
can be found in Refs. [10–14]. More recently, there is interest
in nonperiodic lattices in a range of systems [15], including
interacting systems [16], nanosystems [17,18], and photonic
systems [19]. Of special note, optical lattices are attracting
attention [20–22].

One of the themes to emerge from such studies on non-
periodic lattices is that their physical properties may be
intermediate between periodic and random [2,15]. While
studies of various physical properties, including vibrational,
electronic, and transport, of such nonperiodic SL ensued [15],
a key quantity that often reveals the underlying structure in ex-
periments is the SF. While the SF is typically directly related
to the results of x-ray- and neutron-diffraction experiments,
it also underlies behaviors observed in the vibrational, elec-
tronic, transport, and other properties.

In this contribution we report on theoretical work concern-
ing a novel nonperiodic lattice we propose called a quadratic
chain or quadratic SL. In this structure, the lattice sites are
at positions z = z j with z j = j2d , j ∈ W (whole numbers) as
shown in Fig. 1. We show that the SF S0(k) has remarkable
properties: (a) it is periodic in wave vector k with period 2π

d ;
(b) S0(k) consists of a dense set of peaks with wave vectors
kr,s = r

s
π
d with r and s mutually prime integers with r and s of

opposite parity; (c) the SF obeys a power law with respect to
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zj: 02d 12d 22d 32d 42d 52d

FIG. 1. Schematic diagram of the quadratic chain. z j = j2d labels positions of lattice sites (or atoms) (pink for j = 0, red for j ∈ N)
comprising the quadratic chain. The scattering amplitude of the sites in black is zero. The Fourier transform of this chain is the Jacobi theta
function ϑ3(q) with q the nome leading to a highly complex structure factor despite the quadratic chain’s simplicity.

lattice length, i.e., S0(kr,s) ∝ Lγ (kr,s ) with L = N2d (with N the
maximum value of j) the overall SL thickness and scaling pa-
rameter γ (kr,s) = 2 as in the periodic and quasiperiodic cases;
(d) the SF is straightforwardly expressed in terms of the Jacobi
theta function ϑ3(q) [23] and the spectrum exhibits properties
of mathematical interest; that is, the quadratic SL enables
the physical realization of a function of central importance;
(e) the singular-continuous energy spectrum of the quadratic
SL maintains an overall bandlike shape with the existence of
extended (as well as localized) states for sufficiently weak
on-site energies; the spectrum contains a dense set of energy
eigenvalues and minigaps; (f) the quadratic lattice studied
here is the simplest example of a class of lattices with z j a
polynomial in j with integer coefficients. In order to unveil the
interesting behavior of the quadratic chain, we first compute
the SF and then the electronic structure in a nearest-neighbor
tight-binding model (NNTBM). While the quadratic chain
shares certain characteristics of other celebrated nonperiodic
lattices, such as Fibonacci and Thue-Morse, we shall see that
several aspects of the quadratic chain stand out. These include
(1) the relationship between the SF and the Jacobi theta func-
tion, (2) the full classification of the peaks in the SF which
is distinct from that for other nonperiodic chains, and (3) the
periodicity in wave vector of the SF.

II. STRUCTURE FACTOR

The SF gives the x-ray scattering strength in the first Born
approximation, but also underlies numerous other physical
properties such as the electronic structure in the perturbative
limit, and it is thus to the SF that we first turn our attention.
The quadratic chain is defined by function

p(z) =
∞∑
j=0

(
1 − 1

2
δ0 j

)
δ(z − z j ) (1)

with positions z j = j2d of the lattice sites along the z axis and
d a fundamental length. The fact that the lattice site z0 receives
apparent special treatment is a mathematical convenience, and
does not affect the results for long chain length. To obtain
convergent results, we need to consider finite-length chains.
To do so, we impose a window w(z) on p(z) and consider
the SF associated with f0(z) = w(z)p(z); we will make two
choices for w(z), viz., (i) �(2Nz/d + 1

2 ) with N ∈ N or (ii)
e−α|z| with α > 0, α ∈ R. �(y) is the unit rectangle func-
tion with �(y) = 1 for y ∈ (− 1

2 , 1
2 ), 1

2 for y = ± 1
2 , and 0

otherwise. N + 1 gives the number of atoms with nonzero
scattering amplitude (the pink and red atoms in Fig. 1) in
the chain (including the pink zeroth atom), while α gives
the attenuation of the scattering amplitude of the atoms as z
increases. As we discuss in Appendix B, these two ways of
considering what in essence is a finite chain are equivalent
for our purposes as chain length becomes large, viz., N → ∞

or α → 0. The purpose of the window is twofold. First, the
direct computation of the SF of p(z) indeed does not exist.
This in and of itself need not be viewed as a problem as any
real quadratic chain or SL would be of finite length. Second,
by computing the SF of f0(z), namely the windowed quadratic
chain p(z), we can systematically study its scaling properties
as the window size becomes large.

We now define the SF. We have S0(k) = |F0(k)|2 with F0(k)
the Fourier transform of f0(z) (the convention for the Fourier
transform is in Appendix A). Scaling means the power-law
behavior, alternatively (i) Lγ (k) = (N2d )γ (k) ∝ S0(k) for L →
∞ for the finite-length chain (the conventional definition) or
(ii) α−γ (k) ∝ S0(k) for α → 0. Before moving on, we relate
the number N of atoms in the quadratic chain (for N large,
we can approximate N + 1 by N) to chain length L = N2d
in a finite-length quadratic chain and by extension to α in an
infinite-length quadratic chain. For the quadratic chain α−1 ∼
L = N2d . In Appendix G we show

γ (k) ∼ − 1

ln N
ln S0(k) ∼ − 2

ln αd
ln S0(k). (2)

Note the factor of 2 in the numerator in the rightmost expres-
sion.

To compute S0(k), we focus here on the approach of case
(ii) which more easily yields closed-form expressions. Substi-
tuting the expression for f0(t ), we have F0(k) = 1

2ϑ3(q) with
ϑ3(q) a Jacobi theta function

ϑ3(q) = 1 + 2
∞∑
j=1

q j2
(3)

and q = exp[−i(k − iα)d] the nome [24].2 Consequently,
the SF is simply S0(k) = 1

4 |ϑ3(q)|2. Inasmuch as ϑ3(q) is a
Fourier series in k, S0(k) is periodic in k with period 2π

d . It
is remarkable that the theta function arises straightforwardly
from such a simple form for p(z). ϑ3(q) appears in such
disparate fields as number theory, the solution to the heat-
conduction equation, and in the study physical systems in
multiply connected spaces [25]. As we shall see below, wave
vectors k = kr,s = r

s
π
d with r ∈ Z (integers) and s ∈ N (nat-

ural numbers) play a special role giving the locations of the
minima and peaks of S0(k).

Figure 2 shows S0(k) for (i) N = 10 (solid black curve)
and (ii) αd = 0.01 (dashed blue curve) taking d = 1 for
k ∈ [0, π/d ). For case (i), we replace the upper limit in
the summation defining ϑ3(q) by N and for the nome take
q = exp(−ikd ). [The results for other values of k outside the
range shown follow from S0(k) = S0(k + 2π/d ) and S0(k) =
S0(−k).] Note that α = 0.01 corresponds roughly to N = 10.

2There are several notations current for theta functions. Please note
the definition above.
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FIG. 2. S0(k) with αd = 0.01 on a logarithmic scale. S0(k) is
periodic with period 2π/d . Also, S0(k) = S0(−k); hence, we only
show the SF within k ∈ [0, π/d ). Note that α = 0.01 corresponds
roughly to N = 10 (taking d = 1).

Indeed, the two curves are overall similar, though the dashed
curve exhibits somewhat sharper peaks and troughs. The SF
is composed of a complex sequence of peaks separated by
minima, the positions of which are discussed below. As N
increases or α decreases, the number of visually evident peaks
increases and the peaks become sharper.

In Appendix E we discuss finding the locations of the
zeros and the locations and magnitudes of the peaks in S0(k).
The zeros (in the N → ∞ or α → 0 limit) occur for r and
s odd, viz., at wave vectors k2m−1,2n−1 = 2m−1

2n−1
π
d with m ∈ Z

and n ∈ N. That is, for rational numbers with odd numerator
and denominator. One easily verifies these wave vectors as the
locations of the minima in Fig. 2.

We now turn our attention to the peaks in S0(k). The max-
ima occur at the two remaining classes of kr,s = r

s
π
d ,with r and

s of opposite parity, viz., k2m,2n−1 = 2m
2n−1

π
d and k2m−1,2n =

2m−1
2n

π
d . For k2m,2n = 2m

2n
π
d , 2m and 2n are not mutually prime,

and thus k2m,2n can be reduced to one of the above cases. The
maxima seen in Fig. 2 are at the values of k just mentioned.

Next, we consider the scaling of the peaks in S0(k). For kξ,η

corresponding to a peak in S0(k), using method (i), we have
for large N ,

Nγ (kr,s ) ∼ S0(kr,s) ∼
∣∣∣∣∣

N∑
j=1

e−ikr,sd j2

∣∣∣∣∣
2

∼ N2

η2

∣∣∣∣∣
η∑

j=1

e−ikr,sd j2

∣∣∣∣∣
2

,

(4)

noting that eikr,sd is an ηth root of unity for the appropriate
η ∈ N (see Appendices E and F), whence γ (kr,s) = 2, as
for a periodic or quasiperiodic chain. The summations in the
expression above are known as Gauss sums; closed-form ex-
pressions are given in Apprendix F. The fact that γ (kr,s) = 2
suggests that the corresponding electronic states can be ex-
tended. We shall later more carefully address the problem
of extended states in the electronic structure. In Fibonacci
chains, by contrast, the SF is composed of a dense set of
peaks, but states exist that are critical—neither extended nor
localized [15].

Using the results above, we can verify that the peak heights
and positions are as expected. In Fig. 3 is shown S0(k) for
αd = 0.001 [case (ii)], identifying the positions and heights

FIG. 3. S0(ω) with αd = 0.001 on a logarithmic scale. (a)–
(c) shows the peak positions and heights (green dots) for k2m,2n−1,
while (d)–(f) for k2m−1,2n. Note that some peaks are repeated as in
these cases the relevant fraction 2m

2n−1 or 2m−1
2n can be reduced to give

a result found for a smaller value of m.

of selected peaks (green dots). In Figs. 3(a)–3(c) are shown
the expected peak positions and heights for k2m,2n−1, while
Figs. 3(d)–3(f) for k2m−1,2n. Note that some peaks are repeated
as in these cases the relevant fraction 2m

2n−1 or 2m−1
2n can be

reduced to give a result found for a smaller value of m. In
passing, note that case (ii) gives a closer visual representation
to S0(k) for the infinite chain than case (i) for modest values
of N .

We can see heuristically why kr,s with r and s of opposite
parity determines the peaks. S0(k) peaks for wave vectors k
such that the interferences between scattering from the various
atoms is net constructive, i.e., after considering interference
terms from all such scatterings. Nonetheless, for scattering
between any pair of sites j and j′ separated by an odd number
j − j′, there is always an integer n such that k2m−1,2n( j2 −
j′2)d is a multiple of 2π , while for j − j′ even, there is always
an integer n such that k2m,2n−1( j2 − j′2)d is a multiple of 2π .

To close this section, we have found the SF S0(k) and its
scaling behavior in closed form. S0(k) is singular continuous
in the N → ∞ or α → 0 limit and consists of a dense set
of peaks given by ratios of mutually prime integers ξ and η

multiplied by π
d with ξ and η of opposite parity. The scaling

parameter γ (kr,s) = 2 in all cases as in a periodic or quasi-
periodic chain. The appearance of S0(k) is complex; however,
the peaks occur in families whose spacing and heights follow
simple rules, as seen above in Fig. 3. Thus, the quadratic SL
provides a route to physically realize ϑ3(k) via S0(k).

III. ELECTRONIC STRUCTURE

The SF is of direct interest to describe physical phenomena
in which the first Born approximation is valid. Nonetheless,
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FIG. 4. Energy eigenvalues E of the nearest-neighbor tight-
binding Hamiltonian Ĥ for an N2 = 81 chain with (a) λ = 0, (b) −2,
and (c) −20. The main frame restricts the energy scale to the spectra
of the bandlike states, while the insets show the entire spectra includ-
ing states strongly localized about j2d . We note an overall bandlike
shape with strongly localized states at low energy. The spectrum
exhibits a set of minigaps (see Fig. 5) closely correlated in position
and magnitude with those in S0(k).

it is known for various nonperiodic lattices that the SF often
provides insight into a range of physical properties—not just
into x-ray and neutron diffraction—that require description
beyond the first Born approximation. We therefore consider
the electronic structure of the quadratic chain in a simple
NNTBM. The quadratic modulation is applied to the diagonal
matrix elements in a fashion seen below corresponding to
Fig. 1. We assume the following Hamiltonian Ĥ in the basis
of atomic orbitals:

Ĥn,n′ = − δn,n′+1 − δn,n′−1 + λδn,n′
(
δn,perfect square − 1

2δn,0
)
,

n, n′ ∈ {0, N2}. (5)

FIG. 5. (a) The energy eigenvalues E for for an N2 = 2000 chain
with λ = −20. The range on the vertical scale is limited so that the
states localized about the sites j2d do not appear. The minigaps are
the small variations about the expected − cos kd band shape for λ =
0. (b) The difference �E between E for λ = −20 and 0 for N2 =
2000. Compare with Fig. 2 aligning the horizontal axes. We observe
a dense set of minigaps of magnitude correlated with the peaks in
S0(k). The largest minigap occurs for an eigenstate index close to
N/2, which in the case of λ = 0 is for k ≈ π

2d .

The subscripts n and n′ here to refer to tight-binding sites n,
while the label j is reserved to describe values of n, n′ = j2,
i.e., the atoms in the quadratic chain when n is a perfect
square. In other words, the interatomic matrix element be-
tween neighboring sites is −1, while the on-site potential is
zero unless the site index is a perfect square in which case it is
λ (or λ

2 for the zeroth site). The maximum value of n is chosen
to be N2.

As noted in Ref. [26], in the small-λ limit, perturbation
theory–to the extent it may be valid as it relates the en-
ergy eigenvalue to |V (k)| where potential v(z) is due to the
quadratic modulation with V (k) the Fourier transform of v(z),
which closely resembles F0(k). For our problem, this means
that peaks in |F0(k)| will manifest themselves in states and
minigaps modifying the otherwise bandlike E0(k). As Cheng
et al. argue for a Thue-Morse chain, one finds that even in the
large-λ limit, minigaps are expected to open in the spectrum
that are closely correlated with the features in the SF. In a
similar fashion, as we show below, when λ is no longer small
enough for perturbation theory to apply, indeed when all the
states are expected to be localized, the spectrum still exhibits
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FIG. 6. Eigenstates for an N2 = 81 chain with (a) λ = 0, (b) −2, and (c) −20. The color scale indicates higher probability density with
brighter color. Horizontal bars are drawn at values of lattice sites n equal to a perfect square j2. (a) The quadratic potential is absent. (b) Here
the value of λ is in the regime beyond which perturbation theory fails. (c) This is the large-|λ| regime.

a structure resembling F0(k) and may contain numerous ex-
tended states.

In Fig. 4 are plotted the eigenvalues E of Ĥ (roughly speak-
ing the horizontal axis corresponds to kd and we thus employ
that labeling) for an N2 = 81 (chosen to illustrate the structure
of the eigenstates) chain with (a) λ = 0, (b) −1, and (c) −20.
The main frame restricts the energy scale to the spectra of
the bandlike states, while the insets show the entire spectra
including states strongly localized about j2d at low energy,
as can also be seen below in Fig. 6. The spectra exhibit an
overall bandlike shape with strongly localized states around
a given site at low energy lying below the bandlike states by
∼λ. The number of such states is N . The bandlike portion of
the spectra exhibits minigaps (see Fig. 5) closely correlated in
position and magnitude with features in S0(k). The minigaps
size increases with |λ|. It should be noted that even in the
case of |λ| much greater than the halfwidth 2 of the band

E0(k) = −2 cos kd , and where all states are localized, the
structures in the spectrum still reflect S0(k) while the overall
shape continues to resemble E0(k). This shall be discussed
further.

Figure 5 shows the difference between the results for λ = 0
and −20 for N2 = 2000, here chosen large enough to reveal
the rich structure. Aligning the horizontal scale from 0 to
2000 in Fig. 5 with the scale for kd in Fig. 2, we notice that
the features in both plots are correlated in terms of position
and relative amplitude. That is minigaps lie between peaks
in S0(k) and the magnitudes of these minigaps are correlated
with the peak heights in Fig. 2. Because S0(k) has peaks at all
kξ,η = ξ

η
with ξ and η of opposite parity, these minigaps are

dense as seen in Fig. 5.
Figure 6 shows the eigenstates of Ĥ for an N2 = 81 chain

with (a) λ = 0, (b) −2, and (c) −20. On the vertical axis are
the positions n of the sites on the chain, while the horizontal
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FIG. 7. Energies of extended states for N2 = 81. From bottom
to top: λ = −0.1, −0.5, −1, −1.5, −2. As |λ| increases, there is an
increasing tendency for states to be localized.

axis indexes the eigenstate in the same order at in Fig. 4. The
colorscale indicates higher probability density with brighter
color. Horizontal bars are drawn at values of lattice sites n
equal to a perfect square j2. Thus, for a given eigenstate, one
reads up the plot to find the associated amplitude of the cor-
responding eigenstate on site n. In (a) the quadratic potential
is absent. The states are simply the eigenfunctions of Ĥ for a
uniform finite-length chain. (b) Here the value of λ is in the
regime beyond which perturbation theory fails. We see toward
the left-hand side low-energy states localized about individual
sites in the quadratic chain; at higher energy are states that are
more delocalized. (c) This is the large-|λ| regime. We again
see the states localized at individual quadratic sites at low
energy. At higher energy, the states are localized within the
various effective quantum wells between n = j2 and ( j + 1)2.
The number of nodes for states confined between vertical
bars at successive values of n = j2 increases with eigenstate
index. For a given number of nodes, states confined between
successively smaller values of n = j2 are at higher eigenstate
index. Near eigenstate index N2

2 , specifically at 46 and 47, the
largest minigap occurs, corresponding to the large feature in
S0(k) at kd = π

2 as in Fig. 2.
We have also studied the states in the NNTBM via a

transfer-matrix approach. In Fig. 7 we show the energies of
extended states in an N2 = 81 quadratic chain with λ = −0.1,
−0.5, −1, −1.5, and −2. The extended states correspond
to those for which eigenvalues of the transfer matrix lie on
the unit circle in the complex plane (see Appendix H). The
extended-state minibands break up as |λ| increases with an
increasing number of minigaps opening between the extended
states. As |λ| � 2, the extended states become too fragmen-
tary to see on the plot and eventually all states become
localized.

IV. CONCLUSION

We introduce the quadratic superlattice in which the po-
sitions of the atoms are z j = j2d . The SF is found to be
proportional to the square modulus of the Jacobi theta function
ϑ3(q) approaching the unit circle. Wave vectors kr,s = r

s
π
d

play a special role in the SF. For r and s both odd, kr,s is a
zero of the SF. For r and s of opposite parity, kr,s corresponds
to a maximum of the SF. The visual appearance of the SF is
complex and is periodic in wave vector with period 2π

d . The SF
shows a scaling parameter γ (kr,s) = 2, which is also the value
found for periodic and quasiperiodic crystals. This value of the
scaling factor indicates extended states; this is corroborated
by results based on the NNTBM provided the on-site matrix
element on the quadratic chain is sufficiently small.

FIG. 8. Schematic diagram showing Fraunhofer diffraction from
a quadratic grating. Plane-wave light at normal incidence from the
left. The intensity diffraction pattern appearing on a screen is shown
to the right. More than one period is shown.

While the SF is of direct relevance to x-ray and neu-
tron diffraction, it also plays an outsized role in various
physical properties. We therefore numerically study the elec-
tronic structure of a quadratic chain in a NNTBM where the
quadratic structure is in the on-site matrix elements. While
perturbation theory shows that in the weak-modulation limit,
the lowest-order correction to the energy directly reflects the
features of S0(k), the SF also manifests its features well out-
side the range of validity of perturbation theory. The quadratic
modulation opens a dense set of minigaps in the otherwise
bandlike spectrum where the size and positions of the mini-
gaps are between the peaks in the SF.

Nonperiodic chains have already been proposed to enable
the physical realization of functions of importance to to math-
ematics [27]; here we see that the quadratic chain leads to the
Jacobi zeta function ϑ3(q). From a broader perspective, the
quadratic chain is just the simplest of a class of nonperiodic
lattices in which z j = ∑t

ν=0 βν jν with integer coefficients βν .
Further generalizations might involve multidimensional theta
functions [28] to account for nonperiodic lattices in more
than one dimension. On a different note, gratings and antenna
arrays following a quadratic sequence are of potential interest
to produce complex, including quasirandom, diffraction pat-
terns or radiation patterns that are nonetheless deterministic.
In the Fraunhofer approximation, as in Fig. 8, the diffraction
or radiation patterns are given directly by S0(k); however, in
the Fresnel approximation, the relationship is not so close, but
one expects complex behavior. (Meeting the Fraunhofer ap-
proximation will require large distances or relatively small N .)
Unlike Fibonacci and Thue-Morse chains, the quadratic chain
has a SF whose maxima have scaling properties similar to
those of periodic crystals. In addition, S0(k) for the quadratic
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chain qualitatively exhibits complexity while resulting from
a deterministic structure. We might add that quadratic chains
may be realized in various physical systems, including in op-
tical lattices of cold atoms and in magnetic systems, providing
rich future opportunities for study.
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APPENDIX A: DEFINITIONS

As in the main text, we consider the distribution

p(z) =
∞∑
j=0

(
1 − 1

2
δ0 j

)
δ(z − z j ) (A1)

giving the positions z j with z j = j2d . Note that we can equiv-
alently take p(z) = 1

2

∑∞
j=−∞ δ(z − z j ). We impose a window

w(z) on p(z) and consider f0(z) = w(z)p(z); w(z) will be
chosen to be (i) �(2Nz/d + 1

2 ) with N ∈ Z+ or (ii) e−α|z| with
α > 0 real. Here, �(y) = 1 for y ∈ (− 1

2 , 1
2 ), 1

2 for y = ± 1
2 ,

and 0 otherwise is the unit rectangle function. The factor
e−α|z| describes a spatially decreasing scattering amplitude
with increasing z.

As a preliminary, we define the SF S0(k). S0(k) is the
modulus square of the Fourier transform F0(k) of f0(z) with
k the wave vector. In general, the Fourier transform G(k) of
function g(z) (in the distribution sense) and the associated
inverse Fourier transform (provided they exist) are

G(k) =
∫ ∞

−∞
dz g(z)e−ikz, (A2a)

g(z) = 1

2π

∫ ∞

−∞
dk G(k)eikz. (A2b)

Specifically, the SF of f0(z) is then

S0(k) = |F0(k)|2, (A3)

i.e., the power spectrum of f0(z).

APPENDIX B: WINDOW FUNCTION w(z)

That (i) and (ii) provide alternatives to understand the long-
length behavior of a chain is due to the fact that in the spectral
domain, the product f0(z) = w(z)p(z) assumes the form of a
convolution F0(k) = W (k) ∗ P(k). For cases (i) and (ii), W (k)
has similar properties in the large-N and small-α limits.

1. Case (i)

Here, w(z) = �(2Nz/d ). The Fourier transform W (k) of
w(z) is

W (k) = 2 sin kN/d

k
.

Noting that (sin πx)/(πx) is the normalized sinc function, we
see that the integral over k of W (z) is 2π . At k = 0 we have

W (0) = 2Nd.

2. Case (ii)

Here, w(z) = e−α|z|. The Fourier transform W (k) of w(z)
is

W (k) = 2π
α/π

k2 + α2
.

The factor α
π
/(k2 + α2) is the normalized Lorentzian

(Cauchy) distribution. Thus, the integral over k of W (z) is 2π .
At k = 0 we have

W (0) = 2

α
.

Comparing cases (i) and (ii), we see that in both cases
first that W (k) integrates to 2π regardless of the value of the
respective parameter N or α and second that (i) W (0) = 2Nd
or (ii) W (0) = 2/α. This suggests that the large-N limit of (i)
and the small-α limit of (ii) provide similar information on the
scaling properties of S0(k).

APPENDIX C: DIGRESSION ON THE PERIODIC CHAIN

To discuss the SF, we begin with a digression on semi-
infinite periodic chains and provide a concrete comparison of
(i) and (ii), viz. p(z) = ∑∞

j=1 δ(z − z j ) with z j = jd , so that

f0(z) =
N∑

j=1

δ(z − z j ), case(i), (C1a)

f0(z) =
∞∑
j=1

δ(z − z j )e
−αz, case(ii). (C1b)

For the periodic chain, it is well known [2] for (i) that
γ (0) = 2 with S0(k 
= 0) = 0 in k ∈ [0, π/d ). [We only
consider k ∈ [0, π/d ) as S(k) = S(k + 2π/d ) and S(k) =
S(−k).] Now, let us consider procedure (ii). A direct calcu-
lation gives of Eq. (C1b) gives

S0(0) = 1

e2αd − 2eαd + 1
. (C2)

In the limit α → 0, we have, expanding the exponentials in
the denominator to lowest nonvanishing order in αd ,

S0(0) = 1

(αd )2
. (C3)

Thus, − ln S0(0)/ ln αd ∼ 2 for small α. Thus we compute
identical γ (k) based on either the window functions of (i)
and (ii).

APPENDIX D: THE QUADRATIC CHAIN

Figure 2 shows S0(k) on a logarithmic scale with (i) N =
10 (solid black curve) and (ii) αd = 0.01 (dashed blue curve)
taking for simplicity (and without loss of generality) d = 1
plotted for k ∈ [0, π/d ). For case (i), we replace the upper
limit in the summation in Eq. (3) by N and for the nome take
q = exp(−ikd ). Note that α = 0.01 corresponds roughly to
N = 10. The SF is composed of a complex sequence of peaks
separated by minima, the positions of which are discussed
below. As N increase or α decreases, the number of peaks
visually evident increases. Apart from minor differences, such
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as the peaks and troughs for case (II) are sharper than for case
(i), the two curves are quite similar.

APPENDIX E: ZEROS AND MAXIMA OF S0(k)

We shall find the zeros and maxima of S0(k) using methods
(i) and (ii), and see in both cases that the results may be
expressed in terms of Gauss sums. S0(k) will be found to
diverge at its peaks in the N → ∞ or α → 0 limit, a direct
consequence of the fact that the unit circle in q is the natural
boundary of the region of analyticity of ϑ3(q).

1. Method (i)

The N → ∞ limit of S0(k) is determined by

M = lim
N→∞

⎛
⎝1 + 2

N∑
j=1

q̄ j2

⎞
⎠ ∼ 2 lim

N→∞

N∑
j=1

q̄ j2
, (E1)

where q̄ = eikd . This sum is only defined when k = k2ξ,η =
2ξ

η
π
d with ξ, η ∈ Z in that limit. We shall only be interested

in values of η ∈ N. Note that for k = k2ξ,η, q is a ηth root of
unity. Thus,

M ∼ 2

⌊
N

η

⌋
η∑

j=1

q̄ j2 + 2
N∑

j=�N/η�+1

q̄ j2 ∼ 2
N

η
g(ξ ; η) (E2)

with

g(ξ ; η) =
η∑

j=1

eik2ξ,ηd j2 =
η∑

j=1

e2π i ξ

η
j2

(E3)

a Gauss sum to be evaluated below.

2. Method (ii)

We now explore the asymptotic behavior of ϑ3(q) on the
unit circle. Write q = q̄e−αd where q̄ is an ηth root of unity,
viz., q̄ = eik2ξ,ηd . We have

ϑ3(q̄e−αd ) = 1 + 2
∞∑
j=1

e−αd j2
q̄ j2

= 1 + 2

[
η∑

j=1

e−αd j2
q̄ j2 +

2η∑
j=η+1

e−αd j2
q̄ j2

+
3η∑

j=2η+1

e−αd j2
q̄ j2 + · · ·

]

= 1 + 2

[
η∑

j=1

e−αd j2
q̄ j2 +

η∑
j=1

e−αd ( j+η)2
q̄ j2

+
η∑

j=1

e−αd ( j+2η)2
q̄ j2 + · · ·

]

= 1 + 2
η∑

j=1

q̄ j2
∞∑

ν=0

e−αdη2(ν+ j/η)2
. (E4)

We can find the following bounds on
∑∞

ν=0 e−αdn̄2(ν+ j/η)2
by

approximating as an integral,

∞∑
ν=0

e−αdη2(ν+ j/η)2 �
∫ ∞

0
dν e−αdη2(ν+ j/η)2

= 1

2η

√
π

αd
erfc

(
j

η

√
α

)
,

∞∑
ν=0

e−αdη2(ν+ j/η)2 �
∫ ∞

0
dν e−αdη2(ν−1+ j/η)2

= 1

2η

√
π

αd
erfc

[(
j

η
− 1

)√
α

]
,

where

1

2η

√
π

αd
erfc

[(
j

η
− 1

)√
α

]
�

∞∑
ν=0

e−αdη2(ν+ j/η)2

� 1

2η

√
π

αd
erfc

(
j

η

√
α

)
.

(E5)

Inasmuch as 1
η
� j

η
� 1, as α → 0, we obtain the asymptotic

expression

∞∑
ν=0

e−αdη2(ν+ j/η)2 ∼ 1

2η

√
π

αd
. (E6)

Therefore, returning to Eq. (E4), we have (see Ref. [29],
p. 79 noting the prefactor of 2 in front of the summation in
Eq. (E4))

ϑ3(q̄e−αd ) ∼ 1

η

√
π

αd

η∑
j=1

q̄ j2 = 1

η

√
π

αd
g(ξ ; η), (E7)

expressing the asymptotic form of ϑ3(q̄e−αd ) as α → 0 in
terms of a Gauss sum.

APPENDIX F: EVALUATION OF THE GAUSS SUM g(ξ; η)

We present closed-form expressions of the Gauss sum
g(ξ ; η). We employ Theorems 1.5.1, 1.5.2, and 1.5.3 of
Ref. [30]. Let ξ ∈ Z and η ∈ N with ξ and η mutually prime.
Then,

g(ξ ; η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
η

ξ

)
(1 + i)ξ

√
η, η ≡ 0 mod 4,

0, η ≡ 2 mod 4,(
ξ

η

)√
η, η ≡ 1 mod 4,(

ξ

η

)
i
√

η, η ≡ 3 mod 4,

(F1)

where ( ξ

η
) denotes the Jacobi symbol [31]. In the order of the

cases considered in Eq. (F1), we have

k2ξ,η =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ

η/2
π
d , ξ odd, η/2 even,

ξ

η/2
π
d , ξ odd, η/2 odd,

2ξ

η
π
d , 2ξ even, η odd,

2ξ

η
π
d , 2ξ even, η odd.

(F2)
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Thus, for the four cases, k is a rational multiple of π
d . In the

main paper, we use the following notation for the cases in
Eq. (F2):

k2ξ,η =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k2m−1,2n = 2m−1
2n

π
d , maximum,

k2m−1,2n−1 = 2m−1
2n−1

π
d , zero,

k2m,2n−1 = 2m
2n−1

π
d , maximum,

k2m,2n−1 = 2m
2n−1

π
d , maximum

(F3)

for the appropriate m and n where the rightmost label classifies
the wave vector as corresponding to a maximum or zero of
S0(k). Note that the two subscripts of k are mutually prime.
Thus, the maxima are at wave vectors that are rational frac-
tions times π

d with the numerator and denominator of opposite
parity while for the zeros, the numerator and denominator are
both odd. (If the numerator and denominator are both even,
they cannot be mutually prime.)

Figure 3 of the main paper shows that these limiting ex-
pressions well predict the peak heights and positions in S0(k).

APPENDIX G: SCALING PROPERTIES
OF THE MAXIMA OF S0(k)

The scaling properties of the SF S0(k) (assuming power-
law behavior) in method (ii) are given by

γ (kξ,η ) = − 2

ln αd
ln S0(k)

= − 2

ln αd

⎡
⎣− ln αd + ln

⎛
⎝ π

4η2

∣∣∣∣∣
η∑

j=1

q̄ j2

∣∣∣∣∣
2
⎞
⎠

⎤
⎦ ∼ 2.

(G1)

Therefore, the peaks of the SF all obey power-law scaling
with an exponent γ (k) = 2, as in periodic and quasiperiodic
crystals.

By the way, we can arrive at the comparable result using
method (i). For large N , consider

F0(k2ξ,η ) ∼
N∑

j=1

q̄ j2
. (G2)

Thus,

F0(k2ξ,η ) ∼ N

η

η∑
j=1

q̄ j2
,

giving γ (k2ξ,η ) = 2.

1. The case k = 0

We separately consider the scaling of the peaks in S0(k) as
α → 0 dispensing at the same time with the trivial set of wave
vectors k2ξ,1 = 2πξ/d . We focus on k0,1 = 0, the results for
which also hold for k2ξ,1. Using procedure (i), we have for
large N for k0,1,

Nγ (0) ∼ S0(0) = |F0(0)|2 ∼ N2, (G3)

where γ (0) = 2, as in the case of a periodic chain as seen
above.

We next corroborate this result against procedure (ii), the
α → 0 limit for the infinite chain. One has for the asymptotic
behavior of ϑ3(q) as α → 0 for k0,1, ϑ3(q) ∼ √

π/(αd ) [32],
where

S0(0) ∼ π

4αd
(G4)

and

γ (0) = − 2

ln α
ln S0(0) ∼ − 2

ln α
ln

π

4αd

= − 2

ln α
(ln π − 2 ln 2 − ln αd ) ∼ 2. (G5)

Again, methods (i) and (ii) provide identical scaling properties
of S0(k).

APPENDIX H: NEAREST-NEIGHBOR
TIGHT-BINDING MODEL

In the main text we present numerical results from a
NNTBM for finite quadratic chains. The Hamiltonian is

Ĥn,n′ = − δn,n′+1 − δn,n′−1 + λδn,n′
(
δn,perfect square − 1

2δn,0
)
,

n, n′ ∈ {0, N}. (H1)

The subscripts n and n′ here to refer to tight-binding sites
n, while subscript j is reserved for values of n, n′ = j2, i.e.,
when n is a perfect square. We use a transfer-matrix approach
discussed in Ref. [33]. We can write the time-independent
Schrödinger equation as(

ψn+1

ψn

)
= Mn

(
ψn

ψn−1

)
(H2)

relating the amplitudes ψn−1, ψn, and ψn+1 on sites n − 1, n,
and n + 1, where Mn is the transfer matrix

Mn =
(−(E − λn) −1

1 0

)
(H3)

with λn = λ if n = j2 is a perfect square (other than 0), λ
2 if

n = 0, and 0 otherwise. We can thus take M0 to be the matrix
with λn = λ0 = λ

2 , M1 to be the matrix with λn = λ1 = λ, and
M2 to be the matrix with λn = λ2 = 0 for n > 0. By iterating,
we obtain(

ψ( j+1)2

ψ( j+1)2−1

)
=

j∏
m=1

[
M2( j−m+1)

2 M1
](ψ1

ψ0

)
. (H4)

Inasmuch as M2 is unimodular, we have via a special case of
the Cayley-Hamilton theorem [33–35]

M2 j
2 = U2 j−1(x)M2 − U2 j−2(x)I, (H5)

where Uν (x) is a Chebyshev polynomial of the second kind
and x = 1

2 TrM2 = −E
2 . In order to find candidate extended

states, we need to look within the bandwidth |E | < 2 deter-
mined by the interatomic matrix element between neighboring
sites which is 1. Uν (x) accounts for this as it blows up rapidly
for |x| increasing above 1. Note that∣∣∣∣∣ det

j∏
j=m

[
M2( j−m+1)

2 M1
]∣∣∣∣∣ = 1. (H6)
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The eigenvalues of

j∏
m=1

[
U2( j−m)+1

(
E
2

)
M2 − U2( j−m)

(
E
2

)
I
]
M1 (H7)

on the unit circle in the complex plane give the energies E for
the extended states of the system as in Fig. 7 of the main text.

1. The limit λ → ±∞
We now consider the large-|λ| limit. Here, all states are

strongly localized. For the case λ → ±∞, there will be states
closely localized at n = j2 as seen in Fig. 6 of the main text;
there will also be states localized between n = j2 and ( j + 1)2

whose wave functions’ amplitude will vanish on n = j2 and
( j + 1)2. We have(

ψ( j+1)2

ψ( j+1)2−1

)
= M2 j

2

(
ψ j2+1
ψ j2

)
, (H8)

where(
ψ( j+1)2

ψ( j+1)2−1

)
=

(
0

±1

)
,

(
ψ j2+1
ψ j2

)
=

(
1
0

)
. (H9)

Using Eqs. (H3), (H5), and (H9) in Eq. (H8), we have the
simultaneous equations

2xU2 j−1(x) − U2 j−2(x) = 0
(H10)

U2 j−1(x) = ±1.

In fact, the solutions to the first of Eq. (H10) are a subset of the
second. Once the solutions x are found, we obtain the energy
eigenvalues for these states via x = −E

2 .
Let us now find these solutions x. For a given value of j,

there are 2 j solutions. Let us begin with the first of Eq. (H10).

Note that the Chebyshev polynomial of the second kind is
defined as

Un(cos θ ) = sin(n + 1)θ

sin θ
. (H11)

It is easily shown that the solutions of the first of Eq. (H10)
are

x = cos mπ
2 j+1 (H12)

with m = 1, 2, 3, · · · , 2 j. We have for the left-hand side of
the first of Eq. (H10) substituting in Eq. (H12),

cos mπ
2 j+1

sin 2 jmπ

2 j+1

sin mπ
2 j+1

−
sin (2 j−1)mπ

2 j+1

sin mπ
2 j+1

, (H13)

which is easily shown to vanish using elementary trigonomet-
ric identities.

We note that the solutions x are exactly what is expected
based on quite elementary considerations. Consider the effec-
tive quantum well confined between infinite potentials at n =
j2 and ( j + 1)2. This quantum well is thus of width 2 j + 1.
The zero boundary conditions at j and ( j + 1)2 give standing-
wave solutions with wave vectors km,2 j+1 = mπ

2 j+1 with m =
1, 2, 3, · · · , 2 j. (The quantum-well mode for 2 j + 1 at the
Brillouin-zone boundary results in zero amplitude on each lat-
tice site, and must therefore be discounted here.) The 2 j wave
vectors km,2 j+1 give energies E = Em,2 j+1 = −2 cos km,2 j+1

which are precisely the solutions of the first of Eq. (H10) given
in Eq. (H12).

Notice the resemblance between the zeros of the Cheby-
shev polynomial of the first kind [36] and Fig. 6(c) of the
main text. The values of x in Eq. (H12) are the extrema of
T2 j+1(x). The main point is that between each pair of sites j2

and ( j + 1)2 are the expected quantum-well states.
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