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Abnormal phonon angular momentum due to off-diagonal elements
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A temperature gradient in chiral materials can generate a nonzero mean value of phonon angular momentum
(PAM). We used the Kubo formula to investigate the contribution of both intraband and interband terms of
PAM to the mean PAM. Interestingly, the interband term was found to be as important as the intraband term,
indicating that the quantum transition between different phonon branches induced by a temperature gradient
strongly affects locally atomic rotation. This discovery opens up an alternative mechanism for generating PAM
and phonon magnetic moments.
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I. INTRODUCTION

Phonons are the quanta of atomic displacement fields in
solids [1]. For a lattice with a given structure and force con-
stants, one can write the dynamical matrix D(k), where k is
the phonon wave vector. According to the lattice dynamics
[2,3], the displacement of each atom can be obtained through
solving the equations of motion which contain D(k). When
the lattice has inversion symmetry, D(k) is a real matrix and
D(k) = D(−k). Consequently, the polarization vectors εkσ

must be real, where σ is the branch index, and the system con-
tains only linear polarization. In contrast, when the inversion
symmetry is broken, D(k) is a complex matrix and εkσ could
be complex. Then the system contains not only vibration but
also rotation [4,5].

Classically, the displacement of an atom in the unit cell
l at Rl is ul ∼ Re[εkσ ei(k·Rl −ωkσ t )] for a given state (σ, k)
[1], where ωkσ is the phonon frequency. For the real polar-
ization vector, ul ∼ εkσ cos(k · Rl − ωkσ t ). The motion of the
atom can be regarded as three “in-phase” harmonic oscilla-
tors which give rise to zero angular momentum because ul

is always parallel to u̇l . The case is different for complex
polarization vectors, the displacement along the μ direction
(μ, ν, α, γ = x, y, z) is

uμ

l ∼ Re
(
ε

μ

kσ

)
cos(k · Rl − ωkσ t ) − Im

(
ε

μ

kσ

)
× sin(k · Rl − ωkσ t ) = cos

(
k · Rl − ωkσ t + φ

μ

kσ

)
,

(1)

where the phase shift is determined by tan(φμ

kσ ) =
Im(εμ

kσ )/Re(εμ

kσ ). Equation (1) shows that the motion of the
atom can be regarded as three harmonic oscillators with the
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phase difference φ
μ

kσ − φν
kσ , where μ �= ν. In other words,

atoms rotate around their equilibrium positions circularly
or elliptically. The microscopic local rotation gives rise to
nonzero angular momentum, which has been experimentally
observed in WSe2 [6]. Such angular momentum is called the
phonon angular momentum (PAM) [7,8].

A quantum mechanical theory of PAM was first given by
McLellan [9]. The overall PAM of a lattice with na atoms in
each unit cell can be written as [9]

L =
∑

lκ

ulκ × (mκ u̇lκ ), (2)

where mκ is the mass of the κth atom with κ = 1, 2, . . . , na. In
2014, Zhang and Niu [7] presented a comprehensive second
quantization form of PAM when the inversion symmetry is
absent. They found that, when the system is in equilibrium
and has time-reversal symmetry, the mean PAM vanishes. A
nonzero mean PAM can be obtained by two possible ways:
(i) breaking the time-reversal symmetry [7,10–13] and (ii)
driving the system into nonequilibrium [14–16]. Later on,
Hamada et al. [14] found a nonzero PAM by using the
Boltzmann transport equation under the relaxation time ap-
proximation when a temperature gradient was applied. The
μ component of the mean PAM is calculated as 〈Lμ〉 =

μν (∇T )ν , where 
μν is a response tensor. As a result, a
nonzero phonon magnetic moment due to PAM can be cal-
culated accordingly [14,15,17].

According to Hamada et al.’s calculation [14], the phonon
magnetic moment was expected to be much smaller than
the Bohr magneton. However, experiments have shown that
certain materials, such as the Dirac semimetal Cd3As2 [18]
and ErFeO3 [19], exhibit a much larger phonon magnetic
moment [20,21]. In particular, Cd3As2’s phonon magnetic
moment was found to be 2.7 times greater than the Bohr
magneton [18]. This result may be due to contributions
from the phonon-modified electronic energy together with
the momentum-space Berry curvature [17]. Recently, ultrafast
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demagnetization experiments have shown that crystals can
rapidly lose electron spin angular momentum to phonons [22].
This suggests that phonons can produce magnetic moments
comparable to those of electrons through circular polarization.
Moreover, Kim et al. [23] observed a chiral-phonon-activated
spin Seebeck effect in a chiral organic-inorganic hybrid
perovskite through an ultrafast pump-probe experiment. It
possibly provides evidence that PAM can activate a strong
magnetic moment. Therefore, there may be other mechanisms
beyond Hamada et al.’s calculation [14] that could contribute
to an additional mean PAM and phonon magnetic moment.
For example, Xiong et al. [24] recently used the Biot Savart
law to find that the effective magnetic fields induced by chiral
phonons in the point-charge model could reach 0.01 T at
room temperature. In addition, we note that none of the pre-
vious studies have considered the effect of interband phonon
transitions.

In this work, we revisit the derivation from Eq. (2) and
propose an alternative mechanism to generate a nonzero mean
PAM by keeping both diagonal terms (which describe in-
traband phonon transition) and off-diagonal terms (which
describe interband phonon transition) of the density matrix in
the Kubo formula. We find that the interband terms of PAM
result in a notable mean PAM.

II. PHONON ANGULAR MOMENTUM OPERATOR

We start our study from the μ component of Eq. (2), which
can be written as [25]

Lμ ≈ h̄

2N

∑
l

∑
k,k′

∑
σ,σ ′

(
ε

†
kσ Mμεk′σ ′

√
ωk′σ ′

ωkσ

a†
kσ ak′σ ′

− εT
k′σ ′Mμε∗

kσ

√
ωkσ

ωk′σ ′
ak′σ ′a†

kσ

)
eiRl ·(k′−k). (3)

Here Mμ = Ina×na

⊗
(−i)εμνγ (ε is Levi-Civita tensor), h̄ is

the Planck constant, N is the number of unit cells, and a†
kσ and

akσ are the creation and annihilation operators of phonons,
respectively. Both aa and a†a† terms are neglected since they
vary rapidly with time and have marginal contribution. When
the system is a crystal, Eq. (3) can be further simplified by
1
N

∑
l eiRl ·(k′−k) = δk,k′ and −εT

k′σ ′Mμε∗
kσ = ε

†
kσ Mμεk′σ ′ . Us-

ing the commutation relation [akσ ′ , a†
kσ

] = δσσ ′ , Lμ can be
divided into two parts, the diagonal term (LD

μ ) and the off-
diagonal term (LOD

μ ), as follows:

LD
μ =

∑
kσ

lμ

kσ

[
a†

kσ akσ + 1

2

]
, (4a)

LOD
μ =

∑
k

σ �=σ ′∑
σσ ′

lμ

kσσ ′a
†
kσ akσ ′ . (4b)

We note the matrix elements in Eqs. (4a) and (4b) as

lμ

kσ = h̄(ε†
kσ Mμεkσ ), (5a)

lμ

kσσ ′ = h̄

2
ε

†
kσ Mμεkσ ′

(√
ωkσ ′

ωkσ

+
√

ωkσ

ωkσ ′

)
, σ �= σ ′. (5b)

The diagonal term in Eq. (4a) and its matrix elements in
Eq. (5a) have been studied in our previous work [7]. The off-

diagonal term in Eq. (4b) and its matrix elements in Eq. (5b)
show that the interband terms of PAM describe the quantum
transition between state (σ, k) and state (σ ′, k).

III. KUBO FORMULA AND HEAT CURRENT OPERATOR

We modify the Kubo formula of thermal conductivity
[26–28], which is similar to the electrical Kubo formula [29],
to calculate a frequency-dependent mean PAM. The thermal
Kubo formula [26] is different from the electrical Kubo for-
mula [29]. The reason is that there is a well-defined external
force which drives the electrical current. In contrast, there
is no similar term involving the temperature gradient in the
Hamiltonian to drive a heat current. Thus the thermal Kubo
formula requires an additional statistical hypothesis [27,28],
which assumes a local space-dependent temperature T (x) =
[kBβ(x)]−1. Then the local density matrix is

ρ = e− ∫
d3xβ(x)h(x)

Z
, (6)

where h(x) is the Hamiltonian density operator, Z is the par-
tition function, and the Hamiltonian H = ∫

d3xh(x). A heat
current density operator S(x) is now defined by the condition
of local energy conservation:

∂h(x)

∂t
+ ∇ · S(x) = 0. (7)

The total heat current operator is S = 1
V

∫
d3xS(x), where V

is the volume. Hardy [30] has shown that the quadratic terms
of the heat current operator are

S = 1

2V

∑
ll ′

∑
κκ ′

(Rlκ − Rl ′κ ′ )
∑

α

{
plκα

mκ

1

ih̄
[plκα,V (Rl ′κ ′ )]

+ 1

ih̄
[plκα,V (Rl ′κ ′ )]

plκα

mκ

}
, (8)

where V (Rl ′κ ′ ) is the harmonic potential energy

V (Rl ′κ ′ ) = 1

2

∑
l

∑
κ

∑
αγ

�αγ (lκ, l ′κ ′)ulκαul ′κ′γ . (9)

� is the force constant matrix. It is easy to verify that
1
ih̄ [plκα,V (Rl ′κ ′ )] = − 1

2

∑
β �αγ (lκ, l ′κ ′)ul ′κ ′γ , and then

S = 1

2V

∑
ll ′

∑
κκ ′

∑
αγ

(Rl ′κ ′ − Rlκ )�αγ (lκ, l ′κ ′)
plκα

mκ

ul ′κ ′γ .

(10)
By using the second quantization form of ul ′κ ′γ and plκα , we
obtain

S ≈ 1

2V

ih̄

2N

∑
ll ′

∑
κκ ′

∑
kk′

∑
σσ ′

(Rl ′κ ′ − Rlκ )

×
∑
αγ

�αγ (lκ, l ′κ ′)√
mκmκ ′

ε∗
kσκαεk′σ ′κ ′γ

(√
ωk′σ ′

ωkσ

ak′σ ′a†
kσ

+
√

ωkσ

ωk′σ ′
a†

kσ ak′σ ′

)
ei(k′ ·Rl′κ′ −k·Rlκ ) × ei(k·dk−k′ ·dk′ ). (11)

Here dκ is the equilibrium position of the κth atom. We
have ignored terms like aa and a†a†. Using the defini-
tion D̃αγ (k′, κκ ′) = ∑

l ′ �αγ (lκ, l ′κ ′)eik′ ·(Rl′κ′ −Rlκ )/
√

mκmκ ′ ,

125147-2



ABNORMAL PHONON ANGULAR MOMENTUM DUE TO … PHYSICAL REVIEW B 107, 125147 (2023)

ε̃k′σ ′κ ′γ = εk′σ ′κ ′γ e−ik′ ·dk′ , Eq. (11) can be written as

S ≈ h̄

4V

∑
k

∑
κκ ′

∑
σσ ′

∑
αγ

ε̃ ∗
kσκα

∂D̃αγ (k, κκ ′)
∂k

ε̃kσ ′κ ′γ

×
(√

ωkσ ′

ωkσ

akσ ′a†
kσ

+
√

ωkσ

ωkσ ′
a†

kσ
akσ ′

)
. (12)

Finally Eq. (12) can be divided into the intraband term (SD)
and the interband term (SOD) as follows:

SD =
∑
kσ

skσ

[
a†

kσ akσ + 1

2

]
, (13a)

SOD =
∑

k

σ �=σ ′∑
σσ ′

skσσ ′a†
kσ akσ ′ , (13b)

where

skσ = h̄

2V
ε̃

†
kσ

∂D̃(k)

∂k
ε̃kσ , (14a)

skσσ ′ = h̄

4V
ε̃

†
kσ

∂D̃(k)

∂k
ε̃kσ ′

(√
ωkσ ′

ωkσ

+
√

ωkσ

ωkσ ′

)
. (14b)

It has been proved that skσ = 1
V h̄ωkσ vkσ , which recovers

the conventional heat current operator [30], where vkσ is the
phonon group velocity.

If the temperature variation δT (x) is weak, β(x) can be
written as β[1 − δT (x)/T ], where (kBβ )−1 is the average
temperature T and kB is the Boltzmann constant. Then Eq. (6)
becomes ρ = e−β(H+H ′ )/Z , where H ′ = − 1

T

∫
d3xδT (x)h(x)

formally plays the role of a perturbation. Using the integrated
form of Eq. (7), the perturbation due to the temperature gradi-

ent (∇T ) is

H ′ = −
∑

ν

(∇T )ν
T

∫ 0

−∞
dt

∫
d3xSν (x, t ). (15)

The density matrix can be expended in powers of the perturba-
tion by e−β(H+H ′ ) = e−βH + e−βH

∫ β

0 dλeλH H ′e−λH + · · · =
ρ0 + ρ1 with parameter λ. It is obvious that trρ0Lμ ≡ 0, and
the mean PAM is determined by trρ1Lμ, which is

〈 Lμ〉 = −V
∑

ν

(∇T )ν
T

∑
n

e−βEn

Z

∫ β

0
dλ

∫ 0

−∞
dt

×〈eλH Sν (t )e−λH Lμ(0)〉, (16)

where eλH Se−λH = S(−ih̄λ), and En is the energy of state
(k, σ ) which is noted as n for short. Then the Kubo formula
for PAM can be obtained as [31,32]

〈Lμ(ω)〉 = −V
∑

ν

(∇T )ν
T

∑
n

e−βEn

Z

∫ β

0
dλ

∫ ∞

0

×dtei(ω+iη)t 〈Sν (−ih̄λ)Lμ(t )〉. (17)

Here ω represents the frequency of an ac temperature gradient.
In a perfect crystal, η is an infinitesimal value which goes to
zero when V → ∞, corresponding to the infinite lifetime of
the phonon. In real materials, we assign η as the relaxation
rate, which is the inverse of the relaxation time (τ ), when
calculating the intraband PAM and assign η as a value larger
than the mean level spacing when calculating the interband
PAM, respectively [31]. This Kubo expression can be written
in the Lehman representation as follows:

〈Lμ(ω)〉 = −V
∑

ν

(∇T )ν
T

∑
n,m

e−βEn

Z

∫ β

0
dλ

∫ ∞

0
dtei(ω+iη)t 〈n|eλH Sνe−λH |m〉〈m|e iHt

h̄ Lμe
−iHt

h̄ |n〉

= V
∑

ν

(∇T )ν
T

∑
n,m

e−βEn

Z

[
eβ(En−Em ) − 1

En − Em

](
ih̄

En − Em − h̄ω − ih̄η

)
〈n|Sν |m〉〈m|Lμ|n〉. (18)

This expression can be divided into two parts: the contribution from intraband terms 〈LD
μ (ω)〉 when n = m and the contribution

from interband term 〈LOD
μ (ω)〉 when n �= m:〈

LOD
μ (ω)

〉 =V
∑

ν

(∇T )ν
T

∑
nm

e−βEn

Z

[
eβ(En−Em ) − 1

En − Em

](
ih̄

En − Em − h̄ω − ih̄η

)

×
∑

kk′σσ ′σ ′′σ ′′′
〈n|a†

k′σ ′′ak′σ ′′′ |m〉〈m|a†
kσ akσ ′ |n〉(sk′σ ′′σ ′′′ )ν lμ

kσσ ′ . (19)

The exact state |m〉 is the unique state which couples to a†
kσ akσ ′ |n〉, denoted as |nkσ ′σ 〉. We can use the standard expressions

〈m|a†
kσ akσ ′ |n〉 = √

(nkσ + 1)nkσ ′δmnkσ ′σ and 〈n|a†
k′σ ′′ak′σ ′′′ |nkσ ′σ 〉 = √

(nkσ + 1)nkσ ′δσ ′′′σ δσ ′′σ ′δkk′ . In terms of the normal mode

frequencies, En − Em becomes h̄(ωkσ ′ − ωkσ ), where σ ′′ = σ ′ and σ ′′′ = σ . Since σ �= σ ′, we can write
∑

n
e−βEn

Z nkσ ′ (nkσ +
1) = 〈(nkσ + 1)nkσ ′ 〉 = 〈nkσ ′ 〉(〈nkσ 〉 + 1). Using the identity [eβ h̄(ωkσ ′−ωkσ ) − 1]〈nkσ ′ 〉(〈nkσ 〉 + 1) = 〈nkσ 〉 − 〈nkσ ′ 〉 = n0

kσ −
n0

kσ ′ , with n0
kσ being the Bose distribution function, the interband term of the mean PAM can be obtained by σ ↔ σ ′. The

physical meaning of Eq. (19) is that the polarization vector changes when a phonon jumps from one branch to another. Then the
rotation of the atom, which is characterized by the phase shift in Eq. (1), is also changed.

Considering 〈m|a†
kσ

akσ |n〉 = nkσ δmn, the contribution from the intraband term can be written as〈
LD

μ (ω)
〉 = −V β

∑
ν

(∇T )ν
T

(
i

ω + iη

) ∑
kk′σσ ′′

[
〈nk′σ ′′nkσ 〉(sk′σ ′′ )ν lμ

kσ + 1

2
〈nk′σ ′′ 〉(sk′σ ′′ )ν lμ

kσ + 1

2
(sk′σ ′′ )ν〈nkσ 〉lμ

kσ + 1

4
(sk′σ ′′ )ν lμ

kσ

]
.

(20)
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FIG. 1. Crystal structures: (a) wurtzite AlN and (b) MoSSe.
(c) and (d) The first Brilliouin zones of AlN and MoSSe.

According to Wick’s theorem, the factor 〈nk′σ ′′nkσ 〉 can
be written as 〈nk′σ ′′ 〉〈nkσ 〉 plus a correction 〈nkσ 〉(〈nkσ 〉 +
1). Using the condition of zero average energy cur-
rent and zero PAM in equilibrium and the identity
〈nkσ 〉(〈nkσ 〉 + 1) = −kBT ∂〈nkσ 〉

∂ (h̄ωkσ ) , the intraband term of the
mean PAM can be obtained by dropping the last three
terms in the bracket in Eq. (20). Then, we can obtain
the mean PAM per unit volume as 〈Lμ(ω)〉 = 〈LD

μ (ω)〉 +
〈LOD

μ (ω)〉. The intraband part 〈LD
μ (ω)〉 = 〈LD

μ (ω)〉/V and
the interband part 〈LOD

μ (ω)〉 = 〈LOD
μ (ω)〉/V are written as

follows:〈
LD

μ (ω)
〉 =

∑
ν

i(∇T )ν
T

1

ω + iη

∑
kσ

∂n0
kσ

∂ (h̄ωkσ )
(skσ )ν lμ

kσ

=
∑

ν


D
μν (ω)

∂T

∂xν

, (21a)

〈
LOD

μ (ω)
〉 = −

∑
ν

i(∇T )ν
T

×
∑
kσσ ′

n0
kσ − n0

kσ ′

h̄(ωkσ − ωkσ ′ )

(skσσ ′ )ν lμ

kσ ′σ

ωkσ − ωkσ ′ − ω − iη

=
∑

ν


OD
μν (ω)

∂T

∂xν

, (21b)

where
D
μν (ω) and 
OD

μν (ω) are the intraband response tensor
and the interband response tensor, respectively.

IV. RESULTS AND DISCUSSIONS

In order to exemplify our theory, we calculate the re-
sponse tensors of the wurtzite AlN and the monolayer MoSSe,
whose lattice structures and first Brilliouin zones are de-
picted in Fig. 1, respectively, in the dc limit (ω → 0). The
phonon dispersion analysis was performed by using the
Vienna ab initio simulation package (VASP) [33] with the
projector augmented-wave method [34] and the PHONOPY

code [35].

FIG. 2. (a) Phonon dispersion of the wurtzite AlN. (b) Distribu-
tion of PAM of the sixth branch on the plane kz = 0. (c) Trajectories
of the four atoms in the unit cell of the sixth phonon branch at

k = (0, 0.5828, 0)(Å
−1

). The axes are expressed in dimensionless
units.

A. Wurtzite AlN

First, we calculate the phonon dispersion of AlN. The
nonanalytical term correction in the PHONOPY code is used
and the optimized lattice constants are a = 3.112 Å and
c = 4.983 Å. The generalized gradient approximation with
the Perdew-Burke-Ernzerhof [36] realization is adopted for
the exchange-correlation function and the plane-wave energy
cutoff is set to be 800 eV. For the Born effective charge
calculations, the k points are set to 17 × 17 × 10 and the
corresponding Born effective charges are Z∗

Al,xx = Z∗
Al,yy =

2.517 e and Z∗
Al,zz = 2.677 e. For the first-principles harmonic

phonon calculations, we used the finite displacement method
to get the second-order force constants. In the calculation,
4 × 4 × 2 supercells (128 atoms) are built and the k-point
mesh is reduced as 4 × 4 × 2.

Figure 2(a) shows the calculated phonon dispersion of
AlN, which is in agreement with previous works [37].
Figure 2(b) shows the mode-specific PAM (lkσ ) of the sixth
phonon band when kz = 0. We find that the PAM has a chi-
ral texture which mainly consists of tangential components
in momentum space. The trajectories of atoms in the sixth
phonon branch are shown in Fig. 2(c). It is clear that both
aluminum atoms and nitrogen atoms rotate elliptically.

Based on the calculation results in Fig. 2, we are able
to calculate the response tensor of AlN as shown in Fig. 3.
According to the restriction of the point-group symmetry, the
response tensor of the wurtzite AlN (point group: C6v) has
only one independent nonzero element 
xy. It can be divided
into two parts: the intraband contribution 
D

xy and the inter-
band contributions 
OD

xy . The calculation results show that the
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FIG. 3. PAM response tensor 
xy of the wurtzite AlN. (a) The
intraband part 
D

xy (red solid line), the interband part 
OD
xy (blue

dashed line), and the total contribution 
xy (green dotted line) as
functions of the relaxation time τ when T = 300 K. (b) 
D

xy (red
solid line), 
OD

xy (blue dashed line), and 
xy (green dotted line) versus
the temperature T when τ = 1 ps. (c) The contribution of acoustic
branches (black dotted line) and optical branches (red dotted line) to
the intraband part 
D

xy. (d) The contribution to the interband part 
OD
xy

from the transitions between different phonon branches.

amplitude of the PAM response tensor |
xy| increases with
the increase of the relaxation time τ as shown in Fig. 3(a).
As for the intraband part, 
D

xy varies linearly with τ , which
is the same as the Boltzmann transport equation calculations
[14]. As for the interband part, we find that it also has a
nonzero contribution, albeit a weak one in the case of the
wurtzite AlN. Figure 3(b) shows the temperature dependence
of response tensors at τ = 1 ps. One can see that both |
D

xy|
and |
OD

xy | decrease dramatically when the temperature de-
creases. A sign change of 
OD

xy is found around 20 K. With the
increase of temperature, both 
D

xy and 
OD
xy show a moderate

overall downward trend and eventually approach the high-
temperature limit when T becomes comparable to the Debye
temperature.

We now distinguish the contributions from different
phonon branches to 
D

xy in Fig. 3(c) and the contributions from
different interband phonon transitions to 
OD

xy in Fig. 3(d),
respectively. For 
D

xy, we find that the contribution from the
acoustic branch is more significant than the contribution from
the optical branch. The reason is that the acoustic branch has
a greater phonon group velocity which is included in skσ in
Eq. (21a). For 
OD

xy , we plot the calculated acoustic-acoustic
transition, acoustic-optical transition, and optical-optical tran-
sition components of 
OD

xy . The calculation results show that
the quantum transition between the two optical branches is

dominant. The contribution from quantum transitions between
the two acoustic branches and that between one acoustic
branch and one optical branch are relatively small. This is
because of the closeness of phonon energies between optical
bands, which is preferred for interband transition, as shown in
Fig. 2(a).

In order to intuitively present the nonzero PAM of
the wurtzite AlN, we compare the numerically calculated
PAM with a rotating rigid body. By setting τ ∼ 4 ps at
room temperature [38], one can obtain that 
D

xy = −8.91 ×
10−18 Jsm−2 K−1 and 
OD

xy = −3.21 × 10−18 Jsm−2 K−1. Let
us consider a cubic sample with the length of side � whose
moment of inertia I = 1

6 M�2, where M is the mass of the
sample. When a temperature gradient along the y direction
(∇T )y is applied, the angular velocity in the x direction (ωx)
of the rigid body rotation, which is equivalent to the gener-
ated PAM, is ωx = −
xy (∇T )y

1
6 ρ�2 , where ρ is the mass density. If

(∇T )y = 106 K/m, � = 10 µm, and ρ = 3.2 g/cm3, we find
ωx = 2.27 × 10−4 s−1.

B. The monolayer MoSSe

We now turn to investigate the monolayer MoSSe, a Janus
transition metal dichalcogenides, where the top-layer S atoms
of MoS2 are replaced by Se atoms [39]. The optimized lattice
constant is a = 3.251 Å [40]. The vacuum slab in the z direc-
tion is set to c = 18.419 Å in order to avoid the interaction
between neighboring layers. The bond lengths of Mo-Se and
Mo-S are 2.535 and 2.420 Å, respectively. The energy cutoff
is fixed to 600 eV. The force constants are calculated by the
VASP-DFPT method, and the Brillouin zone is sampled with a
4 × 4 × 1 �-point centered grid.

Calculated phonon dispersion of MoSSe is in agreement
with previous work [41] as shown in Fig. 4(a). Figure 4(b)
plots the PAM of the sixth phonon branch. The PAM texture
of MoSSe exhibits chirality near the center of the Brillouin
zone and has z components near the Brillouin zone boundary.
We then calculate the trajectories of three atoms in the unit
cell for the sixth branch at high-symmetry point K as shown
in Fig. 4(c). This point is chosen because the normalized
trajectory at this point has a threefold rotational symmetry
exhibiting the intrinsic circular polarization characteristics of
chiral phonons.

Figure 5 shows the calculated response tensor of MoSSe.
Its point group C3v leads to a PAM response tensor with only
a single independent element 
xy. 
xy at T = 300 K with τ

ranging from 0.1 to 10 ps is shown in Fig. 5(a). One can see
that 
OD

xy is negative and 
D
xy is positive. The overall response

tensor is dominated by 
OD
xy when τ < 8 ps. We also find

that |
OD
yx | increases first and then decreases with increasing

τ , while 
D
yx always increases. The extreme value of |
OD

yx |
is determined by τ−1 ∼ ωkσ − ωkσ ′ . Figure 5(b) shows the
temperature dependence of response tensors when τ = 1 ps.
As the temperature increases, 
D

xy rises rapidly and then de-
creases gradually until it reaches the high-temperature limit
−1.27 × 10−18 Jsm−2 K−1. 
OD

xy exhibits a sharp decrease and
eventually reaches −3.43 × 10−17 Jsm−2 K−1.
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FIG. 4. (a) Phonon dispersion of the monolayer MoSSe. (b) Dis-
tribution of the PAM of the sixth branch. (c) Trajectories of tree
atoms in the unit cell of the sixth phonon branch at high-symmetry
point K, which represents the normalized polarization vector, and the
axes are expressed in dimensionless units.

In Figs. 5(c) and 5(d), we distinguish the contributions
to 
D

xy from different phonon branches and the contribution
to 
OD

xy from different interband transitions. The contribution
from acoustic phonon branches to 
D

xy is slightly larger than
that from optical phonon branches. As for 
OD

xy , the transition
between two acoustic branches is dominant. The contribu-
tion from transitions between two optical branches and that
between one acoustic branch and one optical branch are rela-
tively small.

Finally, we compare the PAM generated by a temperature
gradient with a rotating rigid body. Assuming that the phonon
relaxation time is 10 ps. The corresponding 
D

xy and 
OD
xy are

1.27 × 10−17 Jsm−2 K−1 and −8.56 × 10−18 Jsm−2 K−1 in
our results. Let us consider a disk with radius � whose mo-
ment of inertia I = 1

2 M�2. The angular velocity is expressed

as ωx = −
xy (∇T )y
1
2 ρ�2 . If (∇T )y = 106 K/m, � = 10 µm, and

ρ = 5.24 g/cm3, the angular velocity ωx of the rigid body
rotation is estimated as ωx = −1.58 × 10−5 s−1.

V. SUMMARY AND OUTLOOK

In summary, the Kubo formula is used to calculate the
PAM induced by a temperature gradient, and the response
tensors for the wurtzite AlN and the monolayer MoSSe are
calculated as examples. It is found that interband phonon
transitions play a significant role in generating nonzero PAM.
In addition, we point out that interband PAM could be further
enhanced in nonperfect crystals where momentum conserva-
tion is absent. In other words, the transition between (k, σ )

FIG. 5. Calculated PAM response tensor 
xy of the monolayer
MoSSe. (a) The intraband part 
D

xy (red solid line), the interband part

OD

xy (blue dashed line), and 
xy (green dotted line) as functions of
the relaxation time τ when T = 300 K. (b) 
D

xy (red solid line), 
OD
xy

(blue dashed line), and 
xy (green dotted line) versus T when τ =
1 ps. (c) The contribution from acoustic branches (black dotted line)
and optical branches (red dotted line) to 
D

xy. (d) The contribution to
the interband part 
OD

xy from the transitions between different phonon
branches.

and (k′, σ ′) should be also considered. Moreover, the an-
harmonic properties are described using a simple constant
relaxation time approximation, but for systems with strong
phonon scattering, the dependence of a phonon’s lifetime
on the wave vector k and the phonon linewidth should
be considered. Interband transitions of phonons are criti-
cal for thermal transport in amorphous [32] or complex
crystals [42–44] with strong anharmonicity, as discussed
in previous works [45,46] on lattice thermal conductivity.
Therefore, our work provides a possible preliminary inter-
pretation of the experiment [23] since the extremely low
thermal conductivity of the chiral organic-inorganic hybrid
perovskites used in the experiment implies that the inter-
band contribution could be important. It is worth noting
that chiral organic-inorgnic hybrid perovskites are a possible
candidate for observing a large PAM and phonon magnetic
moment.
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