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Asymmetry effects on the phases of RKKY-coupled two-impurity Kondo systems
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In a related work [Phys. Rev. B 107, L121111 (2023)], we have shown that, in the two-impurity Anderson
model with two hosts coupled by spin exchange in the most symmetric case, there are either two phase transitions
or none. The phases comprise the conventional Kondo and RKKY regimes and a different one, interpreted as
a Kondo-stabilized, metallic quantum spin liquid. Here, we analyze how various types of asymmetry affect
this picture. We demonstrate that the transitions are robust against the coupling and particle-hole asymmetries,
provided charge transfer is forbidden. This holds true despite the scattering phase shift at each impurity taking
nonuniversal values. Finally, for an extended model including charge transfer between the hosts and a small
Coulomb interaction at the host sites directly coupled to impurities, we show that the presence of charge transfer
changes the phase transitions into crossovers. Provided the interhost hopping is sufficiently small, this leads to
qualitatively the same physics at nonzero temperature. The relevance of this model for rare-earth atoms in a
metallic host is discussed, and potential experimental setups for observing our findings are proposed.
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I. INTRODUCTION

Heavy fermion (HF) materials have been studied for many
years, yet their rich phase diagrams still elude precise under-
standing [1,2]. In particular, Doniach proposed a scenario [3]
for HF magnetic phase transitions to be qualitatively captured
by the competition of the local Kondo screening of individ-
ual impurities and the long-range, conduction-band-mediated
spin exchange between distinct impurities, the RKKY inter-
action [4–6]. This local perspective gained particular interest
after it was shown in a series of works by Jones et al. [7–9]
that, in the case of two impurities, it can trigger a quantum
phase transition (QPT) with a two-channel Kondo quantum
critical point [10,11]. Since then, two-impurity or dimer sys-
tems have become a test ground for many concepts concerning
HF properties [12–16]. This strategy is further supported by
the recent successful dynamical mean-field theory (DMFT)
mapping of a generic Kondo lattice onto a self-consistent
two-impurity problem [17]. Nevertheless, the significance of
the Jones-Varma QPT for HF criticality is still being debated
for a number of reasons.

(1) The Jones-Varma model [7] neglects that the re-
alistic RKKY interaction is conduction-electron mediated
and generated in the second order by the Kondo exchange
coupling itself [18] but replaces it by direct Heisenberg ex-
change coupling between the impurity spins as an independent
parameter. This was believed to capture the essential compe-
tition between Kondo screening and interimpurity spin-dimer
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formation but also leads to a model of higher symmetry than
generic HF systems.

(2) The Jones-Varma model relies on a special type of
particle-hole (PH) symmetry, while the QPT is, in general,
smeared into a crossover in less symmetric cases [19–21]. In
real systems, PH symmetry is usually not present. Still, a prop-
erly tuned counterterm allows us to restore the transition in the
partly symmetric model [22]. The absence of charge transfer
between the hosts suffices for us to observe the transition
in theory for two impurities [20,23], and self-consistency re-
stores the stability of the transition within DMFT of the Kondo
lattice with antiferromagnetic order [17]. In experiments, even
the presence of a small charge transfer seems to not suppress
the two-impurity QPT [12].

(3) In a dense impurity lattice, there may be too few
electrons for complete screening of all the impurities inde-
pendently, as suggested by Nozières’s exhaustion principle
[24,25] and proven recently for the periodic Anderson model
[26]. This suggests a reinterpretation of the metallic HF sys-
tem as composed of partially correlated impurities instead of
individually Kondo-screened ones.

(4) It has been stressed that, in many HF materials, an
important role is played by geometric frustration [1,27] which
competes with ordering tendencies and may lead to ex-
otic phases, including metallic quantum spin liquids (QSLs)
[28–33], coexistence of the Kondo effect with QSL [34]
or magnetic ordering of residual local magnetic moments
[35–41]. This intensively researched field applies to materials
possessing magnetic moments arranged in triangular or other
frustrated lattices which are not studied in this paper.

In a previous study [42], we introduced a more realistic
type of two-impurity Anderson (2iA) model which incorpo-
rates the interimpurity coupling as an RKKY-like, nonlocal,
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FIG. 1. (a) Schematic illustration of the fully symmetric model
of Ref. [42]. Different types of asymmetric models considered in this
paper: (b) model with channel asymmetry, (c) model with particle-
hole (PH) asymmetry, (d) model with allowed interchannel charge
transfer.

and conduction-electron-mediated interaction and, at the same
time, preserves the PH symmetry necessary for a true Jones-
Varma QPT instead of a crossover. In this model, each
Anderson impurity is coupled to its individual metallic host,
and the RKKY-like interaction is generated by a Heisenberg
coupling JY between the different hosts in the spin channel
only since charge transfer between the hosts would break PH
symmetry via potential scattering, see Fig. 1(a). We consider
the interhost Heisenberg coupling only between the conduc-
tion electrons at the positions of the impurities and thus
neglect the long-range nature of the RKKY interaction since
this is not crucial for the low-energy phases of the system.
The resulting phase diagram [42] is distinctly different from
the Jones-Varma two-impurity model [7,8] because the in-
terhost spin coupling JY not only generates the RKKY-like
interaction but also induces spin correlations in the metallic
host. Remarkably, in addition to the Jones-Varma QPT, a
QSL phase occurs for strong JY even without geometrical
frustration but is stabilized against a dimerized phase by the
Kondo effect [42–44]. Note that setting charge transfer be-
tween the hosts to zero is only required in the 2iA model
to stabilize the Kondo singlet to dimer-singlet QPT, but in a
bulk Anderson lattice system, this QPT could be stabilized
by spontaneous symmetry breaking. In any case, the results
of Ref. [42] suggest that, in an Anderson lattice, strong spin
correlations of the conduction electrons generated either by
JY or by a spin-density wave instability can lead to a Kondo-
stabilized QSL. We note in passing that, most recently, the
RKKY coupling is also considered an indirect interaction in
Ref. [45] for a Kondo necklace model, but there, the lack
of charge degrees of freedom excludes a QSL phase studied
here.

In this paper, we extend the study of Ref. [42] and analyze
how the results presented there depend on different types
of asymmetry. In Sec. II, we introduce the model, explain-
ing different types of asymmetry in Secs. II B–II D and the
methodology in Sec. II E. The simplicity of the proposed
two-impurity setup allows for a near-exact numerical solu-
tion, particularly without any type of mean-field treatment
nor perturbative approximations. In Sec. III, we give detailed

definitions of all crossover scales relevant to the model and
elaborate on the role of interactions in the conduction band
for the stability of the spin liquid phase. Section IV is de-
voted to the description of the results in different asymmetric
cases. We show that the zero-temperature phase diagram ob-
tained in Ref. [42] stays intact despite PH or Kondo coupling
asymmetry. Then in Sec. IV C, we show that the presence
of charge transfer changes the QPTs into crossovers such
that soft-boundary regimes of similar properties replace the
well-defined phases of the symmetric model. We conclude in
Sec. V.

II. MODEL AND ITS SYMMETRIES

A. Fully symmetric case

The model consists of two impurities, each one coupled to
a different host. The hosts are coupled by a spin exchange, as
depicted schematically in Fig. 1(a). The Hamiltonian is based
on the Anderson impurity model for each of the channels,
where each host together with its corresponding impurity is
referred to as a channel. Therefore, its symmetrical form reads

H =
∑
αkσ

εαkĉ†
αkσ ĉαkσ +

∑
αkσ

Vα (ĉ†
αkσ d̂ασ + H.c.)

+
∑
ασ

εα n̂ασ + U
∑

α

n̂α↑n̂α↓ + JY �̂s1 · �̂s2, (1)

where n̂ασ = d̂†
ασ d̂ασ is the number operator of spin-σ elec-

trons on the impurity α (α ∈ {1, 2} and σ ∈ {↑,↓}), the
conduction-band spin operator at the impurity site in channel
α is defined as �̂sα = ∑

kk′ ĉ†
αkσ �σσσ ′ ĉαk′σ ′ , with �σ the vector

of Pauli matrices. Also, V1 = V2 ∈ R determine the hybri-
dization between the impurity and the host in the respective
channel. Finally, U denotes the Coulomb repulsion within
the impurity orbitals, while JY is the interhost spin-exchange
coupling. Such an interaction JY with suppressed charge trans-
port may possibly be created by large-spin molecules or
a chain of magnetic atoms in between the two impurities,
as in Ref. [23]. The impurity-host hybridization functions
are �ασ (ω) = πρασ (ω)V 2

α , where ρασ denotes the density of
host states. We assume a constant, spin-independent, and PH
symmetric host density of states within the bandwidth Dα ,
ρασ (ω) ≡ N−1 ∑

k δ(ω − εαkσ ) ≈ (2Dα )−1 for |ω| � Dα (N
is the number of k points in momentum space), and ρασ (ω) =
0 for |ω| > Dα . We will comment on the case D1 	= D2 when
discussing channel asymmetry, see Sec. IV A, and assume
D1 = D2 = D otherwise. If ρασ (ω) is regular at the Fermi
level, their energy dependence is expected to be unimpor-
tant at low temperatures [46]. A (partial) spin polarization
of the leads would, in general, induce spin-dependent renor-
malization of impurity energy levels and thus split the Kondo
resonance or even fully suppress the Kondo effect [47–49].
The induced splitting vanishes at the PH symmetry point,
where the main effect of the magnetism of the leads is a
change in the Kondo temperature [50]. Thus, one can expect
the results presented here to be qualitatively correct at T = 0
in the close vicinity of the PH symmetry point also for fer-
romagnetic electrodes. However, determination of the effects
of lead magnetism on the phase diagram of the 2iA model in
general would require further studies.
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Setting the energy levels of the impurities at εα = −U/2
ensures the full PH symmetry of the model, while indepen-
dence of the Hamiltonian parameters of α guarantees channel
symmetry. The symmetry of the model is then the same as
the one studied by Jones and Varma [8]. The total symmetry
of the model is a product of several subgroups, SU(2)S ⊗
SU(2)C1 ⊗ SU(2)C2 ⊗ Z2, described as follows. The first term
corresponds to conventional total spin (denoted S) conserva-
tion in the absence of anisotropy. Furthermore, the electric
charge is conserved in each of the channels separately, and
in the presence of PH symmetry, the conventional U(1)Cα

charge symmetries are lifted to an isospin SU(2)Cα
, where

the z component of the isospin is the physical charge, and
the isospin rising and lowering corresponds to PH transforma-
tions. Finally, the Z2 symmetry corresponds to the invariance
of the Hamiltonian with respect to interchanging the channels.

It is noteworthy that, in the conventional 2iA model with
a single host, the SU(2)Cα charge symmetries in general do
not appear for both channels of the effective numerical renor-
malization group (NRG) model separately [22]. The different
types of asymmetry considered in this paper are explained one
by one in the following and examined for their influence on
the phase diagram of the model in Sec. IV.

B. Channel asymmetry

Channel asymmetry appears when the hybridizations of
impurities with their respective hosts differ between the chan-
nels, i.e., �1 	= �2 as in Fig. 1(b), or V1 	= V2 in Eq. (1).
This, in turn, implies different Kondo couplings and different
Kondo temperatures, TK1 and TK2, characterizing the corre-
sponding channels. Due to the exponential dependence of TKα

on �α , even a small difference in �α renders large discrepancy
of Kondo scales. Hence, the discussion of this asymmetry
seems necessary for making a reliable connection to experi-
mental reality. Technically, this means that the Z2 symmetry
is broken, while all three SU(2) symmetries remain intact.

C. PH asymmetry

The PH symmetry plays a special role in the context of
the Jones-Varma two-impurity model. In fact, it has been
recognized that only a special type of PH symmetry guaran-
tees the existence of QPT which is otherwise turned into a
crossover [19,20]. However, it has subsequently been proven
that the QPT is robust even in the absence of PH symmetry
and destabilized only by charge transfer between the hosts
[23,51]. Moreover, the only marginally relevant perturbation
around the QPT fixed point can be eliminated by an appro-
priate counterterm, such as additional interimpurity hopping
[22]. Therefore, it seems that the analysis cannot be complete
without checking if the Kondo-RKKY transition and the QSL
transition, reported in Ref. [42], share these characteristics.
To this end, we set εα = −U/2 + δα in Eq. (1) and study the
properties of the system for different detunings from the PH
symmetry point δα , as schematically presented in Fig. 1(c).
Here, δα 	= 0 reduces the charge symmetry of channel α from
SU(2) to regular U(1) charge conservation.

As a particular case, PH asymmetry includes the situa-
tion when individual channels are asymmetric yet compensate

each other to restore global (weak) PH symmetry, δ1 = −δ2

for �1 = �2. However, as shown below, also in the more
general case of independent detuning of the energy levels of
each impurity, the transitions stay intact.

D. Charge transfer

We also analyze the situation of allowed charge transfer
between the hosts. By this, we mean adding a hopping term tY
to Eq. (1), that is, considering the Hamiltonian:

Hasym = H + Ucb

∑
α

ĉ†
α↑ĉα↑ĉ†

α↓ĉα↓

+ tY
∑

σ

(ĉ†
1σ ĉ2σ + H.c.), (2)

where ĉασ = ∑
k ĉαkσ denotes the conduction-electron oper-

ator with spin σ at the site of the impurity α. Note that,
in this case, one site of each host is, in fact, interacting, as
schematically depicted in Fig. 1(d).

For completeness, we also consider a small, local interac-
tion among the conduction electrons, 0 < Ucb � D, U . This
is justified since it is well screened by a high density of
itinerant electrons. From general Fermi liquid (FL) theory,
one expects that a value of Ucb smaller than the conduction
bandwidth D has no significant effect on the results. This is
confirmed by explicit NRG calculations in Sec. IV C. We note
in passing that a similar model with Ucb 	= 0 would emerge in
DMFT for an antiferromagnetic phase of the Kondo-Hubbard
model relevant for manganites, even though the Kondo cou-
pling would need to be replaced by the ferromagnetic Hund’s
exchange there [52,53].

Since asymmetries different from charge transfer terms are
irrelevant (see above), below, we will restrict ourselves to the
PH- and channel-symmetric case for the sake of simplicity.
Nevertheless, the results are expected to apply to the general
case.

E. Methods

The model is solved by the NRG procedure [46,54]. Our
implementation is based on the open-access code, Ref. [55],
which uses the basis set of all discarded states [56] to construct
the full density matrix of the system [57]. This allows us to
calculate static expectation values for any temperature T and
compute arbitrary spectral functions in a sum-rule-conserving
framework, directly in their Lehmann representation. In all
NRG calculations, we use the NRG discretization parameter

 = 2.5. At each NRG step, we keep all states with (rescaled)
energy Ej below a cutoff value Ecut, where Ecut is chosen
within the range 6.5 < Ecut < 7.0 (in units of the iteration
scale) such that the energy difference between the last kept
and the first discarded state is >0.001. For all calculations,
we choose Hamiltonian parameter values (as given in the fol-
lowing) such that the intrinsic energy scales are well separated
and the different regimes can be clearly identified.

To avoid ambiguities introduced by artificial broadening
of the spectral functions, instead of studying the spectral
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densities directly, we use the impurity conductance G and the
conduction-band conductance g, defined as

Gα (T ) =
∑

σ

∫
Aα (ω)

[
−∂ fT (ω)

∂ω

]
dω, (3)

gα (T ) =
∑

σ

∫
Bα (ω)

[
−∂ fT (ω)

∂ω

]
dω, (4)

where Aα = −ΓαIm〈〈d̂ασ ; d̂†
ασ 〉〉ret (ω) is the normalized spec-

tral density at the impurity α, which is independent of σ

due to SU(2) spin symmetry, and similarly, the local spec-
tral density per spin σ of conduction electrons at the site
of the impurity α = 1, 2, Bα = −2DαIm〈〈ĉασ ; ĉ†

ασ 〉〉ret (ω).
Here, fT (ω) denotes the Fermi-Dirac distribution function
at temperature T and 〈〈. . .〉〉ret the retarded fermionic Green
function in frequency space. With the definitions in Eqs. (3)
and (4), the conductance measured with an scanning tunneling
microscope (STM) tip coupled to impurity α (conduction
band site in direct vicinity of impurity α) is proportional to
Gα (gα). Since the actual conductance would depend on the
coupling strength between the STM and the impurity (host),
we normalize it by its maximal value G0 (g0), corresponding
to resonant transport conditions.

III. CROSSOVER TEMPERATURES AND PROPERTIES
OF THE SPIN-LIQUID PHASE

In this section, we corroborate and extend the results of
Ref. [42] in that we provide a detailed explanation of the
relevant energy scales, an analysis of the fixed-point spectra
in the respective phases of the model, and a more exten-
sive discussion of the Heisenberg transition in the conduction
band. We consider the symmetric model of Eq. (1), with
D1 = D2 = D = 2U and �1 = �2 = � = 0.0488U , which
results in a single-impurity (JY = 0) Kondo temperature of
T 0

Kα ≈ 10−4 U . It exhibits two QPTs when JY is increased
from 0 to JY � D [42]. These results will then be used as a
reference for the asymmetry analysis in Sec. IV.

A. Crossover temperatures and Kondo destruction

We first introduce a number of crossover scales that char-
acterize the NRG flow of the fully symmetric system from the
weak-coupling local-moment fixed point at high energy to the
low-energy fixed points describing the various ground-state
phases of our system, the Kondo, the RKKY, and the QSL
phase, respectively, depending on the value of JY . This flow
can be observed in the T dependence of G1 and g1, as shown
for the symmetric case (G2 = G1 and g2 = g1) in Figs. 2(a)
and 2(b). Above the conduction bandwidth, T > D = 2U , G1

and g1 approach zero due to the absence of spectral density.
Here, G1 features a bump at T ≈ U/2, where excitations
to empty and doubly occupied impurity states are thermally
accessible. Correspondingly, g1 has a dip at T ≈ U/2 due to
a Fano-like depletion of conduction spectral density. It is evi-
dent from the figure that, in the general case (JY 	= 0), for T <

U/2, the temperature dependence is governed by two scales.
In the local-moment regime (decoupled impurity spins), we
have G1/G0 ≈ 0 and g1/g0 ≈ 1, so that we can define the
scale below which the system deviates from the local-moment

FIG. 2. (a) Impurity conductance G1 and (b) conduction-band
conductance g1 as functions of temperature T (note the logarith-
mic scale) for a symmetric model with �1 = �2 = 0.0488U (T 0

K1 =
T 0

K2 ≈ 10−4U ), and a few values of JY , representative for various
regimes (the actual values are JY /D ∈ {0, 0.105, 0.107, 1.5}). Other
parameters: D = 2U , 
 = 2.5, and 6.5 < Ecut < 7.

regime as the temperature TLM, where G1(TLM)/G0 = 0.25
and g1(TLM)/g0 = 0.75, see Figs. 2(a) and 2(b).

The low-T scales can be read off from Fig. 2 as fol-
lows. The Kondo regime is characterized by G1(0)/G0 = 1,
g1(0)/g0 = 0, while in the RKKY regime, G1(0)/G0 = 0,
g1(0)/g0 = 1. Consequently, we can define the scale on which
the Kondo fixed point is approached (0 < JY < J∗

Y ) as the
strong-coupling Kondo temperature TKs, where G1(TKs)/G0 =
0.9 and g1(TKs)/g0 = 0.1 (red curves), while the approach to
the RKKY fixed point (J∗

Y < JY < J∗∗
Y ) is characterized by

the scale TY with G1(TY )/G0 = 0.1, g1(TY )/g0 = 0.9 (green
curves). The approach to the QSL fixed point (JY > J∗∗

Y ) is
more difficult to characterize, as the impurity conductance G1

assumes nonuniversal low-T values in this case [blue curve in
Fig. 2(a)], while g1(0)/g0 = 0. Therefore, we define the QSL
scale TSL as the temperature where g1(TSL) = 0.1 [blue curve
in Fig. 2(b)].

We note that, in the limit of a single Anderson impu-
rity (JY = 0), the strong and weak coupling scales TKs and
TLM become proportional to each other (not shown), signal-
ing the universality of the single-impurity Anderson model.
We find that the Kondo fixed point is approached at low
T once G(T )/G0 exceeds the separating value of 1

2 and
g1(T )/g0 drops below 1

2 , see Fig. 2. Within the Kondo regime
(0 < JY < J∗

Y ), we can, thus, characterize the flow by a sin-
gle Kondo scale TK(JY ) with G0[TK(JY )] = 1

2 . For nonzero
RKKY-like coupling JY 	= 0, TK(JY ) is suppressed below its
single-impurity value TK(JY = 0) = T 0

K and ceases to exist be-
yond the critical coupling J∗

Y . We find TK(J∗
Y ) = T 0

K /e, where
e = 2.718 . . . is Euler’s constant, in agreement with the ana-
lytic result of Ref. [18] (see Fig. 3 of Ref. [42]). Thus, TK(JY )
is a crossover scale which can be identified with a renor-
malized, single-impurity Kondo temperature which remains
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FIG. 3. Fixed-point many-body spectra (1000 multiplets with
lowest energy) at (a) last even and (b) last odd numerical renormal-
ization group (NRG) iteration, for parameters as in Fig. 2 with T =
10−7T 0

K = 10−11U , as functions of JY . The quantum phase transitions
(QPTs) are indicated with dashed vertical lines. All the many-body
excitation energies can be composed of only four single-particle
excitation energies 
1–
4 (see text for details).

finite at the transition. By contrast, the strong-coupling scale
TKs drops to 0 quadratically at the Kondo-to-RKKY QPT as
a function of JY , in agreement with the Kondo destruction
hypothesis [29,58–60], here confirmed for the two-impurity
case. Similarly, TY (JY ) vanishes quadratically at the QSL
transition, see insets of Fig. 3(c) of Ref. [42]. When channel
asymmetry is included, a significant channel dependence of
all the scales leads to qualitatively different regimes at T > 0,
which we analyze in Sec. IV A.

B. Fixed-point spectra and FL character

Further insight into the structure of the Kondo, RKKY,
and QSL phases can be gained from the fixed-point spectra
in theses phases, i.e., the spectra of the (scaled) renormalized
Hamiltonian to which the system converges for many NRG
iterations. As is well known, these spectra differ for an even
or odd number of NRG iterations because, in each iteration,
one site is added to a Wilson chain, and the total electron
number (per channel) increases by one so that the many-
body ground state is alternatingly a spin singlet or a Kramers
doublet [26,46,54].

The fixed-point spectra of the symmetric model, Eq. (1),
are displayed in Fig. 3 as function of JY for the last even
and last odd iterations, clearly showing the two phase transi-
tions as discontinuities at JY = J∗

Y and J∗∗
Y , respectively. We

see that all three stable phases are of FL nature (but not
the critical fixed points marking the transitions). This can
be recognized from the fact that the eigenenergies E∗

j of the
truncated fixed-point Hamiltonian up to about jmax = 1000
multiplets can be constructed as a linear combination of only
two level spacings, namely, for even iterations E∗

j = n
1 +
m
2 in the Kondo phase (JY < J∗

Y ) and E∗
j = n
3 + m
4 in

the RKKY phase (J∗
Y < JY < J∗∗

Y ) with integer n, m. This is
indicated in Fig. 3(a) by the vertical rulers. It means that the
many-body states with energies E∗

j consist of multiple inde-
pendent excitations of the same energies 
i, the quasiparticle

excitation characteristic of a FL. For the chosen 
 = 2.5, we
have 
1 = 0.699, 
2 = 2.332 and 
3 = 1.422, 
4 = 3.698.

In fact, in the Kondo phase the fixed-point spectrum is
identical to that of the free conduction system (� = 0, JY = 0,
not shown) which is a FL by definition. It results from the fact
that effectively one conduction electron from each channel
is used to form the Kondo singlet with the respective impu-
rity, and the remaining conduction electrons are free particles
with an impurity scattering phase shift of ϕ = π/2 at the
fixed point. In the RKKY phase, the fixed-point spectrum is
the same as in the case of free particles. Here, the Kondo
screening is absent; thus, the impurity scattering phase shift
ϕ = 0. However, because of the Heisenberg interaction JY

within the conduction electron system, the relevant quasipar-
ticles are superpositions of free Bloch electrons, still forming
FL excitations. Finally, it is interesting to see in Fig. 3 that
the fixed-point spectra of the Kondo and RKKY phases are
interchanged when one considers the odd- instead of even-
iteration spectra. This simply stems from the fact that, in the
Kondo phase, one conduction electron is effectively removed
from the system by the Kondo screening as compared with
the RKKY phase, and the same is true when one considers
the system in the (N − 1)st (odd) iteration instead of the N th
(even) iteration (see above).

Coming now to the QSL phase (JY > J∗∗
Y ), it is striking in

Fig. 3 that the QSL fixed-point spectrum is identical to the
Kondo fixed-point spectrum. This means that the QSL is also
a FL. However, it should be stressed at this point that the iden-
tical fixed-point spectrum does not mean that the two phases
are the same. The eigenstates are different compositions of
the original degrees of freedom, leading to a spreading of the
phase shift into the interacting part of the conduction band and
consequently nonuniversal values of impurity spectral density.
This can be interpreted as nonuniversal fractionalization of the
FL quasiparticles into conduction-band and impurity parts.
The former are responsible for the partial Kondo screening
of the impurities. The latter give rise to interimpurity spin
correlations of the QSL (see also Sec. III C). Nevertheless, the
identical spectra indicate the possibility that the two phases
can be continuously connected by circumventing the T = 0
phase transitions in parameter space. This scenario is indeed
realized for strong enough Kondo coupling �, measured by
T 0

K , as is shown by the fixed-point spectrum in Fig. 4 for
T 0

K ≈ 10−2 U and by the general phase phase diagram in Fig.
2(b) of Ref. [42]. The Kondo-QSL crossover corresponds to
a continuous change of the proportions between the two parts
of the quasiparticles driven by increasing JY . In this case, the
Kondo fraction of them starts melting around JY ∼ D, and
the interchannel fraction dominates completely only in the
JY → ∞ limit.

C. Significance of spin interaction in the band

In conventional impurity models, the case of vanishing
Kondo coupling is trivially a FL (plus the decoupled impu-
rities). However, in the case of the Hamiltonian given by
Eq. (1), even for �1 = �2 = � = 0, there is an interaction
term proportional to JY acting within the conduction band.
Therefore, let us consider now the case � = 0. After NRG
mapping onto the Wilson chains, this model is very similar to

125146-5



KRZYSZTOF P. WÓJCIK AND JOHANN KROHA PHYSICAL REVIEW B 107, 125146 (2023)

FIG. 4. Like Fig. 3, except for � = 0.103U corresponding to
T 0

K ≈ 10−2U , and with T = 10−7T 0
K = 10−9U . There are no quan-

tum phase transition (QPTs) in this case. Excitation energies 
1–
4

are the same as in Fig. 3.

the Jones-Varma model [8] except that, instead of the local-
ized spins, JY couples two sites strongly hybridizing with the
bath and possessing charge as well as spin degrees of freedom
since the Coulomb repulsion is absent. Despite these differ-
ences, an analog of the Jones-Varma transition is still present
and actually corresponds to the spin-liquid transition at JY =
J∗∗

Y ≈ 1.5D. It is driven by the spin exchange destabilizing the
Bloch electrons when overcoming the corresponding band-
width. This is illustrated in Fig. 5, showing the conductance
gα as a function of T . However, in the absence of impurities,
the nonuniversal character of the phase for JY > J∗∗

Y is lost, for
the impurity fraction of the quasiparticles cannot exist then
(see previous section). Instead, a soft-gapped FL emerges,
fully characterized by a density of states featuring universal
B(ω) ∼ ω2 behavior.

The lack of conduction band electrons near the Fermi level
comes from the fact that this state may also be seen as an
analog of a Kondo state, where each of the two conduction
bands plays the role of a spin-screening channel for the other.
This binds the electrons from the Fermi level into spin sin-
glets, as it does in the Kondo effect. The important difference
is that, unlike the Kondo coupling, JY does not flow under
renormalization group transformations; thus, a critical value
of JY must be exceeded for this phase to form. On the other
hand, it should be noted that, in the absence of interactions

FIG. 5. Conduction band conductance gα in a special case of
�1 = �2 = 0, as a function of temperature, for different JY in the
range indicated in the legend. Other parameters as in Fig. 2.

within the conduction band, coupling the impurity to a host
with a static, not dynamically generated density of states pro-
portional to ω2 does not lead to the screening of the impurity
spin, even in the presence of strong Kondo coupling [61–63].
Hence, it is the competition between both dynamical effects,
the tendency to form the interchannel screening induced by
JY , and the Kondo effect induced by nonzero � that generates
the frustration stabilizing the QSL phase in the presence of
Kondo impurities. In this Kondo-stabilized QSL, the impurity
spectral density acquires a nonuniversal value at ω = 0. The
screening of each impurity by the respective conduction band
and the interimpurity local spin compensation both contribute
to the nonuniversal ground state correlations. The scattering
phase shift of the free part of conduction band electrons gets
spread between the impurities and the interacting part of the
conduction band. For sufficiently strong �, decreasing JY then
leads to a continuous crossover to the Kondo state, with each
impurity screened by the respective conduction band. The
above observation points to the expectation that, to capture a
possible QSL of the type discussed here in Kondo lattice
systems, it is essential to treat both effects dynamically, the
Kondo screening and the spin correlations within the conduc-
tion band. The latter is not performed in single-site DMFT
[64].

IV. ASYMMETRY

In this section, we analyze each type of asymmetry, case
by case, showing that the general scenario obtained for the
symmetric case survives at T = 0 if there is no charge transfer.
Moreover, even in the presence of the latter, many features of
the symmetric model can be identified in extended regimes,
corresponding to the sharp phases of the symmetric model.
However, channel asymmetry splits the Kondo scale into two
different values for each channel, T 0

K → T 0
K1, T 0

K2, and a large
difference between the two will create space for qualitatively
new behavior at T > 0.

A. Results for channel asymmetry

1. General picture

As the first type of asymmetry, we study the channel
asymmetry. Let us start by inspecting the flow diagram for
�2 = �1/2, which is presented in Fig. 6. First of all, we
clearly see that reducing �2 by a factor of 2 drives the cor-
responding Kondo temperature T 0

K2 down by almost 4 orders
of magnitude, a manifestation of its exponential dependence
on the coupling strength, cf. Fig. 6(c). This separation of
energy scales facilitates analyzing the regime TK2 � T �
TK1 by NRG, see below. For smaller asymmetry, this inter-
mediate regime is realized at higher temperatures. For T <

min(TK1, TK2), all the properties of the symmetric model [42]
are recovered. The impurity conductances exhibit universal
values: G1(T = 0) = G2(T = 0) = G0 in the Kondo regime
(JY < J∗

Y ) and G1(0) = G2(0) = 0 in the RKKY phase (J∗
Y <

JY < J∗∗
Y ). The two phases are separated by a Jones-Varma

QPT [8], i.e., the unstable QPT fixed point at JY = J∗
Y , where

G1(0) = G2(0) = G0/2. Further increase of JY drives the
spin-liquid QPT [42] at JY = J∗∗

Y ≈ 1.5D, where the values
of G1(0) and G2(0) become nonuniversal.
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FIG. 6. The flow diagrams of the impurity conductances (a) G1

and (c) G2 as well as the conduction-band conductances (b) g1 and
(d) g2, in the presence of channel asymmetry induced by a difference
in the Kondo couplings, �2 = 0.5 �1 = 0.0244U . Other parameters:
D = 2U , 
 = 2.5, and 6.5 < Ecut < 7. Representative flow curves
toward the Kondo, RKKY, and SQL fixed points are marked with K,
Y, and S, respectively.

For a FL in the presence of PH symmetry, the only two pos-
sible values of scattering phase shift from an impurity are 0 or
π/2 [20,65]. However, the JY term in Eq. (1) acting between
the hosts does not correspond to a single-particle dispersion
but introduces interactions into the conduction band. For this
reason, Gα , α = 1, 2, does not have to assume a universal
value at T → 0. Nevertheless, as this is the only interact-
ing term in the leads, the remaining parts of the electrodes
(i.e., each entire electrode α excluding the state on which
JY directly acts) are still FLs, and the phase-shift argument
is valid for gα (0). Therefore, gα (0) always assumes univer-
sal values 0 or g0, except for the critical points at JY = J∗

Y
and JY = J∗∗

Y , where non-FL critical fixed points allow for
g1(0) = g2(0) = g0/2. Thus, together with Gα (0), the values
of gα (0) characterize all the phases uniquely, in the same way
as for the channel-symmetric case [42].

While at T = 0 the regimes of the channel-asymmetric
model are the same as in the symmetric one, the situation
changes at T > 0. For TK2 < T < TK1, the second impurity is
still in the local-moment regime such that neither the Kondo
effect nor the RKKY interaction is significant there. Mean-
while, the first impurity is already screened by its host. In
such conditions, T 0

K1 is almost not affected by JY , as seen
in Fig. 6(a). Only at lower T ≈ T 0

K2, G1(T ) drops from a
value close to G0, characteristic of the Kondo regime, to-
ward the unstable QPT fixed-point value G0/2. Upon further
decreasing T → 0, in the Kondo phase (JY < J∗

Y ), G1(T )
returns to the unitary value G1(0) = G0, and in the RKKY
phase (J∗

Y < JY < J∗∗
Y ), it further drops to G1(0) = 0. In this

way, the stronger-coupled impurity approaches the Kondo
regime twice: once at T � TK1 and then again at T < TKs2.
In between, at T ∼ TK2, the second impurity leaves the local-
moment regime, and its flow toward the Kondo regime affects
the screening in the first channel via the RKKY interaction,
which becomes relevant in this temperature range. Hence,
for the first, stronger-coupled impurity, TKs1 is not unique
then, and only one of these two strong-coupling Kondo scales
vanishes at the Jones-Varma transition as in the symmetric

FIG. 7. Fixed-point spectra at the (a) last even and (b) last odd
numerical renormalization group (NRG) iteration for parameters as
in Fig. 6 with T = 10−7T 0

K = 10−11U as functions of JY . The quan-
tum phase transition (QPT) points are indicated by vertical, dashed
lines.

case, while the other one does not, cf. Fig. 6(a). On the
other hand, for the second impurity, TKs2 is more efficiently
suppressed to zero than in the symmetric case, cf. Fig. 6(c).
The host conductances gα behave as can be expected on the
basis of the symmetric case. They reveal all the characteristic
energy scales in their temperature dependencies. As can be
seen in Fig. 6, gα (T )/g0 ≈ 1 − Gα (T )/G0 except for the QSL
phase, where gα vanishes despite a small, nonuniversal Gα .
The fixed-point spectra for the parameter values as in Fig. 6
are shown in Fig. 7, confirming that the FL nature of the three
different phases is preserved in the channel-asymmetric case,
see the discussion in Sec. III B.

Summarizing the asymmetric NRG flow of Fig. 6, the
phase diagram in the JY -T plane is presented in Fig. 8.
Note that the scales TLMα , α = 1, 2, persist across the
Jones-Varma transition, and the strong-coupling scale of
the weaker-coupled impurity TKs2 vanishes, as expected
from the symmetric case. However, the low-energy scale
of the stronger-coupled impurity TKs1 splits into two values

FIG. 8. Phase diagram obtained from the numerical renormaliza-
tion group (NRG) flow of Fig. 6. The ambiguity of TKs1 (indicated by
the vertical arrow next to the J∗

Y line) is caused by the fact that the
Kondo regime is approached twice. TY 1 and TY 2 are not well defined
far from the transitions and represented as dashed, straight lines. In
the quantum spin liquid (QSL) phase, TSL1 = TSL2 = TSL.
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FIG. 9. The conductances Gα (left panels) and gα (right panels),
α = 1, 2, as functions of JY for T = 10−11U and various ratios of the
Kondo couplings �2/�1 for fixed �1 = 0.0488U . Other parameters
are as in Fig. 6.

T ′
Ks2 > TKs2, where the larger one remains finite across the

QPT. This means that the expected scaling behavior near the
QPT will exist only for T < T ′

K, which should be experimen-
tally observable in asymmetric setups. By contrast, both TY α

scales vanish at the QSL transition.

2. Dependence on asymmetries Γ2/Γ1 and D2/D1

Let us now inspect Gα and gα as functions of JY at a
cryogenic but nonzero temperature T = 10−11U , see Fig. 9.
For �2 = 2 �1, there are two phase transitions similar to the
symmetric case (�2 = �1), as already discussed in the con-
text of Figs. 6 and 8. With decreasing �2/�1 at fixed �1 =
0.0488U , the Jones-Varma phase boundary J∗

Y shifts toward
smaller values. We can estimate this decrease analytically in
the following way. In the presence of asymmetric Kondo cou-
plings, there exist two different single-impurity Kondo scales,
see also Fig. 6. For a PH-symmetric Anderson impurity model
(εα = U/2), they are approximately given by [66]

T 0
Kα =

√
U�α exp

(
− πU

8�α

)
, α = 1, 2. (5)

The RKKY coupling can be calculated perturbatively as

Y � (ρ1JK1)(ρ2JK2)JY , (6)

with the Kondo spin-exchange coupling ραJKα =
4ραV 2

α /U = 4�α/πU . Generalizing the Doniach criterion for
RKKY-induced Kondo breakdown [3] to channel asymmetry,
the state with two individually Kondo screened impurities is
expected to terminate when Y reaches a critical strength which
is roughly given by the smaller of the two Kondo scales. This
is confirmed by the NRG flow in Fig. 6, where it is the smaller
of the two scales that determines which fixed point is reached
at the lowest energy, with some modification of TKα by
the interchannel coupling JY . Combining this criterion with
Eqs. (5) and (6), we obtain the critical interchannel coupling
for the asymmetric Jones-Varma transition (�2 < �1):

J∗
Y � (πU )2

4�1

√
U

�2
exp

(
−πU

8�2

)
, (7)

FIG. 10. G1 = G2 and g1 = g2 as functions of JY for T 0
K =

10−7 U , T = 10−11 U , 
 = 2.5, and particle-hole (PH) asymmetry
|δ1| = |δ2|. Other parameters are as in Fig. 2. The results do not
depend on the sign of δα .

which is exponentially suppressed with �2/U . When TK2

becomes smaller than the temperature T of the system, the
transition gets smeared, as seen in Fig. 9 for �2/�1 = 0.25.

Note that the QSL transition persists even for the smallest
�2/� values since its characteristic energy scale is fixed at
J∗∗

Y ≈ 1.5 D � T [42]. On the other hand, when the asymme-
try �2/�1 exceeds a certain threshold, J∗

Y exceeds J∗∗
Y , i.e., the

intermediate RKKY phase vanishes, and the two QPTs merge
to a single Kondo-to-QSL crossover [42], as seen in Fig. 9 for
�/�1 = 4.

To summarize this section, the �2 	= �1 case is qualita-
tively the same as the symmetric case at T = 0, if the effective
scale for Kondo breakdown does not exceed the threshold
value for changing the 2-QPTs scenario to the no-QPT sce-
nario. However, at elevated T , a different regime appears,
when one of the impurities is practically decoupled. The
RKKY interaction and the Kondo effect on the more weakly
coupled impurity are not relevant there, while the QSL phase
remains robust, unless one of the impurities is completely
detached. The extreme asymmetric limit of decoupling one
impurity is subtle and requires further study beyond the scope
of this paper. We further find that asymmetry in the band-
widths D2/D1 	= 1 (not shown) causes effects similar to the
coupling asymmetry. It leads to different Kondo scales TKα

and crossover scales TY α , etc., but does not drive qualitatively
new phenomena.

B. Results for PH asymmetry

We now focus on the PH asymmetry as defined in Sec. II C,
still in the absence of interchannel charge transfer. We con-
sider first the channel-symmetric case, δ1 = δ2 = δ, so that
G1 = G2 and analogous for all other physical quantities.

Figure 10 shows that the two QPTs, visible as discon-
tinuities of the conductances G1 and g1 as functions of JY

near zero temperature, T = 11−11 U , are robust against PH
symmetry breaking, just as the Jones-Varma transition is in
the case of direct inter-impurity spin exchange, see Ref. [23].
With increasing PH asymmetry δ, the first Jones-Varma-like
QPT shifts from J∗

Y ≈ 0.1 D to larger critical values J∗
Y , while

the second QPT at J∗∗
Y ≈ 1.5 D is independent of δ, until both

QPTs merge into a single crossover for δ � U/3 [red curves
in Figs. 10(a) and 10(b)]. This behavior can be understood
in the following way. According to the Doniach criterion [3],
the Kondo breakdown occurs when the effective RKKY inter-
action Y exceeds the single-impurity Kondo scale T 0

K , where
Y ∼ [ρJK(δ)]2JY and JK(δ) = (� /π )[U/(U 2/4 − δ2)] from
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a Schrieffer-Wolff transformation [66,67] of the Hamiltonian
in Eq. (1). PH asymmetry thus leads to a squared exponential
increase of the Kondo scale:

T 0
K (δ) = T 0

K (0) exp

(
πδ2

2�U

)
, (8)

and therefore to an increase of the critical J∗
Y (δ) of the Jones-

Varma transition, independent of the sign of δ. The merging of
the two QPTs to a single crossover with increasing TK(0), i.e.,
the vanishing of the RKKY phase at a critical point T 0

K max, was
explained for the PH-symmetric case in Sec. III and observed
in the phase diagram of Ref. [42], Fig. 2. Here, it is an experi-
mentally relevant observation that one can switch between the
single-crossover and the double-QPT scenarios by tuning the
PH asymmetry, e.g., by gating the impurity levels.

From Fig. 10, we see that Gα/G0 ≈ 1 and gα ≈ 0 for JY <

J∗
Y . However, with |δα| > 0, a small nonuniversality appears,

characteristic of the asymmetric Anderson model [68], visible
as small gα > 0 values, even in the T → 0 limit. Similarly, in
the RKKY phase (J∗

Y < JY < J∗∗
Y ), Gα takes nonzero values.

These are signatures of nonuniversal scattering phase shifts
of the band electrons in both regimes. The persistence of true
QPTs even in this nonuniversal situation is a special feature of
the two-host model in Eq. (1), designed to describe an effec-
tive RKKY interaction without charge transfer. It is in stark
contrast to the conventional single-host two-impurity model,
where the QPT can be restored by a finetuned counterterm
only if the phase shifts from the two impurities compensate
each other [22].

The above properties are corroborated by the fixed-point
spectra shown in Fig. 11. The persisting QPTs are clearly
visible as discontinuities of the spectra below the crossover
threshold, T 0

K < T 0
K max, Figs. 11(a)–11(d). However, the spec-

tra are no longer universal as in the fully symmetric case.
Instead, the low-lying multiplets get split, a manifestation that
each δ1, δ2 renders a marginally relevant perturbation to the
PH-symmetric fixed point, extending the latter into a sur-
face of fixed points, analogous to the line of fixed points in
the case of a single-impurity Anderson model [68]. Above the
threshold, T 0

K > T 0
K max, the spectra show a crossover from the

Kondo to the QSL regime, as expected [Figs. 11(e) and 11(f)].
Finally, in Fig. 12, we show the results for the channel-

asymmetric case in addition to PH asymmetry, δα 	= 0. As
seen in the figure, the effects of both types of asymmetry just
add up. PH asymmetry induces nonuniversality, while channel
asymmetry is relevant mainly at elevated temperatures and
does not lead to qualitatively new features. Imposing |δ1| 	=
|δ2| does not induce qualitative changes, albeit the level of
deviation of Gα from universality is substantially increased in
the channel with larger δα .

C. Results in the presence of charge transfer

In this section, we address the case with charge trans-
fer allowed between the channels by tY 	= 0, as introduced
in Sec. II D, and all other parameters symmetric. The most
important results concerning charge transfer are presented in
Fig. 13, where G1 = G2 and g1 = g2 are plotted as functions
of JY . The NRG parameters used there, 
 = 3 and 5.5 <

Ecut < 6, are slightly modified in comparison with earlier

FIG. 11. Fixed-point spectra (lowest 1000 states) for particle-
hole (PH) asymmetry, δα 	= 0. Parameters and a color code are the
same as in Fig. 10, with (a) and (b) |δα| = U/10, (c) and (d) |δα| =
U/4, and (e) and (f) |δα| = U/3. Note that the δα = 0 case is pre-
sented in Fig. 3.

FIG. 12. Conductances as functions of JY for �2 = �1 =
0.0488U and δ2 = 2δ1. Other parameters as in Fig. 10.
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FIG. 13. T = 0 conductances G1(0) and g1(0) as functions of JY

for different intersite hoppings tY and Ucb = U/100. The small value
of Ucb has no effect on the results. Other parameters as in Fig. 10
with δα = 0, except 
 = 3 and 5.5 < Ecut < 6.

figures, to reduce the numerical effort increased by lifting the
intrahost U(1) symmetries.

Without charge transfer, the Jones-Varma and the QSL
QPTs exist at JY = J∗

Y ≈ 0.1 D, in agreement with the
Doniach critical value of the RKKY coupling Y ∗ �
[4�/(πρU )]2J∗

Y ≈ T 0
K , and at JY = J∗∗

Y ≈ 1.5 D, correspond-
ing to the characteristic quasiparticle energies in the Kondo
and RKKY phases, respectively [42]. For tY 	= 0, both QPTs
get smeared into a crossover [19,20], although tY also gener-
ates a contribution to the RKKY coupling. One can see from
the logarithmic JY scale in Fig. 13 that, for both crossovers
and fixed tY , the crossover width scales roughly with the
respective critical value, J∗

Y or J∗∗
Y . Noteworthy, tY destroys the

universality features in both the Kondo and RKKY regimes
by introducing a marginally relevant perturbation around the
respective fixed points. Consequently, G1 (g1) does not reach
unity in the Kondo (RKKY) regime and does not drop to 0 in
the RKKY (Kondo) regime. This loss of universality is further
illustrated by the fixed-point spectra in Fig. 14, where the
levels, which are degenerate for tY = 0 (a) and (b) and split
for tY 	= 0 (c)–(f), in addition to the smearing of the QPTs.

The smearing of the QPTs raises the question about their
experimental observability in the presence of charge trans-
fer. For the QSL transition, the interhost magnetic coupling
must reach JY � 1.5 D. This seems possible in low-bandwidth
systems, especially in magic-angle, twisted bilayer graphene
[69,70], doped with Kondo impurities, and with an additional
magnetic exchange JY between the hosts. However, mag-
netic exchange is usually accompanied by charge transfer.
In Fig. 13, the crossovers are still well pronounced up to
tY /JY c ≈ 0.1, where JY c = J∗

Y ≈ 0.1 D for the Jones-Varma
and JY c = J∗∗

Y ≈ 1.5 D for the QSL transition, but are washed
out for larger tY /JY c values. This indicates that the QSL
transition/crossover allows for significantly larger absolute
values of charge transfer to be observed than the Jones-Varma
transition. The narrow width of the QSL crossover for up
to tY � 0.05 D (see Fig. 13) gives rise to the expectation
that this crossover should be very observable in two-impurity
tunneling setups [12] or by reducing charge transfer by su-
perexchange coupling of the hosts.

More important, however, would be the existence of a
Kondo-stabilized QSL in HF lattice systems. There, the metal-
lic hosts of our model are represented by a single band
with equal hopping matrix elements t between all neighbor-
ing sites. Charge transfer between lattice sites is, therefore,
an integral part of the band. A recent DMFT study of

FIG. 14. The fixed-point spectra (lowest 1000 states) for (a) and
(b) tY = 0, (c) and (d) tY = 0.025D, and (e) and (f) tY /D = 0.1.
Vertical lines indicate the positions of quantum phase transitions
(QPTs) at tY = 0. Parameters as in Fig. 13. Note that, due to 
 = 3,
the energy levels cannot be directly compared with Figs. 3 and 11,
etc.

the Anderson lattice with antiferromagnetic order compet-
ing with the Kondo effect [17] mapped such a lattice on a
two-impurity model, where DMFT self-consistency restored
the Jones-Varma-like QPT, even though charge transfer was
present in the effective two-impurity model. This is similar
to the restoration of the QPT by a finetuned counterterm
as in Ref. [22], with the difference that the DMFT self-
consistency (antiferromagnetic order) tunes the system to
cancel the marginally relevant charge transfer operator, which
otherwise would destabilize the transition. However, the study
of Ref. [22] did not include genuine magnetic interactions
within the conduction electron system as represented by the
Heisenberg term JY in our model, Eq. (1), which is instru-
mental in stabilizing the QSL phase. We, therefore, expect
that, in HF materials, a QSL phase may be stabilized by
strong, antiferromagnetic correlations within the conduction
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band (distinct from the Kondo-induced correlations), as they
are generated, e.g., near a spin-density-wave instability.

V. CONCLUSIONS

We have analyzed the influence of various types of asym-
metry on a generic two-impurity, two-host Anderson system
in the Kondo limit. We found that, if there is no charge
transfer between the two screening channels, the results of
the symmetric case apply qualitatively at sufficiently low tem-
peratures. Generically, the system exhibits two QPTs. The
Jones-Varma QPT occurs at a critical value J∗

Y when the
interhost spin exchange JY drives the RKKY coupling Y to
overcome the effective Kondo scale of the system TK(JY ),
destroying Kondo quasiparticles. The second QPT is found
for JY exceeding the critical value J∗∗

Y , close to the conduction
bandwidth D. In the case of sufficiently strong Kondo cou-
plings, J∗

Y may exceed J∗∗
Y so that both QPTs merge to a single

crossover.
If the Kondo couplings are not equal, two separate Kondo

scales, T 0
K1, T 0

K2, appear in the NRG flow (each corresponding
to one channel), and the position of the Jones-Varma QPT is
roughly determined by the smaller of the two Kondo scales.
A different regime appears in an elevated temperature range
defined by TK2 < T < TK1 when the Kondo scales of the two
impurities are sufficiently different. In this interesting regime,
at JY � J∗∗

Y , the system behaves as if the weaker-coupled

impurity were detached. However, the QSL phase transition is
robust, unless one of the impurities gets completely detached.
Even PH asymmetry by independently gating the impurity
levels does not lead to smearing of the QPTs. Instead, only
the spectral densities acquire nonuniversal values. A similar
behavior is expected for PH-asymmetric hosts. In line with
Ref. [23], this gives hope for the experimental realization of
the transitions in quantum-dot nanostructures.

We expect that a QSL of the metallic type discussed here
may be stabilized in HF systems, near a spin-density wave
instability of the conduction band, where strong antiferromag-
netic correlations within the conduction band compete with
Kondo screening of the localized moments, analogous to the
interhost spin coupling in the present two-impurity model.
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