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Hierarchy of quasisymmetries and degeneracies in the CoSi family of chiral crystal materials
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In materials, certain approximated symmetry operations can exist in a lower-order approximation of the
effective model but are good enough to influence the physical responses of the system, and these approximated
symmetries were recently dubbed “quasisymmetries” [Nat. Phys. 18, 813 (2022)]. In this paper, we reveal a
hierarchy structure of the quasisymmetries and the corresponding nodal structures that they enforce via two
different approaches of the perturbation expansions for the effective model in the chiral crystal material CoSi.
In the first approach, we treat the spin-independent linear momentum (k) term as the zero-order Hamiltonian.
Its energy bands are fourfold degenerate due to an SU(2) × SU(2) quasisymmetry. We next consider both the
k-independent spin-orbit coupling (SOC) and full quadratic k terms as the perturbation terms and find that the
first-order perturbation leads to a model described by a self-commuting “stabilizer code” Hamiltonian with a
U(1) quasisymmetry that can protect nodal planes. In the second approach, we treat the SOC-free linear k term
and k-independent SOC term as the zero order. They exhibit an SU(2) quasisymmetry, which can be reduced to
U(1) quasisymmetry by a choice of quadratic terms. Correspondingly, a twofold degeneracy for all the bands due
to the SU(2) quasisymmetry is reduced to twofold nodal planes that are protected by the U(1) quasisymmetry.
For both approaches, including higher-order perturbation will break the U(1) quasisymmetry and induce a small
gap ∼1 meV for the nodal planes. These quasisymmetry protected near degeneracies play an essential role in
understanding recent quantum oscillation experiments in CoSi.

DOI: 10.1103/PhysRevB.107.125145

I. INTRODUCTION

Symmetry describes the invariance of a system under cer-
tain operations and plays a fundamental role in almost all
branches of physics. In condensed matter physics, different
quantum states of matter and the phase transition between
them can be characterized via the principle of spontaneous
symmetry breaking, as formulated in the Landau-Ginzburg
theory [1]. For example, the crystallization of a solid breaks
continuous translation to discrete translation and the forma-
tion of ferromagnetism in a magnet breaks the full rotation
symmetry, even though the microscopic interaction in these
systems has full translation and rotation symmetries [2].

In the scenario of spontaneous symmetry breaking, the
high-symmetry states appear at a high-energy scale (or high
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temperature); when the energy scale is lowered, symmetry-
breaking states start appearing. However, the opposite sce-
nario also exists, and a high-symmetry state can emerge in
the low-energy sector of a system [3,4]. For example, the
Lorentz symmetry is accompanied by the emergence of the
two-dimensional Dirac equation as a low-energy effective
theory in graphene or at the surface of topological insula-
tors, although both systems are nonrelativistic [5–11]. The
existence of Dirac fermions and Lorentz symmetry leads to
several exotic physical properties of graphene and topological
insulators, making them appealing platforms to test quantum
relativistic phenomena in table-top experiments [12]. Besides
the space-time symmetry, emergent symmetries can also exist
for the internal degree of freedom. For example, due to the
spin and valley degrees, graphene has an additional SU(4)
symmetry, which leads to intriguing physical phenomena,
such as SU(4) quantum Hall ferromagnets [13–15].

Recently, we introduce the concept of “quasisymme-
try” to describe such emergent internal symmetry [16].
More precisely, we refer to quasisymmetry as a symmetry
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FIG. 1. (a) One unit cell with four Co and Si atoms, and the Brillouin zone with high-symmetry points (�, R, X, M). (b) Shows the
quasisymmetry protected nodal planes. (c) Electronic band structure of CoSi along � − R − M lines. The irreps of the energy states at high-
symmetry points are labeled. (d) The DFT bands along the (−0.0357, −0.0357, kz ) direction and the inset shows the tiny gap ∼0.4 meV.

operator that only exists in a lower-order approximation of
the effective Hamiltonian but is good enough to influence
the physical responses of the material. The crystalline sym-
metry of solid material without magnetic order, described
by 17 space groups in two dimensions (2D) and 230 space
groups in 3D [17], gives a strong constraint on the form of
the low-energy effective model (in the spirit of k · p type of
Hamiltonian) around high symmetry momenta in the Bril-
louin zone [18–22]. As a consequence, if one only keeps
lower-order k terms in the expansion, the effective Hamil-
tonian can generally possess additional symmetries, beyond
the crystalline symmetry itself. With keeping further powers
of k in the k · p expansion, these additional symmetries will
gradually be broken by the higher-order k terms or other
perturbations [e.g., spin-orbit coupling (SOC)], thus forming
a hierarchy structure of quasisymmetry groups.

This paper aims in revealing such a hierarchy structure
of quasisymmetries in the low-energy effective Hamiltonian
expansion for different orders of the momentum k for the
material compound CoSi with a chiral crystal structure (space
group No. 198). Recent experimental and theoretical work
[16] has shown that the quasisymmetry exists in this com-
pound and leads to the near-nodal-planes that are located at
non-high-symmetry momenta, which are essential in under-
standing the transport measurement of quantum oscillations
in CoSi. In this paper, we will systematically discuss two
approaches to constructing the effective Hamiltonian per-
turbatively for CoSi, and reveal the hierarchy structure of
quasisymmetries in different orders of the perturbation expan-
sion. As discussed in Fig. 2 (see below), our first approach
treats the SOC-free linear k term as the zero order, which
leads to a fourfold degeneracy protected by SU(2) × SU(2)

quasisymmetry. Then we consider both the k2 terms and SOC
as the perturbation and project them into the subspace of these
fourfold degenerate bands. The resulting effective Hamilto-
nian shows a striking “self-commuting” feature that results
in a U(1) quasisymmetry for the protection of nodal planes in
non-high-symmetric momenta [Fig. 1(b), see below]. Our sec-
ond approach (Fig. 3, see below) treats both linear k term and
SOC as the zero-order Hamiltonian and shows all the bands
are doubly degenerate due to the orbital SU(2) quasisymme-
try. We then consider k2 terms as a perturbation and classify
them into three different groups with each group selectively
breaking the SU(2) quasisymmetry into U(1) quasisymmetry
along a certain direction, which can also protect nodal planes.
In both approaches, the second-order perturbation can induce
a tiny gap (∼1 meV for CoSi). In this sense, we dubbed
these quasisymmetry protected nodal planes to be near-nodal
planes.

II. EFFECTIVE k · p MODEL FOR COSI

The crystal CoSi family crystallizes in a chiral cubic struc-
ture of space group (SG) P213 (No. 198) without a center of
inversion [23]. Its cubic lattice with the lattice constant a0 =
4.433 Å, as shown in Fig. 1(a), contains four Si atoms and
four Co atoms in one unit cell. The corresponding Brillouin
zone (BZ) is shown in Fig. 1(c), where high-symmetry points
including �, R, and M are marked. With the Seitz notation
for the nonsymmorphic symmetry operations, the three gen-
erators of SG 198 are S2x = {C2x| 1

2
1
2 0}, S2y = {C2y|0 1

2
1
2 }, and

C3 = {C3,(111)|000}. The system has also time-reversal sym-
metry T . With the density function theory (DFT) calculations,
we obtain the electronic band structure with SOC, as shown
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TABLE I. The parameters for the k · p Hamiltonian HR.

Parameter C0 B1 A1 C1 C2 C3 λ0

Value –0.18 2.123 0.853 –0.042 0.546 3.345 0.0075
Unit eV eV × Å2 eV × Å eV × Å2 eV × Å2 eV × Å2 eV

in Fig. 1(c) along the � − R − M lines. Hole Fermi pockets
are found around � while electron Fermi pockets exist around
R, kR = (π, π, π ). Here we focus on the electronic bands
around R. For the SOC-free band structures, there are fourfold
degenerate states (without spin degeneracy) at the R point,
which disperse linearly around R and give rise to the electron
Fermi pockets. The corresponding single-valued irreducible
representation (irrep) is R1R3 based on the notations in the
Bilbao Crystallographic Server [24–26]. Taking into account
the spin degree of freedom, the eightfold degenerate states
at R are split by SOC into higher-energy sixfold degener-
ate states [27] (double-valued irrep R̄7R̄7) and lower-energy
twofold degenerate states (double-valued irrep R̄5R̄6) with a
gap ∼30 meV.

As described in Ref. [16] and Appendix A, the effective
model to describe the energy bands around R is constructed
based on the little group at R point generated by S2x, S2y, C3,
and T . Up to k2 order, the Hamiltonian contains three parts

HR = H1 + Hsoc + H2, (1)

where H1 = C0 + 2A1s0(k · L) includes a constant and linear
k term, and Hsoc = 2λ0(s · L). Here we define the operators

Lx = 1
2σyτ0, Ly = 1

2σxτy, Lz = − 1
2σzτy, (2)

which satisfies the angular momentum commutation relation
[Li, Lj] = iεi jkLk with Levi-Civita symbol εi jk and i = x, y, z.
s represents the Pauli matrix in the spin space and both σ, τ

for the Pauli matrices in the orbital space. The basis for four
orbitals of the σ, τ matrices are mainly (>80%) composed
of the mixing between the t2g and eg orbitals of the four Co
atoms, as justified by the DFT calculations. And the detailed
forms of the wave functions are shown in Appendix .B

In addition, the k2 order effective Hamiltonian H2 in
Eq. (1) shows an intriguing structure and can be grouped into
three classes,

H2 = H2,M1 + H2,M2 + H2,M3 , (3)

where H2,Mi = gi · Ji for i=1,2,3. Here we define

g1 = (C2kxky,−C3kxkz,C1kykz ), (4a)

g2 = (C3kxky,C1kxkz,−C2kykz ), (4b)

g3 = (C1kxky,C2kxkz,−C3kykz ). (4c)

and

J1 = (σxτx,−σzτx, σ0τz ), (5a)

J2 = (σxτz, σzτz, σ0τx ), (5b)

J3 = (σzτ0, σxτ0, σyτy). (5c)

The parameters for CoSi are obtained by fitting with the
DFT bands [16] and listed in Table I. It should be noted
that all the bands at the ki = π planes (i = x, y, z) are doubly

degenerate as a consequence of the anti-unitary symmetries
S2xT , S2yT , and S2zT in these planes [16,28,29]. Further-
more, the DFT calculations show near-nodal planes with tiny
gaps ∼0.5 meV at non-high-symmetry momenta shown in
Fig. 1(d), and we next discuss how to apply the perturbation
theory to the model Hamiltonian HR in Eq. (1) to understand
these near-nodal planes, as well as the underlying quasisym-
metries.

Below, we consider two approaches to understand the un-
derlying reason of nearly degenerate nodal planes.

III. APPROACH I: SELF-COMMUTING HAMILTONIAN

We now precisely formulate the hidden quasisymmetry
that may appear at low-energy in the physics of the model
Hamiltonian, and start with the linear k-order Hamiltonian,
SOC-free H1 in Eq. (1), which is invariant under the spin
SUs(2) symmetry group. Moreover, an additional hidden
SUo(2) symmetry also exists for H1 in the orbital space, and
can be generated by the operators

M1,2,3 = 1
2 {s0σyτz, s0σyτx, s0σ0τy}, (6)

which all commute with H1 and satisfy the commutation
relations [Mi,M j] = iεi, j,kMk . Thus, we refer to it as
the SUo(2) quasisymmetry group for H1. As a result, the
SUs(2) × SUo(2) quasisymmetry group protects the four-
fold degeneracy for each band [E±(k) = ±A1k + C0] at any
nonzero k [see Fig. 2(a)]. Hereafter, we absorb the constant
energy C0 into Fermi energy EF .

We now consider the perturbation from Hsoc and H2. With-
out loss of generality, we choose four degenerate bands with
positive energy [E+(k) = A1k] as the basis, {|�+,s,i〉} with
s =↑,↓ and i=1,2, and project Hsoc and H2 into this sub-
space. Shown in Appendix C, the projected four-band model
is given by

Heff(1)
P (k) = E0 + Heff(1)

soc (k) + Heff(1)
2 (k), (7)

where

E0 = C0 + A1k + B1k2, (8a)

Heff(1)
soc (k) = λ0(k · s)ω0, (8b)

Heff(1)
2 (k) = C̃k2s0(dx,kωx + dy,kωy + dz,kωz ), (8c)

with C̃ = C1 − C2 + C3. Here ω0 is identity matrix and ωi

(i = x, y, z) are the Pauli matrices for the two spinless bands.
The coefficients di,k depend on k, and the detailed forms
are given in Appendix C. Such perturbation process can be
well justified by satisfying both A1k � λ0 and A1k �

√
3

4 C̃k2,
which results in the valid momentum range 0.01 < k < 1
(Å−1), corresponding to a wide Fermi energy range 8.5 �
EF � 850 (meV). Thus, the obtained effective model is rel-
evant for the realistic experimental situations (EF in CoSi is
180 meV). Strikingly, we notice that the two terms in this
effective Hamiltonian are self-commuting, namely,[

Heff(1)
soc (k1),Heff(1)

2 (k2)
] = 0, (9)

which implies that Hamiltonian (7) is a stabilizer code Hamil-
tonian [30–33]. The commutation relation in Eq. (9) can be
easily seen since Heff(1)

soc (Heff(1)
2 ) contains an identity matrix
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FIG. 2. The summary of the hierarchy of quasisymmetry with the Approach I (self-commuting Hamiltonian). We plot the band splitting
along the non-high-symmetry direction within the spherical coordinate (θ = φ = π/3). The left panel shows the SU(2) × SU(2) quasisym-
metry protect the fourfold degeneracy. In the middle panel, all the bands split but there exists the U(1) quasisymmetry protecting the nodal
plane. The right panel shows a tiny gap appears once high-order perturbation corrections are involved.

in the ω space (spin s space). The self-commuting property
implies the existence of a unitary symmetry operator Seff =
k·s
|k| ω0 that commutes with the whole Hamiltonian Heff(1)

P for
any momentum. Seff describes an internal symmetry and can
be viewed as the generator of a U(1) group.

Due to the self-commuting nature, the eigenstate of the
Hamiltonian in Eq. (7) can be explicitly solved with its
eigenenergy given by

Eα,β = E0 + αλ0 + β
√

3C̃|kxkykz|/k, (10)

with α, β = ±1, where α labels the eigenvalues of Seff. We
notice that two eigenenergies E+,− and E−,+ can be equal
when the condition

λ0 =
√

3C̃|kxkykz|/k (11)

is satisfied. It determines nodal planes of the effective model
in Eq. (7) in the whole momentum space. Figure 2(b) shows
the U(1) quasisymmetry protected twofold degeneracy along a
non-high-symmetry line (θ = φ = π/3), where the spherical
coordinator (k, θ, φ) is used with polar angle θ and azimuthal
angle φ. The Fermi sphere crosses the nodal planes to form
nodal rings at the Fermi energy, which can be extracted by
combining EF = E+,− with Eq. (11). Explicitly, the nodal
rings at a fixed Fermi energy EF can be determined by

fN (θ, φ) = 2A2
1λ0√

3C̃E2
F

[
1 + 2B1EF

A2
1

+
√

1 + 4B1EF

A2
1

]
, (12)

where fN (θ, φ) = | sin 2φ sin 2θ sin θ |. We notice that
Eq. (12) has solution only when EF � EW with
EW = 2√

3C̃
(A1

√√
3C̃λ0 + 2B1λ0). It coincides to the energy

of Weyl point EW ≈ 114.4 meV, smaller than EF in CoSi.
Thus, we expect the Fermi energy crosses the nodal plane
in a ring form for CoSi. Therefore, up to the first-order
perturbation, we obtain a hierarchy of quasisymmetry for
CoSi, represented by (Fig. 2)

SUs(2) × SUo(2)
〈Hsoc+H2〉H1

↪−−−−−−−−−−→ U(1), (13)

and the corresponding energy bands are split from fourfold
degeneracies at any momenta down to twofold degeneracies
that form nodal planes. Including further second-order per-
turbation corrections generate a tiny gap for the near-nodal
planes, as shown in Fig. 2(c). At EF = EW , the near-nodal
rings at the Fermi energy shrink into nodal points, the Weyl
points, which are stable to any order and do not rely on
quasisymmetries.

The quasisymmetry Seff is essential in protecting the gap-
less nature of the near-nodal planes in the four-band effective
model. To see that, we may consider a generic four-band
Hamiltonian commuting with Seff for any momenta, which can
only include the following terms

HS = μ0s0ω0 + μ1[(k · s)ω0]

+ μ2[s0(f · ω)] + μ3[(k · s)(g · ω)]. (14)

Here μ0,1,2,3 are all positive constants, f (k) =
( f1(k), f2(k), f3(k)) and g(k) = (g1(k), g2(k), g3(k)) are
two vectors of generic functions of k. HS contains all the
terms in Eq. (7). The eigenenergies of HS are

Eα,β (k) = μ0 + α(μ1k) + β|μ2f (k) + αμ3kg(k)| (15)
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FIG. 3. The hierarchy of quasisymmetries by the Approach II. Here we plot the band splitting along a non-high-symmetry line with
θ = φ = π/3. The left panel shows the band splitting of H1 + Hsoc is shown and each band is twofold degeneracy required by the SUo(2)
quasisymmetry. In the middle panel, all the bands split but there still exists a twofold degeneracy, which is protected by the U(1) quasisymmetry.
The right panel shows all the quasisymmetries are broken and a tiny gap appears.

with α, β = ±. Generally, all the bands are nondegen-
erate at generic momenta k once f (k) and g(k) are
nonzero. Accidental degeneracy can occur when (1) μ2f (k) =
αμ3kg(k) for Eα,+ = Eα,−, which gives a nodal point, and
(2) 2μ1k − ∑

α=± |μ2f (k) + αμ3kg(k)| = 0 for E+,−(k) =
E−,+(k), which defines plane solutions for the degenerate
subspace in 3D momentum space. In our model, the former
corresponds to the degeneracy at k = 0, while the latter gives
the nodal planes. It should be noted that a two-level degener-
acy usually requires three constraint equations (codimension
3), and thus only Weyl nodes are stable in 3D momentum
space [34,35]. The presence of quasisymmetry Seff reduces
the number of the constraint equation to 1 (codimension 1),
making the nodal planes stable. This can be viewed as a gen-
eralization of the Wigner-Von Neumann codimension theory.

IV. APPROACH II

In our second approach, H1 + Hsoc is treated as the zeroth-
order Hamiltonian and H2 as the perturbation. For H1 + Hsoc,
we find that the spin SUs(2) symmetry is broken by SOC
while the orbital SUo(2) symmetry generated by M1,2,3 re-
mains. The existence of SUo(2) is due to the fact that spin
s as a pseudo-vector behaves exactly the same as a vector
due to the lack of inversion, mirror, etc., in chiral crystals,
so Hsoc can be obtained by replacing k by s in H1. The
corresponding energy bands are given by E1,±(k) = ±A1k +
λ0 and E2,±(k) = ±

√
A2

1k2 + 4λ2
0 − λ0, and each band has

twofold degeneracy, as required by SUo(2). The SOC-induced
splitting between the E1,±(k) and E2,±(k) is 2λ0 for a large
momentum k, which is depicted along the non-high-symmetry
line (θ = φ = π/3) in Fig. 3(a).

Generally, the k2 terms of H2 break the SUo(2) qua-
sisymmetry and lead to the splitting of all bands. One
can show [Ji,Mi] = 0 and {Ji,M j} = 0 for i �= j, so that
[H2,Mi ,Mi] = 0. Without loss of generality, we can pick up
one term, say H2,M3 , which commutes with M3 but anticom-
mutes with M1 and M2. We show such choice of specific k2

terms are general in Appendix D. As a result, the term H2,M3

breaks the SUo(2) quasisymmetry group down into a Uo(1)
group generated by M3. Thus, the twofold degenerate bands
E1,+(k) and E2,+(k) are split by H2,M3 , as shown in Fig. 3(b).
The new eigenstates |Ei,α,β (k)〉 with i = 1, 2 are the common
eigenstates of H1 + Hsoc + H2,M3 and M3,

E1,α,β = E0 + α

√
fk2 + 2βA1C̃kxkykz + λ0,

E2,α,β = E0 + α

√
fk2 + 2βA1C̃kxkykz + 4λ2

0 − λ0,

(16)

where α, β = ±, E0 = B1k2 and fk2 = A2
1k2 + C2

1 k2
x k2

y +
C2

2 k2
x k2

z + C2
3 k2

y k2
z . The index β labels the eigenvalues of the

M3 operators (see details in Appendix D). When the splitting
2A1C̃kxkykz/

√
fk2 by H2,M3 reaches the SOC-induced split-

ting 2λ0, the condition

E1,+,−(k) = E2,+,+(k), ∀k ∈ kxkykz > 0 (17)

is satisfied and leads to the band crossings that form nodal
planes. Since H2,M3 increases with k2 while the SOC-induced
splitting 2λ0 is independent of k, the condition (17) can
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always be satisfied at large enough k. As the two bands that
form the nodal planes possess the opposite β values (M3

parities), we expect the nodal planes are protected by qua-
sisymmetry. Turning on all the remaining k2 terms break the
U(1) quasisymmetry and generates a tiny gap of nodal planes,
as shown in Fig. 3(c). The hierarchy structure of quasisymme-
tries for the Approach II is summarized in Fig. 3 as

SUs(2) × SUo(2)
Hsoc

↪−−−→ SUo(2)
H2,Mi

↪−−−−−→ Uo(1). (18)

V. CONCLUSIONS AND OUTLOOKS

In this paper, we describe two different perturbation ap-
proaches to reveal the hierarchy structure of quasisymmetry
and near-degeneracy in electronic band structures of chiral
crystal materials CoSi. Both approaches describe the physical
consequence of near-nodal planes and thus are physically
equivalent. The Approach I reveals a self-commuting Hamil-
tonian in the first-order perturbation, while the Approach II
treats both the SOC and linear k term as the zeroth order.
We anticipate such a hierarchy structure of quasisymmetry
in the context of k · p expansion of the effective models
can generally appear in 230 space groups [20,21], which
will be left for the future work. The hierarchy structure of
quasisymmetry also provides a natural starting point to dis-
cuss physical phenomena in different energy scales of the
effective models. For example, in CoSi, the smallest energy
scale ∼1 meV of the gap for near-nodal planes will easily be
overcome by perturbations, e.g., disorder, and thus not be felt
by electrons that take the cyclotron motion under magnetic
fields, which is crucial in understanding the nearly angle-
independent quantum oscillation spectrum in CoSi [16], as
well as other experiments [28,36–39]. It is worth to note that
the isostructural compounds PtGa [40–42], PdAl [43], PdGa
[44,45], and RhSi [46,47] share the similar electronic band
structure. Therefore, quasisymmetry is also expected to play
a major role in understanding their physical properties, which
require further experimental and theoretical attentions.
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APPENDIX A: THE EFFECTIVE k · p HAMILTONIAN
AROUND THE R POINT

In this paper, we mainly focus on the electronic bands
of cobalt silicide (CoSi) around the R point kR = (π, π, π )
[band structure is shown in Fig. 1 in the main text], specif-
ically, the four electron-type Fermi surfaces (FSs) around
the Fermi energy. To understand the low-energy physics, we
construct the effective Hamiltonian. For this purpose, in this
Appendix, we first discuss the space group 198 and its sym-
metry operators’ matrix representations at the R point. Then,
we use the k · p theory to construct the effective model with
the parameters fitting to the DFT bands.

Figure 4(a) summarizes the general routines to construct
the effective models with/without spin degree of freedom.
First, we obtain the spin-orbit coupling (SOC)-free four-band
spinless model. Secondly, the spin degree of freedom is taken
into account by considering the on-site atomic SOC, resulting
a eight-band spinful model. This is valid when SOC is rela-
tively weak. Based on this eight-band model, we then discuss
the emergent internal quasisymmetries and the corresponding
hierarchy structure by using two approaches (discussed in the
main text), illustrated in Fig. 4(b). The details of the Approach
I will be discussed in Appendix C, and the details of the
second approach will be discussed in Appendix D.

1. The Crystalline space group no. 198 and representations

As described in the main text, the CoSi crystallizes in a
chiral cubic structure of space group (SG) P213 (No. 198)
without a center of inversion. Its lattice structure with lattice
constant ax = ay = az = 4.433 Å, containing four Si atoms
and four Co atoms in one unit cell. The corresponding Bril-
louin zone (BZ) is also cubic. The SG 198 has 12 symmetry
operations in addition to the translation subgroup. The three
generators of SG 198 are: one threefold rotation symmetry
along the (111) axis and two twofold screw rotation sym-
metries along the x and y axis. Hereafter, the Seitz notation
is taken for the nonsymmorphic symmetry operations, i.e., a
point group operation O followed by a translation v = viti, la-
beled as Ô = {O|v} or Ô = {O|v1v2v3}, with ti (i = 1, 2, 3)
representing three basis vectors for a Bravais lattice in three
dimensions. The rules for multiplication and inversion are
defined as

{O2|v2}{O1|v1} = {O2O1|v2 + O2v1},
{O|v}−1 = {O−1| − O−1v}. (A1)

In addition to the translation operator Ev = {E |v}, the three
symmetry generators of SG 198 are

S2x = {
C2x

∣∣ 1
2

1
2 0

}
, S2y = {

C2y

∣∣0 1
2

1
2

}
, C3 = {C3,(111)|000},

(A2)

defined by S2x : (x, y, z) → (x + 1
2 ,−y + 1

2 ,−z), S2y :
(x, y, z) → (−x, y + 1

2 ,−z + 1
2 ), and C3 : (x, y, z) →
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Spinful fermions
Without SOC

-fold degeneracy

at R point

(a) The effec�ve -model

SOC
Spinful fermions

With SOC
-fold 2-fold

at R point

Spinless fermions
Without SOC

-fold degeneracy

at R point

(b) The perturba�ve models with quasi-symmetry

Spinful fermions
With SOC

8-band -model

4-band -model
SU(2) SU(2) U(1)

8-band -model
SU(2) U(1)

Approach I

Approach II

FIG. 4. A brief summary of model analysis for the hierarchy of quasisymmetry groups. (a) Shows the schematic process to construct the
eight-band k · p effective Hamiltonian, labeled as R model. At R point, a four-dimensional single-valued irreducible representation (Irrep) is our
starting point, specifically, the basis for the four-band spinless model. With the electron’s spin degeneracy, it becomes a eightfold degeneracy,
which is split into a sixfold degeneracy and a twofold degeneracy by the on-site atomic SOC. (b) Shows the two approaches used in the
main text to identify the quasisymmetry with the perturbation theory. In the “Approach I”, we use first-order perturbation theory to project the
effective low-energy four-band P model, and find the hierarchy of quasisymmetry from SU(2) × SU(2) down to U(1). In the “Approach II”,
we add specially selected terms of the k2-order Hamiltonian into the H1 + Hsoc to identify the hierarchy of quasisymmetry from SU(2) down
to U(1).

(y, z, x). Thus, one can check that S2z = {C2z| 1
2 0 1

2 } can
be given by the combination of S2x and S2y,

S2xS2y = {E |001̄}S2z � E001̄S2z. (A3)

In addition, the threefold rotation can also be along (111̄),
(11̄1), and (1̄11) axis. Therefore, the lattice of CoSi has three
twofold and four threefold rotation or screw axes.

Next, we use the commutation relations of the symme-
try group generators to directly construct the corresponding
matrix representations. Alternatively, they can be found on
the on the notations in the Bilbao Crystallographic Server
[24–26]. The band calculation based on the density-functional
theory (DFT) without SOC shows that all states are fourfold
degenerate at R point, which should belong to one 4D irre-
ducible representation (Irrep). As mentioned in the main text,
the 4D Irrep for the fourfold degenerate states close to the
Fermi energy can be denoted as the single-valued Irrep R1R3

on the Bilbao [24–26]. Below, we discuss how this 4D Irrep
can be established by considering the twofold screw rotations
S2x, S2y, and time reversal (TR) symmetry T . At R point,
we have

S2
2x = S2

2y = −1, S2xS2y = −S2yS2x,

[S2x, T ] = [S2y, T ] = 0. (A4)

Without loss of generality, for the spinless fermions, the TR
symmetry operator can be chosen as T = K. Based on the
above commutation relations, we construct the matrix repre-
sentations denoted as G1,2,3 for the twofold screw rotations
S2x, S2y, and the threefold rotation C3, respectively. Let us
choose � as the eigenstate of G1 with eigenvalue λ, and the
eigenvalues for different states at the R point constructed from
� are given in the following table.

� G2� T � G2T �

G1 λ −λ λ∗ = −λ −λ∗ = λ

With G2
1 = −1, λ is a purely imaginary number. By using

(G2T )2 = −1, G2T is an anti-unitary symmetry operator,
leading to the Kramer’s degeneracy, namely, 〈�|G2T �〉 = 0.
This leads to two orthogonal states: � and G2T �. We now
apply G2 on these two states to generate the other two states,
G2� and T �, which are also eigenstates of G1 with the
eigenvalue −λ. The G2-generated states have opposite G1-
eigenvalues compared with that of � or G2T �. Therefore,
G2� and T � are orthogonal to � and G2T �, so

〈�|G2�〉 = 〈�|T �〉 = 〈G2T �|G2�〉 = 〈G2T �|T �〉 = 0.

(A5)
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Therefore, the fourfold degeneracy is formed by the four
eigenstates at R,

{�, G2�, T �, G2T �}. (A6)

In principle, a general basis of this 4D Irrep at R point can be
presented as

{|�1〉, |�2〉, |�3〉, |�4〉}T , (A7)

which serves as the basis for the effective SOC-free four-band
k · p Hamiltonian denoted as Hno-soc,R(k). Hereafter, k is the
relative momentum to R point. In this work, we construct it
up to k2 order. Without loss of generality, we assume |�i〉
with i = 1, 2, 3, 4 are all real so that the representation for
TR symmetry in this basis is given by

T = I4×4K, (A8)

where I4×4 is the 4-by-4 identity matrix and K is the complex
conjugate.

Next, we construct the matrix representations denoted as
G1, G2, G3 (4-by-4 matrices) for the twofold screw rotations
S2x, S2y, and the threefold rotation C3, respectively. For the
spinless case, their commutation relations are summarized as

G3
3 = 1, G2

1 = G2
2 = −1, G1G2 = −G2G1,

G−1
3 G1G3 = G2, G−1

3 G2G3 = −G1G2, (A9)

because of [T , G1] = [T , G2] = 0, we have G1 = G∗
1 and

G2 = G∗
2. Moreover, G2

1 = G2
2 = −1, and then both G1 and

G2 are antisymmetric matrices, G1,2 = −GT
1,2. Thus, G1, G2

can only be chosen from the following matrix set:

{iσyτ0, iσyτx, iσyτz, iσ0τy, iσxτy, iσzτy}, (A10)

where both σx,y,z and τx,y,z represent the Pauli matrices, and σ0,
τ0 are two-by-two identity matrices. Considering {G1, G2} =
−1, one can choose the representations as

G1 = iσyτ0 and G2 = iσxτy. (A11)

Similarly, we now discuss how to construct G3. According
to the Bilbao [24–26], there are two 4D single-valued Irreps:
R1R3 and R2R2 of the little group at R point. It also shows the
trace of G3 for the R1R1-Irrep (R2R2-Irrep) is 1 (−2). Accord-
ing to the DFT calculation without SOC (see the Appendix B
below), we find that the four states at R point of CoSi near the
Fermi energy are belonging to the R1R3-Irrep, because of

Tr[C3] = 1 + 1 + eiω0 + e−iω0 = 1, (A12)

where ω0 = 2π/3, since we numerically check that these
four states carry angular momentum 0, 0, 1,−1 of C3. To
further satisfy both Tr[C3] = 1 and the commutation relations

TABLE II. The classification of the Pauli matrices under the
space group symmetry operators and time-reversal symmetry.

σμτν S2x = iσyτ0 S2y = iσxτy T = K C3 in Eq. (A13)

σ0τ0 + + + σ0τ0

σ0τx, σ0τz + − + −σxτ0, σzτz

σ0τy + + − −σyτz

σxτ0 − + + σxτx

σxτx, σxτz − − + −σ0τx, −σyτy

σxτy − + − −σzτy

σyτ0 + − − σxτy

σyτx, σyτz + + − −σ0τy, σyτx

σyτy + − + σzτx

σzτ0 − − + σ0τz

σzτx, σzτz − + + −σxτz, σzτ0

σzτy − − − −σyτ0

in Eq. (A9), we can choose

G3 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 −1 0
0 0 0 1
0 −1 0 0

⎞
⎟⎟⎟⎠. (A13)

Please note that the choice of G3 is not unique in the sym-
metry construction, while different choices of representation
matrices just correspond to unitary transformation between
different basis. For instance, the representation matrices
G1, G2, G3, and T are different form those on the Bilbao. This
matrix chosen here is simple enough to make the construction
of the effective k · p Hamiltonian become simper. Besides, in
the Supplemental Material [48] [see Appendix A], we try to
construct the basis made of the five 3d orbitals of the four
Co atoms for the 4D Irrep R1R3. And the orbital basis can be
explicitly shown by comparing to the Wannier functions from
the DFT calculations.

2. The spin-independent effective four-band R model

In this section, we construct the spin-independent four-
band k · p model Hamiltonian denoted as Hno-soc,R(k) by
using the matrix representations G1, G2, G3, and TR sym-
metry T of the R1R3-Irrep. The general 4-by-4 SOC-free
Hamiltonian Hno-soc,R(k) is give by

Hno-soc,R(k) =
∑
μν

hμν (k)σμτν, (A14)

which should be invariant with any symmetry operators g ∈
{S2x, S2y,C3, T } at the R point. Here k is the momentum
with reference to kR = (π, π, π ). Therefore, the Hamiltonian
should satisfy

�†(g)[Hno-soc,R(gk)]�(g) = H(k), (A15)

where �(g) is the matrix representation for symmetry g,
specifically, G1, G2, G3, and T . The classification of matrices
(σμτν with μ, ν = 0, x, y, z) and momentums (ki, kik j with
i, j = x, y, z) are summarized in Table II and Table III, respec-
tively, from which the 4-by-4 Hamiltonian to the leading order
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TABLE III. The momentums and spin operators under the space
group symmetry operators and time-reversal symmetry.

Momentums C2x C2y T C3,(111)

kx + − − ky

ky − + − kz

kz − − − kx

k2
x , k2

y , k2
z + + + k2

y , k2
z , k2

x

kxky − − + kykz

kxkz − + + kykx

kykz + − + kzkx

sx + − − sy

sy − + − sz

sz − − − sx

becomes

H1(k) = C0σ0τ0 + A1(kxσyτ0 + kyσxτy − kzσzτy). (A16)

The sign of A1 is related to chirality of the crystal, which
is chosen to be positive in this paper. Moreover, we notice
that the spin-independent Hamiltonian H1(k) in Eq. (A16) is
isotropic with the full rotation symmetry. To see that, we could
define the emergent angular momentum operators as

Lx = 1
2σyτ0, Ly = 1

2σxτy, Lz = − 1
2σzτy, (A17)

which satisfies the commutation relation [Li, Lj] = iεi jkLk

with Levi-Civita symbol εi jk and i = x, y, z. Therefore, H1(k)
can be rewritten as

H1(k) = C0σ0τ0 + 2A1(k · L). (A18)

It is the linear k Hamiltonian presented in the main text [below
Eq. (1)]. In addition, by similar symmetry analysis, the k2-
order effective Hamiltonian is given by

H2(k) = B1
(
k2

x + k2
y + k2

z

)
+ C1(kxkyσzτ0 + kykzσ0τz + kxkzσzτz )

+ C2(kxkyσxτx − kykzσ0τx + kxkzσxτ0)

+ C3(kxkyσxτz − kykzσyτy − kxkzσzτx ), (A19)

which can be reorganized into a compact way as presented
in the main text, by noticing that the k2-order effective
Hamiltonian H2 shows an intriguing structure and can be
grouped into three classes,

H2(k) = H2,M1 (k) + H2,M2 (k) + H2,M3 (k), (A20)

where

H2,Mi (k) = gi(k) · Ji, (A21)

for i = 1, 2, 3. Here we define the parameter-momentum
vectors

g1(k) = (C2kxky,−C3kxkz,C1kykz ), (A22a)

g2(k) = (C3kxky,C1kxkz,−C2kykz ), (A22b)

g3(k) = (C1kxky,C2kxkz,−C3kykz ). (A22c)

And the operator vectors are

J1 = (σxτx,−σzτx, σ0τz ), (A23a)

J2 = (σxτz, σzτz, σ0τx ), (A23b)

J3 = (σzτ0, σxτ0, σyτy). (A23c)

The meaning of the subscript Mi is to be the role of
quasisymmetry operators, which has been explained in the
main text and will be also discussed later in Appendix C with
details.

Combining Eq. (A16) and Eq. (A19), we finally get the
effective 4-by-4 SOC-free Hamiltonian up to k2 order,

Hno-soc,R(k) = H1(k) + H2(k), (A24)

which is called the SOC-free R-model Hamiltonian for short
in the following discussions.

Moreover, we notice that the linear k Hamiltonian H1(k)
in Eq. (A18) has a full rotational symmetry. This rotation
is a combined rotation in both k space and orbital space
simultaneously. To show that, without loss of generality, we
can first define a rotation in the momentum space to make

R(θ, φ)(kx, ky, kz )T = k(0, 0, 1)T , (A25)

where k = k(sin θ cos φ, sin θ sin φ, cos θ ), and the rotation in
the momentum space is

R(θ, φ) � Ry(−θ )Rz(−φ) =
⎛
⎝cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠

⎛
⎝ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞
⎠ =

⎛
⎝cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0
sin θ cos φ sin θ sin φ cos θ

⎞
⎠.

(A26)

To keep k · L invariant under rotations, we then define the associated rotation for the orbital subspace,

R(θ, φ) � e−iθLy e−iφLz =

⎛
⎜⎜⎜⎜⎜⎝

cos
(

θ
2

)
cos

(
φ

2

)
cos

(
θ
2

)
sin

(
φ

2

)
sin

(
θ
2

)
sin

(
φ

2

) − sin
(

θ
2

)
cos

(
φ

2

)
− cos

(
θ
2

)
sin

(
φ

2

)
cos

(
θ
2

)
cos

(
φ

2

)
sin

(
θ
2

)
cos

(
φ

2

)
sin

(
θ
2

)
sin

(
φ

2

)
− sin

(
θ
2

)
sin

(
φ

2

) − sin
(

θ
2

)
cos

(
φ

2

)
cos

(
θ
2

)
cos

(
φ

2

) − cos
(

θ
2

)
sin

(
φ

2

)
sin

(
θ
2

)
cos

(
φ

2

) − sin
(

θ
2

)
sin

(
φ

2

)
cos

(
θ
2

)
sin

(
φ

2

)
cos

(
θ
2

)
cos

(
φ

2

)

⎞
⎟⎟⎟⎟⎟⎠, (A27)
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Since k is rotated to the z axis, we only need to compute the Lz(θ, φ) after the rotation,

Lz(θ, φ) = R(θ, φ)LzR−1(θ, φ) = 1

2

⎛
⎜⎜⎜⎝

0 i cos(θ ) −i sin(θ ) cos(φ) −i sin(θ ) sin(φ)

−i cos(θ ) 0 i sin(θ ) sin(φ) −i sin(θ ) cos(φ)

i sin(θ ) cos(φ) −i sin(θ ) sin(φ) 0 −i cos(θ )

i sin(θ ) sin(φ) i sin(θ ) cos(φ) i cos(θ ) 0

⎞
⎟⎟⎟⎠, (A28a)

= [sin(θ ) cos(φ)Lx + sin(θ ) sin(φ)Ly + cos(θ )Lz], (A28b)

= L · �nk. (A28c)

Here �nk = k
k is the direction of k. Therefore, the linear

k Hamiltonian becomes H1(k, θ, φ) = C0 + 2A1kLz(θ, φ),
which indicates the invariant of this Hamiltonian under the
combined rotation R(θ, φ) in the momentum space and
R(θ, φ) in the orbital space keeps. Note that the helicity
operator for low-energy Dirac fermions in spin-momentum
coupled crystals is defined as PS

k = S · �nk with S the spin
matrix. For Hamiltonian that commutes with PS

k , such as,
H ∼ S · k, whose eigenstates at fixed k can be labeled by the
eigenvalues p = ±1/2 of PS

k , (S · k)|p〉 = pk|p〉, and these
two states | ± 1/2〉 represent left-handed or right-handed
states. Following this spirit, we define a similar helicity opera-
tor PL

k = L · �nk to reveal the angular momentum polarization
along the moving direction in the absence of spin-orbit cou-
pling. Thus, we obtain

H1(k, θ, φ)
∣∣± 1

2

〉 = (C0 ± A1k)
∣∣± 1

2

〉
. (A29)

Here, ± 1
2 are the eigenvalues of PL

k . Each state has fourfold
degeneracy if spin degeneracy is accounted. And, the explicit
form of the eigen wavefunctions will be given in Appendix C.

3. The spinful eight-band R model with spin-orbit coupling

In this section, we further take spin degree of freedom
into account and derive the effective 8-by-8 Hamiltonian with
SOC. With the spin degree of freedom {↑,↓}, the spinful basis
becomes

{|�1,↑〉, |�2,↑〉, |�3,↑〉, |�4,↑〉}T

⊕ {|�1,↓〉, |�2,↓〉, |�3,↓〉, |�4,↓〉}T , (A30)

where |�i,σ 〉 = |�i〉 ⊗ |σ 〉 with i = 1, 2, 3, 4 and σ =↑,↓.
Thus, the spinful R model consists of two parts,

HR(k) = s0 ⊗ Hno-soc,R(k) + Hsoc, (A31)

where the spin-independent part Hno-soc,R(k) is given by
Eq. (A24) and Hsoc represents the k-independent SOC Hamil-
tonian. Here Hsoc is also constructed from the symmetry
principle, and is in a similar form as H1(k). To show that,
we need to consider the full rotation operators acting in both
spin and orbital spaces,

S2x = (isx ) ⊗ (iσyτ0), (A32)

S2y = (isy) ⊗ (iσxτy), (A33)

C3 = ei π

3
√

3
(sx+sy+sz ) ⊗

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 0 0 1
0 −1 0 0

⎞
⎟⎟⎠, (A34)

T = (isy) ⊗ σ0τ0K. (A35)

We use sx,y,z to be the Pauli matrices acting on the spin sub-
space, which obey

C3 : (sx, sy, sz ) → (sy, sz, sx ), (A36)

which is the same as the transformation as momentum
(kx, ky, kz ) under C3. It is because the material CoSi is a chiral
crystal, so that the electron spin (pseudovector) behaves the
same as the k vector (see their classifications in Table. III).
Therefore, the lowest-order SOC Hamiltonian reads

Hsoc = λ0(sxσyτ0 + syσxτy − szσzτy) = 4λ0(S · L), (A37)

which is obtained by just replacing (kx, ky, kz ) by (sx, sy, sz ).
Here we take the notation: the spin operators S = 1

2 (sx, sy, sz )
and the angular momentum operators L given by Eq. (A17).
The SU(2) algebra for the angular momentum operators is
represented as

[Si, S j] = iεi jkSk, (A38a)

[Li, Lj] = iεi jkLk . (A38b)

Moreover, in the next Appendix B, we will use two ap-
proaches for the justification of the above SOC Hamiltonian.

In addition to the on-site SOC in Eq. (A37), the linear k
SOC Hamiltonian generally reads

Hk,soc(k) = λ1(kxsx + kysy + kzsz ) ⊗ σ0τ0

+ λ2(kxsyσxτx − kyszσ0τx + kzsxσxτ0)

+ λ3(kysxσxτx − kzsyσ0τx + kxszσxτ0)

+ λ4(kxsyσxτz − kyszσyτy − kzsxσzτx )

+ λ5(kysxσxτz − kzsyσyτy − kxszσzτx )

+ λ6(kxsyσzτ0 + kyszσ0τz + kzsxσzτz )

+ λ7(kysxσzτ0 + kzsyσ0τz + kxszσzτz ). (A39)

Combining the SOC-free R model in Eq. (A24) with the SOC
Hamiltonians in Eq. (A37) and Eq. (A39), we finally get the
effective eight-band k · p Hamiltonian with SOC as

HR(k) = s0 ⊗ [H1(k) + H2(k)] + Hsoc + Hk,soc(k),
(A40)

which is called the eight-band R model with SOC for short
in the following discussions. The basis for the R model is
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made of the five d orbitals of the four Co atoms, whose details
are shown in Appendix B. Since the SOC is relatively weak
in CoSi, the linear k SOC terms are neglected in the main
text. Nevertheless, their influence on the quasinodal planes
will be addressed in the Supplemental Material [48] [see Ap-
pendix C].

4. The sixfold degenerate states at R point for spin-1/2 fermions

Next we briefly discuss the energy level splitting of the R
model in Eq. (A40) at R point (i.e., k = 0) due to the presence
of the on-site SOC Hamiltonian Hsoc. Solving HR(k = 0)
gives rise to a sixfold degeneracy (energy λ0) and a twofold
degeneracy (energy −3λ0). The DFT calculation also implies
that λ0 > 0, so that the sixfold degenerate states have higher
energy than the twofold states. And the sixfold is the double-
valued R̄6R̄7 irrep while the twofold is the R̄5R̄6 irrep based on
the irrep notations on the Bilbao [24–26]. Here we analytically
solve the on-site SOC Hamiltonian. To do that, we first apply
a unitary transformation

U = s0 ⊗ σ0 ⊗
(

i 1
−i 1

)
, (A41)

which transforms Hsoc into a block diagonal form

U [Hsoc]U † =
(H+(0) 0

0 H−(0)

)
, (A42)

where the subscript ± labels the eigenvalues of τy and two
blocks are given by

H+(0) = C0 + λ0(sxσy + syσx − szσz ) = C0 + λ0(s · σ ′),
(A43)

H−(0) = C0 + λ0(sxσy − syσx + szσz ) = C0 + λ0(s · σ ′′),
(A44)

where σ ′ and σ ′′ are defined as (σy, σx,−σz ) and
(σy,−σx, σz ), respectively. In fact, these two blocks, H+(0)
and H−(0), are related by TR symmetry. To show it, please
notice that the TR symmetry is presented as T = isyσ0τ0K in
the original basis. After the unitary transformation, it becomes
TU = isyσ0τxK.

We take H+(0) as an example, where σ ′ can be treated
as pseudo-spin, so it preserves J = 1

2 s + 1
2σ ′. Therefore, the

addition of two spin-1/2 naturally leads to one singlet state
and three degenerate triplet states as 1

2 ⊗ 1
2 = 1 ⊕ 0. By using

the identity

(s · σ ′) = 2
[
J2 − (

1
2 s

)2 − (
1
2σ ′)2

]
= 2

(
j( j + 1) − 1

2 × 3
2 × 2

)
,

(A45)

where j = 0 for singlet state and j = 1 for triplet states, we
can solve the eigenenergies as Es = C0 − 3λ0 for the sin-
glet state and Et = C0 + λ0 for the threefold triplet states.
Similarly, the H−(0) block also has one singlet state with
energy Es = C0 − 3λ0 and three triplet state with energy Et =
C0 + λ0. Therefore, the on-site SOC Hamiltonian splits the
eight states at R point into a sixfold degeneracy and another
twofold degeneracy.

Alternatively, the sixfold degeneracy can be viewed from
the spin-1 excitation with its time-reversal (TR)-related
partner. And we examine the sixfold degenerate states by sym-
metry arguments [27]. At the R point, we have the following
commutation relations for spin-1/2 fermions:

G3
3 = −1, G2

1 = G2
2 = 1, G1G2 = G2G1,

G−1
3 G1G3 = G2, G−1

3 G2G3 = G1G2, (A46)

which provides the sufficient condition for a 3D Irrep at the R
point. With G1� = λ1� and G2� = λ2�, we have

G1(G3�) = λ2(G3�), G2(G3�) = λ1λ2(G3�),

G1(G2
3�) = λ1λ2(G2

3�), G2(G2
3�) = λ1(G2

3�). (A47)

If either λ1 �= 1 or λ2 �= 1, �, G3�, and G2
3� all carry differ-

ent eigenvalues under G1 and G2. Thus, it can lead to the basis
for a 3D Irrep represented by {�, G3�, G2

3�}, as proved in
Ref. [27]. Next, let us discuss the effect of TR symmetry for
the spin-1/2 system, and consider the eigenvalues of the states
T �i. Because [T , G1] = [T , G2] = 0 and the eigenvalues of
G1 and G2 are real, T �i has the same eigenvalues of G1 and
G2 as �i with �i ∈ {�, G3�, G2

3�}. So, all these six basis
functions are orthogonal with each other

{�, G3�, G2
3�} ⊕ {T �, G3T �, G2

3T �}, (A48)

which generally forms the sixfold degeneracy [27].

APPENDIX B: THE JUSTIFICATION OF THE SOC
HAMILTONIAN AND THE 3d-ORBITAL

BASIS OF THE R MODEL

In this section, we justify the on-site SOC Hamiltonian
obtained by the symmetry argument [see Eq. (A37)]. Based
on the full tight-binding (TB) model based on the Wannier
function method [49], we can obtain the exact wave functions
and thus provide the 3d-orbital basis of the R model.

First of all, we discuss the four spinless degenerate wave
functions (i.e., R1R3-Irrep) via a full TB model without SOC
based on the Wannier function method from the DFT calcu-
lations. The model Hamiltonian (a 52-by-52 matrix) includes
four Co atoms (4s, 4p, 3d orbitals) and four Si atoms (3s, 3p
orbitals) in one unit cell. In each simple cubic unit cell, these
Co and Si atoms are located at

RCo1 = (0.14, 0.14, 0.14), RCo2 = (−0.14,−0.36, 0.36),

RCo3 = (−0.36, 0.36,−0.14), RCo4 = (0.36,−0.14,−0.36),

RSi1 = (−0.157,−0.157,−0.157), RSi2 = (0.157, 0.343,−0.343),

RSi3 = (0.343,−0.343, 0.157), RSi4 = (−0.343, 0.157, 0.343), (B1)
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which are in the unit of the lattice constant a0 = 4.45 Å. The atomic orbitals of the full TB model are

�TB = {
φCo1,4s, φCo2,4s, φCo3,4s, φCo4,4s, φCo1,4py , φCo1,4pz , φCo1,4px , φCo2,4py , φCo2,4pz , φCo2,4px , φCo3,4py ,

φCo3,4pz , φCo3,4px , φCo4,4py , φCo4,4pz , φCo4,4px , φCo1,3dxy , φCo1,3dyz , φCo1,3d3z2−1
, φCo1,3dxz , φCo1,3dx2−y2 ,

φCo2,3dxy , φCo2,3dyz , φCo2,3d3z2−1
, φCo2,3dxz , φCo2,3dx2−y2 , φCo3,3dxy , φCo3,3dyz , φCo3,3d3z2−1

, φCo3,3dxz ,

φCo3,3dx2−y2 , φCo4,3dxy , φCo4,3dyz , φCo4,3d3z2−1
, φCo4,3dxz , φCo4,3dx2−y2 , φSi1,3s, φSi2,3s, φSi3,3s, φSi4,3s,

φSi1,4py , φSi1,4pz , φSi1,4px , φSi2,4py , φSi2,4pz , φSi2,4px , φSi3,4py , φSi3,4pz , φSi3,4px , φSi4,4py , φSi4,4pz , φSi4,4px

}
. (B2)

Here s, p, d are the real atomic orbitals. In the atomic orbital basis, we now discuss the crystal symmetries at R point. For
instance, the spinless symmetry operator C3 is constructed as

C3 = [C3,Co] ⊕ [C3,Co ⊗ C3,p] ⊕ [C3,Co ⊗ C3,d ] ⊕ [C3,Si] ⊕ [C3,Si ⊗ C3,p], (B3)

where

C3,Co = C3,Si =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, C3,p =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, C3,d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 0 1 0

0 0 − 1
2 0

√
3

2

1 0 0 0 0

0 0 −
√

3
2 0 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

Similarly, at R point, the symmetry operator S2x is represented by

S2x = [C2x,Co] ⊕ [C2x,Co ⊗ C2x,p] ⊕ [C2x,Co ⊗ C2x,d ] ⊕ [C2x,Si] ⊕ [C2x,Si ⊗ C2x,p], (B5)

where

C2x,Co = C2x,Si =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠, C2x,p =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, C2x,d =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. (B6)

1. Atomic d-orbital basis: The complex wavefunctions for the single-valued R1R3 Irrep

We then numerically solve the full SOC-free 52 × 52 TB model for the wavefunctions. At the R point, all states are fourfold
degenerate. In this paper, we only focus on those four degenerate wave functions, whose energy is closest to the Fermi energy,
as labeled by |�T B〉, ∣∣�T B〉 = {∣∣�T B

R,1

〉
,
∣∣�T B

R,2

〉
,
∣∣�T B

R,3

〉
,
∣∣�T B

R,4

〉}
. (B7)

Other bands that are far away from the Fermi energy are neglected. Even though the dimension of each spinless wave-
function (|�T B

R,i 〉) is 52, we notice that the 3d orbitals of Co contribute to 80% of total density of states. Then, it is
reasonable to ignore the other contributions (4s and 4p orbitals of the four Co atoms and all orbitals of the four Si atoms).
The dimension is reduced to 20 since we only keep the five 3d orbitals of the four Co atoms. Therefore, the dimension-reduced
subspace at the R point is expanded by

{Co1, Co2, Co3, Co4} ⊗ {dxy, dyz, d3z2−1, dxz, dx2−y2}. (B8)

The three-dimensional Cartesian coordinates are used for defining the d-orbitals of the cubic lattice CoSi, whose definitions are
given in the Supplemental Material [48] [see Appendix A]. This convention is used throughout this paper.

This set of basis for these five d orbitals is used throughout this section. Therefore, the spinless basis in Eq. (B2) is reduced
to {

φCo1,3dxy , φCo1,3dyz , φCo1,3d3z2−1
, φCo1,3dxz , φCo1,3dx2−y2 , φCo2,3dxy , φCo2,3dyz , φCo2,3d3z2−1

, φCo2,3dxz , φCo2,3dx2−y2 ,

φCo3,3dxy , φCo3,3dyz , φCo3,3d3z2−1
, φCo3,3dxz , φCo3,3dx2−y2 , φCo4,3dxy , φCo4,3dyz , φCo4,3d3z2−1

, φCo4,3dxz , φCo4,3dx2−y2 ,
}
. (B9)

In this dimension-reduced basis, the symmetry operator C3 in
Eq. (B3) and S2x in Eq. (B5) become

C3 = C3,Co ⊗ C3,d , and S2x = C2x,Co ⊗ C2x,d . (B10)

These two are now 20 × 20 matrices. Correspondingly, the
four degenerate states at the R point, |�T B

R,i 〉 with i = 1, 2, 3, 4
are correspondingly reduced and renormalized (i.e., dimen-
sion 20). By symmetry principle, these four degenerate states
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TABLE IV. The numerically calculated “complex” wavefunctions at the R point, where the first column represents the component number
of the wavefunctions. Since these wave functions are made of the five 3d orbitals of the four Co atoms, shown in the second and third
columns. These four wavefunctions |�T B

R,i 〉 with i = 1, 2, 3, 4 are the common eigenstates of the Hamiltonian and the CT B
3 operators with the

CT B
3 eigenvalues 1, eiω0 , 1, e−iω0 , respectively. These wavefunctions also show that time-reversal symmetry relates �T B

R,1 (�T B
R,2) and �T B

R,3 (�T B
R,4)

by applying a complex conjugate.

form a 4D single-valued irrep. Thus, they can be used to con-
struct the matrix representations of the symmetry operators
of SG 198 and time reversal. This can be helpful to check
these fourfold degeneracy belongs to R1R3 Irrep or R2R2 Irrep.
As we mentioned in Appendix A 1, the trace of G3 for the
R1R3-Irrep (R2R2-Irrep) is 1 (−2). For this purpose, the matrix
representation G3 for symmetry C3 is calculated via

[G3]i, j = 〈
�T B

R,i

∣∣C3

∣∣�T B
R, j

〉
, (B11)

with i, j = 1, 2, 3, 4. Similarly, the matrix representation G1

for S2x is given by 〈�T B|S2x|�T B〉. And the numerical results
for the wavefunctions are listed in Table IV, which are orthog-
onal to each other 〈

�T B
R,i

∣∣�T B
R, j

〉 = δi, j, (B12)

here δi, j is the Kronecker delta function. This also leads to the
following relations:

Tr[G3] = 1 and Tr[G1] = 0. (B13)

This confirms these states form the R1R3 Irrep, as mentioned
in the main text and Appendix A 1. Furthermore, it is also

ready to construct a basis under which the matrix representa-
tions of symmetry operators (C3, S2x, S2y, and T ) are exactly
given in Appendix A 3. Because the SOC Hamiltonian can be
justified once the d-orbital basis is constructed. To do that, we
first take a proper unitary transformation, i.e., linear combi-
nation of these states |�T B

R,i 〉 with i = 1, 2, 3, 4, to make these
states |�T B

R,i 〉 are eigenstates of C3. Under this d-orbital basis,
the matrix representations are correspondingly constructed as
follows. The G3 is given by

G3 = Diag[1, eiω0 , 1, e−iω0 ], (B14)

where ω0 = 2π/3. These are complex wave functions and the
TR symmetry requires �T B

R,1 = (�T B
R,3)∗ and �T B

R,2 = (�T B
R,4)∗.

The time-reversal symmetry operator T is given by

T =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎠K, (B15)
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where K is complex conjugate operator. Moreover, the matrix
representation G1 for S2x is given by

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i
√

1
3 −

√
2
3 0 0√

2
3 i

√
1
3 0 0

0 0 i
√

1
3 −

√
2
3

0 0
√

2
3 −i

√
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B16)

In addition, one can also check that the matrix representation
G2 for the symmetry S2y is obtained to obey the commutation
relations in Eq. (A9).

We now consider the band splitting induced by the atomic
SOC. For the full TB model at the R point, one can add the
on-site atomic SOC Hamiltonian for the Co atoms,

H3d,soc = λsoc

4∑
i=1

si · Li
3d , (B17)

where i labels the four Co atoms, L3d represents the three
angular momentum operators based on the five d orbitals (i.e.,
{dxy, dyz, d3z2−1, dxz, dx2−y2}), and s are Pauli matrices acting
on the spin subspace. We assume the SOC terms from other
orbitals are small enough to be neglected. The explicit forms
of operators s and L3d are given by

s+ = sx + isy

2
=

(
0 1
0 0

)
, s− = sx − isy

2
=

(
0 0
1 0

)
,

sz =
(

1/2 0
0 −1/2

)
, (B18)

L3d,+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0 −i 0

1 0 −i
√

3 0 −i

0 i
√

3 0
√

3 0

i 0 −√
3 0 1

0 i 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

L3d,− =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 −i 0

−1 0 −i
√

3 0 −i

0 i
√

3 0 −√
3 0

i 0
√

3 0 −1

0 i 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

L3d,z =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2i

0 0 0 i 0

0 0 0 0 0

0 −i 0 0 0

−2i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B19)

Here we have defined L3d,± = (L3d,x ± iL3d,y)/2. With this d-
orbital basis (R1R3 Irrep) shown in Table IV, we next project
the atomic SOC terms into the effective k · p Hamiltonian to
justify the k-independent SOC Hamiltonian in Eq. (A37). To
do that, we consider the basis at the R point with spin degree

of freedom,

{|↑〉 ⊗ |�T B〉, |↓〉 ⊗ |�T B〉}
= {|↑〉 ⊗ |�T B

R,1〉, |↑〉 ⊗ |�T B
R,2〉, |↑〉 ⊗ |�T B

R,3〉, |↑〉
⊗ |�T B

R,4〉, |↓〉 ⊗ |�T B
R,1〉, |↓〉 ⊗ |�T B

R,2〉, |↓〉
⊗ |�T B

R,3〉, |↓〉 ⊗ |�T B
R,4〉

}
(B20)

where |�T B
R,i 〉 with i = 1, 2, 3, 4 have been shown in Table IV.

After projecting H3d,soc onto the spinfull basis at the R point in
Eq. (B20), the effective SOC Hamiltonian at the R point reads

Heff,soc = λeff,socs · L̃. (B21)

Here, the effective angular momentum operators, denoted as
L̃x, L̃y, L̃z, are given by

[L̃a]i j = 〈
�T B

R,i

∣∣I4×4 ⊗ L3d,a

∣∣�T B
R, j

〉
, (B22)

where the index a = {x, y, z}, i, j = 1, 2, 3, 4, and I4×4 is a 4-
by-4 identity matrix. And the numerical results of these 4-by-4
matrices are given by

L̃x =

⎛
⎜⎜⎜⎜⎝

−a1 ia2 0 0

−ia2 a1 0 0

0 0 a1 ia2

0 0 −ia2 −a1

⎞
⎟⎟⎟⎟⎠, (B23a)

L̃y =

⎛
⎜⎜⎜⎜⎝

−a1 −a2eiω′
0 0 0

−a2e−iω′
0 a1 0 0

0 0 a1 a2e−iω′
0

0 0 a2eiω′
0 −a1

⎞
⎟⎟⎟⎟⎠, (B23b)

L̃z =

⎛
⎜⎜⎜⎜⎝

−a1 a2e−iω′
0 0 0

a2eiω′
0 a1 0 0

0 0 a1 −a2eiω′
0

0 0 −a2e−iω′
0 −a1

⎞
⎟⎟⎟⎟⎠, (B23c)

where ω′
0 = π/6, a1 = 1/(2

√
3) and a2 = 1/

√
6. Moreover,

the above effective angular momentum operators satisfy the
standard (anti-)commutation relations

[L̃i, L̃ j] = iεi jk L̃k, (B24a)

{L̃i, L̃ j} = 1
2δi j, (B24b)

where i, j, k = {x, y, z}, δi j is the Kronecker delta function,
and εi jk is the Levi-Civita symbol. Moreover, we also no-
tice that the eigenvalues of Heff,soc are −3λeff,soc (twofold)
and λeff,soc (sixfold), by diagonalizing the SOC Hamiltonian
(B21). This explains the energy splitting at the R due to the
presence of SOC, indicting that the important role of SOC in
the low-energy physics. This is consistent with the analysis in
Appendix A 4.

2. The real wavefunctions: atomic d-orbital basis
for the eight-band R model

In this section, we construct the d-orbital basis for the R
model in the main text (details are shown in Appendix A 2
and Appendix A 3). Recall that the spinful eight-band R model
in Eq. (A40) is constructed only by symmetry arguments, but
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the corresponding “physical” basis has not been derived. To
solve this issue, we take the following unitary transformation
U , which connects these two representations,

Matrix representations in the “complex” basis

←→ Matrix representation for the eight-band R model.
(B25)

Once this is proved, the important on-site SOC Hamil-
tonian Hsoc can be easily justified. Practically, U needs
to be mathematically constructed to make the matrix rep-
resentations (G1 for S2x and G3 for C3) be transferred
correspondingly as

U−1G3U =

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 0 0 1
0 −1 0 0

⎞
⎟⎟⎠, (B26)

U−1G1U =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠. (B27)

where the matrices G3 and G1 are given by Eq. (B14) and
Eq. (B16), respectively. The right side are the matrix repre-
sentations used for the eight-band R model in Appendix A 1.
Solving this problem is equivalently to define the following
basis transformation based on the complex wavefunctions
given by Table IV,

∣∣�T B
R,1

〉
real = 1√

2

[∣∣�T B
R,1

〉 + |�T B
R,3〉

]
, (B28a)

∣∣�T B
R,2

〉
real = −i

1√
6

[∣∣�T B
R,1

〉 − ∣∣�T B
R,3

〉]
− 1√

3

[
a∗

p

∣∣�T B
R,2

〉 + ap

∣∣�T B
R,4

〉]
, (B28b)

∣∣�T B
R,3

〉
real = i

1√
6

[∣∣�T B
R,1

〉 − ∣∣�T B
R,3

〉]
− 1√

3

[∣∣�T B
R,2

〉 + ∣∣�T B
R,4

〉]
, (B28c)

∣∣�T B
R,4

〉
real = i

1√
6

[∣∣�T B
R,1

〉 − ∣∣�T B
R,3

〉]
+ 1√

3

[
ap

∣∣�T B
R,2

〉 + a∗
p

∣∣�T B
R,4

〉]
, (B28d)

where ap = exp(i π
3 ). Please notice that time-reversal is just a

complex conjugate used for the construction of the eight-band
R model in Appendix A 1, we have to define the real wave-
functions by the above basis transformation. In other words,
the time-reversal symmetry in the complex basis is given by
Eq. (B15), which needs to be transformed to

T = I4×4K, (B29)

with I4×4 a 4-by-4 identity matrix and K the complex con-
jugate. It is only possible for real basis wavefunctions.
Therefore, the corresponding unitary transformation matrix U

is represented as

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

− i√
6

i√
6

i√
6

0 − a∗
p√
3

− 1√
3

ap√
3

1√
2

i√
6

− i√
6

− i√
6

0 − ap√
3

− 1√
3

a∗
p√
3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B30)

which is unitary transformation because of UU† = UU−1 =
I4×4 and it gives rise to(∣∣�T B

R,1

〉
,
∣∣�T B

R,2

〉
,
∣∣�T B

R,3

〉
,
∣∣�T B

R,4

〉)
U

= (∣∣�T B
R,1

〉
real,

∣∣�T B
R,2

〉
real,

∣∣�T B
R,3

〉
real,

∣∣�T B
R,4

〉
real

)
, (B31)

Therefore, the new wavefunctions are also orthogonal to each
other, real〈�T B

R,i |�T B
R, j〉real = δi, j . Each component of the real

wavefunctions are shown in Table V. For the R point, we can
use this real d-orbital basis in Table V to construct the on-site
SOC Hamiltonian in Appendix A 3. To show that, after the
transformation, the projected angular momentum operators in
Eq. (B23) become

U−1L̃xU = 1

2

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞
⎟⎟⎠ � Lx, (B32a)

U−1L̃yU = 1

2

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ � Ly, (B32b)

U−1L̃zU = −1

2

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎟⎠ � Lz. (B32c)

These matrices in the right side are Lx = 1
2σyτ0, Ly =

1
2σxτy, Lz = − 1

2σzτy, which are just the angular momentum
operators defined in Eq. (A17). According to Eq. (B21), the
on-site SOC Hamiltonian becomes U−1Heff,socU = 4λ0(S ·
L), with S = 1

2 (sx, sy, sz ) and L = (Lx, Ly, Lz ). The SU(2) al-
gebra for the angular momentum is given by [Si, S j] = iεi jkSk ,
{Si, S j} = 1

2δi j and [Li, Lj] = iεi jkLk , {Li, Lj} = 1
2δi j . As a

brief conclusion, we have numerically found the real basis
function for the eight-band R model, and also confirmed the
form of the angular momentum operators, which are required
for the construction of the on-site SOC Hamiltonian. The
wavefunctions in Table V show that the mixing of t2g and eg

orbitals are essential for the on-site SOC Hamiltonian in the
spinful R model, as mentioned in the main text.

APPENDIX C: APPROACH I FOR THE HIERARCHY
OF THE QUASI SYMMETRY

In this section, we use the perturbation theory to identify
the hierarchy of quasisymmetry. This is Approach I mentioned
in the main text. Here we explain the necessary details. The
linear k-order SOC-free Hamiltonian H1(k),

H1(k) = C0σ0τ0 + 2A1(k · L), (C1)
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TABLE V. The numerically calculated “real” wavefunctions at the R point, the first column represents the component number of the
wavefunctions. Since these wave functions are made of the five 3d orbitals of the four Co atoms, shown in the second and third columns. These
real wavefunctions are obtained via a unitary transformation in Eq. (B30) on the complex wavefunctions in Table IV. In these new spinless basis,
time-reversal symmetry is just a complex conjugate. This basis becomes the spinless basis for the eight-band R model after taking the spin de-
gree of freedom into account, represented by |↑〉 ⊗ {|�T B

R,1〉real, |�T B
R,2〉real, |�T B

R,3〉real, |�T B
R,4〉real}, |↓〉 ⊗ {|�T B

R,1〉real, |�T B
R,2〉real, |�T B

R,3〉real, |�T B
R,4〉real}.

where the angular momentum operators are Lx =
1
2σyτ0, Ly = 1

2σxτy, Lz = − 1
2σzτy defined in Eq. (A18).

Notice that H1(k) is invariant under the spin SUs(2)
symmetry group. Moreover, we notice that an additional
hidden SUo(2) symmetry also exists for H1(k) in the “orbital”
space that can be generated by the following operators:

M1,2,3 = 1
2 {s0σyτz, s0σyτx, s0σ0τy}, (C2)

which is shown in the main text [see Eq. (2)], and M1,2,3 all
commute with H1(k) and satisfy the commutation relations

[Mi,M j] = iεi, j,kMk, (C3a)

{Mi,M j} = 1
2δi, j . (C3b)

Here i, j = 1, 2, 3, εi, j,k is the 3D Levi-Civita symbol, and
δi, j is the Kronecker delta function. Thus, we refer to it as
the orbital SUo(2) quasisymmetry group for H1(k) + Hsoc

because of

[Mi,H1(k) + Hsoc] = 0, (C4)

where the on-site SOC Hamiltonian is given by Eq. (A37),

Hsoc = 4λ0(S · L), (C5)

where we use S = 1
2 (sx, sy, sz ) for the spin-1/2 angular mo-

mentum operators. And [Si, S j] = iεi jkSk . In addition, we
consider the k2-order Hamiltonian that can be represented in
a compact form,

H2(k) = H2,M1 (k) + H2,M2 (k) + H2,M3 (k), (C6)

where each part of H2(k) is given by

H2,Mi (k) = gi · Ji, (C7)

for i = 1, 2, 3. Here we define the k-dependent vectors as

g1(k) = (C2kxky,−C3kxkz,C1kykz ),

g2(k) = (C3kxky,C1kxkz,−C2kykz ),

g3(k) = (C1kxky,C2kxkz,−C3kykz ). (C8)

And the corresponding vectors of operators

J1 = (σxτx,−σzτx, σ0τz ),

J2 = (σxτz, σzτz, σ0τx ),

J3 = (σzτ0, σxτ0, σyτy). (C9)

In addition, we also realize that the k2 terms of H2(k) break
this orbital SUo(2) quasisymmetry generated by {M1,2,3} and
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lead to the splitting of all bands. However, different parts of
the entire k2 terms can lead to the reduction from SUo(2) to a
orbital U(1). To show that, as we discussed in the main text,
we find that

[Ji,Mi] = 0 and {Ji,Mj} = 0 for i �= j, (C10)

which implies

[H2,Mi (k),Mi] = 0. (C11)

This can be also found in the main text and Appendix A 2.
Below, we focus on how to identity the quasisymmetry based
on the effective perturbation theory (Approach I). Note that
alternative Approach II will be presented in Appendix D.

Furthermore, we notice there is a conservation of total an-
gular momentum at fixed k for H1(k) + Hsoc = C0 + 2A1(k ·
L) + 4λ0(S · L). As we have discussed in Appendix A 4, the
total angular momentum S + L is conserved at k = 0. But it
does not commute with the Hamiltonian H1(k) + Hsoc at the
nonzero k. However, we notice that

[(S + L) · �nk,H1(k) + Hsoc] = 0, (C12)

where �nk = k
k is the direction of the momentum k. And (S +

L) · �nk is physically similar to the helicity operator at nonzero
k. Also, Eq. (C12) can be proved as follows:

(i) Spin and orbital are independent degree of freedoms, so
we have [S, L] = 0. Therefore, [(S + L) · �nk,H1(k)] = [L ·
�nk,C0 + 2A1(k · L)] = 0.

(ii) We can define total angular momentum Ltot = S +
L, so that Hsoc = 2λ0(L2

tot − S2 − L2) = 2λ0(L2
tot − 3

4 − 3
4 ).

Then one can check

[Ltot,i, Ltot, j] = [Si, S j] + [Li, Lj] = iεi jkSk + iεi jkLk

= iεi jkLtot,k . (C13)

Besides, we have [Ltot, L2
tot] = 0 (i.e., the square of the angu-

lar momentum commutes with any of the components), which
leads to [Ltot,Hsoc] = 0. Therefore, we have[

Ltot · �nk, L2
tot

] = 0. (C14)

This proves that Ltot · �nk is a symmetry operator of H1(k) +
Hsoc at any nonzero k.

1. Approach I: The U(1) quasi symmetry protected nodal planes

We solve the eigenproblem of the Hamiltonian H1(k) in
Eq. (A16) or Eq. (A18). Due to the full rotation symmetry,
we choose the spherical coordinate with the momentum k =
(kx, ky, kz ) = k(sin θ cos φ, sin θ sin φ, cos θ ). The eigenener-
gies of H1(k) have two branches E± = C0 ± A1k with each
branch twofold degeneracy (fourfold if spin degeneracy is
involved). In this paper, we assume A1 > 0, and the two
degenerate eigen wavefunctions |�A/B+(θ, φ)〉 of the positive
energy branch (E+) and |�A/B−(θ, φ)〉 of the negative energy
branch (E−) are given by

H1(k)

{|�A/B+(θ, φ)〉 = E+|�A/B+(θ, φ)〉,
|�A/B−(θ, φ)〉 = E−|�A/B−(θ, φ)〉, (C15)

where the index ± represent the eigenvalues of L · �nk, and the
eigenstates in the spherical coordinator are given by

|�A+(θ, φ)〉 = 1√
2

(cos θ cos φ − i sin φ,− cos θ sin φ − i cos φ, 0, sin θ )T ,

|�B+(θ, φ)〉 = 1√
2

(−i sin θ cos φ, i sin θ sin φ, 1, i cos θ )T . (C16a)

|�A−(θ, φ)〉 = 1√
2

(i sin θ cos φ,−i sin θ sin φ, 1,−i cos θ )T ,

|�B−(θ, φ)〉 = 1√
2

(cos θ cos φ + i sin φ,− cos θ sin φ + i cos φ, 0, sin θ )T . (C16b)

The solution is not unique, since there exists a twofold
degeneracy between |�A+(θ, φ)〉 and |�B+(θ, φ)〉 at arbitrary
k, protected by the orbital SU(2) symmetry generated by
{M1,M2,M3} in Eq. (C2). Moreover, the subscript A(B)
can represent the eigenvalues of the quasisymmetry operator
defined as (M1,M2,M3) · �n with a specific real normal-
ized vector �n = (n1, n2, n3). For the basis in Eq. (C16a) and
Eq. (C16b), the �n vector reads

�n = (− sin(θ ) cos(φ), sin(θ ) sin(φ),− cos(θ )). (C17)

And one can check

(M · �n)|�A+(θ, φ)〉 = |�A+(θ, φ)〉, (C18a)

(M · �n)|�A−(θ, φ)〉 = |�A−(θ, φ)〉, (C18b)

(M · �n)|�B+(θ, φ)〉 = −|�B+(θ, φ)〉, (C18c)

(M · �n)|�B−(θ, φ)〉 = −|�B−(θ, φ)〉. (C18d)

But �n can be arbitrary due to this twofold degeneracy
(fourfold if spin degeneracy is accounted). This means the

choice of eigenstates are not unique. Besides, another set of
wavefunctions chosen as eigenstates of M3 will be shown in
Appendix D 2 by fixing �n = (0, 0, 1). Furthermore, we can
project the angular momentum operator L into the eigenstate
subspace,

〈�A±(θ, φ)|L|�A±(θ, φ)〉 = 〈�B±(θ, φ)|L|�B±(θ, φ)〉

= ± k
2k

, (C19)

〈�A±(θ, φ)|L|�B±(θ, φ)〉 = 〈�B±(θ, φ)|L|�A±(θ, φ)〉 = 0.

(C20)

Here, Eqs. (C19) and (C20) mean the emergent angular mo-
mentum operator L is along the momentum direction after the
projection. Besides, with involving the spin degree of free-
dom, the corresponding fourfold degenerate wavefunctions
are labeled as

|�+〉 = {|�A+↑(θ, φ)〉, |�B+↑(θ, φ)〉, |�A+↓(θ, φ)〉,
|�B+↓(θ, φ)〉}, (C21)
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where

|�A+↑(θ, φ)〉 = (1, 0)T ⊗ |�A+(θ, φ)〉,
|�B+↑(θ, φ)〉 = (1, 0)T ⊗ |�B+(θ, φ)〉,
|�A+↓(θ, φ)〉 = (0, 1)T ⊗ |�A+(θ, φ)〉,
|�B+↓(θ, φ)〉 = (0, 1)T ⊗ |�B+(θ, φ)〉,

(C22)

where (1, 0)T and (0, 1)T label the spin-up and spin-down
wavefunctions, respectively. The above set of wavefunctions
serves as the basis for the projected four-band perturbation
model via the first-order perturbation theory, dubbed as “the
P model”. We treat both the on-site SOC in Eq. (A37) and the
k2 terms in Eq. (A19) as perturbations,

Hperb(k) = Hsoc + s0 ⊗ H2(k). (C23)

The projected Hamiltonian 〈�+|Hperb|�+〉 is given by

Heff (1)
P (k) = (E+ + B1k2)s0ω0 + Heff(1)

soc,+(k) + Heff(1)
k2,+ (k),

(C24)

which is marked as the P model around R point. And

Heff(1)
soc,+(k) = λ0(λxsx + λysy + λzsz ) ⊗ ω0, (C25a)

Heff(1)
k2,+ (k) = C̃k2s0 ⊗ (dxωx + dyωy + dzωz ), (C25b)

where C̃ = C1 − C2 + C3, and ωx,y,z are Pauli matrices for the
{A+, B+} band subspace. The coefficients λx,y,z are defined as

(λx, λy, λz ) = (sin θ cos φ, sin θ sin φ, cos θ ) = k
|k| , (C26)

On the other hand, the coefficients dx,y,z are given by

dx = 1
4 sin θ sin(2θ ) sin(2φ)(cos φ + sin φ),

dy = 1
4 sin θ sin(2θ ) sin(2φ)( sin θ + cos θ (cos φ − sin φ)),

dz = 1
4 sin θ sin(2θ ) sin(2φ)( cos θ − sin θ (cos φ − sin φ)).

(C27)

Furthermore, we use the symmetry to understand the above
first-order perturbation Hamiltonian. The basis function in
Eq. (C21) can be labeled by eigenvalues of symmetries,

|�A+↑(θ, φ)〉 = |↑〉 ⊗ ∣∣p = + 1
2 , q = +1

〉
, (C28a)

|�B+↑(θ, φ)〉 = |↑〉 ⊗ ∣∣p = + 1
2 , q = −1

〉
, (C28b)

|�A+↓(θ, φ)〉 = |↓〉 ⊗ ∣∣p = + 1
2 , q = +1

〉
, (C28c)

|�B+↓(θ, φ)〉 = |↓〉 ⊗ ∣∣p = + 1
2 , q = −1

〉
, (C28d)

Here we take p = ±1/2 as the eigenvalues of L · �nk and
q = ±1 as the eigenvalues of �M · �n. All these four states are
degenerate with eigenenergy of H1 as C0 + A1k. The linear k
Hamiltonian has both orbital SU(2) symmetry and spin SU(2)
symmetry. Specifically, the orbital SU(2) symmetry generated
by {M1,2,3} indicates that the vector �n is arbitrary. And the
spin SU(2) symmetry implies that |↑/ ↓〉 can be any direction
in the spin subspace. Then, to show the origin of the hidden
quasisymmetry of the P model, we individually do the projec-
tion for the on-site SOC and k2-order Hamiltonian,

(i) Only do the projection of the on-site SOC Hamilto-
nian. In this case, the orbital SU(2) symmetry generated by

{M1,2,3} preserves, because of [Mi,H1(k) + Hsoc] = 0 with
i = 1, 2, 3. Thus, we obtain

SUs(2) × SUo(2)
〈Hsoc〉H1

↪−−−−−−−−→ Us(1) × SUo(2), (C29)

where the spin U(1) symmetry generator depends on k. To
understand this, we recall the conservation of (S + L) · �nk for
H1(k) + Hsoc = C0 + 2A1k · L + 4λ0S · L. Then, for a fixed
nonzero k, one can take the eigenstates in Eq. (C28) as eigen-
states of the helicity operator (S + L) · �nk by choosing

|�A+↑(θ, φ)〉 = ∣∣s = + 1
2

〉 ⊗ ∣∣p = + 1
2 , q = +1

〉
, (C30a)

|�B+↑(θ, φ)〉 = ∣∣s = + 1
2

〉 ⊗ ∣∣p = + 1
2 , q = −1

〉
, (C30b)

|�A+↓(θ, φ)〉 = ∣∣s = − 1
2

〉 ⊗ ∣∣p = + 1
2 , q = +1

〉
, (C30c)

|�B+↓(θ, φ)〉 = ∣∣s = − 1
2

〉 ⊗ ∣∣p = + 1
2 , q = −1

〉
. (C30d)

Here we use s = ±1/2 as eigenvalues of S · �nk. Here we
use �nk, �n′

k, and �n′′
k to be the set of 3D orthogonal coor-

dinates at the fixed k and �nk is the direction of k [i.e.,
�nk = (sin θ cos φ, sin θ sin φ, cos θ )]. Namely, |�nk| = |�n′

k| =
|�n′′

k| = 1, and �nk · �n′
k = �nk · �n′′

k = �n′
k · �n′′

k = 0. Then, the first-
order projection of S · L = [(S · �nk )(L · �nk ) + (S · �n′

k )(L ·
�n′

k ) + (S · �n′′
k )(L · �n′′

k )] onto these four states in Eq. (C30)
leads to

[〈Hsoc〉H1
]i, j = 4λ0〈�i(θ, φ)|S · L|� j (θ, φ)〉,

= 4λ0〈�i(θ, φ)|(S · �nk )(L · �nk )

+ (S · �n′
k )(L · �n′

k ) + (S · �n′′
k )

× (L · �n′′
k )|� j (θ, φ)〉,

= 4λ0〈�i(θ, φ)|(S · �nk )(L · �nk )|� j (θ, φ)〉,
(C31)

where i, j = {A+ ↑, B+ ↑, A+ ↓, B+ ↓}. Thus, the first-
order perturbation for on-site SOC Hamiltonian is

〈Hsoc〉H1
= λ0

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠. (C32)

Please notice that 〈Hsoc〉H1 can be also obtained after diago-
nalizing Heff(1)

soc,+(k) in Eq. (C25). At nonzero k, we find that
the fourfold degenerate states [C0 + A1k for H1(k)] are split
by the on-site SOC Hamiltonian Hsoc into two states and each
state has twofold degeneracy stemming from the orbital SU(2)
symmetry, E = C0 + A1k ± λ0. And the eigenstates are just
Eq. (C30). And the spin-polarization along the direction of k
represents the spin U(1) symmetry.

(ii) Only do the projection of the k2-order Hamiltonian.
In this case, the spin SU(2) symmetry preserves. Since the
k2-order Hamiltonian is spin independent. Thus,

SUs(2) × SUo(2)
〈H2〉H1

↪−−−−−−−−→ SUs(2) × Uo(1). (C33)

We do not have an elegant picture for the 〈H2〉H1 . But we
know it does not dependent on spin, as shown in Eq. (C25).
The fourfold degeneracy is split into two states, and each
state has twofold degeneracy (i.e., spin degeneracy). And, the
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two-by-two matrix in the {A, B}-subspace itself severs as the
orbital U(1) symmetry.

Therefore, up to the first-order perturbation, we obtain a
hierarchy of quasisymmetry for CoSi mentioned in the main
text [see Eq. (7)],

SUs(2) × SUo(2)
〈Hsoc+H2〉H1

↪−−−−−−−−−−−−→ Us(1) × Uo(1). (C34)

And [Us(1), Uo(1)] = 0, as shown below.

2. The analytical properties of the effective
perturbation four-band P model

The P model has the self-commuting structure at every k.
Explicitly,[

Heff(1)
soc,+(k1),Heff (1)

k2,+ (k2)
]

= 0, ∀k1 & ∀k2 in the whole momentum space,
(C35)

as discussed in the main text, which is known as the projected
stabilizer code Hamiltonian and directly leads to the U(1) qua-
sisymmetry group. Below, we provide some analytical study
on the properties of the effective P model. The eigenenergies
of the P model in Eq. (C24) are

Eαβ (k, θ, φ) = C0 + B1k2 + A1k + αλ0

+ β

√
3

4
C̃k2| sin 2φ sin 2θ sin θ |, (C36)

where α = ± and β = ±. Here sin 2φ sin 2θ sin θ =
4kxkykz/k3, indicating that there are twofold degeneracy
on high symmetry planes (kx = 0 or ky = 0 or kz = 0).

For the � − R − M plane, φ = π/4 so sin 2φ = 1. The
eigenenergies along high symmetry lines are listed as fol-
lows:

(1) Along the R − M line.
θ = 0, so Eα = C0 + B1k2 + A1k + αλ0. All the bands are

twofold degenerate.
(2) Along the R − Z line.
θ = π/2, so Eα = C0 + B1k2 + A1k + αλ0. All the bands

are twofold degenerate.
We then analyze the perturbation along these two high

symmetry lines (i.e., the R − M line and the R − Z line) to
identify the band crossing types of the Fermi surface (linear
or quadratic). For a given E f , the Fermi surface shape of the
momentum k± for the upper four bands is determined by the
quadratic equation

B1k2 + A1k + Cα = 0, (C37)

where Cα = αλ0 + C0 − E f with α = ±. This equation leads
to the solution

kα,θ=0 = kα,θ=π/2 = 1

2B1

( − A1 +
√

A2
1 − 4B1Cα

)
. (C38)

We firstly focus on the R − M line by expanding Eq. (C36)
around θ = 0. In this case, we have θ = 0 + δθ and

k = kα,θ=0 + δk . Then, the Eq. (C37) should be replaced by

0 = Cα + B1k2 + A1k + β
√

3
4 C̃k2| sin 2φ sin 2θ sin θ |,

(C39)

which leads to

0 = Cα + B1(kα,θ=0 + δk )2 + A1(kα,θ=0 + δk )

+ β

√
3

4
C̃(kα,θ=0 + δk )2| sin 2φ|(2δ2

θ

)
. (C40)

After neglecting the δ2
k terms, we find

δk,β = −β

√
3

2

C̃| sin 2φ|δ2
θ (kα,θ=0)2

2B1kα,θ=0 + A1 + β
√

3C̃| sin 2φ|δ2
θ kα,θ=0

.

(C41)

To the δ2
θ order, we have

δk,β = −β

√
3

2

C̃| sin 2φ|(kα,θ=0)2

2B1kα,θ=0 + A1
× δ2

θ , (C42)

which indicates that the exact crossing along the R − M line
is quadratic in momentum k =

√
k2

x + k2
y , as illustrated in

Fig. 5(a) around the R − M line.
For θ = π/2 (i.e., the R − Z line), we then expand

Eq. (C36) around θ = π/2 + δθ . Because

sin 2θ sin θ → sin(π + 2δθ ) sin(π/2 + δθ ) → −2δθ +O
(
δ3
θ

)
.

(C43)

It leads to the solution for k at a fixed E f ,

δk,β = −β

√
3

2

C̃| sin 2φ|(kα,θ=π/2)2

2B1kα,θ=0 + A1
× |δθ |, (C44)

which indicate the exact crossing along kz is linear, as illus-
trated in Fig. 5(b) around the R − Z line.

In addition, we discuss the emergent nodal lines on Fermi
surfaces for the P model. The comparison of the FSs be-
tween the eight-band k · p effective Hamiltonian, the R model
[e.g., see Eq. (A40) in Appendix A 3] and the first-order-
perturbation four-band Hamiltonian, the P model [e.g., see
Eq. (C24) in Appendix C 1] are shown in Fig. 6. The P model
shows exact degeneracy at non-high-symmetry points. The
crossings from two bands can be obtained from the constraint
equation

Eα=+1,β=−1 = Eα=−1,β=+1, (C45)

of which the solution

λ0 =
√

3
4 C̃k2| sin 2φ sin 2θ sin θ | =

√
3C̃

|kxkykz|
k

(C46)

generally leads to nodal planes. The obtained nodal planes do
not intersect with high-symmetry planes, e.g., kx = 0 or ky =
0 or kz = 0. At the Fermi energy, we require an additional
constraint equation

E f = Eα=+1,β=−1 = Eα=−1,β=+1. (C47)

125145-19



LUN-HUI HU et al. PHYSICAL REVIEW B 107, 125145 (2023)

FIG. 5. The four distinct Fermi surfaces of CoSi are numerically calculated, as shown in (a) for the � − R − M plane. These high-symmetry
points are marked in the first Brillouin zone [left panel in (a)]. And these four Fermi surfaces are labeled by four different colors. The middle
two have a “crossing” behavior with a tiny gap. And the analytical results for the band dispersions [see Eq. (C36)] of the P model along the
R − M line in (b) and the R − Z line in (c). The two dashed black lines represent the Fermi surfaces with α = ±1 and β = 0. The β term leads
to the quadratic band splitting around the R − M line in (a) with δk ∼ δ2

θ , and the linear band splitting around the R − Z line in (b) with δk ∼ δθ .
Here, the orange line is for α = −1, β = −1, the blue line is for α = −1, β = +1, the green line is for α = +1, β = −1, and the yellow line
is for α = +1, β = +1. Once the band splitting caused by the β term is large enough, the band crossing between the blue line (β = +1) and
the green line (β = −1) may happen at arbitrary momenta, which are exact and protected by the quasisymmetry.

FIG. 6. Comparison of the Fermi surfaces with the R model in (a) and the P model in (b) around the quasinodal points in the � − R − M
plane. (a) Shows a tiny gap in the blue circle, and (b) shows the exact quasisymmetry protected degeneracy.
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By solving the above equation, we find the curve equation for
the emergent nodal lines at the Fermi energy

√
3C̃

|kxkykz|
k3

=
√

3

4
C̃| sin 2φ sin 2θ sin θ |

= A2
1λ0

2(E f − C0)2

[
1 + 2B1(E f − C0)

A2
1

+
√

1 + 4B1(E f − C0)

A2
1

]
. (C48)

For a fixed Fermi energy E f , solving Eq. (C48) generally
gives rise to a line solution in the θ − φ plane. It represents
a nodal line because of Eq. (C46): solving θ and φ at fixed
E f from Eq. (C48) will fix k simultaneously. However, the
existence of such a line solution for Eq. (C48) depends on
the value of E f . For a critical E f , there is no line solution
from the curve equation (C48), instead, we can only get a
point solution. To find this minimal E f , we set φ = π/4, and
notice that the function | sin 2θ sin θ | reaches its maximum

when θ → arcsin
√

2
3 , we find the minimal E f as

E f ,c = A1
√

C4λ0 + B1λ0 + C0C4

C4
. (C49)

Thus, E f ,c is the energy for the single nodes with twofold
degeneracy on the corresponding nodal planes. Based on this
analysis, we realize that the quasinodal line will emerge into
single nodes when decreasing the Fermi energy. For E f <

E f ,c, no solution of Eq. (C48) can be obtained anymore.
Therefore, one can conclude that each nodal line emerges into
a single point after decreasing E f down to E f ,c. Moreover,
when the nodal plane is split due to high-order perturbations,
this point becomes a Weyl point pinned along the (111) axis.
Thus we conclude that nodal lines exist only when E f � E f ,c.

3. The second-order perturbation: Gap out
the quasi nodal planes

Next we consider the second-order perturbation correc-
tions for the four-band P model [e.g., see Eq. (C24) in
Appendix C 1], which can open a tiny gap for the emergent
nodal lines obtained from Eq. (C48) at generic momenta. Re-
call that the first-order perturbation Hamiltonian, the P model,
is based on the basis in Eq. (C21),

|�+〉 � |�upper〉 = {(1, 0)T ⊗ |�A+(θ, φ)〉, (1, 0)T ⊗ |�B+(θ, φ)〉, (0, 1)T ⊗ |�A+(θ, φ)〉, (0, 1)T ⊗ |�B+(θ, φ)〉}, (C50)

which are all eigenstates of H1 with the same eigenenergy E+ = C0 + A1k. And the spinless wavefunctions |�A/B+(θ, φ)〉 are
given by Eq. (C16a),

|�A+(θ, φ)〉 = 1√
2

(cos θ cos φ − i sin φ,− cos θ sin φ − i cos φ, 0, sin θ )T , (C51a)

|�B+(θ, φ)〉 = 1√
2

(−i sin θ cos φ, i sin θ sin φ, 1, i cos θ )T , (C51b)

where A/B represent the eigenvalues of �M · �n. The second-order perturbation theory has been presented in the Supplemental
Material in Ref. [16]. To make sure the completeness of this Appendix, we repeat the discussion of the second-order perturbation
in this subsection. Here, we consider the inter-band correction via second-order perturbation. The fourfold degenerate eigenstates
of H1 with lower energy (E− = C0 − A1k) are given by

|�lower〉 = {(1, 0)T ⊗ |�B−(θ, φ)〉, (1, 0)T ⊗ |�A−(θ, φ)〉, (0, 1)T ⊗ |�B−(θ, φ)〉, (0, 1)T ⊗ |�A−(θ, φ)〉}, (C52)

which are all eigenstates of of H1 with the same eigenenergy E− = C0 − A1k. And the spinless wavefunctions |�A/B−(θ, φ)〉 are
given by Eq. (C16b),

|�A−(θ, φ)〉 = 1√
2

(i sin θ cos φ,−i sin θ sin φ, 1,−i cos θ ), (C53a)

|�B−(θ, φ)〉 = 1√
2

(cos θ cos φ + i sin φ,− cos θ sin φ + i cos φ, 0, sin θ )T . (C53b)

Therefore, the second-order perturbed Hamiltonian is given by

�Heff(2)
P (k) = 1

�E
(〈�upper|(Hsoc + H2(k))P̂lower (Hsoc + H2(k))|�upper〉), (C54)

where �E = E+ − E− = 2A1k is the energy difference between the upper-energy band the lower-energy band, and the projection
operator P̂lower = |�lower〉〈�lower| onto the lower four bands in Eq. (C52). The mixed terms of Hsoc and H2(k) for the second-
order perturbation are given by

�Heff(2)
P (k) = 1

�E
(〈�upper|Hsoc|�lower〉〈�lower|H2(k)|�upper〉) + H.c., (C55)
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with the matrix elements of �Heff(2)
P[

�Heff(2)
P

]
1,1 = 2 sin2(θ ) sin(φ) cos(φ)(sin3(θ ) sin(φ) + sin(θ ) cos2(θ ) cos(φ) − cos3(θ )), (C56)[

�Heff(2)
P

]
1,2 = sin2(θ ) cos(φ)(sin2(θ ) sin(2φ) + 2i cos(θ ) sin(φ)(cos(θ )(cos(θ ) cos(φ)

+ sin(θ )) + sin(φ)(sin2(θ ) + i cos(θ )))), (C57)

[
�Heff (2)

P

]
1,3 = 1

4
e−iφ sin(θ ) cos(θ )(sin(2φ)(sin(3θ ) sin(φ) + 4 cos3(θ )) − 8 sin(θ ) cos2(θ )

× sin(φ) cos2(φ) + 8i cos(θ ) sin2(φ) +
(

−3

2
+ 6i

)
sin(θ ) cos(φ) +

(
3

2
+ 2i

)
sin(θ ) cos(3φ)), (C58)

[
�Heff(2)

P

]
1,4 = e−iφ sin(θ )

(
(cos(θ ) − 1)(cos2(θ ) cos(φ) + i sin(θ ) sin(φ) cos(φ)(− cos2(θ )

+ sin(θ )(cos(θ ) + i) cos(φ)) + sin(θ ) cos(θ ) sin2(φ)(−1 − i sin(θ ) cos(φ)))

− 2i cos2

(
θ

2

)
(−i cos2(θ ) cos(φ) cos(2φ) + sin(φ) cos(φ)((cos3(θ ) + cos(θ ))

× cos(φ) − i sin2(θ ) cos(φ) + sin(θ ) cos2(θ )) + sin(θ ) cos(θ ) sin2(φ)(sin(θ ) cos(φ) + i))

)
(C59)

and [
�Heff(2)

P

]
2,2 = −1

4
sin5(θ ) sin(φ) sin(2φ)(cot2(θ )(−4 cot(θ ) csc(φ) + 4 cot(φ) − 1) + csc2(θ ) + 3), (C60)

[
�Heff (2)

P

]
2,3 = 1

2
e−iφ sin(θ ) cos(θ )

(
−4 sin(φ)(sin(θ ) sin(φ) + (2 + 2i) sin2

(
θ

2

)
cos2(φ)

)

+ cos2(θ ) sin(2φ)

(
−4i sin2

(
θ

2

)
cos(φ) + 2i sin(θ ) + csc(φ)

)
+ cos(θ ) csc(φ)

×
(

− (2 + 2i) sin2

(
θ

2

)
sin2(2φ) + sin2

(
θ

2

)
sin(4φ) + 4i sin2(θ ) sin3(φ) cos(φ) + sin(2φ)

))
, (C61)

[
�Heff (2)

P

]
2,4 = −1

8
e−iφ sin(θ ) cos(θ )(8 cos3(θ ) sin(2φ) − 16 sin(θ ) cos2(θ ) sin(φ) cos2(φ)

+ 16i cos(θ ) sin2(φ) + cos(φ)(4 sin(3θ ) sin2(φ) + (−3 + 12i) sin(θ ))

+ (3 + 4i) sin(θ ) cos(3φ)), (C62)

and [
�Heff(2)

P

]
3,3 = − 1

4 sin5(θ ) sin(φ) sin(2φ)(cot2(θ )(−4 cot(θ ) csc(φ) + 4 cot(φ) − 1) + csc2(θ ) + 3), (C63)[
�Heff (2)

P

]
3,4 = −i sin2(θ ) sin(φ) cos(φ)(2 cos3(θ ) cos(φ) + 2 cos2(θ )(sin(θ ) + i sin(φ))

+ sin(θ )(sin(2θ ) sin(φ) − 2i sin(θ ) cos(φ))), (C64)

and [
�Heff(2)

P

]
4,4 = 2 sin2(θ ) sin(φ) cos(φ)( sin3(θ ) sin(φ) + sin(θ ) cos2(θ ) cos(φ) − cos3(θ )). (C65)

The other parts are related by complex conjugation
[�Heff(2)

P ]i, j = [�Heff(2)
P ]∗j,i.

APPENDIX D: APPROACH II FOR THE HIERARCHY
OF THE QUASI SYMMETRY

In this section, we discuss the Approach II for the hierarchy
of the quasisymmetry and the perturbation theory based on
the solution of H1(k) + Hsoc for the H2(k). Please note that

the algebra of the orbital SU(2) quasisymmetry defined in
Eq. (C2) in Appendix D 1,

M1,2,3 = 1
2 {s0σyτz, s0σyτx, s0σ0τy}, (D1)

which all commute with H1(k) + Hsoc, but do not commute
between themselves. And [Mi,M j] = iεi, j,kMk . Moreover,
we can also defined the rotation for this orbital SU(2)
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quasisymmetry group

U (θ, φ)

= eiθM3 eiφM2

= cos

(
θ

2

)
cos

(
φ

2

)
s0σ0τ0 + i sin

(
θ

2

)
cos

(
φ

2

)
M3

+ i cos

(
θ

2

)
sin

(
φ

2

)
M2 + i sin

(
θ

2

)
sin

(
φ

2

)
M1.

(D2)

Clearly, U (θ, φ) commutes with s0 ⊗ H1(k) + Hsoc for any
values of θ and φ. The U (0, π

2 ) can rotate M1 to M3,

U
(

0,
π

2

)
= ei π

2 M2 =
√

2

2
s0 ⊗ (σ0τ0 + iσyτx )

⇒ U
(

0,
π

2

)
M1U†

(
0,

π

2

)
= M3. (D3)

For better readability of this section, here, we first repeat
the linear k Hamiltonian, on-site SOC Hamiltonian and k2-
order Hamiltonian,

H1(k) = C0σ0τ0 + 2A1(k · L), (D4a)

Hsoc = 4λ0(S · L), (D4b)

H2(k) = H2,M1 (k) + H2,M2 (k) + H2,M3 (k), (D4c)

where the spin angular momentum S = 1
2 (sx, sy, sz ),

and the orbital angular momentum operators are
L = ( 1

2σyτ0,
1
2σxτy,− 1

2σzτy). And each part of H2(k) is
given by

H2,Mi (k) = gi(k) · Ji, (D5)

for i = 1, 2, 3. Here we define the k-dependent vectors as

g1(k) = (C2kxky,−C3kxkz,C1kykz ),

g2(k) = (C3kxky,C1kxkz,−C2kykz ),

g3(k) = (C1kxky,C2kxkz,−C3kykz ). (D6)

and the corresponding vectors of operators

J1 = (σxτx,−σzτx, σ0τz ),

J2 = (σxτz, σzτz, σ0τx ),

J3 = (σzτ0, σxτ0, σyτy). (D7)

In addition, we also realize that the k2 terms of H2(k) break
this orbital SUo(2) quasisymmetry generated by {M1,2,3} and
lead to the splitting of all bands. However, different parts of
the entire k2 terms can lead to the reduction from SUo(2) to a
orbital U(1). To show that, as we discussed in the main text,
we find that

[Ji,Mi] = 0 and {Ji,M j} = 0 for i �= j, (D8)

which implies

[H2,Mi (k),Mi] = 0. (D9)

1. The algebra for the orbital SU(2) quasi symmetry
for the k2-order Hamiltonian

In this subsection, we discuss the algebra of the orbital
SU(2) quasisymmetry in Eq. (C2). To show the generality of
the breaking of the orbital SU(2) quasisymmetry down to U(1)
quasisymmetry by the k2-order Hamiltonian. We can rewrite
the H2(k) into the form

H2(k) = kxky( �CJ · �J ) + kxkz( �CP · �P ) + kykz( �CQ · �Q),
(D10)

where the three k-independent parameter vectors are

�CJ = (C2,−C3,C1),

�CP = (−C3,C1,C2),

�CQ = (C1,−C2,−C3),

(D11)

and the corresponding operator vectors are given by

�J = (σxτx,−σxτz, σzτ0),

�P = (−σzτx, σzτz, σxτ0),

�Q = (σ0τz, σ0τx, σyτy). (D12)

Moreover, we notice that

[Ja,Mb] = iεabcJc,

[Pa,Mb] = iεabcPc,

[Qa,Mb] = iεabcQc, (D13)

where εabc is the three-dimensional Levi-Civita symbol with
a, b, c = 1, 2, 3. Therefore, for arbitrary real normalized vec-
tor �n = (n1, n2, n3), we have the following commutation
relations:

[ �J · �n, �M · �n] = [ �P · �n, �M · �n] = [ �Q · �n, �M · �n] = 0.

(D14)

These can be easily shown, for example,

[ �J · �n, �M · �n] =
3∑

a=1

3∑
b=1

nanb[Ja,Mb]

=
3∑

a=1

3∑
b=1

nanb(iεabcJc)

=
3∑

a=1

3∑
b=a+1

nanb(iεabcJc + iεbacJc) = 0.

(D15)

Here we have used εabc + εbac = 0. Therefore, we find a
general symmetry-breaking case with the orbital SU(2) qua-
sisymmetry down to the U(1) quasisymmetry. For any three
normalized and orthogonal vector, �n, �n′, and �n′′, satisfy |�n| =
|�n′| = |�n′′| = 1 and �n ⊥ �n′, �n ⊥ �n′′ and �n′ ⊥ �n′′. Then we can
do the projection for the k2-order Hamiltonian,

H2(k) = H2,�n(k) + H2,�n′ (k) + H2,�n′′ (k), (D16)

where we project the parameter-vectors ( �CJ , �CP , �CQ) into the
{�n, �n′, �n′′} space,

�CJ = �n( �CJ · �n) + �n′( �CJ · �n′) + �n′′( �CJ · �n′′), (D17a)
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�CP = �n( �CP · �n) + �n′( �CP · �n′) + �n′′( �CP · �n′′), (D17b)

�CQ = �n( �CQ · �n) + �n′( �CQ · �n′) + �n′′( �CQ · �n′′), (D17c)

Therefore, the first term in Eq. (D16) is given by

H2,�n(k) = kxky( �CJ · �n) × (�n · �J ) + kxkz( �CP · �n)

× (�n · �P ) + kykz( �CQ · �n)(�n · �Q), (D18)

which commutes with M · �n,

[M · �n,H2,�n(k)] = 0. (D19)

Especially, in the main text, we have mentioned three cases:
(i) �n = (1, 0, 0). The H2,�n(k) Hamiltonian is given by

H2,M1 (k) in Eq. (C6).
(ii) �n = (0, 1, 0). The H2,�n(k) Hamiltonian is given by

H2,M2 (k) in Eq. (C6).
(iii) �n = (0, 0, 1). The H2,�n(k) Hamiltonian is given by

H2,M3 (k) in Eq. (C6).
Moreover, the U(1) quasisymmetry protected nodal-plane

for H2,M1 is discussed in the main text. More details will be
discussed in the following Appendices D 2, D 3, and D 4.

2. Analytical solutions by using the U(1) quasi symmetry

Furthermore, we show the important role of the orbital
SU(2) quasisymmetry operators (i.e., M1,2,3) in analytically
solving the eigenstate problem. Here, we take H1(k) in

Eq. (A16) or Eq. (A18) as an example,

H1(k) = C0 + A1(kxσyτ0 + kyσxτy − kzσzτy), (D20)

which commutes with the orbital SU(2) quasisymmetry. Here
we choose the eigenstates of H1(k) to be the common eigen-
state of M3 = σ0τy in Eq. (C2). It is equivalently to apply a
unitary transformation

U = 1√
2

s0 ⊗ σ0 ⊗
(

1 −i
1 i

)
, (D21)

to the R model, which only leads to a rotation in the (τx, τy, τz )
subspace

Uτ0U† = τ0,UτxU† = τy,UτyU† = τz,UτzU† = τx. (D22)

Therefore, the quasisymmetry M3 becomes UM3U† = σ0τz.
Note that the spin Pauli matrix is dropped here. As a result,
the linear k Hamiltonian becomes

U [H1(k) − C0]U† = [H1,M3=+1(k)]2×2⊕[H1,M3=−1(k)]2×2

=
(H1,M3=+1(k) 0

0 H1,M3=−1(k)

)
,

(D23a)

H1,M3=+1(k) = A1(kxσy + kyσx − kzσz ), (D23b)

H1,M3=−1(k) = A1(kxσy − kyσx + kzσz ). (D23c)

It is easy to analytically find the eigenstates of the
2-by-2 Hamiltonian H1,M3=±1(k), in the spherical
coordinate with the momentum k = (kx, ky, kz ) =
k(sin θ cos φ, sin θ sin φ, cos θ ). The eigenstates are given
by

H1,M3=+1(k)|A−〉 = −A1k|A−〉, with |A−〉 = 1√
2
√

1 + cos θ
(i(cos θ + 1), e−iφ sin θ )T , (D24a)

H1,M3=+1(k)|A+〉 = A1k|A+〉, with |A+〉 = 1√
2
√

1 − cos θ
(i(cos θ − 1), e−iφ sin θ )T , (D24b)

and by substituting the replacement (kx, ky, kz ) → (kx,−ky,−kz ) [i.e., (θ, φ) → (θ + π, π − φ)], then cos θ →
− cos θ, sin θ → − sin θ, e−iφ → −eiφ into the above solution, it results in

H1,M3=−1(k)|B−〉 = −A1k|B−〉, with |B−〉 = 1√
2
√

1 − cos θ
(i(− cos θ + 1), eiφ sin θ )T , (D25a)

H1,M3=−1(k)|B+〉 = A1k|B+〉, with |B+〉 = 1√
2
√

1 + cos θ
(i(− cos θ − 1), eiφ sin θ )T , (D25b)

where the subscripts A(B) represent the eigenvalues +1(−1)
of the quasisymmetry M3. Therefore, the eigenstate of H1(k)
are given by

H1(k)|�A/B+(θ, φ)〉 = E+|�A/B+(θ, φ)〉, (D26a)

H1(k)|�A/B−(θ, φ)〉 = E−|�A/B−(θ, φ)〉, (D26b)

where E± = ±A1k and the corresponding eigenstates are
given by

|�A−(θ, φ)〉 = |A−〉 ⊗
(

− i√
2
,

1√
2

)T

, (D27a)

|�A+(θ, φ)〉 = |A+〉 ⊗
(

− i√
2
,

1√
2

)T

, (D27b)

|�B−(θ, φ)〉 = |B−〉 ⊗
(

i√
2
,

1√
2

)T

, (D27c)

|�B+(θ, φ)〉 = |B+〉 ⊗
(

i√
2
,

1√
2

)T

. (D27d)

Due to the presence of the orbital SU(2) symmetry, one can
also find the common eigenstates of H1(k) and M · �n for
arbitrary real vector �n, which is a rotation acting on the solu-
tion in Eq. (D27). Thus, the eigenstate solution is not unique
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due to this twofold degeneracy, protected by the orbital SU(2)
symmetry. Note that the degeneracy will be doubled if spin
degeneracy is taken into account.

Similarly, we can further analytically solve H1(k) + Hsoc

by using the U(1) quasisymmetry generator M3. The R model
in Eq. (A40) becomes

UHRU† = U [s0 ⊗ H1(k) + Hsoc + s0 ⊗ H2(k)]U†. (D28)

The first two parts, s0 ⊗ H1(k) + Hsoc, preserve the or-
bital SU(2) symmetry, while some specific terms of the
k2-order Hamiltonian can break the SU(2) quasisymmetry
down to U(1). This shows the hierarchy structure of the
quasisymmetry, which will be discussed in details in Ap-
pendix D 3. Here we focus on s0 ⊗ H1(k) + Hsoc, which
becomes block-diagonal after this unitary transformation de-
fined in Eq. (D21),

U [s0 ⊗ H1(k) + Hsoc]U† = C0 +
(HA(k) 0

0 HB(k)

)
,

(D29)

where the index A(B) represent the eigenvalues +1(−1) of
quasisymmetry M3, and HA(k) and HB(k) are given by

HA(k) = A1s0 ⊗ (kxσy + kyσx − kzσz )

+ λ0(sxσy + syσx − szσz ), (D30)

HB(k) = A1s0 ⊗ (kxσy − kyσx + kzσz )

+ λ0(sxσy − syσx + szσz ). (D31)

First, one can check that the Hamiltonian can be reduced back
to that in Eq. (D23) by setting λ0 = 0. In addition, HA(k) and
HB(k) are related to each other by time-reversal symmetry,

HB(k) = T [HA(−k)]T †. (D32)

Here T = isyK with K the complex conjugate. Therefore,
we only need to solve the four eigenstates for HA(k). After
straightforward calculation, the four eigenenergies of HA(k)
are given by

E (k) = C0 + {±A1k + λ0,±
√

A2
1k2 + 4λ2

0 − λ0}. (D33)

Drop the constant C0 for short, the two positive upper bands
are

EA,+(k) = A1k + λ0, (D34a)

EA,−(k) =
√

A2
1k2 + 4λ2

0 − λ0, (D34b)

which both have increasing energy as k increases, and ± are
the band index. Note we have assumed A1 > 0. And we notice
that EA,+(k = 0) = EA,−(k = 0) and EA,+(k) > EA,−(k) for
any nonzero k. It indicates that the SOC-induced gap between
them, EA,+(k) − EA,−(k), approaches to 2λ0 as k → ∞. By
time-reversal symmetry, the four eigenenergies of HB(k) are
the same. Therefore, each state has twofold degeneracy at any
nonzero k. This is due to the presence of the orbital SU(2)
symmetry.

Moreover, we can also solve the eigen wavefunctions of
U [s0 ⊗ H1(k) + Hsoc]U†. For instance, for the two positive
upper bands of HA(k), the corresponding wavefunctions are

given by

HA(k)

{|EA,+(k)〉 = EA,+(k)|EA,+(k)〉,
|EA,−(k)〉 = EA,−(k)|EA,−(k)〉. (D35)

And the corresponding eigen wavefunctions are given by

|EA,+(k)〉 = 1

NA,+(k)

(
−i,

kx − iky

k − kz
,
−ikx + ky

k + kz
, 1

)T

,

(D36a)

|EA,−(k)〉 = 1

NA,−(k)
(i( − A1kz − λ0 + EA,−(k)),

× A1(−kx + iky), A1(−ikx + ky), A1kz − λ0

+ EA,−(k))T , (D36b)

where the normalization factors are

NA,+(k) = 2k/

√
k2

x + k2
y , (D37a)

NA,−(k) = 2
√

(EA,−(k))2 − λ2
0. (D37b)

In addition, we discuss the band index ± that are actually
eigenvalues of symmetry. To show that, we emphasize that one
can also obtain the common eigenstates for H1(k) + Hsoc and
M · �n. As we discussed in Eq. (C12), there is a helicity-type
symmetry operator that commutes with H1(k) + Hsoc, which
indicates the index ± in the eigenstate solution |EA,±(k)〉 are
eigenvalues of (S + L) · �nk. Explicitly, one can check that

[(S + L) · �nk]|EA,+(k)〉 = |EA,+(k)〉, (D38a)

[(S + L) · �nk]|EA,−(k)〉 = 0. (D38b)

It represents the eigenvalues of the z-component angular
moment of the total angular momentum at nonzero k.

3. Approach II: The U(1) quasi symmetry
protected nodal planes

As discussed in Appendix D 1, parts of the entire k2-order
Hamiltonian break the SU(2) quasisymmetry down to the
U(1) quasisymmetry. For example, we consider

H2,�n(k) = kxky( �CJ · �n) × (�n · �J ) + kxkz( �CP · �n)

× (�n · �P ) + kykz( �CQ · �n)(�n · �Q), (D39)

which commutes with M · �n,

[M · �n,H2,�n(k)] = 0. (D40)

For an illustration, we can choose �n = (0, 0, 1) without loss
of generality, so that M3 is the symmetry generator for the
remaining U(1) quasisymmetry. Therefore, we consider the
Hamiltonian HqsR(k) that commute with M3 as

HqsR(k) = H1(k) + Hsoc + H2,M3 (k), (D41a)

H1(k) = C0σ0τ0 + 2A1(k · L), (D41b)

Hsoc = 4λ0(S · L), (D41c)

H2,M3 (k) = g3 · J3 = (C1kxky,C2kxkz,−C3kykz )

· (σzτ0, σxτ0, σyτy), (D41d)
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where Lx = 1
2σyτ0, Ly = 1

2σxτy, Lz = − 1
2σzτy. Notice that

M3 = σ0τy is the quasisymmetry operator. It is easy to check
[M3,HqsR(k)] = 0. We next solve the common eigenstates
of M3 and HqsR(k). To do that, we only need to diagonalize
the τy term for HqsR(k). In other words, we apply a unitary
transformation

UM3 = 1√
2

s0 ⊗ σ0 ⊗
(

1 −i
1 i

)
, (D42)

which leads to the rotating in the (τx, τy, τz ) subspace

UM3τ0U†
M3

= τ0,UM3τxU†
M3

= τy,

UM3τyU†
M3

= τz,UM3τzU†
M3

= τx. (D43)

Therefore, after this unitary transformation, the U(1) qua-
sisymmetry generator M3 becomes

UM3M3U†
M3

� Mqs =
(

σ0 0
0 −σ0

)
. (D44)

And we take this unitary transformation on the HqsR(k)
Hamiltonian and obtain

UM3HqsR(k)U†
M3

� HqsR(k)

= C0 + B1k2 +
(
H′

+(k) 0

0 H′
−(k)

)
, (D45a)

where

H′
+(k) = s0 ⊗ [(A1kx − C3kykz )σy + (A1ky + C2kxkz )σx − (A1kz − C1kxky)σz] + λ0(sxσy + syσx − szσz ), (D46)

H′
−(k) = s0 ⊗ [(A1kx + C3kykz )σy − (A1ky − C2kxkz )σx + (A1kz + C1kxky)σz] + λ0(sxσy − syσx + szσz ). (D47)

This means that we have chosen the eigenstates of HqsR(k) to be the common eigenstate of M3 or Mqs. Due to the presence
of the U(1) quasisymmetry, we dubbed HqsR as the quasisymmetric R model (“qsR”). Therefore, the subscript ± for H′

±(k)
represent the different eigenvalues of M3 or Mqs. Besides, H′

+(k) and H′
−(k) are related to each other by TR T = isyK with

K complex conjugate,

H′
−(k) = T H′

+(−k)T †. (D48)

Next, we compute the eigenenergy of the qsR model. The energy of the upper four bands are given by

E+,1(k) = C0 + B1k2 +
√

A2
1k2 + C2

1 k2
x k2

y + C2
2 k2

x k2
z + C2

3 k2
y k2

z − 2A1C̃kxkykz + λ0, (D49)

E+,2(k) = C0 + B1k2 +
√

A2
1k2 + C2

1 k2
x k2

y + C2
2 k2

x k2
z + C2

3 k2
y k2

z − 2A1C̃kxkykz + 4λ2
0 − λ0, (D50)

E−,1(k) = C0 + B1k2 +
√

A2
1k2 + C2

1 k2
x k2

y + C2
2 k2

x k2
z + C2

3 k2
y k2

z + 2A1C̃kxkykz + λ0, (D51)

E−,2(k) = C0 + B1k2 +
√

A2
1k2 + C2

1 k2
x k2

y + C2
2 k2

x k2
z + C2

3 k2
y k2

z + 2A1C̃kxkykz + 4λ2
0 − λ0, (D52)

where C̃ = C1 − C2 + C3. The qsR model breaks the C3,(111) rotation symmetry because of C1 �= C2 �= C3. Moreover, the ± index
for E±,i means the eigenvalues of Mqs,

HqsR(k)|E±,i(k)〉 = E±,i(k)|E±,i(k)〉, Mqs|E±,i(k)〉 = ±|E±,i(k)〉, (D53)

where i = 1, 2 is the band index. E+,i(k) = E−,i(−k) is required by TR symmetry. The quasisymmetry protected nodal planes
are given by

kxkykz > 0, E+,1(k) = E−,2(k),

kxkykz < 0, E+,2(k) = E−,1(k). (D54)

The crossings are between the bands with different eigenvalue of quasisymmetry M3 or Mqs, and thus we find nodal planes at
generic momenta with the protection from the quasisymmetry Mqs. By further imposing the Fermi energy constraint, there will
be nodal lines on the Fermi surface, shown in Fig. 7. In Fig. 7(a), the four Fermi surfaces are plotted in the � − R − M plane,
where two inner FSs intersect with each other and generate the quasisymmetry protected exact crossings (marked as purple
circles). In Figs. 7(b) and 7(c), the solution of Eq. (D54) are explicitly depicted, showing the exact nodal lines on the FSs.

Next, let us discuss the terms that break the quasisymmetry. By including the remaining k2-order Hamiltonian H2,M1 (k) +
H2,M2 (k), the full Hamiltonian is given by

HR(k) = HqsR(k) + UM3 [H2,M1 (k) + H2,M2 (k)]U†
M3

, (D55)

where the U(1) quasisymmetry breaking terms are given by

H2,qsb(k) = UM3 [H2,M1 (k) + H2,M2 (k)]U†
M3

=
(

0 s0 ⊗ H(2)

s0 ⊗ H†
(2) 0

)
, (D56a)

H(2) = C1(kykzσ0 + kxkzσz ) + C2(−ikxkyσx + ikykzσ0) + C3(kxkyσx + ikxkzσz )

+ (C1 + iC2)kykzσ0 + (C1 + iC3)kxkzσz + (−iC2 + C3)kxkyσx. (D56b)
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FIG. 7. The exact crossings of the eight-band qsR model. In (a), the Fermi surfaces with exact crossing are shown in the � − R − M plane.
In (b) and (c), we show the exact nodal lines on the FSs. These nodal lines are protected by the U(1) quasisymmetry.

Therefore, we have

[Mqs,H2,qsb(k)] = 2

(
0 h(2)(k)

−h†
(2)(k) 0

)
�= 0, (D57)

where

h(2) = (C1 + iC2)kykzσ0 + (C1 + iC3)kxkzσz

+ (−iC2 + C3)kxkyσx. (D58)

For this Hamiltonian, [Mqs,H2,qsb(k)] = 0 only occurs for
k = (0, 0, 0) (the R point). Therefore, for any Fermi surface
that does not cross the R point, the nodal planes will be
gapped. This leads to the quasisymmetry hierarchy mentioned
in the main text [see Eq. (10)],

SUs(2) × SUo(2)
Hsoc

↪−−−−−→ SUo(2)
H2,Mi

↪−−−−−−−→ Uo(1).
(D59)

More interestingly, as we discussed in Appendix D 1, we
have shown that the choice of H2,M3 is just one specific case,
instead, for any real vector �n of H2,�n that commute with M · �n
(see Appendix D 1 for details) can generally lead to the same
quasisymmetry hierarchy results. Because we have

[M · �n, s0 ⊗ H1(k) + Hsoc + s0 ⊗ H2,�n(k)] = 0. (D60)

Thus, one can conclude that this analysis for the reduction
from SU(2) quasisymmetry down to U(1) quasisymmetry is
general, which can help to protect quasinodal plane at generic
momenta.

To show this nodal plane due to the remaining U(1) qua-
sisymmetry in our Approach II more explicitly, we next
consider the perturbation to H2,�n(k). Here we emphasize that
one can also obtain the common eigenstates for H1(k) + Hsoc

and M · �n. Different from Approach I in Appendix C, here
we take the eigenstate solution of s0 ⊗ H1(k) + Hsoc, and
do the perturbation for the k2-order Hamiltonian. Below we
choose �n = (0, 0, 1) and the corresponding U(1) quasisym-
metry opeator is M · �n = M3. Recall that H1(k) + Hsoc

becomes block diagonal after this unitary transformation de-

fined in Eq. (D21),

U [s0 ⊗ H1(k) + Hsoc]U† = C0 +
(HA(k) 0

0 HB(k)

)
,

(D61)

where HA/B(k) are given by

HA(k) = A1s0 ⊗ (kxσy + kyσx − kzσz )

+ λ0(sxσy + syσx − szσz ), (D62)

HB(k) = A1s0 ⊗ (kxσy − kyσx + kzσz )

+ λ0(sxσy − syσx + szσz ). (D63)

Again, note that the index A(B) represent the eigenvalues
+1(−1) of the quasisymmetry M3. Therefore, after this uni-
tary transformation, the U(1) quasisymmetry generator M3

becomes

UM3M3U†
M3

� Mqs =
(

σ0 0

0 −σ0

)
. (D64)

The analytical solution for the two upper bands [i.e.,
Eq. (D36a)] of H1(k) + Hsoc in Appendix D 2 are given by

|EA,+(k)〉 = 1

NA,+(k)

(
−i,

kx − iky

k − kz
,
−ikx + ky

k + kz
, 1

)T

,

(D65a)

|EA,−(k)〉 = 1

NA,−(k)
(i( − A1kz − λ0 + EA,−(k)),

× A1(−kx + iky), A1(−ikx + ky),

× A1kz − λ0 + EA,−(k))T . (D65b)

where the index ± in the eigenstate solution |EA,±(k)〉 are
eigenvalues of (S + L) · �nk for nonzero k. And the normal-
ization factors are given by NA,+(k) = 2k/

√
k2

x + k2
y , and

NA,−(k) = 2
√

(EA,−(k))2 − λ2
0 . Moreover, note that they are

the two positive upper bands with eigenenergies,

EA,+(k) = A1k + λ0, (D66a)

EA,−(k) =
√

A2
1k2 + 4λ2

0 − λ0, (D66b)
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which have increasing energy as k increases. And, the eigen-
states of the HB(k) block can be related to those of HA(k) by
time-reversal symmetry,

|EB,+(k)〉 = T |EA,+(−k)〉, (D67a)

|EB,−(k)〉 = T |EA,−(−k)〉, (D67b)

and

HB(k)|EB,±(k)〉 = EA,±(k)|EB,±(k)〉, (D68)

where EA,±(−k) = EA,±(k) has been used. Therefore, we
have the four bands as a basis,

{|�+(k)〉} = {(1, 0)T ⊗ |EA,+(k)〉, (1, 0)T ⊗ |EA,−(k)〉, (0, 1)T ⊗ |EB,+(k)〉, (0, 1)T ⊗ |EB,−(k)〉}. (D69)

In this basis, the H1(k) + Hsoc is diagonal,

H1(k) + Hsoc = C0 + Diag[EA,+(k), EA,−(k), EA,+(k), EA,−(k)]. (D70)

After straightforward calculation, we next project the k2 term H2,M3 (k) onto the basis in Eq. (D69), and we arrive at the
quasisymmetry P model (qsP model) as

HqsP(k) =

⎛
⎜⎜⎜⎝

E ′
A,+(k) + f1(k) d1(k) − id2(k) 0 0

d1(k) + id2(k) E ′
A,−(k) + f2(k) 0 0

0 0 E ′
A,+(k) − f1(k) d1(k) − id2(k)

0 0 d1(k) + id2(k) E ′
A,−(k) − f2(k)

⎞
⎟⎟⎟⎠, (D71)

where E ′
A,±(k) = C0 + B1k2 + EA,±(k). For the projected four-band qsP model, we check the protection from quasisymmetry

as

[Msq,HqsP(k)] = 0. (D72)

And all the other components are given by

f1(k) = −C̃
kxkykz

k
, (D73a)

f2(k) = −A1C̃
kxkykz√

A2
1k2 + 4λ2

0

, (D73b)

d1(k) = 2(EA,+(k) − EA,−(k))kxky

NA,+NA,−

(
C1 + (C2 − C3)

k2
z

k2
x + k2

y

)
, (D73c)

d2(k) = 2(EA,+(k) − EA,−(k))kzk

NA,+NA,−

C2k2
x + C3k2

y

k2
x + k2

y

. (D73d)

The eigenenergies of the qsP model are given by

Eα,β (k) = 1

2

[
�E+(αk) + β

√
(�E−(αk))2 + Ed12

]
, (D74)

with α, β = ±. And α = ± are eigenvalues of Mqs and β = ± are for the band index. Here we have defined

Ed12 (k) = 4[(d1(k))2 + (d2(k))2], (D75a)

�E±(k) = E ′
A,+(k) + f1(k) ± (E ′

A,−(k) + f2(k)). (D75b)

Similar to the discussion for the nodal plane of the qsR model [see Eq. (D54)], the quasisymmetry protected nodal planes of the
qsP model are give by

kxkykz < 0, E+,−(k) = E−,+(k),

kxkykz > 0, E+,+(k) = E−,−(k). (D76)

The crossings happen for bands with different eigenvalue of quasisymmetry Mqs. We numerically check these exact crossings
on the � − R − M planes, which is consistent with the results in Fig. 7(a).

4. Perturbation theory for tiny gap of the nodal plane in Approach II

The above discussion on the nodal planes in the Approach II requires a choice of specific k2-order terms, but in real materials,
all the coefficients before the k2-order terms can generally be nonzero and at the same order. Thus, our current approach does not
directly explain the near nodal plane seen in real materials. We notice that we treat the SOC terms accurately in our Approach
II without any approximation, while the existence of near nodal planes in real materials actually require the SOC strength to be
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much smaller than the Fermi energy. Therefore, we below consider the limit of the SOC strength λ0 � A1kF (kF is the Fermi
momentum) in our Approach II, taking into account all nonzero k2-order terms.

Following the same procedure of the perturbation projection as in the last section, we project all the k2-order terms
H2,M1 (k) + H2,M2 (k) + H2,M3 (k) onto the basis in Eq. (D69), and get the entire perturbation Hamiltonian,

HqsP+qsB(k) =

⎛
⎜⎜⎜⎝

E ′
A,+(k) + f1(k) d1(k) − id2(k) g1(k) g2(k)

d1(k) + id2(k) E ′
A,−(k) + f2(k) g3(k) g4(k)

g∗
1(k) g∗

3(k) E ′
A,+(k) − f1(k) d1(k) − id2(k)

g∗
2(k) g∗

4(k) d1(k) + id2(k) E ′
A,−(k) − f2(k)

⎞
⎟⎟⎟⎠. (D77)

Here the terms d1, d2, f1, f2 have been given by Eq. (D73). In addition, the off-diagonal terms g1,2,3,4 are generally to open a gap
for the quasinodal plane. Because these off-diagonal terms break the quasisymmetry Mqs. And, they are given by

g1(k) = (1 − i)C̃
kxkykz

k
, (D78a)

g4(k) = (i − 1)A1C̃
kxkykz

EA,−(k) + λ0
, (D78b)

g2(k) = 2(
k2

x + k2
y

)
NA,+(k)NA,−(k)

(C2 + iC3)kxky
(
k2

x + k2
y

)
(EA,−(k) − EA,+(k))

+ (C1 + iC3)kxkz(A1kxk2 − ikykz(EA,−(k) − EA,+(k)) − kxk(EA,−(k) − λ0))

+ (C2 − iC1)kykz(A1kyk2 + ikxkz(EA,−(k) − EA,+(k)) − kyk(EA,−(k) − λ0)), (D78c)

g3(k) = 2(
k2

x + k2
y

)
NA,+(k)NA,−(k)

{−(C2 + iC3)kxky
(
k2

x + k2
y

)
(EA,−(k) − EA,+(k))

+ (C1 + iC3)kxkz(A1kxk2 + ikykz(EA,−(k) − EA,+(k)) − kxk(EA,−(k) − λ0))

+ (C2 − iC1)kykz(A1kyk2 − ikxkz(EA,−(k) − EA,+(k)) − kyk(EA,−(k) − λ0))
}
. (D78d)

Here g3(k) = −g2(−k). The nodal planes are completely gapped out. Now we use perturbation to explain why the gap is tiny
by realizing that the SOC in CoSi is weak enough for doing a perturbation expansion for the coefficients f1,2(k), d1,2(k), and
g1,2,3,4(k). By setting λ0/A1kF → 0, we obtain

f1(k) = f2(k) = −C̃
kxkykz

k
, (D79a)

d1(k) = d2(k) = 0, (D79b)

g1(k) = −g2(k) = (1 − i)C̃
kxkykz

k
, (D79c)

g2(k) = g3(k) = 0, (D79d)

for the zeroth-order terms. Please notice that only the diagonal energies E ′
A,± that are eigenenergies of s0 ⊗ H1 + HSOC involve

the SOC λ0. As a result, the perturbation Hamiltonian in Eq. (D77) to the zeroth-order in λ0 becomes

H(0)
qsP+qsB(k) =

⎛
⎜⎜⎜⎝

E ′
A,+(k) + f1(k) 0 g1(k) 0

0 E ′
A,−(k) + f1(k) 0 −g1(k)

g∗
1(k) 0 E ′

A,+(k) − f1(k) 0

0 −g∗
1(k) 0 E ′

A,−(k) − f1(k)

⎞
⎟⎟⎟⎠, (D80a)

=
(

E ′
A,+(k) + f1(k) g1(k)

g∗
1(k) E ′

A,+(k) − f1(k)

)
⊕

(
E ′

A,−(k) + f1(k) −g1(k)

−g∗
1(k) E ′

A,−(k) − f1(k)

)
(D80b)

where the diagonal terms are E ′
A,+(k) = C0 + B1k2 + A1k + λ0 and E ′

A,−(k) = C0 + B1k2 +
√

A2
1k2 + 4λ2

0 − λ0. Thus, the
eigenenergies are given by

E1,±(k) = C0 + B1k2 + A1k + λ0 ±
√

| f1(k)|2 + |g1(k)|2, (D81a)

E2,±(k) = C0 + B1k2 +
√

A2
1k2 + 4λ2

0 − λ0 ±
√

| f1(k)|2 + |g1(k)|2, (D81b)

which leads to the equation for the nodal-plane solution

E1,−(k) = E2,+(k) ⇒ A1k −
√

A2
1k2 + 4λ2

0 + 2λ0 = 2
√

| f1(k)|2 + |g1(k)|2. (D82)
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In the k → ∞ limit, this equation becomes

λ0 =
√

| f1(k)|2 + |g1(k)|2 =
√

3C̃

∣∣∣∣kxkykz

k

∣∣∣∣. (D83)

Note that C̃ > 0 in this paper. And it is exactly the same Eq. (C46) obtained from the Approach I in Appendix C. At small k,
they differs from each other. Moreover, the first-order correction from λ0 will open a tiny gap for the nodal planes, which is
actually the second-order perturbation theory in Approach I. Based on this analysis, we conclude that the results of Approach II
is equivalent from those of Approach I.
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