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The interplay between strong correlations and nontrivial topology in twisted moiré systems can give rise
to a rich landscape of ordered states that intertwine the spin, valley, and charge degrees of freedom. In this
paper, we investigate the properties of a system that displays long-range valley-polarized nematic order. Besides
breaking the threefold rotational symmetry of the triangular moiré superlattice, this type of order also breaks
twofold rotational and time-reversal symmetries, which leads to interesting properties. First, we develop a
phenomenological model to describe the onset of this ordered state in twisted moiré systems, and to explore
its signatures in their thermodynamic and electronic properties. Its main manifestation is that it triggers the
emergence of in-plane orbital magnetic moments oriented along high-symmetry lattice directions. We also
investigate the properties of the valley-polarized nematic state at zero temperature. Due to the existence of
a dangerously irrelevant coupling A in the six-state clock model that describes the putative valley-polarized
nematic quantum critical point, the ordered state displays a pseudo-Goldstone mode. Using a two-patch model,
we compute the fermionic self-energy to show that down to very low energies, the Yukawa-like coupling between
the pseudo-Goldstone mode and the electronic degrees of freedom promotes the emergence of non-Fermi liquid
behavior. Below a crossover energy scale Q* ~ A2, however, Fermi liquid behavior is recovered. Finally, we
discuss the applicability of these results to other nontrivial nematic states, such as the spin-polarized nematic

phase.
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I. INTRODUCTION

The observation of electronic nematicity in the phase
diagrams of twisted bilayer graphene [1-4] and twisted
double-bilayer graphene [5,6] provides a new setting to
elucidate these electronic liquid crystalline states, which
spontaneously break the rotational symmetry of the system.
Shortly after nematicity was proposed to explain certain
properties of high-temperature superconductors [7], it was
recognized that the Goldstone mode of an ideal electronic
nematic phase would have a profound impact on the electronic
properties of a metal [8—10]. This is because, in contrast to
other Goldstone modes such as phonons and magnons, which
couple to the electronic density via a gradient term, the ne-
matic Goldstone mode displays a direct Yukawa-like coupling
to the electronic density [11]. As a result, it is expected to
promote non-Fermi liquid (NFL) behavior, as manifested in
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the sublinear frequency dependence of the imaginary part of
the electronic self-energy [8,12].

However, because the crystal lattice breaks the continuous
rotational symmetry of the system, the electronic nematic
order parameter realized in layered quantum materials has
a discrete Z, symmetry, rather than the continuous XY [or
0(2)] symmetry of its two-dimensional (2D) liquid crystal
counterpart [13]. In the square lattice, the Z, (Ising-like)
symmetry is associated with selecting one of the two orthog-
onal in-plane directions, connecting either nearest-neighbor
or next-nearest-neighbor sites [14]. In the triangular lattice,
the Z3 (three-state Potts or clock) symmetry refers to choos-
ing one of the three bonds connecting nearest-neighbor sites
[15,16]. In both cases, the excitation spectrum in the ordered
state is gapped, i.e., there is no nematic Goldstone mode.
Consequently, NFL behavior is not expected to arise inside the
nematic phase, although it can still emerge in the disordered
state due to interactions mediated by possible quantum critical
fluctuations [17-27].

In twisted moiré systems [28,29], which usually display
an emergent triangular moiré superlattice, another type of
nematic order can arise due to the presence of the valley
degrees of freedom: a valley-polarized nematic state [30].
Compared with the standard nematic state, valley-polarized
nematic order breaks not only the threefold rotational

Published by the American Physical Society


https://orcid.org/0000-0001-6981-5329
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.125142&domain=pdf&date_stamp=2023-03-21
https://doi.org/10.1103/PhysRevB.107.125142
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html

IPSITA MANDAL AND RAFAEL M. FERNANDES

PHYSICAL REVIEW B 107, 125142 (2023)

symmetry of the lattice, but also “inversion” (more precisely,
twofold rotational) and time-reversal symmetries. It is another
example, particularly relevant for moiré superlattices, of a
broader class of “nonstandard” electronic nematic orders that
are intertwined with additional symmetries of the system,
such as the so-called nematic spin-nematic phases [31-33].

In twisted bilayer graphene (TBG) [34-37], while three-
fold rotational symmetry breaking [1—4] and time-reversal
symmetry breaking [37—40] have been observed in different
regions of the phase diagram, it is not clear yet whether a
valley-polarized nematic state is realized. Theoretically, the
valley-polarized nematic order parameter has a Zs symmetry,
which corresponds to the six-state clock model [41]. Inter-
estingly, it is known that the six-state clock model transition
belongs to the XY universality class in three spatial dimen-
sions, with the sixfold anisotropy perturbation being irrelevant
at the critical point [42—45].

Thus, at T =0 and in a 2D triangular lattice, a valley-
polarized nematic quantum critical point (QCP) should share
the same universality class as a QCP associated with a hy-
pothetical XY electronic nematic order parameter, which is
completely decoupled from the lattice degrees of freedom
[46]. In other words, a 2D six-state clock model exhibits a
continuous phase transition at 7 = 0, which is described by
a (24 1)D Ginzburg-Landau theory of an O(2) order pa-
rameter, with a Zg anisotropic term: The latter is irrelevant
in the renormalization group (RG) sense. In fact, the sixfold
anisotropy term is dangerously irrelevant [42], as it becomes
a relevant perturbation inside the ordered state [43,47-51].
As a result, the valley-polarized nematic phase displays a
pseudo-Goldstone mode, i.e., a would-be Goldstone mode
with a small gap, that satisfies certain scaling properties as
the QCP is approached [52].

In this paper, we explore the properties of the valley-
polarized nematic state in twisted moiré systems, and more
broadly, in a generic metal. We start from a phenomeno-
logical SU(4) model, relevant for TBG, which is unstable
towards intravalley nematicity. We show that, depending on
the intervalley coupling, the resulting nematic order can be
a “standard” nematic phase, which only breaks threefold
rotational symmetry, or the valley-polarized nematic phase,
which also breaks twofold and time-reversal symmetries. By
employing group-theory techniques, we show that the onset
of valley-polarized nematicity triggers in-plane orbital mag-
netism, as well as standard nematicity and different types
of order in the valley degrees of freedom. The Zs symmetry
of the valley-polarized nematic order parameter is translated
as six different orientations for the in-plane magnetic mo-
ments. Moving beyond phenomenology, we use the six-band
tight-binding model for TBG of Ref. [53] to investigate how
valley-polarized nematic order impacts the electronic spec-
trum. Because the combined C,,7 symmetry is preserved,
the Dirac cones remain intact, albeit displaced from the K
point. Moreover, band degeneracies associated with the valley
degrees of freedom are lifted, and the Fermi surface acquires
characteristic distortion patterns.

We next study the electronic properties of the valley-
polarized nematic phase at T = 0, when a putative quantum
critical point is crossed. To make our results more widely
applicable, we consider the case of a generic metal with a

simple circular Fermi surface. First, we show that the phase
fluctuations inside the valley-polarized phase couple directly
to the electronic density. Then, using a two-patch model
[19-22,54,55], we show that the electronic self-energy X dis-
plays, along the hot regions of the Fermi surface and above
a characteristic energy 2%, the same NFL behavior as in
the case of an “ideal” XY nematic order parameter [8,12],
i.e., X(vy) ~ i|v,|*3, where v, is the fermionic Matsubara
frequency. Below 2%, however, we find that ¥(v,) ~ i v,, and
Fermi liquid (FL) behavior is restored. Moreover, the bosonic
self-energy, describing the phase fluctuations, acquires an
overdamped dynamics due to the coupling to the fermions.

Exploiting the scaling properties of the six-state clock
model, we argue that this NFL-to-FL crossover energy scale
Q*, which is directly related to the dangerously irrelevant vari-
able A of the six-state clock model via Q* ~ A%2, is expected
to be much smaller than the other energy scales of the prob-
lem. As a result, we expect NFL behavior to be realized over
an extended range of energies. We discuss possible experi-
mental manifestations of this effect at finite temperatures, and
the extension of this mechanism to the case of spin-polarized
nematic order [32], which has been proposed to occur in moiré
systems with higher-order Van Hove singularities [56,57]. We
also discuss possible limitations of the results arising from the
simplified form assumed for the Fermi surface.

The paper is organized as follows: Sec. II presents a phe-
nomenological description of valley-polarized nematic order
in TBG, as well as its manifestations on the thermodynamic
and electronic properties. Section III introduces the bosonic
and fermionic actions that describe the system inside the
valley-polarized nematic state. Section IV describes the re-
sults for the electronic self-energy, obtained from both the
Hertz-Millis theory and the patch methods, focusing on the
onset of an NFL behavior. In Sec. V, we discuss the impli-
cations of our results for the observation of NFL behavior in
different types of systems.

II. VALLEY-POLARIZED NEMATIC ORDER IN TBG

A. Phenomenological model

In TBG, the existence of electron-electron interactions
larger than the narrow bandwidth of the moiré bands [58,59]
enables the emergence of a wide range of possible ordered
states involving the spin, valley, and sublattice degrees of
freedom [30,60-81]. Here, we start by considering a model
for TBG that has U(1) valley symmetry. Together with the
symmetry under independent spin rotations on the two val-
leys, the model has an emergent SU(4) symmetry and has
been widely studied previously [66,72,77,80,82,83]. Within
the valley subspace a, we assume that the system has an
instability towards a nematic phase, i.e., an intravalley Pomer-
anchuk instability that breaks the Cj, rotational symmetry.
Indeed, several models for TBG have found proximity to
a nematic instability [30,57,71,77,78,84—87]. Note here that
a = +, — refers to the moiré valley. Hereinafter, we assume
that the valleys are exchanged by a C,, rotation. Let the
intravalley nematic order associated with valley a be described
by the two-component order parameter ¢, = (¢,.1, ¢4,2) that
transforms as the (d,>_,2, dy)-wave form factors.
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A single valley does not have C,, symmetry or Cp, symme-
try (but it does have C,, symmetry); it is the full system, with
two valleys, that has the symmetries of the D¢ space group. A
C,, rotation (or, equivalently, a Cy, rotation) exchanges valleys
+ and —. Time reversal 7 has the same effect. If the valleys
were completely decoupled, the nematic free energy would
be, to leading order,

Folg,. 9_) = ro(@% + ¢2) + O(9). (1)

However, since independent spatial rotations on the two val-
leys are not a symmetry of the system, there must be a
quadratic term coupling the two intravalley nematic order
parameters, of the form

_ K

F=K(¢+-¢f)=§¢a-r;/<oau )
where 7' is a Pauli matrix in valley space. This term is in-
variant under both C,; and 7T, as it remains the same upon
exchange of the two valleys. Moreover, it is invariant under
(3, since it is quadratic in the nematic order parameters. It
is important to note that Cs, must be considered as a global
threefold rotation, equal in both valleys.

Minimizing the full quadratic free energy, we find two
possible orders depending on the sign of «, which ultimately
can only be determined from microscopic considerations. For
k < 0, the resulting order parameter

P=9, +o_ 3)

is valley independent. It has the same transformation proper-
ties as @, under C;, and it is even under both C,, and 7. As a
result, it must transform as the E; irreducible representation
of Dg (the “+” superscript indicates that it is even under time
reversal). This is the usual nematic order parameter, which
belongs to the three-state Potts or clock model universality
class. Indeed, parametrizing @ = Cbo(cos&, sin &), one finds
a free energy

F =r® - 213} cos(3a) + u o, 4)

corresponding to the three-state Potts or clock model [16,30].
For k > 0, the resulting order parameter

¢:¢+_(l’— 5

is valley polarized. The key difference between this phase and
® is that ® is odd under both C,. and 7, while retaining
the same transformation properties under Cs,. Therefore ®
must transform as the E| irreducible representation of D,
with the “—” superscript indicating that it is odd under time
reversal. This is the valley-polarized nematic order parameter,
first identified in Ref. [30]. The full free energy for ® can
be obtained from its symmetry properties, rather than starting
from the uncoupled free energies in Eq. (1). Parametrizing
® = Py(cos, sinw), one finds the following free-energy
expansion [30]:

F =r®)+ud} — 21 cos(6a). (6)

The X term is the lowest-order term that lowers the symme-
try of @ from O(2) to Zs. As a result, the action corresponds
to a six-state clock model. Indeed, minimization of the action
with respect to the phase « leads to six different minima, cor-
responding to (1) « = Fn for A > 0, and 2) @ = S(n + %)

for A <0 (with n =0, ...,5). At finite temperatures, the
2D six-state clock model undergoes two Kosterlitz-Thouless
transitions: The first one signals quasi-long-range order of the
phase «, whereas the second one marks the onset of discrete
symmetry breaking and long-range order [41].

B. Manifestations of the valley-polarized phase

The onset of valley-polarized order leads to several observ-
able consequences. First, we note that the in-plane magnetic
moment m = (m,, m,) also transforms as E;". Therefore the
following linear-in-® free-energy coupling term is allowed:

8F, ~m - ®. 7

This implies that valley-polarized nematic order necessar-
ily triggers in-plane magnetic moments; see also Ref. [88]
for the case of in-plane magnetic moments induced by het-
erostrain. These moments are directed towards the angles o
that minimize the sixth-order term <I>8 cos(6a) of the nematic
free energy. Because the system has SU(2) spin-rotational in-
variance, m must be manifested as an in-plane orbital angular
magnetic moment. Therefore, valley-polarized nematic order
provides a mechanism for in-plane orbital magnetism, which
is complementary to previous models for out-of-plane orbital
magnetism.

There are additional manifestations coming from higher-
order terms of the free energy. Valley-polarized nematic order
® also induces the “usual” nematic order ® via the quadratic-
linear coupling:

8F, ~ (9] — @3) D) — 20,0, P, = df D) cos 2o + &).
®)

Moreover, ® also induces either the order parameter 1, which
transforms as B, , or the order parameter #, which transforms
as B]. Both n and # are even under C3;, but odd under C,,
and 7. The only difference is that 5 is odd under C;, and even
under Cy,, whereas 7 is odd under C,, and even under C,,. We
find the following cubic-linear terms are allowed:

8F3(1) ~ (3 Cb% CDZ — (I)%)r/ = CD(S) n sin(3a),

SEZ ~ (@3 —3®, d3)7 = @y 7 cos(3a). 9
Since
1 6 1-— 6
COSZ(?)O() = ~|-C+(Ol) and sin2(3oz) = y’
(10)

we conclude that, if the coefficient A of the CIDS cos(6a) term is
positive [implying cos(6a) = +1], 7 is induced. Otherwise, if
A is negative [implying cos(6a) = —1], n is induced. Phys-
ically, n can be interpreted as a valley charge polarization
n = ps — p—, where p, is the charge at valley a. That is
because C,, also switches valleys 1 and 2. On the other hand,
G, does not involve valley switching, and is therefore an
intravalley type of order.

C. Impact of the valley-polarized order
on the electronic spectrum

To investigate how the valley-polarized nematic order pa-
rameter impacts the electronic excitations of TBG, we use the
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six-band model of Ref. [53]. This model, which has valley
U(1) symmetry, is described in terms of the electronic opera-
tor

‘I’;(k) = (Pz,kz’ PZ,W PZ,kJ Si—a,k’ Sga,k’ s;a,k) (1)

for valley a, which contains the p orbitals (p;, p+, p—) living
on the sites of the triangular moiré superlattice, and the s
orbitals (s1, 52, 53) living on the sites of the related kagome
lattice. The noninteracting Hamiltonian is given by

H 0
Ho =) (W] WT)( 0 ULH Ucz:) (&) "

k

where the 6 x 6 matrices Hy and Ug, are those defined in
Refs. [16,53]. Generalizing the results of Ref. [16], the cou-
pling to the valley-polarized nematic order parameter & can
be conveniently parametrized in the (p, p_) subspace as

« ( H. 0 v
_ T i [ +
with the block-diagonal matrix Hy = (0y, §Hg, 03), where
_ 0 D e i@
5H<D - (q)o eiot 0 ) (14)

In Fig. 1, we show the electronic structure of the moiré
flat bands in the normal state [Fig. 1(a)] and in the valley-
polarized nematic state [Fig. 1(b)] parametrized by &y =
0.01¢, and @ = 0, where #, = 27 meV is a hopping parameter
of Hy [53]. The high-symmetry points I', K, and M all refer
to the moiré Brillouin zone. The main effect of the nematic
valley-polarized order on the flat bands is to lift the valley
degeneracy along high-symmetry directions. Although C,,
and 7 symmetries are broken, the combined symmetry C,, T
remains intact in the valley-polarized nematic phase. As a
result, the Dirac cones of the noninteracting band structure are
not gapped, but instead move away from the K points, similar
to the case of standard (i.e., nonpolarized) nematic order. We
also note that the Van Hove singularity at the M point is also
altered by valley-polarized nematicity.

The Fermi surfaces corresponding to each of the six ne-
matic valley-polarized domains, described by o = n /3 with
n=20,1,...,5, are shown in Fig. 2. The Fermi surface of the
normal state is also shown in Fig. 2(a) for comparison (dashed
lines). In the ordered state, the Fermi surfaces arising from
different valleys are distorted in different ways, resulting in a
less symmetric Fermi surface as compared with the previously
studied case of standard (i.e., nonpolarized) nematicity. While
the Fermi surface is no longer invariant under out-of-plane
twofold or threefold rotations, it remains invariant under a
twofold rotation with respect to an in-plane axis. Moreover,
the Fermi surfaces from different valleys continue to cross
even in the presence of valley-polarized nematic order.

III. PSEUDO-GOLDSTONE MODES IN THE
VALLEY-POLARIZED NEMATIC PHASE AT ZERO
TEMPERATURE

In the previous section, we studied the general properties
of valley-polarized nematic order in TBG. We now proceed
to investigate the unique properties of the valley-polarized

FIG. 1. Band structure along the high-symmetry directions of
the moiré Brillouin zone, for the (almost) flat bands of TBG. This
is numerically computed from the six-orbital model of Ref. [53],
without [(a); dashed lines] and with [(b); solid lines] valley-polarized
nematic ordering. Red and blue lines refer to the two valleys. The
parameters used are the same as in Ref. [53], and we have chosen
®y =0.01¢, and o =0 for the ordered state. The energy values
shown are in meV.

nematic state at 7 = 0 in a metallic system, which stem from
the emergence of a pseudo-Goldstone mode. As a first step, we
extend the free energy in Eq. (6) to a proper action. To sim-
plify the notation, we introduce the complex valley-polarized
nematic order parameter ® = ®; — i &, = g e'*. We obtain
(see also Ref. [30])

1 1
S = —fdzxdr — [8: D> + |3 > + r | D)
2 c?

+ u|®* —x<<1>6+d>*6>}. (15)

Here, x denotes the position vector, T denotes the imaginary
time, and ¢ denotes the bosonic velocity. The quadratic coef-
ficient r tunes the system towards a putative quantum critical
point (QCP) at r = r., and the quartic coefficient u > 0. Be-
cause of the anisotropic A term, the action corresponds to
a six-state clock model. As explained in Sec. II, at finite
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b) (©)

(a) (

(d) (e) (f)

FIG. 2. Fermi surfaces in the valley-polarized nematic state arising from the flat bands of TBG: The parameters are the same as those in
Fig. 1, except for «, which here assumes the values n /3, with n € [0, 5]. (a)—(f) correspond to n = 0 to n = 5, respectively, indicating the six
different domains that minimize the free energy. In (a), the Fermi surfaces in the absence of valley-polarized nematic order are shown by the

dashed lines. Red and blue lines refer to the two different valleys.

temperatures, the behavior of this model is the same as that of
the two-dimensional (2D) six-state clock model. This model
is known [41] to first undergo a Kosterlitz-Thouless transi-
tion towards a state where the phase « has quasi-long-range
order (like in the 2D XY model), which is then followed by
another Kosterlitz-Thouless transition towards a state where
o acquires a long-range order, pointing along one of the six
directions that minimize the sixth-order term.

At T =0, near a valley-polarized nematic QCP, the
bosonic model in Eq. (15) maps onto the three-dimensional
(3D) six-state clock model [44,52]. One of the peculiarities
of this well-studied model is that the A term is a dangerously
irrelevant perturbation [43,47-51]. Indeed, the scaling dimen-
sion y associated with the A coefficient is negative; while
an € expansion around the upper critical dimension d. = 4
gives y = —2 — € [43], recent Monte Carlo simulations report
y ~ —2.55 for the classical 3D six-state clock model [48,51].

To understand what happens inside the ordered state, we
use the parametrization ® = |®g|e'®, with fixed |®y|, and
consider the action for the phase variable o only, as shown
below:

1
Su = E/dzxdr[pf v + pr |k

— 2A]®o|° cos(6a)]. (16)

Here, p, and p, are generalized stiffness coefficients. Expand-
ing around one of the minima of the last term (let us call it ¢g)
gives

1
So = zfdzxdf[pflafaﬁ + py 0|

+ 36/A]|Do[%a], (17)

where a constant term is dropped, and & = o — . It is clear
that the A term, regardless of its sign, introduces a mass for
the phase variable. Thus, while the A term is irrelevant at the
critical point, which is described by the XY fixed point, it
is relevant inside the ordered phase, which is described by a
Zg fixed point, rather than the Nambu-Goldstone fixed point
(that characterizes the ordered phase of the 3D XY model)
[43,51,52].

Importantly, due to the existence of this dangerously ir-
relevant perturbation, there are two correlation lengths in the
ordered state [47-50,52]: & associated with the usual ampli-
tude fluctuations of ®, and &’ associated with the crossover

from continuous to discrete symmetry breaking of «. Al-
though both diverge at the critical point, they do so with
different exponents v and v/, respectively. Because v/ > v,
there is a wide range of length scales (and energies, in the
T = 0 case) for which the ordered phase behaves as if it were
an XY ordered phase. In Monte Carlo simulations, this is
signaled by the emergence of a nearly isotropic order param-
eter distribution [47]. More broadly, this property is expected
to be manifested as a small gap in the spectrum of phase
fluctuations, characteristic of a pseudo-Goldstone mode [89].

For simplicity of notation, in the remainder of this paper,
we rescale (7, x) to absorb the stiffness coefficients. More-
over, we set A > 0 and choose ay =0, such that & = «.
Defining m? = 36|A||®Po|%, and taking the Fourier transform,
the phase action becomes

Su = % / a0+ @ +m)alq), (18
q

where g = (w,, q), w, is the bosonic Matsubara frequency,
and q is the momentum. Here, we also introduced the notation

L=T>./ (g;‘%z.At T=0TY, — [4%;although the
subscript n is not necessary, since w, is a continuous variable,
we will keep it to distinguish it from the real-axis frequency.

Having defined the free-bosonic action, we now consider
the electronic degrees of freedom. While our work is moti-
vated by the properties of TBG, in this section we choose a
simple, generic band dispersion to shed light on the general
properties of the 7" = 0 valley-polarized nematic state. As
we will argue later, this formalism also allows us to discuss
the case of a spin-polarized nematic state. The free-fermionic
action is given by

s = fk S v ®live + eaak),  (19)

a=1,2

where k = (v,,Kk), a is the valley index, and v, is the
fermionic Matsubara frequency. The electronic dispersion
eq,(k) of valley a could, in principle, be derived from the
tight-binding model of Eq. (12); for our purposes, how-
ever, we keep it generic. In this single-band version of the
model, the valley-polarized nematic order parameter couples
to the fermionic degrees of freedom as described by the
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action [30]
Sbr = Yo / ST =D Yk + @) k)
kg g=12

[d>(q)+<l>*(q)
x 2

COS(29k)_ w } .

in(26
7 sin(26;)

(20)

Here, yp is a coupling constant, and tan 6y = k,/k,. Writing
& = |dy|e’®, we obtain the coupling between the phase vari-
able and the electronic operators inside the valley-polarized
nematic state with constant |®g|. As before, we set g = 0,
and expand around the minimum, to obtain

DD YK+ @) k)

ka g=12

x [cos(200) 2 )}83 (k — q) — a(g) sin(26,)], (21)

Saf:y

where y = yy|®g|. The first term in the last line shows that
long-range order induces opposite nematic distortions in the
Fermi surfaces with opposite valley quantum numbers. The
second term shows that the phase mode couples to the charge
density directly via a Yukawa-like coupling. As discussed in
Ref. [11], this is an allowed coupling when the generator of
the broken symmetry does not commute with the momentum
operator.

IV. NON-FERMI LIQUID TO FERMI LIQUID
CROSSOVER

A. The patch model

Our goal is to derive the properties of the electronic degrees
of freedom in the valley-polarized nematic ordered phase,
which requires the computation of the electronic self-energy.
To do that in a controlled manner, we employ the patch
method discussed in Refs. [19-22,54,55]. This relies on the
fact that fermions from different patches of a Fermi surface
interact with a massless order parameter with largely disjoint
sets of momenta, and that the interpatch coupling is small
in the low-energy limit, unless the tangent vectors at the
patches are locally parallel or antiparallel. Thus the advan-
tage of this emergent locality in momentum space is that we
can now decompose the full theory into a sum of two-patch
theories, where each two-patch theory describes electronic
excitations near two antipodal points, interacting with the or-
der parameter boson with momentum along the local tangent.
This formalism has been successfully used in computing the
universal properties and scalings for various NFL systems,
such as the Ising-nematic QCP [19-23,90], the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) QCP [54], and a critical Fermi
surface interacting with transverse gauge field(s) [55]. The
only scenario that breaks this locality in momentum space is
the presence of short-ranged four-fermion interactions in the
pairing channel [24,25].

For our case of the valley-polarized nematic order param-
eter, we consider two antipodal patches on a simplified Fermi
surface, which is locally convex at each point. The antipodal
patches feature opposite Fermi velocities and couple with the
bosonic field [20-22,54]. Here, we choose a patch centered at
0 = 6y and construct our coordinate system with its origin at

\4

w(l/,'

FIG. 3. Illustration of the patch model: v,  denotes the fermions
located at the upper light purple patch, centered at an angle 6 = 6,
with respect to the global coordinate system for a circular Fermi sur-
face of valley quantum number a (denoted by the dark purple ring).
Y, — denotes the fermions in the lower light purple patch, centred
at the antipodal point 6 = 7 4 6, whose tangential momenta are
parallel to those at 8y. Although we show here the patch construction
for a circular Fermi surface for the sake of simplicity, this can be
applied to any Fermi surface of a generic shape, as long as it is locally
convex at each point.

By. As explained above, we must also include the fermions at
the antipodal patch with 8, = 7 + 6. We denote the fermions
living in the two antipodal patches as ;. and v_, as illustrated
in Fig. 3. We note that the coupling constant remains the same
for the fermions in the two antipodal points.

Expanding the spectrum around the Fermi surface patches
up to an effective parabolic dispersion, and using Eqs. (18),
(19), and (21), we thus obtain the effective field theory in the
patch construction as

Stot =S¢ + S¢ + Sop, Where

k2
_ T : X
Sy = /k ; wa’s(k)<l v, + sk + ZkF>1/fa,s(k),
a=1,2
1
Sy, = 3 /a(—q)(w,% + q% + 61% + mz)a(f]),
q
Sup= Y (-1 /k Wl (k + ) Iy sin(20) a(q)
;==1i,2 N
— y c0s(260)] Va5 (k). (22)

Here, for simplicity, we have assumed that the Fermi sur-
face is convex and has the same shape for both the valley
quantum numbers. We will discuss the impact of these
approximations later in this section. Note that the fermionic
momenta are expanded about the Fermi momentum kg at the
origin of the coordinate system of that patch. In our nota-
tion, shown in Fig. 3, k; is directed along the local Fermi
momentum, whereas k, is perpendicular to it (or tangential
to the Fermi surface). Note that the local curvature of the
Fermi surface is given by 1/kg. Furthermore, v, + (¥, )
is the right-moving (left-moving) fermion with valley index
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a, whose Fermi velocity along the k; direction is positive
(negative).

Following the patch approach used in Refs. [20-22,55], we
rewrite the fermionic fields in terms of the two-component
spinor W, where

(k) = (Y1 (k) York) Y] _(—k) ¥3 _(=k),
U(k) =V (k)o, ® 19. (23)
J

Sy = /‘iﬁ(k)[i(ifz vy + 01 8) ® 1] W(k), Se
k

1
2

Here, o; (with i = 1, 2, 3) denotes the ith Pauli matrix acting
on the patch space (consisting of the two antipodal patches),
whereas t; is the ith Pauli matrix acting on valley space (not to
be confused with imaginary time 7, which has no subscript).
We use the symbols op and 7y to denote the corresponding
2 x 2 identity matrices. In this notation, the full patch action
Stot =S¢ + So + Su consists of

/a(—q)(wﬁ + 47+ g5 + m*)a(q),
q
2

Saf = Vf Pk + l2r )8 (k — ) cos(26p) o3 — i sin(20) a(q) 1] ® T3 W(k), & = ki + el (24)
k.q

For convenience, we have included the valley-dependent
Fermi surface distortion y cos(26) in the interaction action.
The form of Sy is such that it appears as if the fermionic
energy disperses only in one effective direction near the Fermi
surface. Hence, according to the formulation of the patch
model in Refs. [20-22,54], the (2 + 1)-dimensional fermions
can be viewed as if they were a (1 + 1)-dimensional “Dirac”
fermion, with the momentum along the Fermi surface inter-
preted as a continuous flavor.

From Eq. (24), the bare fermionic propagator can be read-
ily obtained as

. 02V, + 071 6

2kp

(

We note that the strength of the coupling constant between
the bosons and the fermions, given by y sin(26;), depends
on the value of 6. For the patch centered at 6, = 6, the
leading-order term from the loop integrals can be well esti-
mated by assuming 6 = 6, for the entire patch, as long as
sin(26y) # 0. However, for sin(26p) =0, we need to go
beyond the leading-order terms (which are zero), while per-
forming the loop integrals. The patches centered around 6, =
6y, with sin(26p) ~ 0, are the so-called “cold spots”; we will
refer to the other patches as belonging to the “hot regions” of
the Fermi surface.

B. Electronic self-energy

We first compute the one-loop bosonic self-energy IT;,
which takes the form

Golk) = =i = 5 e (25)
|
3k 4 k2 cos(46y)
PR .2 2
Mi(g) = —@y) / PE3E [Sln (260) + e

y?sin?(260) kr |wy|

2y sin(4600) kr 8, |y

2 ky sin(46)
2 p 0 j|Tr[<71 Go(k + q) 01Go (k)]
F
4y cos(460) kr [ (g3 — 82) — 2lq0l 1421]

7T |g2| 7 q2 |q>]

This result is obtained by considering a patch centered around
6r = 6p and then expanding sin?(20p + 2 ky /kr) in inverse
powers of kr. In the limits % < 1, kr > |q|, and |q| — 0,
we have, to leading order,

|wa| y* sin*(260) kr

lg21 7

M| =- : )

as long as sin(26p) # O (i.e., in the hot regions). For the cold
spots, the leading-order term is given by

892 400) k, 2
__8r cos(46p) kr “n 28)

I (q) o p
Ccs 2

Here, the subscript “hr” (“cs”) denotes hot regions (cold
spots). A similar result was previously obtained in Refs. [8,10]
using a different approach, and for the case of an XY nematic
order parameter (see also Ref. [91]). We therefore conclude

(26)
72 |q)?

(

that the pseudo-Goldstone mode in the valley-polarized ne-
matic phase is overdamped in the hot regions.

We can now define the dressed bosonic propagator, which
includes the one-loop bosonic self-energy, as

1
D)= —————.
D= e M

The one-loop fermionic self-energy X;(k) can then be
expressed in terms of X, defined as

(29)

Sk)=2(k) —y cos(260) 02 ® 13
= —y?sin®(26)) / (01 ® 13)Go
q

X (k+¢)(o1 ® 13)D1(—9), (30)

where we use the notation ¢ = (w,/, q). In order to be able to
perform the integrals, we will neglect the ¢? and @?, contribu-
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tions in the bosonic propagator, which are anyway irrelevant
in the RG sense [20,21]. This is justified because the contri-
butions to the integral are dominated by g; ~ v,, @y ~ v,
and g, ~ |v,|'/3, and we are interested in the small |v,| limit
(where v, is the external fermionic Matsubara frequency). In
the limit m — 0, we can obtain analytical expressions for
3 (k) as follows:

i:(k)|hr,m—>0

= —y?sin’*(26)) f (01 ® 13)Go(k + g)(01 ® T3)D1(—q)
q

_ily sin(260)]* sgn(v,) v,
= 2 ﬁ 7{2/3 k}l:/S
i‘:(k)|cs,mﬁ0

iy cos (40)sgn(v,) v,V K2 32
_ = 57 0y Q 19. (32)
214 ky

o ® T, 3D

The one-loop corrected self-energy is then given by G~! (k) =
G, Y(k) — =, (k). The frequency dependence of ¥ in the hot
regions, in the limit m — 0, corresponds to an NFL behavior,
since the fermionic lifetime has a sublinear dependence on fre-
quency, implying the absence of well-defined quasiparticles.
The same |v,|** dependence on the frequency was found in
the case of an ideal XY nematic in Refs. [8,12].

However, for the valley-polarized nematic state, m is not
zero in the ordered state, as it is proportional to the square root
of the dangerously irrelevant variable A in the bosonic action.
The limit of large m is straightforward to obtain, and gives an
FL correction to the electronic Green’s function, because

E(k”hr,m»[%f(wo)wr”

2+ 22P)y?sin® (26))
- 8t m

iv,00 ® 1. (33)

From Egs. (25), (29), and (30), we find that the crossover
from NFL to FL behavior occurs when m? > —II(g), ie.,
2 oyl ke sin®(26p) - .

m~ > ———=——"in the one-loop corrected bosonic propa-
gator D (g) inside the integral. In that situation, the dominant
contribution to the integral over ¢, comes from g, ~ m. On
the other hand, considering the fermionic propagator contri-
bution to the integrand, the dominant contribution comes from
w, ~ v, for the w, integral. Hence the relevant crossover
scale for the fermionic frequency v, is approximately
Q* = # Because m? ~ 1, it follows that Q* ~ A3/2,

y? kp sin“(26,)

It is therefore expected that, for finite m, above the char-
acteristic energy scale Q*, the self-energy displays NFL
behavior, captured by ¥ ~ isgn(v,)|v,|*/3. For low enough
energies, such that |v,| « Q*, the regular FL behavior with
$ ~ iv, should be recovered. The crucial point is that, be-
cause Q* depends on the dangerously irrelevant coupling
constant A, it is expected to be a small energy scale. This
point will be discussed in more depth in the next section. To

proceed, it is convenient to write the complete expression for

10
numerics e
7
7
) -—— v -
- == |V7L|2/3
L]
§ 0.100
-
IR
0.010
0.001
0.001 0.010 0.100 1 10
Vn

FIG. 4. Fermionic self-energy i £(v,)/m> as a function of the
scaled Matsubara frequency ¥, = v,/Q2*, obtained from the numer-
ical integration of Eq. (34) by setting m = 0.1 and kr = 100. The
dashed lines correspond to the frequency dependencies obtained
from the asymptotic results in Eq. (31) [i.e., i £(v,) ~ |v,|**] and
in Eq. (33) [i.e., i £(v,) ~ v,].

Y = % x (0, ® 1) for the case of an arbitrary m:

i 2 (k) e
3

B _ m?sgn(¥, + @) gi(@w) In (= &i(@n))
= _/d“’”’ 472 2 320w

j=1 ’
(34)

where ¥, = v,/Q*, &y = w,/Q*, and ¢; is the jth root of the
cubic-in-g, polynomial qz(qg +m?) 4+ m? kp|@y).

To confirm that indeed Q2* is the energy scale associated
with the crossover from NFL to FL behavior, we have solved
the integral in Eq. (34) numerically to obtain the self-energy
for arbitrary m. As shown in Fig. 4, Q* separates the two
asymptotes for the self-energy %: (1) NFL, given by Eq. (31)
and present for v, > Q*; and (2) FL, given by Eq. (33) and
present for v, < Q*.

As explained in the beginning of this section, here we have
considered the simplified case of two identical convex Fermi
surfaces for the two valleys. This not only makes the analytic
calculations more tractable, but also allows us to extend the
results for more general cases beyond TBG. This includes, for
instance, the case where a is not a valley quantum number, but
a spin quantum number, which we will discuss in more detail
in Sec. V.

Considering the Fermi surfaces for TBG obtained from the
tight-binding model and shown in Fig. 2, it is clear that they
each have a lower threefold (rather than continuous) rotational
symmetry in the disordered state. One of the consequences
is that the two patches in the patch model are no longer
related by inversion, at least not within the same valley Fermi
surface. Another consequence is that the Fermi surface can
have points that are locally concave and not convex. The
latter is an important assumption of the patch model con-
struction of Refs. [20,55], which we have implemented here.
The impact of these two effects on the self-energy behavior
at moderate frequencies is an interesting question beyond
the scope of this work, which deserves further investigation.
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While we still expect an FL-to-NFL crossover, the particular
frequency dependence of the self-energy, in the regime where
the pseudo-Goldstone mode appears gapless, may be different
from what has been discussed in this section.

C. Hertz-Millis approach

We note that the same general results obtained above
also follow from the usual (but uncontrolled) Hertz-Millis
approach [92]. It turns out that the action in Eq. (21) is anal-
ogous to the widely studied case of a metallic Ising-nematic
QCP, and hence the results are well known (see, for exam-
ple, Refs. [17,19,93,94]). Linearizing the dispersion near the
Fermi level, the one-loop bosonic self-energy I1; is given by

Ii(q)
) /°° dvy /00 dky > db;
= | SO
Co0 2T J_so 21 Jo 2w
y sin®(26)
(i vy — k)i + @,) — {ky + gl cos(G — 6,)1]
(33)
A straightforward computation gives the final expression:
11(q) oc —y? sin%(260,) '|‘(”l”||. (36)

Thus we obtain the dynamical critical exponent z = 3 for the
bosons [except at the cold spots, where the coupling constant
sin® (26,) vanishes]. This is the usual Hertz-Millis result for a
bosonic QCP in a metal, whose ordered state has zero wave
vector [92]. Most importantly, it gives an NFL fermionic self-
energy ¥, o i |v,|*? if the bosonic mass m = 0, and the usual
FL expression with ¥ o< iv, for m # 0 (see, for example,
Ref. [92]).

As mentioned above, these results are analogous to those
for an Ising-nematic QCP in a metal. The difference here is
that the QCP is approached from the ordered state, rather than
from the disordered state. More importantly, in our case, it
is not the gap in the amplitude fluctuations, but the small
mass of the pseudo-Goldstone mode associated with phase
fluctuations that restores the FL behavior, as one moves away
from the QCP. These phase fluctuations, in turn, couple to
the fermionic degrees of freedom via a Yukawa-like coupling,
rather than a gradientlike coupling (typical for phonons). The
key point is that because the pseudo-Goldstone behavior arises
from a dangerously irrelevant variable, its relevant critical
exponent &’ is different from the critical exponent & associated
with the amplitude fluctuations.

V. DISCUSSION AND CONCLUSIONS

Our calculations with the patch model, assuming convex
Fermi surfaces with antipodal patches with parallel tangent
vectors, show that Q* ~ A*2. In other words, the energy
scale 2*, associated with the NFL-to-FL crossover, is directly
related to the dangerously irrelevant coupling constant A of
the six-state clock model. This has important consequences
for the energy range in which the NFL is expected to be
observed in realistic settings. In the classical 3D Zg clock
model, it is known that the dangerously irrelevant variable A

introduces a new length scale &’ in the ordered phase [47-50].
It is only beyond this length scale that the discrete nature
of the broken symmetry is manifested; below it, the system
essentially behaves as if it were in the ordered state of the
XY model. Like the standard correlation length &, which is
associated with fluctuations of the amplitude mode, &’ also
diverges upon approaching the QCP from the ordered state.
However, its critical exponent v’ is larger than the XY critical
exponent v, implying that & > & as the QCP is approached.
As a result, there is a wide range of length scales for which
the ordered state is similar to that of the XY model.

Applying these results to our quantum model, we therefore
expect a wide energy range for which the fermionic self-
energy displays the same behavior as fermions coupled to a
hypothetical XY nematic order parameter, i.e., the NFL be-
havior ¥ ~ isgn(v,)|v,]|?/3. Thus the actual crossover energy
scale * should be very small compared with other energy
scales of the problem. This analysis suggests that the valley-
polarized nematic state in a triangular lattice is a promising
candidate to display the strange metallic behavior predicted
originally for the “ideal” (i.e., hypothetically uncoupled from
the lattice) XY nematic phase in the square lattice [8].

It is important to point out a caveat with this analysis.
Although the aforementioned critical behavior of the Zg clock
model has been verified by Monte Carlo simulations, for both
the 3D classical case and the 2D quantum case [52], the
impact of the coupling to the fermions remains to be deter-
mined. The results of our patch model calculations for the
bosonic self-energy show the emergence of Landau damping
in the dynamics of the phase fluctuations, which is expected to
change the universality class of the QCP—and the value of the
exponent v—from 3D XY to Gaussian, due to the reduction of
the upper critical dimension. The impact of Landau damping
on the crossover exponent V' is a topic that deserves further
investigation, particularly since even in the purely bosonic
case, there are different proposals for the scaling expression
for v’ (see Ref. [52] and references therein).

We also emphasize the fact that our results have been
derived for 7 = 0. Experimentally, however, NFL behavior is
often probed at nonzero temperatures. It is therefore important
to determine whether the NFL behavior of the self-energy
persists at a small nonzero temperature. At first sight, this may
seem difficult, since in the classical 2D Zg clock model, the A
term is a relevant perturbation. In fact, as discussed in Sec. III,
the system in 2D displays two Kosterlitz-Thouless transitions,
with crossover temperature scales of Txr; and Txrp, with
Zs symmetry breaking setting in below Txr, [41]. However,
a more in-depth analysis, as outlined in Ref. [50], indicates
that as the QCP is approached, a new crossover temperature
T* < Txr,» emerges, below which the ordered state is gov-
erned by the QCP (rather than the thermal transition). Not
surprisingly, the emergence of 7* is rooted in the existence
of the dangerously irrelevant perturbation along the 7 =0
axis. Therefore, as long as Q* < T*, the NFL behavior is
expected to be manifested at nonzero temperatures. Whether
and how it is manifested in resistivity measurements, which
are the primary tools to probe NFL behavior, require further
investigations beyond the scope of this paper. One of the
issues involved is that the quasiparticle inverse lifetime, which
can be obtained directly from the self-energy, is different from
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the actual transport scattering rate, which is hardly affected by
small-angle scattering processes [91,93,95].

An obvious candidate to display a valley-polarized nematic
state is twisted bilayer graphene and, more broadly, twisted
moiré systems. Experimentally, as we showed in this paper, a
valley-polarized nematic state would be manifested primarily
as in-plane orbital ferromagnetism, breaking threefold rota-
tion, twofold rotation, and time-reversal symmetries. While
several experiments have reported evidence of out-of-plane
orbital ferromagnetism [37—40], it remains to be seen whether
there are regions in the phase diagram where the magnetic
moments point in-plane [88]. An important property of the
valley-polarized nematic state is that the Dirac points remain
protected, albeit displaced from the K point, since the com-
bined C,, T operation remains a symmetry of the system.

A somewhat related type of order, which has also been
proposed to be realized in twisted bilayer graphene and other
systems with higher-order Van Hove singularities [56,57], is
the spin-polarized nematic order [31-33]. It is described by
an order parameter of the form Tp) = (?1, ?2), where the
indices denote the two d-wave components associated with
the irreducible representation E; of the point group Dg. The
arrows denote that these quantities transform as vectors in
spin space. The main difference between ¢ and the valley-
polarized nematic state is that the spin-polarized nematic state
does not break the C,, symmetry. It is therefore interesting
to ask whether our results would also apply for this phase.
The main issue is that @ is not described by a six-state clock
model, since an additional quartic term is present in the action
(see Ref. [56]), which goes as

Sg ~ (@1 - §2)" — 18171821 (37)

However, if spin-orbit coupling is present in such a way
that ¢ becomes polarized along the z axis, this additional

term vanishes. The resulting order parameter ¢° = (¢, ¢5)
transforms as the £, irreducible representation, and its corre-
sponding action is the same as Eq. (15), i.e., a six-state clock
model. Moreover, the coupling to the fermions has the same
form as in Eq. (20), with a now denoting the spin projection,
rather than the valley quantum number. Consequently, we also
expect an NFL-to-FL crossover inside the Ising spin-polarized
nematic state.

In summary, we presented a phenomenological model for
the emergence of valley-polarized nematic order in twisted
moiré systems, which is manifested as in-plane orbital ferro-
magnetism. More broadly, we showed that when a metallic
system undergoes a quantum phase transition to a valley-
polarized nematic state, the electronic self-energy at 7 = 0
in the ordered state displays a crossover from the FL behavior
(at very low energies) to NFL behavior (at low-to-moderate
energies). This phenomenon is a consequence of the six-state
clock (Zg) symmetry of the valley-polarized nematic order
parameter, which implies the existence of a pseudo-Goldstone
mode in the ordered state and of a Yukawa-like coupling
between the phase mode and the itinerant electron density.
The existence of the pseudo-Goldstone mode arises, despite
the discrete nature of the broken symmetry, because the
anisotropic A term in the bosonic action [cf. Eq. (15)], which
lowers the continuous O(2) symmetry to Zg, is a dangerously
irrelevant perturbation. Our results thus provide an interesting
route to realize NFL behavior in twisted moiré systems.
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