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We investigate a spin- 1
2 fermion chain minimally coupled to a Z2 gauge field. In the sector of the gauge

generator Ĝ j = −1, the model reduces to the Hubbard model with repulsive on-site interaction coupled to a
Z2 gauge field. We uncover how electric fields affect low-energy excitations by both analytical and numerical
methods. In the half-filling case, despite electric fields, the system is still a Mott insulator, just like the Hubbard
model. For hole-doped systems, holes are confined under nonzero electric fields, resulting in a hole-pair bound
state. Furthermore, this bound state also significantly affects the superconductivity, which manifests itself in the
emergence of attractive interactions between bond-singlet Cooper pairs. Specifically, numerical results reveal that
the dimension of the dominant superconducting order parameter becomes smaller when increasing the electric
field, signaling an enhancement of the superconducting instability induced by lattice fermion confinement. The
superconducting order can even be the dominant order of the system for suitable doping and large applied electric
field. The confinement also induces a π momentum for the dominant superconducting order parameter leading
to a quasi-long-range pair density wave order. Our results provide insights for understanding unconventional
superconductivity in Z2 lattice gauge theories and might be experimentally addressed in quantum simulators.

DOI: 10.1103/PhysRevB.107.125141

I. INTRODUCTION

Lattice gauge theories (LGTs) were originally proposed
to understand the confinement of quarks and became a fun-
damental concept in high-energy physics [1]. In correlated
electronic systems, due to strong quantum fluctuations, LGTs
can also emerge leading to many exotic quantum phases
[2–7]. Moreover, LGTs have also been applied to understand
high-Tc superconductors, where U (1) [8], SU(2) [9,10], and
Z2 [11] gauge theories have been introduced in doped Mott
insulators [12–14]. However, studying LGTs coupled to dy-
namical matter fields, especially in the two-dimensional (2D)
case, is a quite challenging task for conventional methods.
Explicitly, there is a sign problem for quantum Monte Carlo
methods [15–17], and the density matrix renormalization
group (DMRG) [18–20] method is difficult to extend to high-
dimensional systems due to large entanglement entropies.
Recently, with the rapid development of quantum simulations
[21–27], studying LGTs in synthetic quantum many-body
systems has become possible [28–47]. Quantum simulations
provide an alternative for understanding or solving hard prob-
lems in LGTs. Meanwhile, quantum simulators are also an
outstanding platform to study nonequilibrium dynamics of
LGTs [48–50].

The simplest example of LGTs is Z2 gauge theories
[2,5,51,52]. Motivated by recent quantum simulation exper-
iments, studying Z2 LGTs coupled to dynamical matter fields
has attracted considerable interests [53–68]. These works
mainly focus on single-component matter fields. However,
to relate to unconventional superconductors, spin- 1

2 (two-
component) fermions should be considered as the matter

field. Generally, there exists different low-energy physics
between single- and multicomponent fermions coupled to
gauge fields. For instance, deconfined phases are absent in
2D single-component fermions coupled to Z2 LGTs, while
they can emerge in two- or multicomponent cases [69,70].
However, Z2 LGTs coupled to spin- 1

2 fermions are not yet
fully understood even in one dimension, especially the su-
perconducting order in the sector of the gauge generator
Ĝ j = −1 with doped holes [11,70,71]. Moreover, it is still
an open question how to realize this system in quantum
simulators.

In this paper, we present systematic investigations of a
spin- 1

2 fermion chain coupled minimally to a Z2 LGT. To
relate to the physics of Mott insulators and unconventional
superconductors, we mainly consider low-energy excitations
in the Ĝ j = −1 sector. Thus, the system is equivalent to the
Hubbard model coupled to a Z2 gauge field. The presence
of an electric field term induces a nonvanishing expectation
value of electric field and a large fluctuation of gauge field.
Therefore, strings formed between charges are made of stable
electric fields leading to the confinement of lattice fermions.
We first present a phenomenological analysis of the ground
state and derive the effective Hamiltonian in the large electric
field limit. The half-filling system is still a Mott insulator
with the spin sector being an antiferromagnetic Heisenberg
model. Hence, similar to the Hubbard model, there is a
deconfined spinon excitation, although lattice fermions are
confined. However, in hole-doped systems, the electric field
can induce confinement of holes resulting in the emergence
of hole-pair bound states. Moreover, the kinetic term of the
hole pair can contribute to an attractive interaction between
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bond-singlet Cooper pairs, which is expected to enhance the
superconductivity.

We also implement DMRG [18–20] methods to support the
above analytical discussion. Numerical results demonstrate
that lattice fermions are indeed always confined in half-filling
systems, whereas they becomes deconfined in hole-doped
systems when electric fields are absent. In addition, there
exists a deconfined spinon excitation in both half-filling and
hole-doped cases, just like the Hubbard model. Regarding
superconductivity, we find that bond-singlet pairs are the dom-
inant superconducting order parameter in hole-doped systems.
Remarkably, the dimension of this order parameter becomes
smaller when increasing an applied electric field, revealing
that the confinement of holes can enhance superconductivity.
Meanwhile, the superconducting order can be the dominant
order of the system for large applied electric field and suitable
doping. Numerical results also show that the confinement
can result in a π momentum for the dominant superconduct-
ing order. Thus, there exists a quasi-long-range pair density
wave (PDW) correlation [72–77]. Finally, we also propose an
approach to implement our model in experimental quantum
simulators.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model of a one-dimensional (1D) spin- 1

2
fermion chain coupled to a Z2 gauge field. In Sec. III, we
present a phenomenological discussion about the confine-
ment of lattice fermions and the existence of hole-pair bound
states. In Sec. IV, we derive the effective Hamiltonian of the
system with large electric fields, and analyze how hole-pair
bound states enhance the superconducting order. In Sec. V,
we present numerical results calculated by DMRG methods
to support the above discussion. A possible experimental im-
plementation of this system is proposed in Sec. VI. Finally, in
Sec. VII, we summarize the results and give an outlook of our
paper.

II. MODEL

Here we consider a spin- 1
2 fermion chain coupled to a

dynamical Z2 gauge field. The Hamiltonian reads

Ĥ = − t
L−1∑
j=1

∑
σ=↑,↓

(
f̂ †

j,σ τ̂ z
j+ 1

2
f̂ j+1,σ + H.c.

)

− h
L∑

j=1

τ̂ x
j+ 1

2
− U

4

L−1∑
j=1

τ̂ x
j− 1

2
τ̂ x

j+ 1
2
, (1)

where f̂ †
i,σ ( f̂ j,σ ) is the creation (annihilation) operator of the

fermion living on site j, τ̂ α

j+ 1
2

is the Pauli matrix acting on

the link between sites j and ( j + 1) [labeled by ( j + 1
2 )],

and L is the system size. The first term describes fermions
coupled minimally to gauge fields via the Ising version of the
Peierls substitution with amplitude t > 0. The second term
is an electric field with strength h > 0. The third term is a
ferromagnetic Ising interaction of electric fields with strength
U > 0.

The Hamiltonian Ĥ is Z2 gauge invariant with a generator
defined as

Ĝ j = τ̂ x
j− 1

2
(−1)N̂ j τ̂ x

j+ 1
2
, (2)

where N̂j = n̂ j,↑ + n̂ j,↓ (n̂ j,σ = f̂ †
j,σ f̂ j,σ ) is the fermion num-

ber on site j. In addition to gauge invariance, Ĥ also possesses
a global SUs(2) × U (1) symmetry for the arbitrary filling
factor. Here U (1) represents the conservation of total fermion
number, i.e., [

∑
j N̂ j, Ĥ ] = 0, and SUs(2) corresponds to the

spin rotation. Specifically, for the half filling, due to the
particle-hole symmetry, this continuous symmetry is enlarged
to SUs(2) × SUη(2) × U (1), where SUη(2) is the pseudospin
rotation symmetry [78,79].

The 2D version of Eq. (1) in the Ĝ j = −1 sector is poten-
tially relevant for understanding superconductivity in doped
Mott insulators [11]. However, this is challenging for con-
ventional numerical and analytic methods [69,70]. In the
following, we will demonstrate that the 1D case can be
addressed analytically by perturbation theory in the strong
electric field limit. To relate to the physics of Mott insulators
and superconductivity, we focus on the Ĝ j = −1 gauge sector.
Thus, the Ising interaction of gauge fields under this gauge
constraint is equivalent to an on-site repulsive interaction of
fermions:

−τ̂ x
j− 1

2
τ̂ x

j+ 1
2

= (1 − 2n̂ j,↑)(1 − 2n̂ j,↓). (3)

Therefore, the Hamiltonian (1) reduces to a Hubbard model
when h = 0. Hereafter, we mainly study how electric fields
affect the low-energy physics of the Hubbard model.

III. CHARGE CONFIGURATIONS OF GROUND STATES

To shed light on how the confinement of lattice fermions
occurs, we first analyze phenomenologically the configuration
of the charge sector in ground states. For simplicity, we can
consider the limit h,U � t , where the terms

Ĥh := −h
L∑

j=1

τ̂ x
j+ 1

2
(4)

and

ĤU := −U

4

L−1∑
j=1

τ̂ x
j− 1

2
τ̂ x

j+ 1
2

(5)

dominate the energy.
In the half-filling case, if each site occupies one fermion,

then under the gauge constraint Ĝ j = −1, all τ spins can be
polarized at 〈τ̂ x

j+ 1
2
〉 = 1, simultaneously. This configuration

can indeed minimize the energy of both Ĥh and ĤU . In ad-
dition, exciting a double occupation and a hole, which can
be considered as a meson, at least costs energy ∼(h + U ),
i.e., there is a charge gap. Thus, the system is still a Mott
insulator identical to the Hubbard model, and lattice fermions
f̂ j,σ should be confined. Here, the existence of electric fields
can only enlarge the charge gap, but cannot change the Mott
insulator phase in this case. We note that the situation be-
comes different when U < 0, describing antiferromagnetic
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interactions of electric fields (or attractive on-site interactions
of fermions) in the gauge sector Ĝ j = −1.

In Appendix C, we present a detailed discussion for U < 0.
We find that there exists a quantum phase transition from the
Mott insulator (gapless) to a meson condensed phase (gapped)
when increasing −U . Here, the meson condensed phase
spontaneously breaks the translational symmetry, and the
corresponding matter field is a pseudospin valence-bond solid.

In hole-doped systems, it is not possible for each site to
be occupied by a fermion, so not all τ spins can be polar-
ized at 〈τ̂ x

j+ 1
2
〉 = 1 in the Ĝ j = −1 sector. In addition, double

occupation should also be suppressed due to its energy cost
∼(h + U ). Thus, only holes and single-occupation states are
allowed in the ground state. To reveal the configuration of the
charge sector, we take the case of two holes as an example (to
fix the even fermion parity subspace, we only consider an
even number of holes). The corresponding gauge-invariant
configuration has the form

|. . . + 1 + 0 − 1 − 1 − · · · − 1 − 1 − 0 + 1 + 1 + . . .〉 ,

(6)

where |±〉 labels the eigenstate of τ̂ x with eigenvalue ±1, and
|0〉 (|1〉) labels a hole (single occupation). In Eq. (6), there
are r links polarized at the state |−〉, where r is the distance
between two holes. Thus, there is a string tension between two
holes with energy hr, so the hole becomes confined when h �=
0. For large h, to minimize the energy, these two holes should
be bonded on two nearest-neighbor (NN) sites. Generalizing
to the multihole systems, we can find that holes must exist
in pairs, i.e., form hole-pair bound states |0 − 0〉, which are
absent in the Hubbard model. Therefore, in the presence of
doped holes, the existence of Ĥh can significantly affect the
charge degrees of freedom, resulting in a distinct low-energy
physics from the Hubbard model.

IV. EFFECTIVE HAMILTONIAN IN THE STRONG
ELECTRIC FIELD LIMIT

To further uncover the effect of electric fields, we can con-
sider the effective Hamiltonian in the limit of strong electric
field h � t and U → 0. Using the Schrieffer-Wolf transfor-
mation [80,81], we can obtain

Ĥeff = Ĥh + ĤS + ĤK ,

ĤS = J
∑

j

τ̂ x
j+ 1

2
· (ŝ j · ŝ j+1 + η̂ j · η̂ j+1),

ĤK = J

2

∑
j,σ

τ̂ x
j+ 1

2
·(̂τ z

j− 1
2
τ̂ z

j+ 1
2
+τ̂

y
j− 1

2

τ̂
y
j+ 1

2

)
(f̂ †

j−1,σ f̂ j+1,σ −H.c.),

(7)

where the effective coupling J = t2/h. In addition, ŝ j =
(ŝx

j, ŝy
j, ŝz

j ) is the spin operator defined as

ŝ j :=
∑
α,β

f̂ †
j,ασαβ f̂ j,β , (8)

where σ are Pauli matrices, and η̂ j = (η̂x
j , η̂

y
j, η̂

z
j ) is the pseu-

dospin operator generated by [78,79]

η̂+
j = η̂x

j + iη̂y
j = (−1) j f̂ †

j,↑ f̂ †
j,↓. (9)

Detailed derivations of Hamiltonian (7) are presented in
Appendix A.

In the case of half filling, as discussed in Sec. III, all links
are nearly polarized at 〈τ̂ x

j+ 1
2
〉 = 1, and each site occupies one

fermion. Thus we have

η̂ j · η̂ j+1 = τ̂ z
j− 1

2
τ̂ z

j+ 1
2
+τ̂

y
j− 1

2

τ̂
y
j+ 1

2

= 0. (10)

The effective Hamiltonian in this case is reduced to a 1D an-
tiferromagnetic Heisenberg model (the constant is neglected):

ĤHF
eff = J

∑
j

ŝ j · ŝ j+1. (11)

This is identical to the Hubbard model with large repulsive on-
site interactions. Therefore, in addition to the charge sector,
the electric field cannot affect the physics of the spin sector for
the half filling. According to properties of the 1D Heisenberg
model [4,12,82], there will be a deconfined spinon excitation.
The spin operator ŝ j is indeed gauge invariant, so this spinon
excitation is physically allowed.

For hole-doped systems, since double occupations are still
forbidden, according to Eq. (9), the term η̂ j · η̂ j+1 only con-
tributes a density-density interaction. The Heisenberg term ŝ j ·
ŝ j+1 cannot vanish, if and only if the NN sites j and ( j + 1)
are both occupied by a single fermion, which corresponds to
the link ( j + 1

2 ) for the state |+〉. Thus, τ̂ x
j+ 1

2
· (ŝ j · ŝ j+1) is

equivalent to ŝ j · ŝ j+1, which is also gauge invariant. Thus, the
effective Hamiltonian can be written as

ĤHD
eff = J

∑
j

(ŝ j · ŝ j+1 + N̂jN̂ j+1)

+ J

2

∑
j,σ

τ̂ x
j+ 1

2
· (

τ̂ z
j− 1

2
τ̂ z

j+ 1
2
+ τ̂

y
j− 1

2

τ̂
y
j+ 1

2

)

× ( f̂ †
j−1,σ f̂ j+1,σ − H.c.). (12)

The second term in ĤHD
eff is the next-nearest-neighbor (NNN)

hopping term of holes. If the site j is a single-occupation state,
then 〈τ̂ x

j− 1
2
〉 = 〈τ̂ x

j+ 1
2
〉 = 1, leading to τ̂ z

j− 1
2

τ̂ z
j+ 1

2

+ τ̂
y
j− 1

2

τ̂
y
j+ 1

2

=
0. If the site j is a hole, then 〈τ̂ x

j− 1
2
〉 = − 〈τ̂ x

j+ 1
2
〉 and

τ̂ z
j− 1

2

τ̂ z
j+ 1

2

= τ̂
y
j− 1

2

τ̂
y
j+ 1

2

�= 0. Thus, the NNN hopping of holes

between ( j − 1) and ( j + 1) can contribute, if and only if
the site in between is also a hole. That is, this term allows
a hole-pair bound state |0 − 0〉 to hop to NN sites (see Fig. 1).
Therefore, in the hole-doped system, the dynamics of the
charge sector is contributed by hole pairs, while the spin sector
is still an antiferromagnetic Heisenberg model. We further an-
alyze the kinetic term ĤK to uncover how the hole-pair bound
state affects the superconductivity. Here, 〈τ̂ x

j− 1
2
〉 = − 〈τ̂ x

j+ 1
2
〉,

if site j is a hole, and 〈τ̂ x
j+ 1

2
〉 = ±1 with a hole pair at the link

( j ± 1
2 ). Thus, HK can be simplified as

ĤK = J
∑
j,σ

f̂ †
j−1,σ τ̂ z

j− 1
2
τ̂ z

j+ 1
2

f̂ j+1,σ + H.c. (13)

In addition, since the site j should be a hole, we can insert
a term f̂ j,σ f̂ †

j,σ into Eq. (13). Therefore, this term can be
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ĤK

|0〉 f̂j,↓|0〉 f̂j,↑|0〉

|+〉 |−〉

FIG. 1. Diagram of the hole-pair dynamics. The orange dashed
ellipses represent a hole-pair bound state |0 − 0〉, which can hop to
NN bonds under the action of ĤK .

rewritten as interactions of bond Cooper pairs:

ĤK = J
∑

j

�̂1,0(j −1)�̂†
1,0( j) − �̂0,0( j −1)�̂†

0,0( j) + H.c.

= J
∑

j

�̂1,↑(j −1)�̂†
1,↑( j) + �̂1,↓(j −1)�̂†

1,↓( j) + H.c.,

(14)

where �̂†
s,m (s = 0, 1 and m = 0,↑,↓) is the gauge-invariant

order parameter of bond Cooper pairs with the form

�̂
†
0,0( j) := 1√

2
τ̂ z

j+ 1
2
( f̂ †

j,↑ f̂ †
j+1,↓ − f̂ †

j,↓ f̂ †
j+1,↑),

�̂
†
1,0( j) := 1√

2
τ̂ z

j+ 1
2
( f̂ †

j,↑ f̂ †
j+1,↓ + f̂ †

j,↓ f̂ †
j+1,↑),

�̂
†
1,σ ( j) := f̂ †

j,σ τ̂ z
j+ 1

2
f̂ †

j+1,σ . (15)

Here �̂
†
0,0 represents a singlet pair, while the other three

ones are triplet pairs. In an antiferromagnetic background,
triplet pairing should be suppressed due to a large energy
cost. Meanwhile, they also exhibit repulsive interactions in
Eq. (14), which are generally irrelevant to the superconductiv-
ity. However, the situation is different for singlet pairs, which
are low-energy pairings in antiferromagnetic backgrounds and
have attractive interactions in ĤK . Therefore, �̂0,0 should be
the dominant pairing that contributes to the charge dynamics.
Moreover, this term should be also expected to enhance the
superconducting instability due to the attractive interaction.
Thus we expect a superconducting single phase under large
electric fields and proper doping.

V. NUMERICAL SIMULATIONS

To verify the above results, we need to perform numeri-
cal simulations. We implement the DMRG algorithm, which
is one of the most efficient methods to numerically study
1D quantum many-body systems. We project ground states

to the specific gauge sector by adding a Lagrange mul-
tiplier λ j to the original Hamiltonian, i.e., calculating the
Hamiltonian

Ĥnum := Ĥ +
∑

j

λ j Ĝ j . (16)

Since [Ĝ j, Ĥ ] = 0, Ĥ should have the same eigenstates as
Ĥnum. When λ j � 1, the ground state of Ĥnum satisfies 〈Ĝ j〉 =
−1, which is the ground state of Ĥ in the Ĝ j = −1 sector.
Here we mainly study how electric fields affect excitations
of this system in the presence of large U , i.e., the effect of
confinement concerning the 1D Hubbard model. To probe
excitations, we need to calculate the corresponding gauge-
invariant correlation functions. During the calculation, we
choose λ j = 100, t = 1, and open boundary conditions with
system size up to L = 256. The maximum bond dimension is
χ = 600 and truncation errors ≈10−7. The expectation value
of the Z2 gauge generator satisfies | 〈Ĝ j〉 + 1| < 10−12. We
note that, despite the absence of rigorous gauge invariance,
this numerical method can naturally extend to study experi-
mental imperfections.

A. Lattice fermions

We first consider the confinement and deconfinement
of lattice fermions by introducing a string correlation
function [62]:

Cf
σ (i − j) :=

〈
f̂ †
i,σ

( ∏
i��< j

τ̂ z
�+ 1

2

)
f̂ j,σ

〉
. (17)

As shown in Fig. 2(a), for the large U , Cf
σ (i − j) shows expo-

nential decay in the half-filling case for arbitrary electric fields
(including h = 0). Thus, the lattice fermion is always confined
for finite U , which is consistent with the Mott insulator in this
case. For hole-doped systems, when h = 0, Cf

σ shows a power
law decay, indicating a deconfinement of f̂ †

i,σ [see Fig. 2(b)].
However, it becomes confined for finite h, which is consistent
with the string tension between holes.

B. Spin sector

For the spinon excitation, we define a spin-exchange cor-
relation function

Cs(i − j) := 〈ŝ+
i ŝ−

j 〉 (18)

which is also gauge invariant. Figures 3(a) and 3(b) show
that this correlation function has a power-law scaling in
both half-filling and hole-doped systems, indicating the ex-
istence of deconfined spinon excitations. Moreover, in the
half-filling case, Fig. 3(a) shows that the Cs is nearly identical
to the spin-exchange correlation function of the 1D Heisen-
berg model for arbitrary h, indicating that the increase in
h can hardly affect the effective Hamiltonian (Heisenberg
model).

C. Superconductivity

Now we focus on the superconductivity in hole-doped
systems. For 1D spin- 1

2 fermions, in addition to bond pairs
defined in Eq. (15), we can also introduce a site singlet
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(b)

FIG. 2. Correlation functions of lattice fermions Cf
↑(r) for

(a) 1/2 filling and (b) 3/8 filling, respectively. Here we choose
L = 256 and U = 8. The black dashed curves are fitting exponential
functions. To reduce finite-size effects, we calculate the correlation
function between sites L/2 and L/2 + r.

pair �̂
†
SS( j) := f̂ †

j,↑ f̂ †
j,↓. To study the superconductivity, we

need to calculate correlators of the above Cooper pair order
parameters, i.e.,

C�α
(i − j) := 〈�̂†

α (i)�̂α ( j)〉 , (19)

where α = SS/0, 0/1, 0/1,↑/1,↓. As shown in Fig. 4(a),
C�α

exhibits an exponential decay for all superconducting
order parameters in the case of half filling suggesting the Mott
insulator. In Fig. 4(b), we present the result of C�α

with 3/8
filling. It shows that all types of Cooper pairs have power-law
scalings

C�α
(i − j) ∼ |i − j|−2��α , (20)

where ��α
is the dimension of �̂α . In addition, the bond-

singlet pair is indeed the dominant pairing, which is consistent
with Eq. (14). Moreover, the dimension of this pair be-
comes smaller when increasing h [see Figs. 4(c) and 4(d)].
Thus, the electric field can indeed enhance superconductiv-
ity, which is consistent with the effective Hamiltonian in
Eq. (7).

Now we discuss the dominant order in hole-doped systems.
In addition to the superconducting order, two other possi-
ble orders in interacting spin- 1

2 fermion systems are charge
density wave (CDW) and spin density wave (SDW). Here,
CDW order can be probed by the density-density correlation

4 8 16 32 64
10

-3

10
-2

10
-1

4 8 16 32 64
10

-5

10
-4

10
-3

10
-2

10
-1

(a)

(b)

FIG. 3. Correlation functions of spins Cs(r) for (a) 1/2 filling
and (b) 3/8 filling, respectively. Here we choose L = 256 and U = 8.
The red line is the spin-exchange correlation function of the 1D
Heisenberg model. To reduce finite-size effects, we calculate the
correlation function between sites L/2 and L/2 + r.

function

CN(i − j) := 〈N̂iN̂ j〉 − 〈N̂i〉 〈N̂j〉 , (21)

and the SDW order can be probed by the spin correlation
function

Cs(i − j) := 〈ŝi · ŝ j〉 . (22)

In hole-doped systems, similar to the C�α
, they also exhibit

power-law decay:

CN(i − j) ∼ |i − j|−2�CDW ,

Cs(i − j) ∼ |i − j|−2�SDW , (23)

where �CDW and �SDW are dimensions of the CDW and SDW,
respectively. The most slowly decaying correlation function,
i.e., the smallest dimension, means that the corresponding
order parameter is dominant in the system.

In Figs. 5(a) and 5(b), we present the dimensions of CDW,
SDW, and bond-singlet pairs versus electric fields for differ-
ent filling factors. When h = 0, i.e., the Hubbard model, we
can find that �CDW and �SDW are both smaller than ��0,0 ,
so the dominant order in a hole-doped system is not super-
conductivity. This is consistent with the result obtained by
the bosonization method [4,82]. However, when increasing
h, the situation becomes different. For instance, in the case
of 3/8 filling and h = 2, the dimension of bond-singlet pairs
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FIG. 4. Correlation functions of superconducting order parameters. (a, b) The scaling of different superconducting order parameters with
h = 1, U = 8, and L = 256 in the cases of (a) 1/2 filling and (b) 3/8 filling. (c) Correlation functions of bond-singlet pairs for different
electric fields. (d) The dimension of bond-singlet pairs versus electric fields. To reduce finite-size effects, we calculate the correlation function
C�α

(r) = 〈�̂†
α (L/2 + r)�̂α (L/2)〉.

becomes the smallest one [see Fig. 5(b)]. Therefore, super-
conducting order can be dominant under the proper doping
and large h. In Figs. 5(c) and 5(d), we present the dimensions
of the above order parameters versus U for different filling
factors. The numerical result shows that the on-site repulsive
interaction can enhance the CDW and SDW order, but it
weakens the bond-singlet superconducting order. Thus, the
electric field term is the relevant term for superconductivity,
which is consistent with Eq. (14).

We also study the wave vector of the leading supercon-
ducting order parameter, which can be determined by Fourier
analysis of the corresponding correlation function [74]

S�0,0 (k) :=
∑

r

e−ikrC�0,0 (r). (24)

Figure 6 shows the absolute value of S�0,0 (k) at 3/8 filling.
For small h, there are only two peaks at k = ±2kF = ±3π/4,
where kF = nπ is the Fermi wave vector with n being the
filling factor. However, for large h, we can find that there is a
clear leading peak at k = π for |S�0,0 (k)|, with two subleading
peaks at k = ±2kF . This shows that the dominant supercon-
ducting order for the large h is a PDW with π momentum.
Therefore, in addition to enhancing the superconducting or-
der, the confinement of lattice fermions can also induce a π

momentum.

VI. PROPOSED EXPERIMENTAL IMPLEMENTATION

Finally, we present an approach to realize a 1D Z2 LGT
coupled to two-component fermions in quantum simulators.
According to the above discussion, we know that ĤU is an

irrelevant term for low-energy physics. Thus, without loss
of generality, we just need to consider the Hamiltonian (1)
with U = 0 in quantum simulations, which is sufficient to
demonstrate the above physics. Here we mainly apply an array
of spins (or two-level systems) with NN hopping g, where
the lattice configuration is shown in Fig. 7. Thus, the original
Hamiltonian of this system can be written as

ĤQS = g
∑

j

∑
�=A,B

(
σ̂+

�, j τ̂
−
j+ 1

2
+ σ̂+

�, j+1τ̂
−
j+ 1

2
+ H.c.

)

+
∑

j

(
VAσ̂+

A, j σ̂
−
A, j + VBσ̂+

B, j σ̂
−
B, j + hτ̂ x

j+ 1
2

)
. (25)

We let the potential of A and B spins satisfy VA = −VB � g, h.
Using the Schrieffer-Wolf transformation, we can obtain the
effective spin Hamiltonian as

Ĥe =
∑

j

(
geσ̂

+
A, j τ̂

z
j+ 1

2
σ̂−

A, j+1 − geσ̂
+
B, j τ̂

z
j+ 1

2
σ̂−

B, j+1 + H.c.
)

+ h
∑

j

τ̂ x
j+ 1

2
, (26)

where ge = λ2/VA. This is a Z2 LGT coupled to two species
of spins. To map the Hamiltonian Ĥe to Eq. (1), we first apply
a particle-hole transformation of the B spin to change the sign
of the coupling between B spins and gauge fields. Then, via a
Jordan-Wigner transformation, we can map A/B spins to spin-
1
2 fermions, and the final Hamiltonian will become Eq. (1)
with U = 0. Detailed derivations can be found in Appendix B.
Generally, the Hamiltonian in Eq. (25) is accessible in vari-
ous artificial quantum many-body systems, including optical

125141-6



CONFINEMENT-INDUCED ENHANCEMENT OF … PHYSICAL REVIEW B 107, 125141 (2023)

0 0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

(a) (b)

(c) (d)
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lattices [21,22,26], Rydberg atoms [27,83], and superconduct-
ing circuits [84,85].

VII. SUMMARY AND OUTLOOK

We have systematically studied the ground state of a spin- 1
2

fermion chain coupled to a Z2 LGT. In the Ĝ j = −1 sector,
the model is equivalent to a 1D Hubbard model coupled to

0 /2 3 /4 3 /2 2

0.2

0.4

0.6

0.8

0 20 40 60

-0.1

0

0.1

FIG. 6. Fourier analysis of the bond-singlet pair correlation for
different h. We choose 3/8 filling and L = 256. Inset: The corre-
sponding correlation function in real space for h = 1, where there
exists an oscillation with a period of two sites.

a Z2 LGT. At half filling, the system is a Mott insulator,
when at least one of h and U is finite, and the spin sector
is an antiferromagnetic Heisenberg model with fractional-
ized spinon excitations. In hole-doped systems, the lattice
fermion is confined under nonzero electric fields, leading to
the emergence of hole-pair bound states. Remarkably, we also
demonstrate that this hole pair can enhance the superconduct-
ing instability, and the superconducting order can even be the
dominant order for a suitable filling factor and large applied
electric field. In addition, the confinement can induce a π

momentum for the dominant superconducting order parameter
leading to a PDW. We also propose possible experimental
realizations of this model in an array of two-level systems. Our
results demonstrate that the confinement of lattice fermions
can enhance a superconducting instability, which paves the
way for understanding unconventional superconductors with
Z2 LGTs. Meanwhile, our model could also be imple-
mented experimentally in state-of-art quantum simulators
[21–27].

g σA,j+1
τj+ 12

σB,j+1

σA,j

σB,j

FIG. 7. Lattice skeleton of Eq. (25). Top/bottom blue sites rep-
resent A/B spins (matter fields), and orange sites are τ spins (gauge
fields). Each τ spin can couple to its four NN σ spins.
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The Hamiltonian (1) is reminiscent of the Holstein-
Hubbard model [86–88], which is a typical strongly correlated
system with both electron-electron and electron-phonon inter-
actions. Thus, studying the relations between LGTs and the
Holstein-Hubbard model is a relevant question. Another par-
ticularly interesting and natural extension of our paper would
be generalizing our model to two dimensions [8–11,69,70,89–
91], which might be relevant for understanding high-Tc super-
conductors. It will also be an interesting issue to consider a
ladder model [92], which is one of the simplest cases that open
a spin gap [75,93–95].
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APPENDIX A: EFFECTIVE HAMILTONIAN
IN THE CASE OF STRONG TENSION

Here we present details of deriving the effective Hamil-
tonian with the Schrieffer-Wolf transformation [80,81] in the

case of h � t and U → 0. First, we rewrite the Hamiltonian
as

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 = −h
∑

j

τ̂ x
j+ 1

2
,

Ĥ1 = −t
∑

j

∑
σ=↑,↓

(
f̂ †

j,σ τ̂ z
j+ 1

2
f̂ j+1,σ + H.c.

)
, (A1)

where Ĥ0 is a diagonal term, while Ĥ1 is an off-diagonal one.
Now, for h � t , we use the Schrieffer-Wolff transformation
[80,81] to obtain the effective Hamiltonian

Ĥeff = e−ŜĤeŜ. (A2)

To second order,

Ĥeff = Ĥ0 + (Ĥ1 + [Ĥ0, Ŝ]) + 1
2 [(Ĥ1 + [Ĥ0, Ŝ]), Ŝ]

+ 1
2 [Ĥ1, Ŝ]. (A3)

When this condition holds,

Ĥ1 + [Ĥ0, Ŝ] = 0, (A4)

then the final effective Hamiltonian reads

Ĥeff = Ĥ0 + 1
2 [Ĥ1, Ŝ]. (A5)

Here we choose the form of Ŝ as

Ŝ = it

2h

∑
j,σ

(
f̂ †

j,σ τ̂
y
j+ 1

2

f̂ j+1,σ + H.c.
)
, (A6)

where it is not difficult to verify that it indeed satisfies the
condition in Eq. (A4). Thus, we have

[Ĥ1, Ŝ] = − it2

2h

⎡
⎣∑

i,σ ′

(
f̂ †
i,σ ′ τ̂

z
j+ 1

2
f̂i+1,σ ′ + H.c.

)
,
∑
j,σ

(
f̂ †

j,σ τ̂
y
j+ 1

2

f̂ j+1,σ + H.c.
)⎤⎦

= − it2

2h

[ ∑
j,σ

(
2iτ̂ x

j+ 1
2

)
(2n̂ j,σ n̂ j+1,σ − n̂ j,σ − n̂ j+1,σ ) +

∑
j

(−4iτ̂ x
j+ 1

2

)(
f̂ †

j,↑ f̂ †
j,↓ f̂ j+1,↓ f̂ j+1,↑ + H.c.

)

+
∑

j

(
4iτ̂ x

j+ 1
2

)
( f̂ †

j,↑ f̂ j,↓ f̂ †
j+1,↓ f̂ j+1,↑ + H.c.) +

∑
j,σ

(
τ̂ z

j− 1
2
τ̂

y
j+ 1

2

− τ̂
y
j− 1

2

τ̂ z
j+ 1

2

)
( f̂ †

j−1,σ f̂ j+1,σ − H.c.)

]
. (A7)

We define spin operators as

ŝ j :=
∑
α,β

f̂ †
j,ασαβ f̂ j,β ,

(A8)
η̂ j := P̂−1ŝ j P̂,

where P̂ corresponds to the particle-hole transformation satisfying

P̂−1 f̂ j,↑P̂ = f̂ j,↑,

P̂−1 f̂ j,↓P̂ = (−1) j f̂ †
j,↓. (A9)

125141-8



CONFINEMENT-INDUCED ENHANCEMENT OF … PHYSICAL REVIEW B 107, 125141 (2023)

Hence, we have

f̂ †
j,↑ f̂ j,↓ f̂ †

j+1,↓ f̂ j+1,↑ + H.c. = ŝ+
j ŝ−

j+1 + H.c.,

f̂ †
j,↑ f̂ †

j,↓ f̂ j+1,↓ f̂ j+1,↑ + H.c. = −(η̂+
j η̂−

j+1 + H.c.),∑
σ

2n̂ j,σ n̂ j+1,σ − n̂ j,σ − n̂ j+1,σ = ŝz
j ŝ

z
j+1 + η̂z

j η̂
z
j+1. (A10)

Therefore, Eq. (A7) can be rewritten as

[Ĥ1, Ŝ] = t2

h

∑
j

τ̂ x
j+ 1

2
· (ŝ j · ŝ j+1 + η̂ j · η̂ j+1) + −it2

2h

∑
j,σ

(
τ̂ z

j− 1
2
τ̂

y
j+ 1

2

− τ̂
y
j− 1

2

τ̂ z
j+ 1

2

)
( f̂ †

j−1,σ f̂ j+1,σ − H.c.). (A11)

According to Eq. (A5), we can obtain the final form of the

effective Hamiltonian:

Ĥeff = − h
∑

j

τ̂ x
j+ 1

2
+ J

∑
j

τ̂ x
j+ 1

2
· (ŝ j · ŝ j+1 + η̂ j · η̂ j+1)

− iJ

2

∑
j,σ

(
τ̂ z

j− 1
2
τ̂

y
j+ 1

2

− τ̂
y
j− 1

2

τ̂ z
j+ 1

2

)

× ( f̂ †
j−1,σ f̂ j+1,σ − H.c.), (A12)

where J = t2/h. Using the identity

τ̂ z
j− 1

2
τ̂

y
j+ 1

2

− τ̂
y
j− 1

2

τ̂ z
j+ 1

2
= iτ̂ x

j+ 1
2
· (

τ̂ z
j− 1

2
τ̂ z

j+ 1
2
+τ̂

y
j− 1

2

τ̂
y
j+ 1

2

)
,

(A13)

we can finally obtain the effective Hamiltonian in Eq. (7).

APPENDIX B: PROPOSED EXPERIMENTAL
IMPLEMENTATION

Here we show details about how to realize the Hamiltonian
(1) in quantum simulators. We consider spin (or two-level)
systems with spin exchange coupling, as well as tunable lon-
gitudinal and transverse fields. The lattice configuration is
shown in Fig. 7, and the original Hamiltonian of this system
can be written as

ĤQS = ĤQS,0 + ĤQS,1,

ĤQS,0 =
∑

j

VAσ̂+
A, j σ̂

−
A, j + VBσ̂+

B, j σ̂
−
A, j − hτ̂ x

j+ 1
2
,

ĤQS,1 = g
∑

j

∑
�=A,B

σ̂+
�, j τ̂

−
j+ 1

2
+ σ̂+

�, j+1τ̂
−
j+ 1

2
+ H.c. (B1)

To realize a Z2 LGT coupled to a two-component matter field,
we let VA = −VB = V � g, h.

We apply the Schrieffer-Wolf transformation to obtain the
effective spin Hamiltonian. Similar to Ref. [42], the generat-
ing function can be chosen as

Ŝ′ = ig

V

∑
j

σ̂+
A, j τ̂

−
j+ 1

2
+ σ̂+

A, j+1τ̂
−
j+ 1

2

− σ̂+
B, j τ̂

−
j+ 1

2
− σ̂+

B, j+1τ̂
−
j+ 1

2
− H.c. (B2)

According to Eq. (A5), we can obtain the final effective
Hamiltonian of ĤQS as

Ĥe = ĤQS,0 + 1

2
[ĤQS,1, Ŝ′]

= ge

∑
j

(
σ̂+

A, j τ̂
z
j+ 1

2
σ̂−

A, j+1 − σ̂+
B, j τ̂

z
j+ 1

2
σ̂−

B, j+1 + H.c.
)

+ ge

∑
j

[
τ̂+

j− 1
2

(
σ̂ z

B, j − σ̂ z
A, j

)
τ̂−

j+ 1
2
+ H.c.

]

+
∑

j

(V + 2ge)σ̂+
A, j σ̂

−
A, j + (V − 2ge)σ̂+

B, j σ̂
−
B, j − hτ̂ x

j+ 1
2
,

(B3)

where ge = g2/V . Here we can find that the total spins of the A
and B sublattices are both conserved, i.e., [

∑
j σ̂

+
�, j σ̂

−
�, j, Ĥe] =

0. Thus, the potential terms of A/B spins can be neglected. In
addition, for large h, the second term of Eq. (B3) is irrelevant
[42]. Therefore, the effective Hamiltonian in this case can be
simplified as

Ĥe = ge

∑
j

(
σ̂+

A, j τ̂
z
j+ 1

2
σ̂−

A, j+1 − σ̂+
B, j τ̂

z
j+ 1

2
σ̂−

B, j+1 + H.c.
)

− h
∑

j

τ̂ x
j+ 1

2
. (B4)

Now we apply a particle-hole transformation of B sites P̂B =∏
j=odd σ̂ z

B, j , which can change the sign of the coupling
strength between B and τ spins. That is,

Ĥe → P̂BĤeP̂B = ge

∑
j

(
σ̂+

A, j τ̂
z
j+ 1

2
σ̂−

A, j+1 + σ̂+
B, j τ̂

z
j+ 1

2
σ̂−

B, j+1

+ H.c.
) − h

∑
j

τ̂ x
j+ 1

2
. (B5)

Finally, to map the matter field from spins to fermions, we can
use a Jordan-Wigner transformation defined as

f̂ †
j,↑ = σ̂+

A, j

∏
k< j

σ̂ z
A,k,

f̂ †
j,↓ = σ̂+

B, j

∏
k< j

σ̂ z
B,k

L∏
l=1

σ̂ z
A,l . (B6)

Hence, Ĥe can be mapped to the Hamiltonian in Eq. (1), i.e.,
a spin- 1

2 fermion chain minimally coupled to a Z2 LGT. We
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FIG. 8. Quench dynamics of Eqs. (1) and (B1) with L = 4 (12 qubits). The horizontal axis is the time τ . The parameters are chosen as
J = 20, V = 400, t = ge = 1, and h = 5. We consider periodic boundary conditions. The initial state is |ψ0〉 = |↑ +0 − 0+ ↓ +〉. Solid and
dashed curves represent expectation values of the fermion number operator of the Hamiltonians in Eqs. (1) and (B1), respectively.

also perform a numerical simulation to further demonstrate
the above discussion. Here we use exact diagonalization to
calculate the quench dynamics of Eqs. (1) and (B1) with
L = 4 (12 qubits). The parameters chosen are J = 20, V =
400, t = ge = 1, and h = 5. To reduce the boundary effect,
we consider periodic boundary conditions. The initial state
is |ψ0〉 = |↑ +0 − 0+ ↓ +〉. As shown in Fig. 8, we can
find consistent fermion density results when comparing the
dynamics of Eqs. (1) and (B1).

APPENDIX C: NEGATIVE U AT HALF FILLING

In this Appendix, we discuss the phase diagram of the
Hamiltonian (1) with negative U at half filling. In the
gauge sector Ĝ j = −1, negative U means antiferromagnetic
interactions of electric fields or attractive on-site interactions
of fermions. As discussed in Sec. III, due to the confinement
of lattice fermions, exciting a double occupation and a hole
(called meson) with distance r costs energy ∼(hr + U ). When
−U 
 h, this excitation should be absent in the ground state
due to the large energy cost. Thus, the gauge field tends to
polarize at τ̂ x

j = 1, and the lattice fermion prefers the single-
occupation state, i.e., the system should be a Mott insulator
with gapless spin sector. However, when −U � h, the energy
cost of exciting a meson is negative, so double occupations
and holes tend to dominate resulting in the freeze of the spin
sector, i.e., opening a spin gap. Meanwhile, in this case, τ̂ x

tends to have a staggered distribution to make 〈τ̂ x
j− 1

2
τ̂ x

j+ 1
2
〉 <

0. Therefore, for fixed h, when increasing −U , there should be
a quantum phase transition from the Mott insulator (gapless)
to the meson condensed phase (gapped).

For large −U , since τ̂ x is expected to have a staggered dis-
tribution, the ground state should be dimerized [see Fig. 9(a)].
Thus, the condensation of mesons induces a π momentum,
i.e., a spontaneous breaking of the translational symmetry
occurs. To study this quantum phase transition, we can choose

the order parameter

m̂x := 2

N

∑
j

(
τ̂ x

2 j− 1
2
− τ̂ x

2 j+ 1
2

)
. (C1)

For numerical simulations, to reduce the boundary effect,
we obtain the order parameter as m̂x = τ̂ x

L/2− 1
2
− τ̂ x

L/2+ 1
2
. In

Fig. 9(b), we present the expectation values of m̂x versus −U
for h = 1 and different system sizes. The numerical result
show that the critical point is at −Uc ≈ 2.04 with critical
exponents �m ≈ 0.33 and ν ≈ 2.5, where �m and ν are the
order parameter dimension and correlation length critical ex-
ponent, respectively.

To further understand this quantum phase transition, we
now focus on the matter field. When h = 0, for large −U , the
lattice fermion at half filling has a gapped spin sector and a
gapless charge sector [4,82]. However, according to the above
discussion, we find that the charge sector becomes gapped
under finite h for large −U . In addition, due to the pseudospin
rotation symmetry (SUη(2)), which cannot be broken spon-
taneously in 1D systems, this gapped translational symmetry
breaking phase cannot be a CDW. Therefore, to preserve the
SUη(2) symmetry, we expect that the charge sector is a pseu-
dospin valence-bond solid [see Fig. 9(c)]. This order can be
described by the order parameter

v̂η := 2

N

∑
j

(η̂2 j−1 · η̂2 j − η̂2 j · η̂2 j+1). (C2)

In Fig. 9(d), we present the expectation values of v̂η versus
−U for h = 1 and different system sizes, where we calculate
it as v̂η = η̂L/2−1 · η̂L/2 − η̂L/2 · η̂L/2+1 to reduce the boundary
effect. We can find that v̂η can also represent this quantum
phase transition and has the same dimension as m̂x at the
critical point.
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FIG. 9. Quantum phase transition for negative U and h = 1 at half filling. (a) Expectation value distributions of τ̂ x
j+ 1

2
at the ground state for

small and large −U . (b) Rescaled order parameter 〈m̂x〉 L�m as a function of −U for different system sizes, where the dimension �m ≈ 0.33.
The curves cross at the critical point −Uc ≈ 2.04. Inset: The corresponding data collapse with a correlation length critical exponent ν ≈ 2.5.
(c) Expectation value distributions of η̂ j · η̂ j+1 at the ground state for small and large −U . (d) Rescaled order parameter 〈v̂η〉 L�v as a function
of −U for different system sizes, where the dimension �v ≈ �m ≈ 0.33. The curves also cross at the critical point. Inset: The corresponding
data collapse.
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