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In the real-space formalism of orbital magnetization (OM) for a Chern insulator without an external electric
field, it is correct to average the local OM either over the bulk region or over the whole sample. However, for a
layered Chern insulator in an external electric field, which is directly related to the nontrivial nature of orbital
magnetoelectric coupling, the role of boundaries remains ambiguous in this formalism. Based on a bilayer model
with an adjustable Chern number at half-filling, we numerically investigate the OM with the above two different
average types under a nonzero perpendicular electric field. The result shows that in this case, the nonzero Chern
number gives rise to a gauge shift of the OM with the bulk region average, while this gauge shift is absent for the
OM with the whole sample average. This indicates that only the whole sample average is reliable to calculate the
OM under a nonzero electric field for Chern insulators. On this basis, the orbital magnetoelectric polarizablity
(OMP) and the Chern-Simons orbital magnetoelectric polarizablity (CSOMP) with the whole sample average are
studied. We also present the relationship between the OMP (CSOMP) and the response of Berry curvature to the
electric field. The stronger the response of Berry curvature to electric field, the stronger is the OMP (CSOMP).
Aside from clarifying the calculation methods, our result also provides an effective method to enhance OMP and
CSOMP of materials.
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I. INTRODUCTION

In recent years, there has been a significant revival of
interest on magnetoelectric effects in materials, including
antiferromagnetic systems [1,2], topological insulators [3,4],
and multiferroic composites [5]. The magnetoelectric effect
contributed from the electronic orbital angular momentum is
called the orbital magnetoelectric effect (OME), for which
some interesting phenomena have been revealed, e.g., orbital
Hall effect [6–9], orbital torque [10,11], in twisted bilayer
graphene [12–15], helical lattices [16,17], and skyrmion crys-
tals [18,19]. One of the most quantities of the OME is the
linear orbital magnetoelectric polarizability (OMP), which di-
rectly reflects the coupling between the orbital magnetization
(OM) and the electric field.

In order to investigate OMP, the first step is to establish a
thorough understanding of the OM under an external electric
field. The modern theory of OM has achieved this for nor-
mal insulators as well as Z2 topological insulators (both with
zero Chern number), in the formalism of momentum space
(k space) [20–26]. In this context, the OM under an electric
field can be expressed as three gauge-invariant constituent
terms, namely, the local circulation (LC) term, the itinerant
circulation (IC) term, and the Chern-Simons (CS) term. The
last term is isotropic and proportional to the electric field
and therefore vanishes without an electric field. An inevitable
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problem arises when extending the modern theory to Chern
insulators. The Chern-Simons term is gauge dependent so its
unambiguous definition needs a smooth gauge. While for a
Chern insulator, it is simply impossible to construct a smooth
gauge in the entire Brillouin zone [26,27].

There is another formalism which expresses the OM
and Chern number as local quantities in the real space (r
space) [28–36]. Furthermore, there are also exciting pro-
gresses on the experimental imaging of local magnetic
properties [37,38]. In the thermodynamic limit, an average
of the local quantity over an appropriate region should give
correct values consistent with the k-space formalism. We have
verified previously that in the absence of an external electric
field, the total OM averaged over the whole sample coincides
with that over the bulk region, and also coincides with the
k-space formalism, regardless of the Chern number [39]. This
implies that both the k-space and r-space formalisms of OM
are applicable to materials without an external electric field.

For the case of finite electric field, it has been verified
that the k-space formalism applies equally to OM and its
magnetoelectric effect for normal insulators [40], while it is
not applicable any more to Chern insulators because of the
gauge discontinuity of the emerging CS term of OM as men-
tioned above [26]. Aside from the k-space formalism, similar
questions arise for the r-space method: Can it be applicable
to the case of nonzero Chern number and with an electric
field? The r-space formalism of CS term is argued to be the
more fundamental definition than the k-space one [41]. This
leads us to suspect that the r-space formalism of CS term
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may be able to circumvent the gauge discontinuity in k space.
More specifically, does it need to consider the boundary of
the sample in order to circumvent the gauge discontinuity and
therewith to obtain a well-defined CS term?

OMP is defined as the orbital contribution to the linear re-
sponse of magnetoelectric coupling, for example, the response
of OM to the external electric field. Corresponding with the
OM, OMP can also be written as the sum of similar three
gauge-invariant contributions originated from the OM formal-
ism [26]. Contributions from the LC term and the IC term
can be expressed as the standard linear response of the Bloch
functions to the external electric field, denoted as the “Kubo
term,” and the contribution from the Chern-Simons term is
called the Chern-Simons orbital magnetoelectric polarizablity
(CSOMP) [27,41–43]. CSOMP has attracted attention due
to its relation with topological phases [44,45]. This leads to
another motivation of this paper: finding a method to enhance
the total OMP, especially the CSOMP.

In this paper, we theoretically investigate the r-space for-
malism of OM for the Chern insulators in the presence of
finite electric field, by scrutinizing individual contributions
to OM from the bulk and boundary regions. Our calculations
are based on a bilayer quantum anomalous Hall (QAH) model
with an adjustable Chern number, which has better tunability
of properties (band structure, Chern number) than a mono-
layer one. Such a system is also a candidate for investigation
of orbital effects in higher dimensions [46,47]. We confirm
that under nonzero electric field, OM from the bulk region
presents a gauge shift with nonzero Chern number which
comes from the Chern-Simons term. In other words, contribu-
tion from the bulk region to the Chern-Simons term is gauge
discontinuous and not well defined. However, if taking the
boundary region into account and averaging over the whole
sample, the gauge shift phenomenon will disappear. So OM
and its constituent Chern-Simons term from the whole sample
average is well defined. With the whole sample average, both
OMP and CSOMP display a close relationship with the re-
sponse of Berry curvature to the electric field. The stronger the
latter, the stronger OMP (CSOMP). This provides a method
to estimate and enhance the magnitude of OMP (CSOMP) of
materials.

This paper is organized as follows. In Sec. II we present
the model, and in Sec. III we lay out the r-space method of
OM and OMP. In Sec. IV OM and OMP are discussed for the
Chern insulator under nonzero electric field. Conclusions are
drawn in Sec. V.

II. MODEL

We choose a bilayer QAH system as the minimum model
for our study [39,48], as illustrated in Fig. 1. Such topolog-
ical bilayer systems can be implemented experimentally by
using state-of-the-art technologies, such as microheterostruc-
tures [49–52], ultracold atomic [53–55], or photonic sys-
tems [56]. Our starting point is the spinless Hamiltonian

Hbi = H1 + H2 + Hc, (1)

where HL (L = 1, 2) corresponds to the Lth layer, and Hc is
the coupling between them. Each layer is the spin-up com-
ponent of the Bernevig-Hughes-Zhang model defined on the

FIG. 1. (a) The lattice structure of our adopted bilayer model.
The first layer (red) and the second layer (black) have different model
parameters and the same lattice constant a. t is the interlayer coupling
strength. (b) The top view of our model. The region enclosed by
blue lines represents the bulk region. LB denotes the thickness of the
boundaries. (c) The side view of our model. The z coordinate of the
first (second) layer is z1 (z2).

square lattice, with one s orbital and one p orbital on each
site [57]. In the k space, the Lth layer Hamiltonian reads as

HL =
∑
k,αβ

c†
L;kα

HL;αβ (k)cL;kβ, (2)

where c†
L;kα

(cL;kα) creates (annihilates) an electron with wave
number k and orbital α ∈ {s, p} in layer L ∈ {1, 2}. Here,
HL;αβ (k) is a 2 × 2 matrix as [57]

HL(k) = εL(k)I2×2 +
∑

i

d i
L(k)σi,

εL(k) = −2DL[2 − cos kx − cos ky],

d1
L (k) = AL sin kx, d2

L (k) = AL sin ky,

d3
L (k) = ML − 2BL[2 − cos kx − cos ky], (3)

where σi are the Pauli matrices acting on the orbital space.
The real-space version of the Lth layer Hamiltonian HL =∑

i j,αβ c†
L;iαHL;αβ (i, j)cL; jβ can be obtained from Eqs. (2)

and (3) by performing a straightforward inverse Fourier trans-
formation cL;kβ = 1√

V

∑
i cL;iβe−ik·ri , where i is the site index.

In the absence of the interlayer coupling Hc, the band
structure and Chern number of each layer can be tuned inde-
pendently by varying model parameters AL, BL, DL, and ML.
For example, the band gap is 2|ML|, and the Chern number

CL =

⎧⎪⎨
⎪⎩

+1, 0 < ML

0, ML/2BL < 0

−1, ML/2BL > 2.

(4)

The interlayer coupling is illustrated in Fig. 1(c). The first
layer (red) and the second layer (black) are stacked along the
z direction, with the simple form of interlayer coupling in real
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space as

Hc =
∑

iα

(tc†
1;iαc2;iα + H.c.), (5)

where t is the coupling strength. If the adiabatic turning on of
the interlayer coupling term (5) does not close the bulk gap,
the Chern number of the bilayer system is just the sum of those
of each layer, C = C1 + C2. Otherwise, C will change with
varying the band gap |ML| and the interlayer coupling strength
t . Our previous work shows that the Chern number |C| of this
bilayer system can take three different values, namely, 0, 1,
and 2 [39,48].

III. METHODS

Applying a static homogeneous electric field ε along z di-
rection (perpendicular to the layer plane), the full Hamiltonian
reads as

H = H0 + eε · z, (6)

where H0 represents the Hamiltonian in Eq. (1) with ε = 0.
Here z denotes the coordinate of each layer along z direction.
As shown in Fig. 1(c), the coordinate of the first (second) layer
is z1 (z2).

In the presence of an external electric field, the total OM of
a Chern insulator in r space can be expressed as [26]

M = MLC + MIC + MCS + MBC,

MLC = e

h̄cA
Im Tr{PxQH0QyP},

MIC = − e

h̄cA
Im Tr{QxPH0PyQ}, (7)

MCS = − 2e2

h̄cA
εIm Tr{PxPyPz},

MBC = −μ
e

2π h̄cA
C,

C = 4π Im Tr{QxPyQ},
where e is the magnitude of the electronic charge, c is the
vacuum speed of light, and A is the sample area. P is the
projection operator onto the ground-state occupied subspace
P = ∑

n | ψn〉〈ψn |, and its orthogonal complement Q satis-
fies Q = 1 − P. Here, | ψn〉 are the occupied eigenstates. The
dimensionless number C is the integrated Berry curvature up
to the Fermi energy, which is quantized as the Chern number
C (the topological invariant) if the Fermi energy μ is in the
bulk gap, but may not be quantized if μ is not in the gap. For
convenience in the following, we will always call C the Chern
number, no matter it is quantized or not.

The first three terms of Eq. (7) are deduced from the OM
for normal insulators, with MLC and MIC corresponding to the
local circulation (LC) and the itinerant circulation (IC) mo-
tions, respectively [26]. With nonzero Chern number, the term
MBC is added in Eq. (7) to represent the topological properties
of the material, which is proportional to the integrated Berry
curvature (BC) up to the Fermi energy. This term is a direct
correspondence to that in the k-space formalism in the case of
zero electric field [28,29,39]. These three terms depend on the

electric field ε only implicitly through P and Q. In contrast,
the Chern-Simons term MCS gathers contributions with an
explicit dependence on ε. In the limit of vanishing ε, MCS

will become zero, and only the remaining three constituent
components survive [28,29].

In the r-space formalism (7), all terms are expressed as
1
A Tr . . . , i.e., averages of some local quantities over the real
space. This leads to a noticeable question: over which region?
This is conceptually and technologically non-negligible espe-
cially for Chern insulators, where the edge states may have
a nontrivial contribution. In the absence of an electric field,
this has been resolved that the average region can be chosen
either in the bulk (excluding the boundaries) or over the whole
sample even for the Chern insulators [28,29,39]. Here, as
illustrated in Fig. 1, the bulk region refers to the inner part
of the sample enclosed by the blue dashed square, while the
rest part is the boundary region. The whole sample contains
both the bulk region and the boundary region.

However, the presence of an external electric field leads to
some nontrivial problems which are closely related to the non-
trivial nature of magnetoelectric coupling for topologically
nontrivial materials [27,40,41]. Let us summarize the prob-
lems we are facing when calculating OM for a layered lattice
from Eq. (7). Now with a nonzero Chern number, the presence
of an external electric field ε leads to some ambiguities. First,
the CS term has an explicit dependence on ε and z, and
other terms have an implicit dependence on them. For layered
Chern insulators, it was found that the gauge ambiguity can
manifest itself as a z-coordinate-dependent result in the quasi-
two-dimensional (quasi-2D) k-space formalism [41]. Second,
in the spatial tracing process, should the contribution from
edges be counted in? Previous works show that it is impossible
to calculate MCS in k space for Chern insulators due to its
gauge dependence as mentioned above [26,27]. Is it possible
to circumvent this problem in r space? If possible, a further
question arises whether the boundaries of the sample need to
be considered to obtain a well-defined and single-valued MCS?
Therefore, in the following, we try to clarify these issues of
the r-space formalism OM for layered Chern insulators in the
presence of an electric field.

The linear magnetoelectric response is defined as αi j =
(∂Mj/∂εi )B = (∂Pi/∂Bj )ε, where M and P are the macro-
scopic magnetization and polarization, respectively. In this
paper, we focus on the OM so that αi j is called the orbital
magnetoelectric polarizability (OMP) [42]. Here, the direc-
tions of OM and applied electric field ε are both along the z
direction. So αi j can be simplified as αzz which is denoted as
α in the following. By using Eq. (7), correspondingly, α can
be decomposed as

α = αLC + αIC + αCS + αBC,

αLC = (∂MLC/∂ε)B=0,

αIC = (∂MIC/∂ε)B=0,

αBC = (∂MBC/∂ε)B=0, (8)

αCS = (∂MCS/∂ε)B=0

= − 2e2

h̄cA
Im Tr{PxPyPz}.
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We have checked that the term αBC is almost zero under
a finite but small electric field we adopted in this paper. The
reason relies on the term MBC in the OM. If we average the
local OM over the bulk region, MBC only depends on the topo-
logical properties of the sample which is not destroyed by this
small electric field [39], so αBC is nearly zero. Besides, our
previous work has confirmed that MBC remains zero with the
whole sample average regardless of the Chern number [39].
αBC therewith become zero. In other words, the term MBC will
not affect the behavior of the OMP. Hence, we only need to
consider the other three constituent terms of OMP even for
Chern insulators,

α = αLC + αIC + αCS (9)

which is consistent with the expression of OMP for normal
insulator [26,42]. The term αCS is the Chern-Simons orbital
magnetoeletric polarizability (CSOMP) [42]. It represents the
isotropic orbital magnetoelectric coupling, which is equiva-
lent to a term proportional to θCSε · B. The dimensionless
scalar parameter θCS denotes Chern-Simons axion coupling
strength [41,58]. The relation between αCS and θCS satisfies

αCS = e2

2πh
θCS. (10)

In the following, we focus on the behavior of the OM
under a finite electric field, in the r-space formalism with
two different average types. Then the properties of OMP and
CSOMP for different topological phases will be investigated.

IV. RESULTS AND DISCUSSION

A. Orbital magnetization under a finite electric field

To investigate OMP, it is necessary to understand the influ-
ence of electric field ε on OM. Previous studies have shown
that for the calculation of OM without the electric field,
the average of r-space formalism over the whole sample is
consistent with it over the bulk region even for Chern insula-
tors [29,39]. Does this still work for a nonzero electric field?

We first investigate the OM M as a function of the electric
field ε, from these two different averages. As shown in Fig. 2,
black (red) lines correspond to the result from the whole
sample (bulk region) average, where μ = 0.01 is set in the
bulk gap, and the z coordinates of two layers are set as z1 = 1
and z2 = 2, respectively. The Chern number (blue line referred
to right axis) is also plotted for comparison. Three panels
corresponds to samples with different Chern number C at
ε = 0. The first observation is that there is a finite window of
linear dependence M(ε) around ε, whose slope is proportional
to the Chern number [23,41]. This linear relationship only
holds when the Fermi energy is in the bulk gap. When the
electric field is strong enough to deform the band structure,
the Fermi energy falls into the band. This can be confirmed by
the fact that this happens when the Chern number C (blue line
and right axis) deviates from integer.

The second feature in Fig. 2 is the M(ε) curve from the
whole sample average (black) is completely consistent with
(in fact covered by) that from the bulk region average (red),
in all three panels. It seems to imply that these two different
types of averages are consistent with each other under nonzero
electric field even for the Chern insulator. In fact, however, it

FIG. 2. The OM M with the two different averages as a function
of the electric field ε for the bilayer sample with different Chern
number. (a) M1 = M2 = −0.5, and the bilayer sample with C =
0. (b) M1 = −0.5, M2 = 0.5, and the bilayer sample with C = 1.
(c) M1 = M2 = 0.5, and the bilayer sample with C = 2. Black (red)
lines denote the M from the whole sample average (the bulk region
average). Blue line denotes the Chern number C of the sample.
The Fermi energy μ = 0.01. The z coordinate of the first (second)
layer is z1 = 1 (z2 = 2). The other model parameters: A1 = A2 = 0.3,
B1 = B2 = 0.2, D1 = D2 = 0, t = 0.1. The sample size N = 50, and
the boundary thickness LB = 2

5 N .

is not always the case. To further clarify this, we study the
behavior of OM under different topological phases in more
details.

As mentioned above, if the interlayer coupling strength
t is not strong enough to close the bulk gap, C is just the
sum of those of each layer, C = C1 + C2. By varying model
parameters, e.g., ML, there will be various combinations of
CL [L ∈ (1, 2)] through Eq. (4). Now we investigate the de-
velopment of the OM under such changes. Let us first look
at the OM M as a function of M1 which determines C1, as
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FIG. 3. The OM M from two different averages as a function of
M1. Left column: the OM M from the whole sample average. Right
column: the OM M from the bulk region average. First row: M2 =
−0.5 so that C = C1 + 0. Second row: M2 = 0.5 so that C = C1 + 1.
Black line: the OM M under zero electric field. Red line: the OM
M under nonzero electric field. For a clearer view, solid and dashed
lines are used when two lines coincide. This also applies to following
figures. Blue line: the Chern number C as a function of M1. Other
model parameters are the same as in Fig. 2.

displayed in Fig. 3. Here the first (second) row corresponds
to the case of the Chern number C = C1 + 0 (C = C1 + 1),
and the left (right) column corresponds to the OM from whole
sample (bulk region) average, with the black (red) line for the
case of an electric field ε = 0 (ε = 0.001). The behavior of
OM M has a strong correlation with that of the total Chern
number (blue line with reference to the right axis) C up to an
opposite sign. Meanwhile, a large OM M occurs only when
the Chern number C is nonzero.

Since we have chosen a small electric field strength ε =
0.001, the change of M under nonzero electric field M(ε =
0.001) − M(ε = 0) is supposed to be very small compared to
M itself. This is the case by averaging over the whole sample
as shown in the left column of Fig. 3, where black and red
lines are indistinguishable. However, this does not apply to
the bulk region average (right column). For example, Fig. 3(b)
shows there is a shift of OM M from the bulk region average
(red line) under ε = 0.001 when C (blue line) is nonzero. We
define

�Ms ≡ M(ε) − M(0) (11)

as a measure of this variation caused by the electric field.
As shown in Fig. 3(b), it satisfies �Ms ∝ sgn(C) ε

2π
with

C = C1 + 0 [23,41]. If we further change the Chern number to
C = C1 + 1, as shown in Fig. 3(d), �Ms becomes larger with
C = 2 than with C = 1. But we have checked that the former
is not twice as large as the latter. Moreover in Fig. 3(d), this
difference �Ms is not zero even when C is zero. These indicate
that the relationship between �Ms and C is not a simple linear
relationship with the condition of nonzero ε. We numerically
compare the value of �Ms under different Chern numbers.
For example, �Ms = 3ε

2π
with C = 2, and �Ms = sgn(C) ε

2π

FIG. 4. Similar to Fig. 3 but for the bilayer as a function of M2.
(a), (b) M1 = −0.5. (c), (d) M1 = 0.5. Black line: the OM M under
zero electric field. Red line: the OM M under nonzero electric field.
Blue line: the Chern number C as a function of M2. Other model
parameters are the same as Fig. 2.

with C = ±1. There are two different results of �Ms for
C = 0. With the condition of C = 0 + 0, �Ms becomes 0 in
Fig. 3(b). But if C = 0 is caused by C = −1 + 1, �Ms = ε

2π

with M1 ∈ (0.8, 1.5) in Fig. 3(d). Hence, it shows that �Ms is
not only related to C, but also to the specific Chern number of
each layer CL.

Similar to Fig. 3 associated with varying C1 from M1,
we show results associated with varying C2 in Fig. 4, where
the topological edge states are contributed from the second
layer. Still, the first (second) row corresponds to the case
of the Chern number C = 0 + C2 (C = 1 + C2), and the left
(right) column corresponds to that the from whole sample
(bulk region) average, with the black (red) line for the case
of an electric field ε = 0 (ε = 0.001). Similar to the above
case of changing M1, M from the whole sample average
exhibits a very slight difference under a small electric field
as shown in Figs. 4(a) and 4(c). From Fig. 4(b), we can see
�Ms = sgn(C) 2ε

2π
with C = 0 ± 1. Besides, when M2 takes

a value between 0.8 and 1.5 in Fig. 4(d), �Ms = − ε
2π

with
C = 0 [C = 1 + (−1)].

We summarize values of �Ms under these typical config-
urations of CL in Table I. It indicates that the contribution
of the first layer to �Ms is C1

ε
2π

while the second layer is
C2

2ε
2π

. Therefore, we conjecture �Ms is also related to the z

TABLE I. �Ms under different combination of CL .
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FIG. 5. Similar to Fig. 3 but for the bilayer with coordinate z1 =
0 and z2 = 1. (a), (b) M2 = −0.5. (c), (d) M2 = 0.5. Black line: the
OM M under zero electric field. Red line: the OM M under nonzero
electric field. Blue line: the Chern number C as a function of M1. The
other model parameters are the same as Fig. 3.

coordinate of each layer, and suppose

�Ms = ε

2π
(C1z1 + C2z2), (12)

where z1 (z2) is the z coordinate of the first (second) layer.
It is known that with nonzero Chern number, the gauge am-
biguity may lead to a z-coordinate-dependent result [27,41].
Therefore, in order to further confirm this conclusion, we shift
the origin of the z coordinate, so that z1 = 0 and z2 = 1 for
two layers, respectively. Corresponding results for the case of
varying C1 and C2 are presented in Figs. 5 and 6, respectively.

FIG. 6. Similar to Fig. 4 but for the bilayer with coordinate z1 =
0 and z2 = 1. (a), (b) M1 = −0.5. (c), (d) M1 = 0.5. Black line: the
OM M under zero electric field. Red line: the OM M under nonzero
electric field. Blue line: the Chern number C as a function of M2.
Other model parameters are the same as Fig. 4.

FIG. 7. The OM with the bulk region average as a function of
M2. First row: z coordinate for the bilayer as z1 = 0, z2 = 1. Second
row: z1 = 1, z2 = 2. Left column: the OM M from the bulk region
average under zero (black line) and nonzero (red line) electric field.
Right column: the constituent component MCS (black line) and �Ms

(red line) under the electric field ε = 0.001. Blue line: the Chern
number C as a function of M2. The other model parameters are the
same as Fig. 4.

According to our supposed Eq. (12), with z1 = 0, the
change of C1 will not lead to a nonzero �Ms, and only C2

can affect the value of �Ms. Now this is confirmed from
Fig. 5(b) that �Ms is zero as a function of M1. If C2 = 1
in Fig. 5(d), �Ms remains �Ms = ε

2π
C2z2 = ε

2π
regardless

of how M1 (i.e., C1) changes. The same is true in Figs. 6(b)
and 6(d). Similarly, if the z coordinate is shifted to make
z1 = 0 and z2 = 1, �Ms will disappear with the whole sample
average of OM M as illustrated in the left column of Figs. 5
and 6. It raises a question as to whether the same result applies
to the bulk region average if the bulk region is increased
towards (but never including) the boundary. The answer is yes
and we show the results and explanations in the Appendix.

To figure out the microscopic origin of nonzero �Ms, we
further divide the OM M into four constituent components
according to Eq. (7). It turns out that the MCS term is the
dominating contribution of the nonzero �Ms, as will be seen
in the following. Let us first focus on the bulk region aver-
age as shown in Fig. 7. We choose two different types of z
coordinate for the bilayer sample: z1 = 0, z2 = 1 in the first
row of panels, and z1 = 1, z2 = 2 in the second row. Com-
paring �Ms with all constituent terms of OM, we find that
�Ms as a function of M2 coincides with the constituent term
MCS in Figs. 7(b) and 7(d). Therefore, �Ms comes mostly
from the Chern-Simons orbital magnetoelectric coupling MCS.
This is consistent with Ref. [41], which shows that due to
the gauge discontinuity for Chern insulators, θCS in k space
presents a shift under the coordinate shift as z → z + 
z, i.e.,

θCS ∝ C
z, with C the Chern number. It is derived from
OM’s theoretical formalism so it is general. We extend this
derivation to layered QAH system whose Chern number C
is composed by the Chern number CL of different layers of
the system, such as the bilayer Chern insulator in Eq. (12).
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FIG. 8. The OM M as a function of M2 under zero and nonzero
electric field. Left column: The OM M from the whole sample aver-
age. Right column: M from the bulk region average. First row: under
zero electric field. Second row: under the electric field ε = 0.001.
Black line: the OM M for the bilayer system with z1 = 0 and z2 = 1.
Red line: the OM M for the bilayer system with z1 = 1 and z2 = 2.
Blue line: the Chern number C as a function of M2. M1 = −0.5, and
other model parameters are the same as Fig. 4.

Similarly, it also applies to three-layered Chern insulator and
satisfies �Ms = ε

2π
(C1z1 + C2z2 + C3z3), which is described

in detail in the Appendix. On this basis, it is reasonable to
extend this relationship to the multilayer Chern insulator as
�Ms = ε

2π
(C1z1 + C2z2 + C3z3 + · · · ).

Since �Ms [�Ms ≡ M(ε) − M(0)] from the bulk average
is dependent on the z coordinate of the layered system as
shown above, it suggests that the OM M from the bulk av-
erage is also dependent on the z coordinate of the sample. As
presented in Fig. 8, we summarize the effects from different
electric fields, different averaging processes, and different def-
initions of the z coordinate, with varying C2. The right column
denotes the OM M from the bulk average. In Fig. 8(b), the
OM M(0) is not affected by shifting the z coordinate of the
sample. However, the OM M(ε = 0.001) shows a shift under
two different definitions of the z coordinate as presented in
Fig. 8(d). In other words, the OM M from the bulk region
average is gauge invariant only at zero electric field but is
not well defined under nonzero electric field for the Chern
insulators.

Now if we turn attention to the whole sample average
as illustrated in the left column of Fig. 8, the OM M from
the whole sample average is immune to the shifting of the z
coordinate regardless of whether the electric field ε is zero or
not. It indicates the OM from the whole sample average is well
defined even for the Chern insulators under a nonzero electric
field. This conclusion reconfirms the previous argument that
the r-space formalism of MCS is likely to be a more funda-
mental definition because it is free from gauge variance [41].

In a word, for a layered lattice with nonzero Chern insu-
lator (integrated Berry curvature), the OM M from the bulk
region average is not well defined under a nonzero electric

FIG. 9. The total OMP and its constituent terms with the whole
sample average as a function of M2. First row: coordinate z1 = 0,
z2 = 1. Second row: z1 = 1, z2 = 2. Left column: M1 = −0.5, and
the Chern number C = 0 + C2. Right column: M1 = 0.5, and the
Chern number C = 1 + C2. Black line represents the total OMP α.
Red line represents the constituent term αCS. Green line represents
the constituent term αLC + αIC. Blue line represents the Chern num-
ber C = C1 + C2 of the bilayer sample. The electric field ε = 0.001,
and other model parameters are the same as Fig. 4.

field, due to the gauge discontinuity of the term MCS. Under a
nonzero electric field and for a layered lattice with a nonzero
Chern number, the correct algorithm to calculate the OM is
the whole sample average.

B. Orbital magnetoelectric polarizability

Based on above discussions about the OM of a bilayer,
now we can investigate the properties of OMP with different
combinations of Chern number CL. Starting from Eq. (9), the
total OMP α can also be divided into four constituent terms.
The term αBC under two average processes remains zero as
mentioned above, so only the other three terms have to be
considered. Here, our main focus is the whole OMP α and
the constituent CSOMP term αCS due to its close relation with
topological phases [45].

In Fig. 9, we show behaviors of the total OMP α and
its constituent terms, αCS and αLC + αIC, by changing the
parameter M2, which directly controls the bulk gap of the
second layer and therefore controls the Chern number C2. For
comparison, the first (second) row of panels correspond to the
coordinate z1 = 0 and z2 = 1 (z1 = 1, z2 = 2), i.e., with a shift
of z coordinate.

For the case of Chern number C = C1 + C2 = 0 + C2, by
comparing Figs. 9(a) and 9(c), we can see that the total OMP
α and its constituent terms αLC + αIC, αCS, remain unchanged
under these such a shift of the z coordinate. This holds
similarly for the case of C = C1 + C2 = 1 + C2 as shown in
Figs. 9(b) and 9(d). These results are consistent with pre-
vious section’s conclusion that the OM and its constituents
are gauge invariant, when they are averaged over the whole
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sample. Therefore, correspondingly, the total OMP α and the
constituent terms αLC + αIC, and αCS, are also gauge invariant
with the whole sample average.

Due to such a gauge invariance of OMP from the whole
sample average, we can just fix the z coordinate as z1 = 0
and z2 = 1 in the following. Let us first focus on the case of
C = 0 + C2 in Fig. 9(a). The most prominent feature is the
peaks of the magnitudes of α, αLC + αIC, and αCS simultane-
ously around M2 = 0.05, when the Chern number C = 0 + C2

jumps from 0 + 0 to 0 + 1. Then, their magnitudes decrease
gradually to zero at M2 ∼ 0.8, where another topological
phase transition towards C = 0 − 1 happens. Subsequently,
the signs of α, αLC + αIC, and αCS are reversed, respec-
tively. The magnitudes of αLC + αIC and αCS reach another
maximum and then decrease to zero at M2 < 1.55. But this
maximum value is much smaller than the peak at M2 = 0.05.
If we further increase M2, even though there is a topologi-
cal phase transition of C = 0 − 1 → 0 + 0 at M2 ∼ 1.6, α,
αLC + αIC, and αCS remain zero instead of showing any peak.

Our previous work finds that a disorder-induced topo-
logical transition tends to be accompanied by a remarkable
enhancement of OMP [48]. However, the above results in-
dicate that, although a topological phase transition usually
causes a sudden change of OM, it is not always accompa-
nied by a change of OMP. This also applies to the case of
C = 1 + C2 in Fig. 9(b). As M2 changes from −1 to 4, the
Chern number C changes from 1 + 0 to 1 + 1, then to 1 − 1,
and finally back to 1 + 0. α, αLC + αIC, and αCS present a peak
only at the first two topological phase transitions. It is worth
noticing the magnitude of the Y axis in Fig. 9(b) is nearly
100 times larger than that in Fig. 9(a). Hence, both peaks of
OMP for the C = 1 + C2 case are larger than those for the
C = 0 + C2 case.

Since a topological phase transition is not sufficient to
produce a large value of OMP (CSOMP), it is necessary
to clarify the origin and to identify those transitions that
can greatly enhance the OMP (CSOMP). We will show that
OMP (CSOMP) is related to the response of the integrated
Berry curvature to the electric field. Let us define the re-
sponse of Berry curvature under an external electric field
as follows:

�C

�ε
= C(ε) − C(0)

ε
. (13)

The resulting �C
�ε

corresponding to the cases of Figs. 9(a)
and 9(b) [replotted as Figs. 10(a) and 10(c)] are presented
as Figs. 10(b) and 10(d) respectively. Figure 10(b) shows the
change of �C

�ε
(black line) and Chern number C = 0 + C2

(blue line) vs M2. By comparing Fig. 10(a) with 10(b), we
can see that peaks of the total OMP α correspond to sharp
peaks of �C

�ε
. Besides, the magnitude of �C

�ε
with the topo-

logical transition C = 0 + 0 → 0 + 1 is larger than that with
C = 0 + 1 → 0 − 1, as shown in Fig. 10(b). Meanwhile, the
peak value of α with the topological transition C = 0 + 0 →
0 + 1 is higher than that for C = 0 + 1 → 0 − 1 in Fig. 10(a).
Similar correspondences also appear in Figs. 10(b) and 10(d).
We have mentioned above that OMP in Fig. 10(b) is nearly
100 times larger than in Fig. 10(a). Correspondingly, the value
of �C

�ε
in Fig. 10(d) is similarly 100 times larger than that in

FIG. 10. Left column: copies of Figs. 9(a) and 9(b). Right col-
umn: the corresponding response of Berry curvature to electric field
(black line) as a function of M2. First row: M1 = −0.5, and the
Chern number C = 0 + C2. Second row: M1 = 0.5, and the Chern
number C = 1 + C2. The electric field ε = 0.001, and other model
parameters are the same as Fig. 4.

Fig. 10(b). In conclusion, there is a perfect correspondence
(positions and magnitudes) between the peaks of OMP α and
those of the differential Berry curvature �C

�ε
at topological

phase transition. This similarly applies to the CSOMP αCS

term.
The above r-space results are performed on finite-size

samples. Before ending, we discuss the size effects of our
physical results. Figure 11 shows the total OMP α and the
CSOMP term αCS with increasing sample sizes N , for the case
C = 0 + C2 in Figs. 11(a) and 11(b), and the case C = 1 + C2

FIG. 11. Left column: the total OMP α with the whole sample
average as a function of M2 for different sample sizes N . Right col-
umn: the CSOMP term αCS as a function of M2 for different sample
sizes N . (a), (b) M1 = −0.5, and the Chern number C = 0 + C2. (c),
(d) M1 = 0.5, and the Chern number C = 1 + C2. The other model
parameters are the same as Fig. 4.
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in Figs. 11(c) and 11(d), respectively. In both cases, the peak
shapes of both the OMP α and the CSOMP αCS become
sharper with the increasing the sample sizes. These peaks
seems to converge until the sample size N × N = 45 × 45.
This scaling growth confirms the stability of these peaks to-
wards the thermodynamic limit, which further confirms these
OMP and CSOMP peaks experimentally observable in realis-
tic materials.

V. SUMMARY

In summary, based on a bilayer model with an adjustable
Chern number, we numerically investigated the orbital mag-
netization (OM) M under a finite external electric field ε with
two different averages: averaging over the bulk or over the
whole sample. Our first key finding is that the total OM M over
the bulk region has a gauge dependent on the z coordinate as
�Ms = ε

2π
(C1z1 + C2z2) where C1 (C2) represents the Chern

number associated with the first (second) layer, and z1 (z2)
is the corresponding z coordinate. By scrutinizing the OM
constituent terms, we find that this gauge shift comes from
the gauge discontinuity of the Chern-Simons orbital magne-
toelectric term MCS, which is previously captured in k space.
Fortunately, this gauge shift of OM vanishes when the average
is over the whole sample. This means that it is reliable to adopt
the whole sample average of OM for a layered Chern insulator
under nonzero electric field.

Based on the knowledge of OM with a finite electric
field, we further investigate the OMP, in order to look for
ways to significantly enhance OMP α and its constituent
term, namely, the CSOMP αCS. The result shows that the
OMP and CSOMP are generally enhanced at topological
phase transitions, provided the response of Berry curvature
to electric field is nonzero. The stronger the response of
Berry curvature to electric field, the larger the OMP and
CSOMP are.
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APPENDIX

1. Thickness of boundary

In previous studies, we separated the bulk and boundary
regions in a manner of a fixed fraction: the central quarter
of the sample is adopted as the bulk, and the rest part is
the boundary. A question arises as to whether the result of
OM from the bulk region average can approach that from the
whole sample average (by for example, overcoming the shift
caused by the electric field), when the bulk region we adopt
increases towards the boundary. Hence, we study the effect of
different manners of separation by varying the thickness of the
boundary, i.e., LB as illustrated in Fig. 1(b).

FIG. 12. The OM M as a function of M1 for the bilayer Chern
insulator. Four rows correspond to the thickness of the boundary
LB = 0, 1, 2, 3, respectively, with LB = 0 being the whole sam-
ple average. Left column: z coordinate for the bilayer as z1 = 0,
z2 = 1. Right column: z1 = 1, z2 = 2. Black line: the OM M un-
der zero electric field. Red line: the OM M under electric field
ε = 0.001. Blue line: the Chern number C as a function of M1.
The sample size N = 40, and other model parameters are the same
as Fig. 3.

Figure 12 shows the bulk averaged OM with different
definitions of LB, for the bilayer sample with z1 = 0, z2 = 1
(left column), and z1 = 1, z2 = 2 (right column) respectively,
where LB = 0 just corresponds to the whole sample average.
We can see that the OM from the bulk region average (LB �= 0)
always presents an up shift under finite electric field with the
decrease of boundary region even for the case LB = 1, and the
shift variation satisfies Eq. (12). This confirms our conclusion
that only OM averaged over the whole sample is well defined.

2. Three-layered Chern insulator

To further apply our conclusions to systems with more
layers or higher dimensions, we supplement the results
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of the three-layered Chern system in this Appendix. The
Hamiltonian of the three-layered system is written as

Htr = H1 + H2 + H3 + H12 + H23, (A1)

where HL (L = 1, 2, 3) corresponds to the Lth layer that is
expressed as Eq. (2). H12 (H23) expressed as Eq. (5) is the
coupling between adjacent layers.

Similarly to the above bilayer Chern system, we choose
a relatively weak coupling parameter t = 0.1 so that the
Chern number C of the system is just the sum of that of
each layer, C = C1 + C2 + C3. Varying model parameters ML

[L ∈ (1, 2, 3)] changes CL via Eq. (4). To further prove our
conjecture of �Ms, we change the parameter ML of each layer,
respectively, and observe what happens to OM M. As shown
in Fig. 13, different rows correspond to different combination
of CL, namely, C = C1 + 0 + 0, C = 0 + C2 + 0, and C =
0 + 0 + C3. The left (right) column denotes the OM M from
whole sample (bulk region) average, with the black (red) line
for the case of an electric field ε = 0 (ε = 0.001). From the
right column of Fig. 13, it can be clearly seen there is a shift
of OM M from the bulk region average under nonzero electric
field (red line) when C (blue line) is nonzero. Moreover, this
shift variation �Ms satisfies our previous conjecture, �Ms =
ε

2π
(C1z1 + C2z2 + C3z3). As for the OM averaged over the

whole sample as shown in the left column of Fig. 13, it is
immune to the above shift caused by the electric field ε. The
OM from the whole sample average is well defined.

Therefore, our conclusions of the bilayer Chern insulator
also apply to three-layered Chern insulator. It is also reason-
able to extend these conclusions to systems with more layers
or higher dimensions.

FIG. 13. The OM M as a function of ML [L ∈ (1, 2, 3)] under
zero (black line) and nonzero electric field (red line) for the three-
layered system with z1 = 1, z2 = 2, and z3 = 3. Left column: from
the whole sample average. Right column: from the bulk region av-
erage. First row: M versus M1 with M2 = M3 = −0.5. Second row:
M versus M2 with M1 = M3 = −0.5. Third row: M versus M3 with
M1 = M2 = −0.5. Blue line: the Chern number C as a function of
ML . The sample size N = 40, and other model parameters are the
same as Fig. 4.
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