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Accelerating self-consistent field iterations in Kohn-Sham density functional theory using a
low-rank approximation of the dielectric matrix
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We present an efficient preconditioning technique for accelerating the fixed-point iteration in real-space
Kohn-Sham density functional theory (DFT) calculations. The preconditioner uses a low-rank approximation
of the dielectric matrix (LRDM) based on Gâteaux derivatives of the residual of fixed-point iteration along ap-
propriately chosen direction functions. We develop a computationally efficient method to evaluate these Gâteaux
derivatives in conjunction with the Chebyshev filtered subspace iteration procedure, an approach widely used
in large-scale Kohn-Sham DFT calculations. Further, we propose a variant of LRDM preconditioner based on
adaptive accumulation of low-rank approximations from previous self-consistent field iterations, and also extend
the LRDM preconditioner to spin-polarized Kohn-Sham DFT calculations. We demonstrate the robustness and
efficiency of the LRDM preconditioner against other widely used preconditioners on a range of benchmark
systems with sizes ranging from ∼100 to 1100 atoms (∼500–20 000 electrons). The benchmark systems include
various combinations of metal-insulating-semiconducting heterogeneous material systems, nanoparticles with
localized d orbitals near the Fermi energy, nanofilm with metal dopants, and magnetic systems. In all benchmark
systems, the LRDM preconditioner converges robustly within 20–30 iterations. In contrast, other widely used
preconditioners show slow convergence in many cases, as well as divergence of the fixed-point iteration in some
cases. Finally, we demonstrate the computational efficiency afforded by the LRDM method, with up to 3.4-fold
reduction in computational cost for the total ground-state calculation compared to other preconditioners.
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I. INTRODUCTION

Electronic-structure calculations based on Kohn-Sham
density functional theory (KS-DFT) [1,2] provide an excel-
lent balance between accuracy and computational efficiency
by reducing the many-body Schrödinger problem of inter-
acting electrons into an equivalent problem of noninteracting
electrons in an effective mean field that is governed by the
electron density. This has led to KS-DFT being one of the
most widely used electronic-structure methods for the pre-
dictive modeling of materials and for gaining qualitative and
quantitative insights into various material properties. The
significant increase in computational resources over the last
decade, including the advent of hybrid CPU-GPU architec-
tures, has also played an important role in the wide adoption
of KS-DFT. Furthermore, the simultaneous development of
efficient and scalable numerical schemes in conjunction with
systematically convergent real-space discretizations [3–8], in-
cluding reduced-order scaling approaches (cf., e.g., [9–12]),
have advanced the ability to conduct fast and accurate DFT
calculations using large-scale computing platforms. As a
result, applications using KS-DFT are increasingly target-
ing larger as well as more complex heterogeneous material
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systems [13–21]. However, existing numerical methods to
solve the Kohn-Sham equations suffer from instabilities for
heterogeneous systems, with the convergence worsening for
larger system sizes. To elaborate, the ground-state solution in
KS-DFT is often computed via the solution of the nonlinear
Kohn-Sham eigenvalue problem, that is posed as a fixed-
point iteration—commonly referred to as the self-consistent
field (SCF) iteration—in the electron density, written as ρ =
F [Veff[ρ]], where ρ denotes the electron density and Veff[ρ]
is the Kohn-Sham effective mean-field potential. As each
step in the fixed-point iteration involves the computation of
Kohn-Sham eigenstates that scales cubically with the number
of electrons (Ne), the slow convergence is a serious compu-
tational bottleneck for large-scale DFT calculations. As will
be discussed below, existing state-of-the-art methods for ac-
celerating the Kohn-Sham fixed-point iteration are either not
suitable to generic heterogeneous material systems or incur
significant computational overhead.

The origin of the instabilities in the Kohn-Sham SCF it-
eration is due to the large condition number of the Jacobian
operator corresponding to the residual of the fixed-point iter-
ation. The Jacobian operator, denoted by J = δ

δρ
(F [Veff[ρ]] −

ρ), is related to the physical dielectric operator of the material
system, J = −ε†. Methods such as the Ho-Ihm-Joannopoulos
(HIJ) method [22] and the extrapolar preconditioner [23]
have been proposed to directly compute ε that allow efficient

2469-9950/2023/107(12)/125133(18) 125133-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6356-6015
https://orcid.org/0000-0002-9451-2300
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.125133&domain=pdf&date_stamp=2023-03-16
https://doi.org/10.1103/PhysRevB.107.125133


SAMBIT DAS AND VIKRAM GAVINI PHYSICAL REVIEW B 107, 125133 (2023)

convergence of the SCF iteration. However, the associated
quartic-scaling computational cost of computing ε limits their
application to small system sizes of ∼100 atoms [23]. The
quartic-scaling cost arises from the computation of the static
susceptibility matrix (χ0), a portion of ε, using the Alder-
Wiser expression [24,25] that involves a double summation
over all occupied and many unoccupied eigenstates for each
matrix element of χ0. Thus, DFT codes have primarily relied
on cheaper quasi-Newton techniques with an approximation
of J as a preconditioner to accelerate the SCF iteration.
Broadly, two groups of such methods have found wide usage
in the DFT community, one using direct numerical approxi-
mation of J from the history of previous SCF iterations and
the other based on physically motivated approximations of
ε. Concerning the former group of methods, the most widely
used techniques are those of Anderson [26], Pulay [27], and
Broyden [28] and direct inversion of the iterative subspace
(DIIS) [29]. These techniques can be generically considered
as multisecant approximations of J or J−1 [30], where the
preconditioner is constructed to optimally satisfy the secant
approximation of J at multiple steps, simultaneously, based
on a history of ρ and F [Veff[ρ]] from previous SCF iter-
ations. Further, such schemes have been shown to behave
like Krylov subspace methods with Q-superlinear conver-
gence near the ground-state solution [31,32]. However, as
shown in previous studies [33,34], for large metallic sys-
tems and heterogeneous systems with large condition numbers
of J , multisecant approaches demonstrate slow and system-
size-dependent convergence. These issues can be further
compounded by potential strong nonlinearities in F [Veff[ρ]]
in heterogeneous systems, resulting in divergence of the SCF
iteration as will be demonstrated in this work. Given the
limitations of the multisecant methods, several physically mo-
tivated approximations of ε have been proposed, and they
are typically combined with the aforementioned multisecant
methods of Anderson, Pulay, or Broyden. The Kerker precon-
ditioner [35] is one such widely used approximation, which is
based on the Thomas-Fermi screening theory of homogeneous
electron gas. Although the Kerker preconditioner captures the
long wavelength divergent eigenvalues of ε in bulk metallic
systems, it is not suitable for semiconducting and insulat-
ing systems as it does not model the screening behavior in
these systems. In order to better capture the screening ef-
fects in semiconducting and insulating systems, the Resta [36]
and truncated-Kerker [37] preconditioners have been pro-
posed based on material-specific parametrizations related to
the static dielectric constant. However, these preconditioners
are still not suitable for heterogeneous material systems with
spatially varying screening behavior. We refer to [38] for a
more in-depth review of the numerical convergence aspects
of the above preconditioners, and their systematic comparison
on robustness and efficiency measures assessed on a test suite
of benchmarks that encapsulates various sources of ill condi-
tioning of the Kohn-Sham SCF iteration.

In order to address the aforementioned challenges posed by
heterogeneous systems, preconditioners such as the Thomas-
Fermi–von Weizsacker (TFW) preconditioner [39], elliptic
preconditioner [33], and local density of states (LDOS)-
based preconditioner [34] have recently been developed. The
TFW preconditioner approximates the χ0 portion of ε, re-

lying on the equivalence between χ0 and the inverse of the
double functional derivative of the noninteracting kinetic en-
ergy functional (Ts[ρ]) and using the TFW approximation
for Ts. However, the TFW functional approximation can-
not accurately capture the complex dielectric response in
general heterogeneous systems due to the semilocal nature
of the functional, and thus limits its suitability to simpler
metal-vacuum systems. In the case of elliptic and LDOS
preconditioners, a key limitation is that they consider only
long-range eigenmodes of χ0 in the construction of the
preconditioner. This prevents the elliptic and LDOS precondi-
tioners from appropriately accounting for the eigenmodes of
χ0 with large eigenvalues related to localized states near the
Fermi energy [34] that would require resolving eigenmodes
with atomic-scale wavelengths. Such localized states near the
Fermi energy can occur for metallic elements with d and f
valence orbitals. Further, strong nonlinearities in F [Veff[ρ]]
are not accounted for in these preconditioners. In addition
to the above-discussed preconditioners for the Kohn-Sham
fixed-point iteration map, methods to directly minimize the
Kohn-Sham finite-temperature free energy functional over
the Kohn-Sham orbitals and fractional occupancies have also
been developed, for example, the ensemble DFT method [40].
Due to its improved global convergence, in general, over
fixed-point-iteration-based methods, ensemble DFT has been
demonstrated to converge robustly for challenging SCF prob-
lems. However, the computational cost associated with direct
minimization can be substantially larger than fixed-point iter-
ation methods [38].

In this work, we present a robust and computationally
efficient preconditioning approach for the Kohn-Sham SCF
iteration based on a low-rank approximation of J , or equiv-
alently ε. This approach, which we refer to as the low-rank
dielectric matrix (LRDM) preconditioning approach, con-
structs an approximation of J based on a sum of rank-1 tensor
products between direction functions corresponding to an ap-
proximate Krylov subspace of J and the Gâteaux derivative of
the residual of the fixed-point iteration, F [Veff[ρ]] − ρ, along
the direction functions. We note that this preconditioning
strategy was proposed in a recent work by Niklasson [41], in
the context of self-consistent charge density functional tight-
binding theory employing a reduced-order atom-centered
basis. In this work, we build upon this idea to apply the
LRDM method to Kohn-Sham DFT calculations employing
systematically convergent higher-order finite-element basis
sets [42]. Further, we demonstrate the robustness and effi-
ciency of LRDM using extensive large-scale heterogeneous
benchmark systems, and comparing against widely used pre-
conditioners. The primary challenge here is the efficient
computation of the the Gâteaux derivatives of F [Veff[ρ]]
along the direction functions—referred to as the first-order
density response functions—that constitutes the most compu-
tationally expensive portion of the LRDM method. Further,
developing strategies to enable modest values of rank for a
wide range of heterogeneous systems is critical to minimize
the overheads associated with the method and boost the prac-
tical computational efficiency. Regarding the first aspect, one
of the key contributions of the present work is to develop
a computationally efficient method to approximate the first-
order density response functions in real space, and within
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the context of Chebyshev filtered subspace iteration (ChFSI)
procedure [3]. We note that ChFSI is a computationally effi-
cient and scalable eigensolver that progressively approximates
the eigensubspace corresponding to the occupied Kohn-Sham
eigenstates instead of performing an exact diagonalization
in each SCF iteration. ChFSI provides significant computa-
tional gains over other iterative eigensolvers for solution of
the Kohn-Sham nonlinear eigenvalue problem [3,42]. As a
result, many real-space DFT codes, based on finite-element
basis [6,8] or finite-difference discretization [7,43,44], cur-
rently employ the ChFSI procedure. In the proposed work,
the evaluation of the first-order density response functions
in conjunction with the ChFSI procedure involves two steps.
First, we compute the first-order density-matrix response in
the approximate eigensubspace of dimension ∼Ne, obtained
in each iteration of the ChFSI procedure. Subsequently, we
transform the density-matrix response to the space spanned by
the finite-element basis, and obtain the density response func-
tions from the diagonal of the density-matrix response. This
results in an O(MN2

e ) scaling method (M denoting the size of
the finite-element basis) with a small computational prefactor,
as will be demonstrated in this work. The second important
aspect of the present work targets reduction of the average
rank by developing an accumulated variant of LRDM, which
adaptively accumulates the Jacobian approximation from pre-
vious SCF iterations. Our proposed numerical approach for
accumulation entails taking new direction functions that are
orthogonal to the ones from the previous SCF iterations in
conjunction with an adaptive strategy that either continues or
clears the accumulation based on numerical metrics inform-
ing the linearity of the residual function with respect to the
electron density, and the low-rank approximation error. Fur-
thermore, in the present work, we extend the formulation of
the LRDM preconditioner to collinear spin-polarized KS-DFT
calculations.

We demonstrate the robustness and efficiency of the
LRDM preconditioner, and compare it against Anderson,
Kerker, and TFW preconditioners on a comprehensive set
of benchmark heterogeneous material systems ranging up to
∼1100 atoms (∼20 000 electrons), including spin-polarized
magnetic systems. In all the benchmark systems LRDM
demonstrates robust and system-size-independent conver-
gence. In contrast, other preconditioners studied in this work
do not converge, in some cases, for larger-scale heterogeneous
benchmark systems. We also demonstrate the advantages of
the proposed accumulated LRDM variant in reducing the
average rank. Finally, we demonstrate the computational effi-
ciency of the LRDM preconditioner against Anderson and/or
Kerker preconditioners, where we observe up to a 3.4-fold
reduction in the computational times for full ground-state
calculations on the benchmark problems.

The remainder of the paper is organized as follows. Sec-
tion II starts with a brief theoretical background on the
convergence aspects of the Kohn-Sham SCF iteration. Sub-
sequently, in Sec. II B we present the formulation of the
LRDM preconditioner and its proposed accumulated vari-
ant. In Sec. II C, we develop the computational method for
evaluation of the density response functions in real-space
Kohn-Sham DFT calculations within the ChFSI procedure. Fi-
nally, in Sec. II D we extend the formulation to spin-polarized

calculations. Section III presents computational results on
heterogeneous benchmark systems comparing the SCF con-
vergence of the LRDM preconditioner against other widely
used preconditioners. Section III also demonstrates the com-
putational efficiency of the LRDM preconditioner on hybrid
CPU-GPU architectures. We finally conclude with an outlook
in Sec. IV.

II. FORMULATION

We first introduce the mathematical notation that will be
used in the subsequent sections. We assume the electron den-
sity, Kohn-Sham wavefunctions, and other electronic fields
appearing in the formulation to belong to an appropriate
function space, ϒ(�). In the case of nonperiodic calcula-
tions, � corresponds to a large enough domain containing
the compact support of the electronic fields, and, in peri-
odic calculations, it corresponds to a periodic domain. We
denote the inner product between two functions as 〈g1, g2〉 =∫
�

g∗
1(x)g2(x)dx, and ‖·‖ to be the norm induced from this

inner product. In what follows, we denote the action of an
infinite-dimensional bounded linear operator A : ϒ → ϒ on
g as A g := ∫

�
A(x, x′) g(x′)dx′, where A(x, x′) and g(x) de-

note the real-space representations of A and g, respectively.
Finally, we denote the action of a nonlinear operator F on g as
F [g] : ϒ → ϒ .

A. Background on Kohn-Sham SCF convergence

We begin by considering the Kohn-Sham fixed-point itera-
tion. For a materials system with Nat nuclei and Ne electrons,
the spin-restricted ground-state properties in Kohn-Sham den-
sity functional theory are given by solving the N/2 lowest
eigenstates of the following nonlinear eigenvalue problem [1]:(

−1

2
∇2 + Veff[ρ, R]

)
ψk = εk ψk,

2
∑

k

f (εk, μ) = Ne, f (ε, μ) = 1

1 + exp
(

ε−μ

kBT

) ,

ρ(x) = 2
∑

k

f (εk, μ)|ψk (x)|2,

Veff[ρ, R] = Vxc[ρ] + VH[ρ] + Vext(R),

where R = {R1, R2, . . . , RNat } denotes the positions of the
Nat nuclei, ρ denotes the electron density, Veff[ρ, R] de-
notes the effective single-electron Kohn-Sham potential, εk

and ψk denote the eigenstates of the Kohn-Sham Hamilto-
nian (henceforth denoted by H[ρ]), and f (ε, μ) denotes the
Fermi-Dirac distribution with μ being the Fermi energy or the
chemical potential. Veff[ρ, R] is composed of the exchange-
correlation potential (Vxc[ρ]) accounting for the many-body
quantum mechanical interactions, the Hartree electrostatic
potential corresponding to the electron density (VH[ρ]), and
the external electrostatic potential from the nuclei (Vext (R)).
The above nonlinear eigenvalue problem can be viewed as
the fixed-point iteration ρ = F [Veff[ρ]], which is commonly
referred to as the SCF iteration. Within this SCF procedure,
the evaluation of F [Veff[ρ]] entails solving a linear eigenvalue
problem. Solution of this fixed-point problem is equivalent
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FIG. 1. Convergence of the difference in total energy between successive Kohn-Sham SCF iterations for the various methods—Anderson
mixing, Kerker preconditioner (Thomas-Fermi screening approximation of ε), TFW preconditioner (Thomas-Fermi–von Weizsacker approx-
imation of ε), and the LRDM preconditioner. Absolute values of the total energy difference are plotted against the SCF iteration number
(starting from 1).

to finding the root of the residual in the electron density,
R[ρ] = F [Veff[ρ]] − ρ = 0. Further, in the neighborhood of
the ground state, fast quadratic convergence in the residual
can be achieved by using the Newton method:

ρ (n+1) = ρ (n) − J−1(F [Veff[ρ
(n)]] − ρ (n) ), (1)

where n denotes the nth SCF iteration, and J denotes the
Jacobian corresponding to R[ρ] given by

J = δF [Veff]

δVeff

δVeff[ρ]

δρ

∣∣∣∣
ρ=ρ (n)

− I := χ0K − I = −ε†,

K = δVeff[ρ]

δρ

∣∣∣∣
ρ=ρ (n)

= δVxc[ρ]

δρ

∣∣∣∣
ρ=ρ (n)

+ δVH[ρ]

δρ

∣∣∣∣
ρ=ρ (n)

:=Kxc + Kc. (2)

In the above, χ0 is commonly referred to as the independent
particle susceptibility operator, ε is the dielectric operator, Kc

is the Coulomb kernel, and Kxc is the exchange-correlation
kernel, which is usually a small contribution to ε compared
to Kc (random-phase approximation). However, as the ex-
act evaluation of ε, in particular the evaluation of χ0, is
computationally expensive, most widely implemented SCF
acceleration strategies rely on a quasi-Newton iteration,

ρ (n+1) = ρ (n) − αP(F [Veff[ρ
(n)]] − ρ (n) ), (3)

where α ∈ (0, 1] is the damping parameter, and P is a linear
operator that approximates the inverse Jacobian of the resid-
ual, thereby acting as a preconditioner for the quasi-Newton
step. In the neighborhood of the ground-state solution ρ (∗), it
can easily be shown that the necessary condition for conver-
gence is

s(I − αP∗J∗) < 1, (4)

where s(A) denotes the spectral radius of a diagonalizable
operator A, J∗ is the Jacobian operator evaluated at ρ (∗), and
P∗ is the approximation to the inverse of J∗. The role of α

in satisfying the above convergence condition can be under-
stood as follows. Considering an appropriately constructed
P ≈ J−1, such that P∗J∗ has a positive real eigenspectrum,1

we can choose 0 < α � 1 to satisfy the convergence condition
in Eq. (4). Further, an optimal value of α can be chosen to
minimize s or equivalently maximize the linear convergence
rate. The corresponding minimal value of s is given by

sopt = κ̄ (P∗J∗) − 1

κ̄ (P∗J∗) + 1
, (5)

1For the simplest case of P = −I , it can be shown that −J∗ has
a positive real eigenspectrum using the generally assumed random-
phase approximation [33,34].
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FIG. 2. LRDM and LRDMA ranks in each SCF iteration step for the various heterogeneous benchmark systems. The plot for LRDMA
indicates the additional rank-1 updates in each SCF iteration. Further, in the case of LRDMA, the label AS denotes the first accumulated SCF
step, and labels CR, CL, and CT denote clearing of accumulation from previous SCF iteration steps due to nonsatisfaction of density residual
norm criteria, linearity-indicator criteria, and low-rank approximation error criteria, respectively.

where κ̄ (A) denotes the condition number of a diagonalizable
operator A, given by the ratio of the largest to the smallest
eigenvalue magnitude of A. Thus, the slow convergence in
the Kohn-Sham SCF iteration arises from the large condition
number of J , or, equivalently, the dielectric operator ε. Practi-
cally, an optimal value of α is difficult to estimate due to the
high computational cost of obtaining κ̄ (J ). Further, the lack
of a suitable preconditioner P will necessitate the use of small
values of α resulting in slow convergence, or for larger values
of α may result in divergence of the fixed-point iteration.

Large condition numbers of ε arise primarily from the fol-
lowing scenarios encountered in large heterogeneous material
systems. The first and the most common one is the divergence
of the Coulomb kernel Kc(|q|) ∝ 1

|q|2 as |q| → 0 in the Fourier
space. In metals, it can be shown from the Alder-Wiser expres-
sion of χ0 in Fourier space that χ0(|q|) converges to a finite
value as |q| → 0, overall resulting in divergence of χ0Kc(|q|)
as |q| → 0. The divergence manifests as the well-known
charge-sloshing behavior observed in large metallic materials
systems, with the long-wavelength eigenvalue of χ0 scaling as
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L2, L being the extent of the metallic region. However, in the
case of insulators and semiconductors, the long-wavelength
divergence of χ0Kc is suppressed as χ0(|q|) ∝ |q|2 as |q| →
0. We refer to [34] for a detailed discussion on the derivation
of the long-wavelength-limit screening behavior. The second
important source of instabilities is from the localized d and
f orbitals with large density of states near the Fermi energy,
which lead to large eigenvalues of χ0. We refer to [31] for
an insightful discussion on such instabilities using a model of
a 3d impurity in jellium. Importantly, both long-ranged and
short-ranged wavelengths can be potentially associated with
eigenmodes corresponding to the large eigenvalues of χ0 [34].
However, current preconditioners primarily approximate the
long-ranged modes. Overall, given that a material system can
involve any combination of the above scenarios in different
spatial regions, a robust and generic preconditioning strat-
egy that appropriately and efficiently accounts for the above
sources of large eigenvalues of ε has remained a challenge. In
this work, we use a low-rank approximation of ε to efficiently
precondition the SCF iteration that provides robust conver-
gence for complex and large-scale heterogeneous material
systems.

B. Approximate Krylov subspace-based low-rank
approximation of J

We now present the low-rank approximation of J , or equiv-
alently −ε†, in a continuous real-space setting, and with an
adaptive determination of the rank based on an error indicator.
The continuous real-space setting is useful to employ the
proposed method in conjunction with the ChFSI procedure,
as will be discussed in Sec. II C. Furthermore, we propose
an adaptively accumulated variant that reuses the low-rank
approximation from previous SCF iterations. As will be dis-
cussed below, our adaptive accumulation strategy relies on an
additional numerical indicator of the linearity of R[ρ] with
respect to the electron density. Additionally, we extend the
formulation to the spin-polarized case, as will be presented
in Sec. II D. We remark that the idea of using a low-rank
approximation of the dielectric matrix or related quantities has
been explored in electronic-structure calculations, with a re-
cent work employing this idea [41] in the context of extended
Lagrangian Born-Oppenheimer molecular dynamics. In [41],
which employed self-consistent charge density functional
tight-binding theory using a reduced-order basis, the use of
a low-rank approximation of J to accelerate the SCF iteration
was also suggested. However, it was only demonstrated on a
single insulating system of a reactive nitromethane mixture
system containing ∼50 atoms. The present work applies the
low-rank approximation approach to Kohn-Sham DFT using
a systematically convergent basis set and demonstrates the
robustness of the approach on a wide range of medium- to
large-scale benchmark systems that include combinations of
metal-insulating-semiconducting heterogeneous systems and
magnetic systems. Testing on large-scale systems with metal-
lic regions is critical as long-range charge-sloshing effects
during SCF convergence primarily manifest in such systems.

In the LRDM approach, we construct a rank-r approxi-
mation J lr

r of J in each SCF iteration (indexed by n), based
on generalized directional (Gâteaux) derivatives, ti, of the

residual R[ρ (n)] along orthonormal direction functions ui:

J (x, x′) ≈ J lr
r (x, x′) =

r∑
i=1

ti(x)ui(x′),

where ti = ∂R[ρ (n) + λui]

∂λ

∣∣∣∣
λ=0

with 〈ui, u j〉 = δi j . (6)

In the above, the direction functions ui are related to the
functions in the Krylov subspace of J as will be discussed
subsequently. We also note that tis are related to the density re-
sponse functions corresponding to the direction functions uis.
We remark that the above expansion converges to J as r →
∞, based on analogy to canonical decomposition of tensors
of arbitrary order as a sum of tensor products of rank-1 com-
ponents [45]. We seek an approximate solution, �ρ̄, of the
equation J�ρ = R[ρ (n)] that provides the update in the quasi-
Newton step ρ (n+1) = ρ (n) − α�ρ̄. Since J is not explicitly
known, we construct the Krylov subspace progressively as
follows as we build the low-rank approximation. We start
by choosing the first normalized direction function as u1 =
R[ρ (n)]/‖R[ρ (n)]‖, and compute its corresponding Gâteaux
derivative: t1 = ∂R[ρ (n)+λu1]

∂λ
|λ=0. Subsequently, we choose the

remaining orthonormal direction functions ui (1 < i � r) us-
ing the following iterative procedure based on Gram-Schmidt
orthonormalization:

ui = ti−1,

ui = ui −
i−1∑
k=1

〈ui, uk〉uk,

ui = ui/‖ui‖. (7)

Next, we solve J lr
r �ρ̄ = R[ρ (n)], whose solution is given by

�ρ̄ = Plr
r R[ρ (n)] =

r∑
i, j=1

uiS
−1
i j 〈t j, R[ρ (n)]〉,

where Si j = 〈ti, t j〉, (8)

and Plr
r denotes the pseudoinverse of J lr

r .
Overall, in the above low-rank formulation, we have two

important parameters, r and α, that significantly control the
convergence behavior of the fixed-point iteration. We now
discuss strategies for choosing these parameters to achieve
robust convergence without case-by-case manual tuning. First,
considering r, we note that J lr

r Plr
r = ∑r

i, j=1 tiS
−1
i j t j = It

r rep-
resents the rank-r resolution of the identity operator in the
nonorthogonal ti basis. It

r tends to I as r → ∞. This aspect
can be used to design an adaptive metric for deciding the rank
r. Thereby, we use following error metric based on the relative
error of (It

r − I) applied to the current residual:

srel =
∥∥∥∥∥∥

r∑
i, j=1

tiS
−1
i j 〈t j, R[ρ (n)]〉 − R[ρ (n)]

∥∥∥∥∥∥/‖R[ρ (n)]‖, (9)

where srel → 0 as r → ∞. In each SCF iteration step, we
increase r until srel goes below a set tolerance, stol. As will be
demonstrated in Sec. III, we find that a value of stol ∼ 0.3 is
sufficient to achieve accelerated and system-size-independent
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convergence for all the heterogeneous benchmark systems
considered in this work.

Next, turning our attention to the damping parameter α, if
J lr

r closely approximates J , one could use α = 1 to obtain a
quadratically convergent Newton step [sopt = 0 from Eq. (5)].
However, there are a few practical issues with such a strategy
when applied to the SCF iterations in KS-DFT. First, the
rank r required to obtain a very close approximation to J−1

could be very high in a complex heterogeneous system, thus
significantly increasing the computational overhead of the
preconditioner. Second, the Newton step assumes the starting
point ρ (1) to lie within the linear approximation zone of R[ρ]
about the solution ρ (∗). However, this may not be true for a
typical starting initial guess, ρ (1), obtained as a superposition
of single atomic electron densities. Particularly, in condensed
matter systems, ρ (1) can be quite far from ρ (∗). Hence, in this
work, we set a small value of α = 0.1 for the initial steps until
‖R[ρ (n)]‖ goes below a threshold of O(1), below which we
increase α to 0.5 to achieve accelerated convergence. This
choice is determined based on our numerical experiments
and, as will be demonstrated in Sec. III, we obtain robust
convergence for all the benchmark systems using this choice
of α.

Accumulated low-rank approximation

We now propose an accumulated variant of LRDM,
referred to as LRDMA, that accumulates the low-rank approx-
imation of J from previous SCF iteration steps. This could
potentially reduce the average rank r of the LRDM during
the SCF convergence, thereby reducing the computational
overhead. The primary consideration here is that the density
response functions of F [Veff [ρ]] ( ∂

∂λ
(F [Veff [ρ + λui]])|λ=0 =

ti + ui) from the previous SCF iteration steps can provide a
good approximation to the density response functions of the
present iteration, especially if the electron densities from the
previous iterations are close to the current iteration. Such a
condition is expected to exist close to the solution of the
fixed-point iteration ρ (∗). However, even when ρ is not nec-
essarily close to ρ (∗), such an accumulation can benefit when
the densities in the preceding iterations are close to the density
in the current iteration and within the linear approximation
zone, i.e., the region of the function space where the linear
term in the Taylor series is dominant. To this end, we develop
a numerical indicator that can guide the adaptive accumulation
procedure.

We consider the Taylor series expansion of R[ρ] about
ρ (n−1) [density in the (n − 1)th SCF iteration] to the linear
order. The linear approximation of R[ρ (n)] is given by

Rlin[ρ (n)] = R[ρ (n−1)] + J (ρ (n) − ρ (n−1))

= R[ρ (n−1)] − αJ�ρ̄

= R[ρ (n−1)] − αJPlr
r R[ρ (n−1)],

where J is the Jacobian at ρ = ρ (n−1). Although J is unknown,
using Eqs. (6) and (8) we can express Rlin[ρ (n)] as

Rlin[ρ (n)] = R[ρ (n−1)] − α

r∑
i, j=1

tiS
−1
i j t jR[ρ (n−1)]

= (
I − αIt

r

)
R[ρ (n−1)]. (10)

Using the above, we design the following linearity indicator
based on the ratio of norms of the predicted and the actual
residuals at the nth step:

β = |‖Rlin[ρ (n)]‖/‖R[ρ (n)]‖ − 1|. (11)

We note that β will be close to zero in the linear approxima-
tion zone, and β correlates with the strength of the nonlinear
terms in the Taylor series expansion of R[ρ].

The proposed LRDMA approach uses β, srel, and ‖R[ρ (n)]‖
to determine whether to use and further accumulate on the
low-rank approximation from the previous SCF iteration, or
to clear any accumulation and construct the low-rank ap-
proximation solely from the current SCF iteration. In order
to determine if the density response functions from previous
SCF iterations are useful in the current iteration, we first rely
on the linearity indicator β. If β > βtol then there is sufficient
nonlinearity which suggests that using density response func-
tions from previous iterations can have substantial errors and
may not provide a good approximation to J for the current
iteration. Thus, we clear any rank accumulation from previous
iteration (labeled as CL in Fig. 2 to denote clearing based
on linearity indicator), and construct the low-rank approxi-
mation of J afresh using the direction functions and density
response functions from the current SCF iteration. Based on
numerical experiments, we find βtol ∼ 0.1 is a good choice. If
β < βtol, then we check srel. If srel < stol, then the available
low-rank approximation of the Jacobian from the previous
SCF iteration is also a good approximation for the current
iteration and no further update to the Jacobian is needed. On
the other hand, if srel > stol we will need to decide whether
it is beneficial to continue the accumulation of the rank-1
updates using the density response functions from the current
iteration, or to purge or clear and construct the low-rank ap-
proximation afresh in the current iteration. We note that if the
current iterate is far from the solution ρ (∗), then the direction
response functions computed from previous iterations may not
be useful in the current iteration and may result in a very
large rank if the accumulation continues. Thus, it is beneficial
to clear the accumulation and construct the approximation
to the Jacobian in the current iteration. To this end, we use
the ‖R[ρ (n)]‖ as a proxy for how far or close the iterate is
from ρ (∗). If ‖R[ρ (n)]‖ > 1.0, then we clear the accumulation
(labeled as CR in Fig. 2 to denote clearing based on residual
indicator). If a clearing of the accumulation based on the
linearity indicator and the residual indicator is not triggered,
we use the low-rank approximation from the previous SCF
iteration (J lr

r, (n−1)) and continue the accumulation using rank-1
updates from the current iteration to improve the Jacobian
approximation as

J lr
(r+rn ), (n)(x, x′) =

rn∑
i=1

t (n)
i (x)u(n)

i (x′) + J lr
r, (n−1)(x, x′). (12)

In the above, rn is the additional rank added in the nth SCF
iteration and the direction functions u(n)

i are chosen from the
Krylov subspace of J at the current nth SCF iteration, but or-
thogonalized with respect to all the other direction functions.
We note that u(n)

1 is chosen to be the normalized orthogonal
complement of R[ρ (n)] to the previous history of direction
functions. We continue the accumulation until either srel < stol
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or rn = rmax
iter , with rmax

iter = 5. If the tolerance condition on srel

is not reached, we also trigger an accumulation clearing event
for the next SCF step (labeled as CT in Fig. 2). We investi-
gate the efficiency and robustness of the proposed LRDMA
method in comparison to the LRDM method in Sec. III C,
where the numerical results demonstrate a reduction in the
average rank across most benchmark systems resulting in
improved computational efficiency.

C. First-order density response computation in Chebyshev
filtered subspace

We now develop an efficient numerical methodology for
the computation of the first-order density response functions
( ∂
∂λ

(F [[Veff [ρ (n) + λui]])|λ=0), i.e., the Gâteaux derivatives
along the direction functions, in Kohn-Sham DFT. We fo-
cus on Kohn-Sham DFT calculations using systematically
convergent complete basis sets, such as the finite-element ba-
sis, where the nonlinear Kohn-Sham eigenvalue problem [cf.
Eq. (1)] is discretized with M nonorthogonal real-space basis
functions, with M � N . The main aspect of our numerical
method is to approximately compute the first-order density
response in a finite-dimensional subspace with a dimension
that is much smaller compared to M, and further take ad-
vantage of the efficient canonical density-matrix perturbation
approach [46] that avoids explicit computation of first-order
perturbations in the wavefunctions.

To begin, we first briefly discuss the ChFSI procedure
in real-space Kohn-Sham DFT [3] to compute the electron
density, and subsequently detail our approach to compute
the first-order density response. We choose our real-space
basis functions to be higher-order spectral finite element (FEs)
{la}(1�a�M ) that are strictly local piecewise polynomial basis
functions. Since the spectral FE basis is nonorthogonal, result-
ing in a generalized Hermitian eigenvalue problem (GHEP),
the Löwdin orthogonalized FE basis functions (denoted as
{pa}(1�a�M )) are used to obtain a standard Hermitian eigen-
value problem (SHEP) [42]:

˜H[ρ]ψ̃k = εh
k ψ̃k, k = 1, 2, . . . , N with N >

Ne

2
, (13)

where ˜H[ρ] is the discrete Kohn-Sham Hamiltonian in the
{pa} basis, and ψ̃k are the expansion coefficients of the single-
electron Kohn-Sham eigenfunctions in the {pa} basis. In order
to solve the nonlinear SHEP, we use the ChFSI procedure,
which exploits the fact that we are only interested in the
occupied eigensubspace that is a very small portion at the
lower end of the spectrum of ˜H. Instead of solving Eq. (13)
exactly in every SCF step, the ChFSI procedure progressively
approximates the occupied eigensubspace. In particular, this
involves applying a Chebyshev polynomial filter of degree
c, Tc(H̄), to a trial subspace X with dimension N . Here, H̄
denotes a scaled and shifted Hamiltonian constructed from
˜H such that the wanted (occupied) spectrum is mapped to
(−∞,−1) and the unwanted spectrum is mapped to [−1, 1].
As Tc(y) monotonically and rapidly increases for decreasing
values of y < −1, the action of Tc(H̄) on X results in a
filtered subspace ˜�f that is a close approximation to the eigen-
subspace corresponding to the occupied spectrum of ˜H[ρ].

Subsequently, ˜�f is orthonormalized to obtain ˜�o, and the
discrete SHEP is projected onto the subspace spanned by ˜�o
to solve the eigendecomposition of the projected Hamiltonian:

ĤQ = QD, where Ĥ = ˜�o
†
˜H˜�o, (14)

where Q is the matrix comprised of the eigenvectors and
D is a diagonal matrix with the corresponding eigenvalues,
represented in the Chebyshev filtered subspace. The corre-
sponding eigenvectors in the Löwdin orthogonalized FE basis
are obtained from the transformation ˜�r = ˜�oQ. Finally, the
output electron density (F [Veff[ρ]](x) = ρout(x)) in each SCF
iteration is computed as

ρout(x) = 2 (ne(x))T [M−1/2
˜�r f (D, μ) ˜�r

†
M−1/2†

]ne(x),
(15)

where ne(x) = [le
1 (x) le

2 (x) · · · le
Mcell

(x)]T denotes the FE basis
functions associated with the given finite-element cell (Mcell

denotes the number of nodes in the cell), and M is the
positive-definite and symmetric finite-element overlap matrix
(Mab = 〈la, lb〉) in the original nonorthogonal FE basis. We
refer to [6,8,42] for more details on the algorithmic aspects of
employing ChFSI in Kohn-Sham DFT calculations using the
FE basis.

The electron-density expression in Eq. (15) can also

equivalently be obtained from �proj = f (˜�r ˜�r
†
˜H˜�r ˜�r

†
, μ),

which denotes the density matrix corresponding to the projec-
tion of ˜H onto ˜�r. The resulting electron-density expression
is given by

ρout(x) = 2 (ne(x))T [M−1/2 �proj M−1/2†
]ne(x). (16)

The equivalence between the two expressions for the electron
density can be seen from

�proj = f (˜�r ˜�r
†
˜H˜�r ˜�r

†
, μ)

= ˜�r f (˜�r
†
˜H˜�r, μ)˜�r

† = ˜�r f (D, μ)˜�r
†
, (17)

where the second equality follows from the power-series
representation of the analytic function f (ε, μ) combined
with the spectral decomposition of the Hermitian matrix
˜�r ˜�r

†
˜H˜�r ˜�r

†
[11]. In the above, we note that �proj sys-

tematically approaches the density matrix corresponding to
the discrete FE Hamiltonian, � = f (˜H[ρ], μ), as the SCF
approaches convergence. This follows from the ChFSI pro-
cedure, where ˜�r progressively approaches the occupied
eigensubspace of ˜H[ρ] as the SCF approaches convergence,
i.e., ˜H[ρ] → ˜H[ρ (∗)].

We now consider a perturbation to the input electron den-
sity ρ, in a given SCF iteration step, along the direction
function ui expressed as ρ(λ) = ρ + λui. We seek to compute
the response in ρout to first order, corresponding to the pertur-
bations. The first-order response of ρout can be obtained from
the explicit first-order response of all the occupied eigenfunc-
tions and eigenvalues. While the first-order response in the
eigenvalues can be obtained without significant computational
overhead by using the first-order perturbation theory involving
only the first-order response of the Hamiltonian [47], the first-
order response in eigenfunctions requires a solution of the
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Sternheimer equations that are linear systems of equations of
dimension M, one for each eigenfunction perturbation. The
solution to Sternheimer equations involves computation of the
perturbations in a large subspace of the full finite-dimensional
space that is orthogonal to the occupied eigensubspace [48].
This results in a computational cost that is O(MN2

e ), and typi-
cally with high prefactors. Thus, in systematically convergent
real-space basis sets, where M � N , solution of Sternheimer
equations can result in substantial computational overheads.
In this work, we adopt a different approach. We consider
the first-order perturbation response of the FE discretized
Hamiltonian,

˜H[ρ(λ)] = ˜H[ρ] + λ˜H
′
, ˜H

′ = ∂ ˜H[ρ + λui]

∂λ

∣∣∣∣∣
λ=0

, (18)

and approximately compute the first-order density response
corresponding to the orthogonal projection of ˜H[ρ(λ)] onto an
unperturbed subspace of small dimension (� M), which we
choose to be ˜�r. Utilizing the density-matrix-based represen-
tation of ρout in Eq. (16), we obtain the approximate density
response as

∂

∂λ
(F [Veff[ρ + λui]])|λ=0

≈ 2 (ne(x))T
[
M−1/2 �

(1)
proj M−1/2†]

ne(x). (19)

In the above, �
(1)
proj is the approximate first-order density-

matrix response computed in the unperturbed subspace ˜�r.
Using Eq. (17), we arrive at

�
(1)
proj = ∂

∂λ
( f (˜�r ˜�r

†
(˜H + λ˜H

′
)˜�r ˜�r

†
, μ + λμ′))|λ=0

= ˜�r
∂

∂λ
( f (H̆ + λH̆

′
, μ + λμ′))|λ=0 ˜�r

†
, (20)

where H̆ = ˜�r
†
˜H˜�r = D, H̆

′ = ˜�r
†
˜H

′
˜�r. We remark that

there are two controllable approximations in the computation
of �

(1)
proj. The first is from the consideration of an unper-

turbed subspace ˜�r of dimension N � M. Since ˜�r is an
orthonormal basis, the associated approximation error can
be systematically decreased by increasing the dimension N
of the subspace ˜�r, albeit with an increase in the computa-
tional cost. Practically, based on our numerical experiments,
we find that the additional buffer states already used in the
ChFSI procedure [3,42] provide a large enough subspace
size to obtain a sufficiently accurate �

(1)
proj for the purpose of

SCF preconditioning. The second approximation arises from
the nature of the ChFSI procedure itself—we compute the
density-matrix response �

(1)
proj about the Chebyshev-filtered

density matrix �proj that closely approximates � in each SCF
iteration step, with the approximation error systematically de-
creasing with SCF convergence. Thus, �(1)

proj can be considered
to progressively approximate the true density-matrix response
�(1) = ∂

∂λ
( f (˜H[ρ(λ)], μ(λ)))|λ=0, within the constraint of the

small unperturbed subspace ˜�r. Again, practically, we find
that the typical choices for the Chebyshev polynomial degree
c and the eigenpair residual norm tolerance for the occupied

states, ‖˜H�̃r, i − εh
i �̃r, i‖, are sufficient for the purpose of

preconditioning.
We now briefly discuss the approach for an efficient com-

putation of the Gâteaux derivative of the subspace projected
density matrix appearing in Eq. (20),

�̆
(1) = ∂

∂λ
( f (H̆ + λH̆

′
, μ + λμ′))|λ=0, (21)

without performing additional eigendecomposition calcula-
tions that will result in significant overhead for the pro-
posed low-rank preconditioning approach. Since �̆

(1)
can

be interpreted as the first-order perturbation response of
f (H̆[ρ(λ)], μ(λ)), we employ canonical density-matrix per-
turbation theory [46], which is based on perturbation of the
recursive Fermi operator expansion of f (H̆[ρ(λ)], μ(λ)):

∂

∂λ
( f (H̆[ρ(λ)], μ(λ)))|λ=0

≈ ∂

∂λ
(PT (PT −1(· · ·P0(H̆[ρ(λ)], μ(λ)) . . .)))|λ=0, (22)

where T denotes the degree of the recursive expansion and

X 0 = P0(H̆[ρ(λ)]) = 0.5I − 2−(T +2) H̆[ρ(λ)] − μ(λ)I
kBT

,

X n = Pn(X n−1) = X 2
n−1

X 2
n−1 + (I − X n−1)2

. (23)

We note that μ′ in Eq. (21) is obtained from the requirement of
traceless density-matrix response, Tr[�̆

(1)
] = 0, for ensuring

the conservation of number of electrons. The Padé polynomial
functions Pn(X n−1) used in the above recursive expansion
enable rapid convergence in the density-matrix first-order
response calculations [41,46], with T = 8–10 found to be
sufficient in numerical experiments. This aspect is also sup-
ported by our numerical studies in this work, where we find
the SCF convergence for the various benchmark systems to be
insensitive to values of T beyond 10. Importantly, the above
recursive expansion further exploits the fact that H̆[ρ(λ =
0)] is a diagonal matrix, thereby rendering the algorithm to
only consist of computationally cheap matrix-vector multi-
plications and diagonal matrix inversion operations [41]. Our
numerical benchmarks indeed show that evaluation of Eq. (22)
is a negligible cost compared to the O(MN2

e ) scaling steps

involving the computation of H̆
′ = ˜�r

†
˜H

′
˜�r and ˜�r�̆

(1)
,

required for evaluating the density response in Eq. (19). How-
ever, since the above operations are performed only once for
each direction response computation, they incur a much lower
computational prefactor compared to the iterative solution
of Sternheimer equations requiring O(MN2

e ) computations in
each iteration step. Further, due to the involvement of dense
matrix-matrix multiplications, these operations can be per-
formed very efficiently on hybrid CPU-GPU architectures as
will be demonstrated in Sec. III D.

Finally, we mention that the following changes are required
for extending the density response approach to periodic sys-
tems which entails integration over the first Brillouin zone
(BZ). The first consideration is the choice of the unper-
turbed subspace for the response contribution corresponding
to each k point, k, in the BZ. We choose this unperturbed
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subspace to be the approximate occupied eigensubspace of
the k-dependent FE discretized Hamiltonian, ˜Hk[ρ(λ = 0)],
obtained from the ChFSI procedure. Second, the constraint
on conservation of number of electrons is extended to BZ
sampling:

−
∫

BZ

∫
�

2 neT
(x)

[
M−1/2 �

(1)
proj,k M−1/2†]

ne(x)dx dk = 0,

(24)

where the value μ′ is now determined using the above con-
straint.

We remark that this diagonalization free first-order per-
turbation response methodology can, in principle, be ap-
plied to other finite-temperature smearing schemes, such as
Methfessel-Paxton smearing [49] and cold smearing [50], in
conjunction with appropriate expansions [51]. Methfessel-
Paxton and cold-smearing schemes allow for usage of
relatively higher smearing temperatures compared to Fermi-
Dirac smearing due to their lower finite-temperature errors in
ground-state internal energy and forces, and hence are pop-
ularly used in various DFT codes to reduce charge-sloshing
effects. We will demonstrate in Sec. III the robust perfor-
mance of the developed LRDM preconditioner for bulk and
heterogeneous metallic systems with first BZ sampling, while
employing low to modest Fermi-Dirac smearing temperatures
of T = 10 K and T = 500 K. Thus, the requirement of higher
smearing temperatures to accelerate SCF convergence can be
avoided.

D. Extension of low-rank approximation of J to spin-polarized
Kohn-Sham DFT

We develop an extension of the LRDM preconditioner
discussed in Sec. II B to collinear spin-polarized Kohn-Sham
DFT calculations. To this end, we define the residual in the
spin-polarized case to be given by

R[(ρ↑, ρ↓)] = F [Veff[(ρ↑, ρ↓)]] − (ρ↑, ρ↓), (25)

where (ρ↑, ρ↓) ∈ ϒ × ϒ denotes an ordered pair of spin-up
and spin-down density functions belonging to the Cartesian
product of the function space ϒ with itself. F [Veff[(ρ↑, ρ↓)]] :
ϒ × ϒ → ϒ × ϒ represents the Kohn-Sham input-to-output
spin-polarized density map in each SCF iteration. The inner
product between two ordered pairs of functions ( f1, f2) ∈
ϒ × ϒ and (g1, g2) ∈ ϒ × ϒ is defined as

〈( f1, f2), (g1, g2)〉 = 〈 f1, g1〉 + 〈 f2, g2〉. (26)

The associated norm induced by the inner product
for an ordered pair ( f1, f2) is given by ‖( f1, f2)‖ =√〈( f1, f2), ( f1, f2)〉.

We solve for R[(ρ↑, ρ↓)] = 0ϒ×ϒ using a damped quasi-
Newton iteration scheme:

(ρ (n+1)
↑ , ρ

(n+1)
↓ ) = (ρn

↑, ρn
↓) − α P R[(ρn

↑, ρn
↓)], (27)

P ≈ J−1 with J = ∂R[(ρ↑, ρ↓)]

∂ (ρ↑, ρ↓)

∣∣∣∣
(ρ↑,ρ↓ )=(ρn

↑,ρn
↓ )

, (28)

where α ∈ (0, 1], and P : ϒ × ϒ → ϒ × ϒ approximates
the inverse Jacobian of the residual. Analogous to the spin-
restricted case, the Jacobian in the spin-polarized case also

admits a canonical decomposition into a sum of tensor prod-
ucts of rank-1 components. In particular, we consider the
following rank-r approximation form:

J lr
r (x, x′, σ, σ ′) =

r∑
i=1

(t↑, t↓)i
σ

(x)(u↑, u↓)i
σ ′ (x′),

where (t↑, t↓)i = ∂

∂λ
(R[(ρn

↑, ρn
↓) + λ(u↑, u↓)i])|λ=0. (29)

In the above, (t↑, t↓)i ∈ ϒ × ϒ represents the generalized di-
rectional derivative of R[(ρ↑, ρ↓)] along an ordered pair of
orthonormal direction functions, (u↑, u↓)i ∈ ϒ × ϒ . Further,
(·, ·)σ denotes the choice of one of the functions σ =↑ or
σ =↓ from the ordered pair. The orthonormality condition is
given by 〈(u↑, u↓)i, (u↑, u↓) j〉 = δi j . Following Sec. II B, for
efficient convergence of the preconditioner Plr

r with respect to
r, the ordered pairs (u↑, u↓)i are obtained from an approx-
imate r-rank Krylov subspace of J , where we first choose
(u↑, u↓)1 = R[(ρn

↑, ρn
↓)]/‖R[(ρn

↑, ρn
↓)]‖ and subsequently use

the following iterative procedure for 1 < i � r:

(u↑, u↓)i = (t↑, t↓)i−1,

(u↑, u↓)i = (u↑, u↓)i −
i−1∑
k=1

〈(u↑, u↓)i, (u↑, u↓)k〉(u↑, u↓)k,

(u↑, u↓)i = (u↑, u↓)i/‖(u↑, u↓)i‖. (30)

The spin-polarized extension of the remaining aspects of the
low-rank formulation, including the accumulated variant, fol-
low along similar lines as discussed in Sec. II B.

Finally, we mention the additional considerations in
extending the Chebyshev filtered subspace projected den-
sity response computation discussed in Sec. II C to the
spin-polarized case. Adopting a similar approach as the spin-
restricted case, we approximately evaluate the density-matrix
response corresponding to the projection of ˜Hσ [(ρ↑, ρ↓)(λ)]
onto ˜�r, σ as

�
(1)
proj,σ =˜�r, σ

∂

∂λ
( f (H̆σ + λH̆

′
σ , μ + λμ′))|λ=0 ˜�r, σ

†
, (31)

where

H̆
′
σ = ˜�r, σ

† ∂

∂λ
(˜Hσ [(ρ↑, ρ↓) + λ(u↑, u↓)i])|λ=0 ˜�r, σ (32)

is the first-order response of ˜Hσ [(ρ↑, ρ↓)(λ)] along (u↑, u↓)i

projected onto ˜�r, σ . Subsequently, the desired directional
derivative of F [Veff[(ρ↑, ρ↓)]] along (u↑, u↓)i is obtained as

∂

∂λ
(F [Veff[(ρ↑, ρ↓) + λ(u↑, u↓)i]]σ )|λ=0

≈ (ne(x))T
[
M−1/2 �

(1)
proj,σ M−1/2†]

ne(x). (33)

Finally, we remark that the above numerical method for
the first-order density response calculations and the pro-
posed spin-polarized LRDM formulation are adaptable to
other discretizations (plane waves, finite difference, wavelets)
and eigensolver strategies other than the ChFSI procedure
[Davidson, residual minimization method (RMM)-DIIS] im-
plemented in various Kohn-Sham DFT codes. For instance,
using the Davidson iterative eigensolver implemented in the
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QUANTUM ESPRESSO software (plane-wave basis), the smaller
subspace required for the efficient first-order density response
calculations can be constructed from the eigenpairs computed
in the Davidson method. Other aspects of the LRDM method
including the use of the canonical density-matrix perturbation
approach are agnostic to the choice of the discretization and
eigensolver strategy.

III. RESULTS AND DISCUSSION

In this section, we demonstrate the robustness and
computational efficiency of the LRDM preconditioner for
Kohn-Sham DFT calculations. We compare the performance
against three other widely used preconditioners, namely,
Anderson mixing [26], Anderson mixing with Kerker pre-
conditioner [35], and Broyden mixing with TFW precondi-
tioner [39]. We consider various heterogeneous benchmark
systems with system sizes up to ∼1100 atoms (∼20 000 elec-
trons) and study the convergence of LRDM preconditioner
and the accumulated variant, LRDMA. Furthermore, we also
demonstrate the robustness of the proposed extension of the
LRDM preconditioner to spin-polarized DFT calculations.
Finally, we comment on the computational cost of the LRDM
preconditioner, and compare against Anderson and Kerker
preconditioners on hybrid CPU-GPU architectures.

A. General calculation details

In all the DFT calculations reported in this work, we
use the Perdew-Burke-Ernzerhof exchange-correlation func-
tional [52] and ONCV [53] pseudopotentials from the
PseudoDojo [54] database. Unless otherwise specified, we
use Fermi-Dirac smearing with T = 500 K in all our sim-
ulations. Additionally for periodic benchmark systems, we
use shifted Monkhorst-Pack k-point grids to sample the first
Brillouin zone with the minimum k-point spacing chosen to
be ∼0.3 Å−1.

We have implemented the LRDM preconditioner in the
DFT-FE software [6,8,42], a recently developed open-source
code for massively parallel large-scale real-space Kohn-Sham
DFT calculations based on a finite-element discretization.
DFT-FE already has implementations of Anderson mixing and
Anderson with Kerker preconditioning. Thus, in this work,
simulations using Anderson and Kerker preconditioners are
performed using DFT-FE, while simulations using the TFW
preconditioner are performed using the implementation avail-
able in QUANTUM ESPRESSO software (QE) [55,56] using the
same ONCV pseudopotential input files. All simulations using
DFT-FE for benchmarking the LRDM, Anderson, and Kerker
preconditioners are performed till 10−5 stopping tolerance
in the L2 norm of electron-density residual (‖R[ρ]‖). The
simulations using QE for the TFW preconditioner employ
5 × 10−8 Ha as stopping tolerance in the total energy be-
tween consecutive SCF iteration steps. We remark that these
two stopping criteria are approximately equivalent for the
range of system sizes considered in this work, as will be
demonstrated in the convergence studies reported in Sec. III B.
Further, we note that the finite-element and plane-wave dis-
cretization parameters for DFT-FE and QE are chosen such
that we obtain ∼10 meV/atom accuracy in the ground-state

energies. We additionally remark that the different eigen-
solver implementations—the ChFSI procedure in DFT-FE and
the Davidson iteration diagonalization in QE—can lead to
differences in the SCF convergence behavior for the Anderson
multisecant method and its coupling with Kerker. We refer
to Table I in the Supplemental Material [57] for a numerical
comparison of the multisecant preconditioner performance,
both with and without the Kerker preconditioner, between
DFT-FE and QE on a subset of the benchmark systems stud-
ied below. The benchmark results demonstrate similar trends
between DFT-FE and QE implementations.

Next, we mention the choice of the damping parameter, α,
and other preconditioner-specific choices used in the bench-
mark studies. First, in the case of the LRDM preconditioner,
we choose stol = 0.2–0.3 for adaptively setting the rank r
in each SCF iteration step [cf. Eq. (9)]. Further, we choose
the damping parameter α = 0.1 till ‖R[ρ]‖ goes below 2.0,
and subsequently switch to α = 0.5. Additionally, for the
accumulated variant of the LRDM preconditioner proposed
in Sec. II B (LRDMA), we use the tolerance on the linearity
indicator to be βtol = 0.1, the maximum additional rank that
can be accumulated in an SCF iteration step to be rmax

iter = 5,
and further allow accumulation only when ‖R[ρ]‖ < 1.0. The
above parameters are determined based on numerical experi-
ments, and provide a robust convergence for a wide range of
benchmark material systems with increasing complexity and
system sizes considered in this work, without any system spe-
cific tuning in the parameter values. In the SCF convergence
studies to be discussed below, we also use the LRDM precon-
ditioner computational framework to approximately compute
the condition number of J , κ (J ), at the converged ground-
state solution ρ (∗), to assess the difficulty of convergence of
the SCF iteration for each material system. Specifically, for
estimating κ (J ), we use a stringent low-rank approximation
tolerance of stol = 5 × 10−4 along with employing a relatively
larger Chebyshev filtered eigensubspace (∼25% buffer over
Ne/2) to obtain a closer approximation J lr

r to J , and finally
perform a power iteration on J lr

r and Plr
r to obtain estimates of

the highest and lowest eigenvalues. Second, in the case of An-
derson mixing, we use values of α between 0.015 and 0.05 and
a mixing history range of 20–50. The relatively small values
of α for Anderson mixing are required due to the large con-
dition numbers of J for the heterogeneous material systems
considered in this work. Third, in the case of Anderson mixing
with Kerker preconditioner, we use α = 0.5, mixing history
of 20, and Thomas-Fermi screening wave-vector value of 0.8
bohr−1. In the case of TFW preconditioner, the parameters are
set to be α = 0.5–0.7 and a mixing history of 15. The above
parameter choices for Kerker and TFW preconditioners are
determined based on numerical experiments to be broadly op-
timal for all the benchmark systems considered in this work.
Finally, we remark that for the LRDM, Anderson, and Kerker
preconditioners implemented in DFT-FE, we perform multiple
sweeps of the ChFSI procedure in each SCF iteration till the
residual norm of the eigenpair closest to the Fermi energy is
below a tolerance of 2 × 10−3.

All the numerical simulations with computational times
reported in this work were executed using the using the Phase
1 GPU-accelerated nodes of the NERSC Perlmutter super-
computer, with each node containing four NVIDIA A100
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TABLE I. Comparison of the performance of LRDM against other preconditioners. All DFT calculations are spin restricted, and use k-point
sampling of the Brillouin zone for semiperiodic systems. A stopping tolerance of 10−5 in the L2 norm of the electron-density residual (‖R[ρ]‖)
is used. Based on numerical experiments, this is approximately equivalent to a stopping tolerance of 5 × 10−8 Ha in the total energy difference
between consecutive SCF iteration steps. DNC denotes that calculation did not converge within 200–250 SCF iterations.

System Nat κ (J ) Anderson Kerker TFW LRDM (ravg)

Pt cubic NP, 3 × 3 × 3 172 170 53 182 78 24 (7.3)
Pt cubic NP, 5 × 5 × 5 666 390 73 138 97 28 (10.0)
Pt cubic NP, 6 × 6 × 6 1099 557 90 DNC 30 (11.0)
SiO2H–20 layers 98 1.7 16 58 37 22 (1)
SiO2–20 layers 90 382 87 75 34 25 (6.1)
Li10GeP2S12 layers 400 133 DNC 69 85 23 (4.9)
Pt+SiO2H–10 layers 93 552 112 68 35 23 (6.5)
Pt+GaAs+SiO2H–10 layers 133 454 92 61 39 23 (6.9)
Au+GaAs+SiO2H–10 layers 133 222 93 30 26 22 (4.9)
Al+GaAs+SiO2H–10 layers 133 199 55 26 23 23 (4.8)
Pt+GaAs+SiO2H–20 layers 258 1662 DNC 126 78 25 (9.5)
Au+GaAs+SiO2H–20 layers 258 888 DNC 46 39 24 (6.6)
Al+GaAs+SiO2H–20 layers 258 708 DNC 40 46 31 (7.8)
Pt+GaAs+SiO2H–40 layers 508 9841 DNC 248 DNC 28 (13.8)
Au+GaAs+SiO2H–40 layers 508 1294 DNC 74 DNC 29 (11.0)
Al+GaAs+SiO2H–40 layers 508 2051 DNC 76 112 30 (9.7)
HfO2 nanofilm with Al stripes 864 535 125 85 155 31 (6.2)

Tensor Core GPUs and a single AMD Milan CPU (64 physical
cores). Some of the simulations reported in this work were
also executed on the OLCF Summit and XSEDE Stampede2
supercomputers. Summit comprises 4608 IBM Power System
AC922 nodes with two IBM POWER9 processors (42 physi-
cal cores) and six NVIDIA Volta V100 GPUs in each node.

B. Comparison of SCF convergence

We first study the SCF convergence for the metal-vacuum-
type material systems with increasing system sizes. As
benchmark systems, we consider nonperiodic fcc Pt nanopar-
ticles (NPs) of increasing sizes, with the cube faces along
the {100} crystallographic planes and a vacuum layer of
∼15 Å around the nanoparticle. We note that the localized 5d
orbitals of Pt near the Fermi energy can lead to large eigenval-
ues of χ0 that make these calculations challenging. Table I
reports the approximate value of κ (J ) for three different
sizes—3 × 3 × 3, 5 × 5 × 5, and 6 × 6 × 6 containing 172–
1099 atoms (3096–19 782 electrons)—and compares the SCF
convergence of Anderson mixing, Kerker, TFW, and LRDM
preconditioners. We observe that the convergence of Ander-
son mixing deteriorates with system size, requiring up to 90
SCF iteration steps for the Pt cubic-NP 6 × 6 × 6 system. This
corresponds to the approximately fourfold increase in κ (J ) as
would be excepted from the L2 scaling of the long-wavelength
eigenmode from the Coulomb kernel in the metallic region
(cf. Sec. II A), where L denotes the extent of the metallic
region. We remark that the convergence of Anderson mixing
did not improve upon increasing the mixing history from
20 to 50. The Kerker preconditioner performs worse than
Anderson for this benchmark system, requiring around 150
SCF iterations or more. This can be attributed to the unsuit-
ability of Thomas-Fermi screening for metal-vacuum systems.
Likewise, the TFW preconditioner, which approximates a het-
erogeneous dielectric function, also requires a large number

of SCF iterations of ∼100. We note that although the orbital-
free Thomas-Fermi–von Weizsacker model can qualitatively
capture the metal-vacuum transition region [39], it is not
suited for systems with large eigenvalues of χ0 due to the
localized states near the Fermi energy. Finally, considering the
LRDM preconditioner, it achieves accelerated convergence
within 24–30 SCF iteration steps for all the system sizes
considered, up to three times fewer iteration steps compared to
Anderson, the next best performing method for these bench-
mark systems. We note that even for the largest system size
of 1099 atoms (19 782 electrons), ravg in LRDM is a modest
value of 11, with further reduction in the rank achieved by
using LRDMA as will be demonstrated in Sec. III C. We also
refer to Fig. 1(a), where we observe a noticeable plateauing
of the energy difference in successive SCF iterations beyond
the initial 20–40 SCF iteration steps for Kerker and TFW
preconditioners. In contrast, LRDM demonstrates close to an
exponential convergence of energy differences.

Next, we consider semiconductor-vacuum benchmark sys-
tems. We consider three semiperiodic benchmark systems: (i)
20 (110) plane monolayers of SiO2 with the silica surfaces
passivated by hydrogen, (ii) the same silica layer system
but without the surface passivation, and (iii) a disordered
Li10GeP2S12 (LGPS superionic conductor) slab. Benchmark
system (i) is obtained from a previous work related to the de-
velopment and testing of a LDOS-based preconditioner [34].
Benchmark system (iii) is constructed based on the atomic
coordinates and occupation factors obtained from x-ray struc-
ture analysis of LGPS crystal [58], and further a vacuum
layer is considered normal to the slab surfaces.2 First, an-
alyzing the SCF convergence of silica layers with surface
passivation, we observe that both the Anderson mixing and

2This corresponds to a model system for investigations of surface
effects in LGPS.
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LRDM preconditioner converge, efficiently taking ∼20 itera-
tions, whereas Kerker and TFW preconditioners demonstrate
a slow convergence despite a low κ (J ) ∼ 2 for this system.
The slower convergence is attributed to the well-known in-
ability of Kerker and TFW preconditioners to qualitatively
approximate the dielectric function of semiconductors, which
can, in turn, even deteriorate the net conditioning of the pre-
conditioned quasi-Newton problem [cf. Eq. (4)]. In case of
the unpassivated silica layers, the convergence of Anderson
and Kerker deteriorates due to high κ (J ) ∼ 400 caused by the
dangling bonds, whereas the LRDM preconditioner requires a
similar number of SCF iterations as the passivated case. Sub-
sequently, analyzing the convergence for the LGPS system,
which has a much larger value of κ (J ) compared to the silica
layers, we observe that the Anderson mixing did not converge.
Both the Kerker and TFW preconditioners also demonstrate
slower convergence for LGPS compared to the silica system,
taking 3 to 3.7times more SCF iteration steps compared to
LRDM (23 iterations).

Next, we consider metal-semiconductor-insulator-vacuum
heterogeneous benchmark systems. In particular, we con-
sider semiperiodic layered systems of the type (fcc
metal)+GaAs+SiO2H–Nl layers, with Nl denoting the num-
ber of monolayers in each of the metal and semiconductor
regions. The benchmark systems are adapted from previous
work [34,59], wherein they are constructed by first arranging
Nl (100) plane monolayers of the fcc metallic crystal, followed
by Nl (110) plane monolayers of GaAs and SiO2. The metal
and silica surfaces are exposed to the vacuum. Further, we
note that the silica surfaces are passivated by hydrogen and
all the interfaces are made to be coherent by applying ap-
propriate affine deformations to the respective regions. We
choose three sets of system sizes, Nl = 10, 20, and 40 con-
taining 133–508 atoms (up to ∼6100 electrons), and three
different metallic elements, Al, Au, and Pt. We note that for
Nl = 40, we use 20 monolayers for the SiO2 region as the
benchmark systems obtained from [34,59] are only available
till Nl = 20. Going to Nl = 40 from Nl = 20, we increased
the layers of only the metallic and semiconducting layers to
maintain the similar hydrogen passivated silica surfaces as
Nl = 20. Examining the SCF convergence of these bench-
mark systems from Table I and Figs. 1(b)–1(d) (for Pt), we
observe that except in the case of Pt/Al/Au+GaAs+SiO2H–
10 layers, Anderson mixing did not converge despite using
a small α = 0.015. We anticipate this to be a result of the
large values of κ (J ) that increase with number of layers,
reaching up to ∼10 000 for Pt+GaAs+SiO2H–40 layers, in
combination with the strong nonlinear effects in such highly
heterogeneous systems, as will be numerically demonstrated
in Sec. III C. We also remark that the values of κ (J ) are higher
for Pt+GaAs+ SiO2H–Nl compared to Au+GaAs+SiO2H–
Nl due to the partially filled 5d subshell of Pt in comparison
to the fully filled 5d subshell in Au. Analyzing the SCF
convergence of Kerker and TFW, we observe both approaches
deteriorating with increasing Nl as neither the Thomas-Fermi
homogeneous screening nor the Thomas-Fermi–von Weiz-
sacker model can qualitatively capture the transition of the
dielectric function between metal, semiconductor, insulator,
and vacuum regions. In contrast, the LRDM preconditioner
performs remarkably well for these highly heterogeneous

and large-scale benchmark systems, converging within ∼20–
30 SCF iteration steps for all the nine different benchmark
systems considered here. Notably, for the Pt+GaAs+SiO2H–
40-layer system, except for the LRDM preconditioner, all
the other preconditioners exhibit significantly deteriorated
convergence requiring ∼250 SCF iterations or more. The
relatively higher rank ravg = 13.8 required by the LRDM
preconditioner for the Pt+GaAs+SiO2H–40-layer system in-
dicates the complex polarization response of the dielectric
matrix for such systems.

Finally, we consider a large-scale semiconductor-metal-
vacuum semiperiodic benchmark system, HfO2 nanofilm with
Al stripes, used to investigate the origins of ferroelectricity
in Al-doped HfO2 nanofilms [21]. This benchmark system
is constructed as a 3-nm-thick tetragonal-phase HfO2 (001)
nanofilm with vacuum on both sides, and 18 Al dopant atoms
distributed along two separate (001) layers or stripes in the
nanofilm. Overall, this system contains 864 atoms (6750 elec-
trons). The results from the SCF convergence study for this
system in Table I show slow convergence for Anderson, TFW,
and Kerker. In contrast, LRDM converges within 31 SCF iter-
ation steps. The deteriorated performance for Anderson, TFW,
and Kerker, which use the previous SCF history, could be due
to nonlinear effects. This is corroborated by our findings in
Sec. III C below, where we numerically demonstrate strong
nonlinear effects for the HfO2-Al benchmark system.

1. SCF convergence comparison for magnetic systems

We now test the performance of LRDM for magnetic
benchmark systems using the spin-polarized extension of
LRDM proposed in Sec. II D. We consider two benchmark
systems: (i) a ferromagnetic bcc Fe 3 × 3 × 3 periodic su-
percell with a monovacancy, and (ii) a ferromagnetic Pt3Ni
cubic 2 × 2 × 2 nanoparticle with a vacuum layer of ∼15 Å
around the nanoparticle. We remark that Pt3Ni nanoparticles
have important applications as catalysts for the oxygen re-
duction reaction in hydrogen fuel cells [60]. Table II reports
the SCF convergence comparison of spin-polarized LRDM
against other preconditioners for these benchmark systems. In
the case of the close-to-homogeneous bcc Fevac 3 × 3 × 3 sys-
tem, we observe efficient convergence for Kerker, TFW, and
LRDM preconditioners requiring ∼20 SCF iteration steps,
compared to Anderson which requires about two times more
iterations. Next, considering the Pt3Ni cubic NP, we observe
accelerated convergence only with the LRDM preconditioner
requiring 25 SCF iteration steps, while Anderson, Kerker, and
TFW require more than four times the iterations. The rela-
tively higher ravg of around 15, compared to the spin-restricted
Pt metallic nanoparticle benchmarks discussed previously, in-
dicates the complex nature of the dielectric matrix due to the
additional spin-density response of R[(ρ↑, ρ↓)]. Additionally,
we note that the net magnetization at convergence obtained
from LRDM is within 0.1μB of the net magnetization obtained
from other preconditioners.

2. SCF convergence comparison at lower smearing temperatures

We now test the performance of LRDM for a lower Fermi-
Dirac smearing temperature T = 10 K compared to the 500 K
used in the earlier benchmarks. Lower smearing temperature
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TABLE II. Comparison of LRDM performance against other preconditioners for spin-polarized DFT benchmark calculations with nonzero
net magnetization. A stopping tolerance of 10−5 in the L2 norm of the electron-density residual (‖R[(ρ↑, ρ↓)]‖) is used. Based on numerical
experiments, this is approximately equivalent to a stopping tolerance of 5 × 10−8 Ha in the total energy difference between consecutive SCF
iteration steps. DNC denotes that the calculation did not converge within 200–250 SCF iteration steps. Mtot denotes the net magnetization.

System Nat κ (J ) Anderson Kerker TFW LRDM (ravg) Mtot (μB)

bcc Fevac, 3 × 3 × 3 53 64 41 18 16 24 (5.0) 125.8
Pt3Ni cubic NP, 2 × 2 × 2 63 128 102 DNC 108 25 (14.8) 43.9

leads to larger total density of states at the Fermi energy
for metallic systems, which can increase κ (J ) as χ0(|q|) is
proportional to the total density of states at the Fermi energy
as |q| → 0. This can also be interpreted more physically as
sharpening of the occupancies near the Fermi energy lead-
ing to pronounced occupancy sloshing across degenerate or
close-to-degenerate states near the Fermi energy. We recon-
sider three benchmark systems with metallic character: (i) a
fcc 3 × 3 × 3 Pt NP, (ii) a Pt+GaAs+SiO2H layered metal-
semiconductor-insulator-vacuum heterogeneous system, and
(iii) a ferromagnetic bcc Fe 3 × 3 × 3 periodic supercell with
a monovacancy. Table III reports the lower temperature SCF
convergence comparison of LRDM against other precondi-
tioners for these benchmark systems. Comparing the T =
10 K results to T = 500 K results for benchmark systems
(i) and (ii) (cf. Table I), we first observe that κ (J ) has in-
creased by 1.5- to 2 times. Overall this results in slower
convergence for Anderson, Kerker, and TFW preconditioners,
whereas the LRDM preconditioner converges in the same
number of iterations as with T = 500 K, although with a
slightly higher average rank due to increase in κ (J ). Subse-
quently, considering the ferromagnetic bcc Fe monovacancy
system, we observe that both LRDM and Kerker precondition-
ers demonstrate robust convergence similar to the T = 500 K
benchmark results in Table II, whereas the Anderson and
TFW convergence is significantly deteriorated. We note that
to obtain robust convergence for LRDM in the bcc Fe system,
the damping parameter α was reduced from 0.5 to 0.4.

C. Results on ravg reduction using LRDMA

In the SCF convergence studies discussed in Sec. III B
for the LRDM preconditioner, we find that ravg can be high
for systems with large κ (J ). In Sec. II B, we proposed an
improvement to LRDM that can potentially reduce ravg by
accumulating the low-rank approximation of J lr

r from previous
SCF steps combined with an adaptive algorithm that controls
the accumulation. We now demonstrate and analyze the ravg

reduction achieved by the accumulated variant (LRDMA)

over LRDM for a subset of the difficult heterogeneous
benchmark systems discussed in Sec. III B, namely, the Pt
cubic nanoparticles, Pt+GaAs+SiO2H–Nl -layer benchmark
systems, and the HfO2 nanofilm with Al stripes benchmark
system. Table IV reports the total SCF iterations and ravg

required by LRDM and LRDMA approaches. We further
analyze the rank accumulation in Fig. 2, which shows the
adaptively determined rank in each SCF iteration step for the
LRDM and LRDMA approaches, and also marks the accu-
mulation clearing events with labels CL, CR, and CT related
to nonsatisfaction of linearity-indicator criteria, residual norm
criteria, and low-rank approximation error criteria, respec-
tively (cf. Sec. II B).

In the case of Pt cubic NPs, we observe an appreciable
∼1.8-fold reduction in ravg for LRDMA compared to LRDM,
while the number of SCF iterations are the same except for
the largest system, Pt cubic-NP 6 × 6 × 6 taking an additional
SCF step in LRDMA. Next, in the case of the more het-
erogeneous Pt+GaAs+SiO2H–Nl -layer system and HfO2-Al
system, we observe around a 1.6-fold reduction in ravg with
a slight increase in the number of SCF iterations by ∼10%
for the most difficult Pt+GaAs+SiO2H–40 system. Although
LRDMA performs robustly for the highly heterogeneous sys-
tems, the relatively lower advantage as compared to the Pt
cubic NPs is attributed to the stronger nonlinear effects in the
more heterogeneous layered material systems when the SCF
iteration is not close to convergence. The above reasoning is
supported by Fig. 2, which shows that in the case of Pt cubic
NPs only a small number of CL-labeled clearing events occur
across all the LRDMA preconditioned SCF iterations. On
the other hand, Pt+GaAs+SiO2H–Nl and HfO2-Al systems
have a much larger number of CL clearing events when the
SCF iteration is not close to convergence. Specifically, we
observe successive CL-labeled events in these systems, that
correspond to nonlinear regimes in R[ρ] when considering the
Taylor series expansion about ρ at the current iterate. Rely-
ing on CT events only in such regimes leads to suboptimal
accumulation, which we have observed from our numeri-
cal experiments. Overall, the above studies demonstrate that

TABLE III. Comparison of the performance of LRDM against other preconditioners at low Fermi-Dirac smearing temperature of T =
10 K. DNC denotes the calculation did not converge within 200–250 SCF iteration steps.

System Nat κ (J ) Anderson Kerker TFW LRDM (ravg)

Pt cubic NP, 3 × 3 × 3 172 244 64 DNC 149 24 (8.9)
Pt+GaAs+SiO2H–10 layers 133 875 127 72 54 23 (6.9)
bcc Fevac, 3 × 3 × 3 53 69 92 20 DNC 33 (5.7)
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TABLE IV. Comparison of performance of LRDM and LRDMA
preconditioners.

System LRDM (ravg) LRDMA (ravg)

Pt cubic NP, 3 × 3 × 3 24 (7.3) 23 (3.7)
Pt cubic NP, 5 × 5 × 5 28 (10.0) 28 (5.5)
Pt cubic NP, 6 × 6 × 6 30 (11.0) 31 (6.8)
Pt+GaAs+SiO2H–10 layers 23 (6.9) 25 (4.1)
Pt+GaAs+SiO2H–20 layers 25 (9.5) 26 (6.0)
Pt+GaAs+SiO2H–40 layers 28 (13.8) 32 (8.8)
HfO2 nanofilm with Al stripes 31 (6.2) 31 (4.2)

the LRDMA approach, in general, is an improvement over
LRDM, with the ravg reduction dependent on the strength of
the nonlinearities of F [Veff[ρ]] in the material system.

D. Computational cost of LRDM and its system size scaling

We now demonstrate the computational efficiency of
the LRDM preconditioner and the accumulated variant
(LRDMA) against Anderson and Kerker preconditioners on a
subset of the benchmark systems considered in Sec. III B, with
system sizes ranging from ∼3000 to 20 000 electrons. The
benchmark calculations are performed using implementations
of Anderson, Kerker, LRDM, and LRDMA preconditioners in
the DFT-FE code. All simulations are performed using multiple
GPU nodes of the NERSC Perlmutter supercomputer, with
comparisons conducted between simulations using the same
number of nodes. Further, we note that the key computa-
tional steps in the LRDM preconditioner, in particular the
first-order density response computation in the Chebyshev
filtered subspace (cf. Sec. II C), have been efficiently ported
to GPUs. On the other hand, the electron-density mixing
operations required by Anderson and Anderson with Kerker
preconditioners are performed on CPUs, as their overheads
are less than 5% compared to the ChFSI eigensolver cost
in each SCF iteration in DFT-FE. We also remark that the
ChFSI procedure in DFT-FE was recently GPU ported [8], and
achieves significant CPU-GPU speedups of ∼15- to 20-fold
on OLCF Summit. We first consider the Pt cubic nanoparticle
benchmark systems with system sizes ranging from 172 to
1099 atoms (3096–19 782 electrons). Table V reports the com-
putational cost in GPU Node-hours for Anderson, LRDM, and
LRDMA. We present both the computational cost of the full
SCF convergence as well as the average per SCF iteration cost.
We observe that the total SCF computational cost speedups of
LRDM and LRDMA with respect to Anderson are ∼1.4-fold

and ∼1.6-fold, respectively, for the larger system sizes. The
relatively higher speedup for LRDMA is due to the previously
demonstrated lower ravg for LRDMA compared to LRDM for
these benchmark systems. Furthermore, the per SCF compu-
tational cost ratio of LRDM to Anderson is quite modest,
with an average value across the three system sizes of 2.0-
and 1.6-fold for LRDM and LRDMA, respectively, where the
computational benefit of LRDMA over LRDM is further evi-
dent. The above computational cost ratio also demonstrates a
weak system size dependence, which is related to the O(MN2

e )
scaling of LRDM. From Table V, it can be numerically veri-
fied that the additional per SCF computational cost for LRDM
and LRDMA compared to Anderson scales close to cubically
with respect to the number of electrons when the system size
is increased from Pt cubic NP 5 × 5 × 5 (666 atoms) to Pt
cubic NP 6 × 6 × 6 (1099 atoms). Thus, for larger system
sizes, given the asymptotic cubic scaling of KS-DFT and the
weak dependence of ravg on the system size (cf. Table I),
the computational cost ratio can be expected to approach a
constant factor for very large system sizes.

Next, we investigate the computational cost of LRDM and
LRDMA for the more heterogeneous benchmark systems—
Pt+GaAs+SiO2H (metal-semiconductor-insulator-vacuum)
layers with increasing sizes and a large-scale HfO2 nanofilm
with Al stripes (metal-semiconductor-vacuum) system. For
these material systems we compare against the Kerker pre-
conditioner, which is relatively more robust for such systems
compared to Anderson. Table VI reports the results for this
study, where we observe LRDM to achieve 1.6- to 3.4-fold
speedups in the total SCF cost compared to Kerker for the
above benchmark systems. The per SCF computational cost
ratio of LRDM to Kerker is 1.5- to 2.5-fold, with up to a
∼1.2-fold reduction observed for the per SCF computational
cost ratio while using LRDMA. We remark that LRDMA does
not provide an improvement in the total SCF cost reduction
relative to LRDM for the Pt+GaAs+SiO2H–40-layer system
due to the slight increase in the number of SCFs (cf. Sec. III C)
that negates the reduction in the per SCF cost.

IV. CONCLUSIONS

We present a robust and efficient approach to accelerate the
self-consistent field iteration in Kohn-Sham DFT calculations.
In particular, we use a low-rank approximation of the dielec-
tric matrix (LRDM)—constructed as a sum of rank-1 tensor
products—as the preconditioner for solving the self-consistent
fixed-point iteration. We note that the low-rank approxima-
tion is adaptive and systematically convergent, which lends

TABLE V. Comparison of computational efficiency between Anderson, LRDM, and LRDMA approaches as implemented in the DFT-FE

code for benchmark systems comprising Pt cubic nanoparticles of various sizes. Computational cost is reported in terms of NERSC Perlmutter
GPU Node-hours for the total SCF solve and the average cost per SCF iteration. The first SCF iteration, which involves multiple passes of
Chebyshev filtering, is excluded in measuring the average per SCF iteration cost. The total SCF cost includes all SCF iteration steps.

Anderson LRDM LRDMA Anderson LRDM LRDMA LRDM-Anderson LRDMA-Anderson
System total SCF total SCF total SCF per SCF per SCF per SCF ratio per SCF ratio per SCF

Pt cubic NP, 3 × 3 × 3 0.78 0.71 0.56 0.013 0.026 0.021 2.0 1.62
Pt cubic NP, 5 × 5 × 5 13.14 9.18 8.04 0.157 0.284 0.239 1.81 1.52
Pt cubic NP, 6 × 6 × 6 56.94 40.85 36.0 0.564 1.174 1.0 2.08 1.77
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TABLE VI. Comparison of computational efficiency between Kerker, LRDM, and LRDMA approaches as implemented in the DFT-FE code
for heterogeneous metal-insulator-semiconductor benchmark systems of various sizes. Computational cost is reported in terms of NERSC
Perlmutter GPU Node-hours for the total SCF solve and the average cost per SCF iteration. The first SCF iteration, which involves multiple
passes of Chebyshev filtering, is excluded in measuring the average per SCF iteration cost. The total SCF cost includes all SCF iteration steps.

Kerker LRDM LRDMA Kerker LRDM LRDMA LRDM-Kerker LRDMA-Kerker
System total SCF total SCF total SCF per SCF per SCF per SCF ratio per SCF ratio per SCF

Pt+GaAs+SiO2H–10 layers 3.06 1.86 1.74 0.047 0.072 0.061 1.53 1.30
Pt+GaAs+SiO2H–20 layers 22.31 8.66 7.43 0.166 0.290 0.263 1.75 1.58
Pt+GaAs+SiO2H–40 layers 213.30 63.5 64.58 0.837 2.112 1.937 2.52 2.31
HfO2 nanofilm with Al stripes 6.30 4.04 3.50 0.069 0.122 0.104 1.77 1.51

to the robustness of the approach for tackling generic het-
erogeneous material systems, including systems with large
condition number and strong nonlinearities in the fixed-point
iteration. A key contribution of the present effort is the
development of an efficient numerical method for computing
the first-order density response in real space that is critical to
the efficiency of the LRDM procedure. To this end, we com-
pute the density response in the Chebyshev filtered subspace
iteration (ChFSI) procedure, which adaptively approximates
the occupied eigensubspace in each SCF iteration step. The
smaller dimension of the Chebyshev filtered subspace, in
conjunction with the use of canonical density-matrix pertur-
bation theory, provides a computationally efficient approach
for using the LRDM preconditioner. In order to further im-
prove the computational efficiency of the LRDM method,
we developed an accumulated variant of the formulation,
which adaptively accumulates the low-rank dielectric matrix
approximation from the previous SCF iterations using in-
dicators based on the extent of linearity of the fixed-point
iteration map and the residual norm. Additionally, we ex-
tended the LRDM preconditioner to collinear spin-polarized
KS-DFT, using a generalization of the low-rank formulation
to spin densities and their corresponding response functions.
We note that this generalization is also extensible to non-
collinear spin-polarized KS-DFT, which is a topic for future
studies. We additionally remark that the proposed numerical
method for the LRDM procedure, although developed in the
context of a finite-element basis and ChFSI eigensolver, is
adaptable to other Kohn-Sham DFT implementations that use
different discretizations (e.g., plane waves, finite difference,
and wavelets) and eigensolver strategies (e.g., Davidson and
RMM-DIIS).

We investigated the robustness and efficiency of the
LRDM approach on a comprehensive set of heterogeneous
nonperiodic and periodic benchmark systems. To this end,
we chose material systems such as metallic and bimetallic
nanoparticles, layered materials with various combinations
of metal-semiconductor-insulator systems, semiconducting
nanofilms with metal dopants, and magnetic systems with
spin polarization. The benchmark systems range from small

to large system sizes comprising ∼100–1100 atoms (∼500–
20 000 electrons). In all the benchmark systems we compared
the SCF convergence of LRDM against three other widely
used preconditioners—Anderson mixing [26], Anderson mix-
ing with Kerker preconditioner [35], and Broyden mixing
with Thomas-Fermi–von Weizsacker preconditioner [39]. Our
studies have demonstrated that LRDM achieves robust con-
vergence within 20–30 SCF iterations, for all the benchmark
systems considered here, with a weak dependence observed
on the system size. In comparison, Anderson, Kerker, and
Broyden showed slow convergence for systems with high
condition numbers, requiring three to five times more SCF
iterations compared to LRDM. The accumulated variant
(LRDMA) showed promise in reducing the average (over the
SCF iterations) adaptive rank ravg by 1.5- to 1.8-fold across
various benchmark systems without affecting the robustness
of the SCF iteration. We also found the LRDM or LRDMA
approach to outperform Anderson and Kerker precondition-
ers in computational cost for full ground-state calculations
by ∼1.4- to 3.4-fold for Pt cubic nanoparticles and layered
heterogeneous benchmark systems.
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