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Dynamical detection of mean-field topological phases in an interacting Chern insulator
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Interactions generically have important effects on topological quantum phases. For a quantum anomalous
Hall (QAH) insulator, the presence of interactions can qualitatively change a topological phase diagram, which,
however, is typically hard to measure in an experiment. Here we propose a scheme based on quench dynamics to
detect the mean-field topological phase diagram of an interacting Chern insulator described by the QAH-Hubbard
model, with nontrivial dynamical quantum physics being uncovered. We focus on the dynamical properties
of the system at a weak to intermediate Hubbard interaction, which mainly induces a ferromagnetic order
under the mean-field level. Remarkably, three characteristic times—ts, tc, and t∗—are found in the quench
dynamics. The first two (ts, tc) capture the emergences of dynamical self-consistent particle density and the
dynamical topological phase transition, respectively, while the third one (t∗) gives a linear scaling time on the
topological phase boundaries. We show generically that the characteristic times obey ts > t∗ > tc (t∗ < ts < tc)
in the repulsive (attractive) interacting regime, when the system is quenched from an initial nearly fully polarized
state to the topologically nontrivial regimes. Moreover, the Chern number of the equilibrium phase of postquench
interacting Hamiltonian can be determined by any two of the three timescales, providing a dynamical way to
determine the equilibrium mean-field topological phases. Experimentally, the measurement of ts is challenging,
while tc and t∗ can be directly read out by measuring the spin polarizations of four Dirac points and the
time-dependent particle density, respectively, showing the feasibility of the present dynamical scheme. Our work
opens a way to detect by quench dynamics the mean-field phase diagram of Chern insulators with interactions.

DOI: 10.1103/PhysRevB.107.125132

I. INTRODUCTION

Topological quantum phases are currently a focus of re-
search in condensed-matter physics [1–5]. At equilibrium, the
topological phases can be characterized by nonlocal topologi-
cal invariants [6,7] defined in ground states. This classifies the
gapped band structures into distinct topological states, with
great success having been achieved in the study of topolog-
ical insulators [8–11], topological semimetals [12–15], and
topological superconductors [16–20]. Nevertheless, this non-
interacting topological phase can be greatly affected after
considering many-body interaction [21–32]. For instance, a
repulsive Hubbard interaction can drive a trivial insulator into
a topological Mott insulator [33–35], while an attractive Hub-
bard interaction may drive a trivial phase of a two-dimensional
(2D) quantum anomalous Hall (QAH) system into a topo-
logical superconductor/superfluid [36–39]. Hence it is still
a fundamental issue, and is usually difficult in experiments,
to accurately identify the topological phases driven by the
interactions.

*Corresponding author: xiongjunliu@pku.edu.cn

In recent years, the rapid development of quantum simula-
tions [40–42] has provided new realistic platforms to explore
exotic interacting physics, such as ultracold atoms in opti-
cal lattices [43–49] and superconducting qubits [50–52]. A
number of topological models have been realized in experi-
ments, such as the 1D Su-Schrieffer-Heeger model [53,54],
a 1D AIII class topological insulator [55,56], 1D bosonic
symmetry-protected phase [57,58], the 2D Haldane model
[59], the spin-orbit coupled QAH model [60–62], and the
3D Weyl semimetal band [63–67]. Accordingly, various de-
tection schemes for exotic topological physics have also
been developed, ranging from measurements of equilibrium
topological physics [68–71] to nonequilibrium quantum dy-
namics [72–81]. In particular, dynamical characterization
[82–88] shows the correspondence between broad classes of
equilibrium topological phases and the emergent dynamical
topology in far-from-equilibrium quantum dynamics induced
by quenching such topological systems, which brings about
systematic and high-precision schemes to detect topological
phases based on quantum dynamics, and it has advanced broad
studies in experiment [89–98]. Nevertheless, these current
studies have focused mainly on noninteracting topological
systems, while particle-particle interactions are expected to
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have crucial effects on the topological phases, the detection
of which is typically hard to achieve. For example, when
quenching an interacting topological system [99–102], both
the interactions and the many-body states of the system evolve
simultaneously after quenching, leading to complex nonlinear
quantum dynamics [103–106] and exotic nonequilibrium phe-
nomena [107–110]. With the above considerations, there are
two nontrivial issues for quantum dynamics in the interacting
Chern insulator that have not been studied: (i) How do the
dynamical properties change when the Hubbard interaction
is added into the Chern insulator while performing quench
dynamics? (ii) Is there any universal feature in the dynamical
evolution to characterize the equilibrium mean-field topologi-
cal phases?

We address these issues in this paper, and we propose a
scheme based on quench dynamics to detect the mean-field
topological phase diagram of an interacting Chern insulator
described by the QAH-Hubbard model, with nontrivial dy-
namical quantum physics being uncovered. Specifically, we
consider a 2D QAH system in the presence of a weak to
intermediate Hubbard interaction, which mainly induces a
ferromagnetic order under the mean-field level. By quenching
the system from an initial nearly fully polarized trivial state
to a parameter regime in which the equilibrium phase is topo-
logically nontrivial, we uncover two dynamical phenomena
rendering the dynamical signals of the equilibrium mean-field
phase. First, there are three characteristic times—ts, tc, and
t∗—capturing the dynamical self-consistent particle density,
the dynamical topological phase transition, and the linear
scaling time on the topological phase boundaries, respectively.
Second, ts > t∗ > tc (t∗ < ts < tc) occurs in the repulsive (at-
tractive) interaction, and the Chern number is determined by
any two characteristic timescales. Based on these two funda-
mental properties, we can easily determine the equilibrium
mean-field topological phase diagram by comparing any two
timescales. Experimentally, the measurement of ts is challeng-
ing while tc and t∗ can be directly read out by measuring the
spin polarizations of four Dirac points and the time-dependent
particle density, respectively. This result provides a dynamical
detection scheme with high feasibility and simplicity for mea-
suring the mean-field topological phase diagram in interacting
systems, which may be applied to recent quantum simulation
experiments.

The remaining part of this paper is organized as follows. In
Sec. II, we introduce the QAH-Hubbard model. In Sec. III,
we study the quench dynamics of the system. In Sec. IV,
we reveal the nontrivial dynamical properties in quench dy-
namics. In Sec. V, we determine the mean-field topological
phase diagram via the timescales. In Sec. VI, we propose the
experimental detection scheme for the equilibrium mean-field
topological phases. Finally, we summarize the main results
and provide a brief discussion in Sec. VII.

II. QAH-HUBBARD MODEL

Our starting point is a minimal 2D QAH model [36,38],
which has recently been realized in cold atoms [60,62,89,91],
together with an attractive or repulsive on-site Hubbard
interaction of strength U . The system is now described by the

QAH-Hubbard Hamiltonian

H =
∑

k

C†
kH

(0)
k Ck + U

∑
j

nj↑nj↓,H(0)
k = hk · σ

= [mz − 2t0(cos kx + cos ky)]σz

+ 2tso sin kyσx + 2tso sin kxσy, (1)

where Ck = (ck↑, ck↓)T is the spinor operator of momen-
tum k, njs = c†

jscjs with s =↑ or ↓ is the particle number
operator at site j, σx,y,z are the Pauli matrices, and mz is
the Zeeman coupling. Here t0 and tso are the spin-conserved
and spin-flipped hopping coefficients, respectively. In the
noninteracting case, the Bloch Hamiltonian H(0)

k produces
two energy bands ±ek = ±

√
h2

x,k + h2
y,k + h2

z,k , for which the
gap can be closed at Dirac points Di ∈ {X1, X2,�, M} with
X1 = (0, π ), X2 = (π, 0), � = (0, 0), and M = (π, π ) for
certain Zeeman coupling. When the system is fully gapped,
the corresponding band topology can be characterized by the
first Chern number Ch1, determining the QAH topological
region 0 < |mz| < 4t0 with Ch1 = sgn(mz ) and the trivial re-
gion |mz| > 4t0. This noninteracting topological property can
also be captured by the intuitive physical quantities, such as
the numbers of edge states [36], the spin textures on band
inversion surfaces [82,91], and the spin polarizations at four
Dirac points [60,68].

The presence of nonzero interactions can greatly affect the
physics of Hamiltonian (1) and may induce various interesting
quantum phases at suitable interaction strength, such as the
superfluid phase in attractive interaction [111,112] and the
antiferromagnetic phase in repulsive interaction [113,114].
Especially for a general strong interaction, the system may
host rich magnetic phases [115–117]. Here we focus on the 2D
system at half-filling within a weak to intermediate interacting
regime, where the interaction mainly induces ferromagnetic
order [118]. For this 2D case, the Hubbard interaction can be
still treated by employing the mean-field theory, in which the
fluctuations around the average value of the order parameter
are small and can be neglected [37–39,104–106]. Accord-
ingly, the Hubbard interaction term is rewritten as∑

j

nj↑nj↓ = n↑
∑

k

c†
k↓ck↓ + n↓

∑
k

c†
k↑ck↑ − Nn↑n↓ (2)

with ns = (1/N )
∑

k〈c†
kscks〉. Here N is the total number of

sites. It is clear that the nonzero interaction corrects the Zee-
man coupling to an effective form

meff
z = mz − U

(n↑ − n↓)

2
= mz − Und , (3)

where nd ≡ (n↑ − n↓)/2 is the difference of density for spin-
up and spin-down particles. The effective Zeeman coupling
shifts the topological region to 0 < |meff

z | < 4t0 with Ch1 =
sgn(meff

z ) in the interacting regime.
By self-consistently calculating the particle density n↑(↓)

[see Figs. 1(a) and 1(b)], the mean-field phase diagram of the
QAH-Hubbard model (1) is shown in Fig. 1(c). An important
feature is that the topological phase boundaries depend on
the strength of nonzero interaction and the Zeeman coupling
linearly (see Appendix A). Indeed, this linear behavior of
topological boundaries is essentially a natural consequence
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FIG. 1. (a),(b) Self-consistent results of n↑ and n↓. (c) Mean-field
phase diagram for the nonzero U and mz. (d) Contour lines of nd ,
where the topological phase boundaries (two dashed lines) have n∗

d =
±0.4068. Here we set tso = t0 and N = 60 × 60.

of the linear form of the contour lines of nd in terms of
the interaction strength and Zeeman coupling, as we show
in Fig. 1(d). On these lines, meff

z is also unchanged, since
nd is fully determined by the effective Zeeman coupling.
Specifically, we have n∗

d = ±0.4068 on the topological phase
boundaries |meff

z | = 4t0 for tso = t0. This linear scaling form
of nd greatly affects the dynamical properties of the system
and leads to novel phenomena in the quench dynamics, as we
show in Sec. IV.

III. QUENCH DYNAMICS

Quantum quench dynamics has been widely used in
cold atoms [61,66,89,119]. We shall show that the above
equilibrium mean-field phase diagram can be dynamically
characterized and detected by employing the quantum quench
scheme. Unlike the interaction quench in Refs. [103,105],
here we choose the Zeeman coupling as the quench param-
eter, which has the following advantages: (i) The effective
Zeeman coupling directly determines the topology of mean-
field ground states at equilibrium; (ii) the Zeeman field in
spin-orbit coupled quantum gases is controlled by the laser
intensity and/or detuning and can be changed in a very short
timescale, fulfilling the criterion for a sudden quench; and (iii)
the realistic experiments [120–122] have demonstrated that
both the magnitude and the sign of the Zeeman field can be
tuned, which is more convenient to operate.

The quench protocol is as follows. First, we initialize the
system into a nearly fully polarized state for time t < 0 by
taking a very large constant magnetization m(c)

z along the σz

axis but a very small m(c)
x(y) along the σx(y) axis. In this case,

the effect of interaction U can be ignored, and the spin of the
initial state is almost along the z axis with only a very small
component in the x-y plane. At t = 0, we suddenly change
the Zeeman coupling m(c)

z to the postquenched value mz and
remove m(c)

x(y). Then, the nearly fully polarized state begins

to evolve under the equation of motion i�̇k(t ) = Hk(t )�k(t )
with the postquenched Hamiltonian

Hk(t ) =
[

hz,k + Un↓(t ) hx,k − ihy,k
hx,k + ihy,k −hz,k + Un↑(t )

]
, (4)

where �k(t ) = [χk(t ), ηk(t )]T is the instantaneous many-
body state. We emphasize that m(c)

z should have the same
sign as the postquenched mz in order to facilitate the capture
of nontrivial properties in quantum dynamics. Also, all the
physics in the dynamics are robust against the tiny changes
|m(c)

x(y)| ∈ [0, mz] of the initial state.
Via the quench dynamics, we observe that the many-body

state �k(t ) and the postquenched Hamiltonian Hk(t ) are both
time-evolved, where the instantaneous particle density is time-
dependent and determined as

n↑(t ) = 1

N

∑
k

|χk(t )|2, n↓(t ) = 1

N

∑
k

|ηk(t )|2. (5)

This dynamic behavior is completely different from the nonin-
teracting quantum quenches, where the postquenched Hamil-
tonian remains unchanged [82–87]. Even if the postquenched
Hamiltonian becomes steady after the long time evolution, it
is still different from the equilibrium mean-field Hamiltonian
with the postquenched mz and U , i.e.,

HMF
k =

[
hz,k − Und + U

2 hx,k − ihy,k

hx,k + ihy,k −hz,k + Und + U
2

]
. (6)

Here nd is the equilibrium value, as we show in Sec. II.
Clearly, the novel dynamical evolution shows that the detec-
tion schemes for the noninteracting topological phases are
inapplicable in this interacting case.

Next we employ the nontrivial characteristic time emerged
in the above dynamical evolution to identify the mean-field
topological phases. By defining the quantity nd (t ) ≡ [n↑(t ) −
n↓(t )]/2, the time-dependent effective Zeeman coupling is
given by

meff
z (t ) = mz − Und (t ). (7)

Their dynamical properties are shown in Fig. 2, where nd (t )
in a short-time evolution increases (decays) from an initial
nd (t = 0) ≈ −0.5 (0.5) when the postquenched Zeeman cou-
pling is positive (negative). It should be noted that meff

z (t )
now determines the topological number W (t ) of postquenched
Hamiltonian Hk(t ) through the relation W (t ) = sgn[meff

z (t )]
for 0 < |meff

z (t )| < 4t0 and W (t ) = 0 otherwise. Consider-
ing that the topology of equilibrium mean-field Hamiltonian
(6) is actually determined by its self-consistent particle den-
sity n↑(↓), one idea for capturing the equilibrium mean-field
topological phases is to find a characteristic time ts in this
dynamics such that

n↑(↓)(ts) = n↑(↓), (8)

which gives a dynamical self-consistent particle density
n↑(↓)(ts) to characterize the equilibrium self-consistent par-
ticle density. Now this postquenched Hamiltonian at ts is
equivalent to the equilibrium mean-field Hamiltonian, and
both of them host the same ground states. Accordingly,
meff

z (ts) determines the topology of the equilibrium mean-field
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FIG. 2. Numerical results for n↑(t ) (red solid lines), n↓(t ) (blue
solid lines), meff

z (t ) (green solid lines), ñ↑(t ) (light-blue dash-dotted
lines), and ñ↓(t ) (black dash-dotted lines) for different interaction
and equilibrium mean-field topological phases. Two characteris-
tic times ts and tc emerge in the dynamical time evolution. Here
the postquenched parameters are (mz,U ) = (1.4, 5.7), (3.0,3.5),
(4.9, −2.7), and (5.8,−4.0) for (a)–(d), respectively. The other char-
acteristic time is t∗ = 0.180. We set tso = t0 = 1, m(c)

x = mz, m(c)
y =

0, and m(c)
z = 100.

Hamiltonian. On the other hand, we introduce a characteristic
time tc such that ∣∣meff

z (tc)
∣∣ = 4t0, (9)

characterizing the critical time of the dynamical topological
phase transition of the postquenched Hamiltonian. Mean-
while, a nontrivial relation meff

z (ts) = meff
z (tc) happens on the

topological phase boundaries, giving ts = tc. We denote this
characteristic time on these topological boundaries as t∗, such
that

nd (t∗) = n∗
d , (10)

which holds a unique value for the system with a fixed spin-
orbit coupled strength due to the linear scaling of n∗

d [see
Fig. 1(d)]. With these three characteristic timescales ts, tc, and
t∗, the properties of the equilibrium mean-field Hamiltonian
can be completely characterized, where the ground states,
the topological phase transition, and the topological phase
boundaries are characterized by Hk(ts), Hk(tc), and Hk(t∗),
respectively. In Fig. 2, we show that both ts and tc emerge
in the short-time evolution. Together with t∗ in Fig. 5(b),
we clearly observe that the relative timescales behave dif-
ferently for the different equilibrium mean-field phases. This
result provides a basic idea to establish the topological
characterization and to detect the mean-field phase diagram.
We shall theoretically calculate the three characteristic times

in Sec. IV, and then we will show how to accurately identify
the equilibrium mean-field topological phases via the three
timescales in Sec. V.

IV. NONTRIVIAL DYNAMICAL PROPERTIES

In this section, we determine the characteristic times ts,
tc, and t∗ entirely from quantum dynamics, and we pro-
vide the analytical results under certain conditions. Also, the
nontrivial dynamical properties are uncovered, including the
emergence of dynamical self-consistent particle density and
the dynamical topological phase transition, and then the scal-
ing properties of the three characteristic times.

A. Dynamical self-consistent particle density
and characteristic time ts

We first figure out how to theoretically determine the char-
acteristic time ts in the quantum dynamics. A notable fact is
that the equilibrium particle density n↑(↓) is self-consistently
obtained in the equilibrium mean-field Hamiltonian, and the
time-evolved particle density n↑(↓)(t ) can be considered as a
specific path for updating the mean-field parameters. Hence
we introduce another set of time-dependent particle density,

ñ↑(t ) = 1

N

∑
k

|χ̃k(t )|2, ñ↓(t ) = 1

N

∑
k

|η̃k(t )|2, (11)

for the eigenvector �̃k(t ) = [χ̃k(t ), η̃k(t )]T of the
postquenched Hamiltonian Hk(t ) with negative energy,
which can be obtained once we know the instantaneous
particle density n↑(↓)(t ). Note that n↑(↓)(t ) and ñ↑(↓)(t ) are
slightly different, where the former is the particle density
corresponding to the instantaneous states but the latter is that
corresponding to the eigenstates of Hk(t ). We see that Hk(t )
is self-consistent when the two sets of time-dependent particle
density coincide, giving the characteristic time

ts ≡ min{t |n↑(↓)(t ) = ñ↑(↓)(t )}, (12)

at which there is n↑(↓) = n↑(↓)(ts) = ñ↑(↓)(ts), as we show in
Fig. 2. This result determines the dynamical self-consistent
particle density n↑(↓)(ts) and captures the equilibrium self-
consistent particle density. Although the measurement of
ts was almost impossible in recent experiments, it clearly
characterizes the novel dynamic properties derived from
quenching.

In addition, it should be emphasized that here only
the time-dependent particle density becomes self-consistent,
while the instantaneous wave function does not, which il-
lustrates a subtle difference from the equilibrium mean-field
Hamiltonian where both the particle density and the wave
function are completely self-consistent (see Appendix C).
This implies that the different instantaneous states may lead
to the same value of n↑(↓)(ts) and there may be multiple
time points fulfilling the self-consistent condition. We hereby
choose the smallest time point as ts due to the consideration
of short-time evolution [see Fig. 2(a)]. Also, a finite ts shall
definitely appear in the short-time evolution, since n↑(↓)(t )
increases or decays in this regime and the state gradually
reaches a steady state after t > ts.
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FIG. 3. (a),(b) Analytical results of ts and tc, where t∗ = 0.176
is on the topological boundaries (black solid lines). The dark-brown
regions represent ts > 0.35 in (a) and tc = +∞ in (b), respectively,
while the dark-purple regions in (b) give tc = 0. These regions ac-
tually correspond to the complex values of ts and tc since a large
truncation O(U 3n3

d ) is taken. After reducing the truncation error, ts

gives the real value but tc still gives a complex value due to no
solution. (c) Sign of ts − tc, where the shaded area is the equilibrium
topological phase region. (d) Analytical results of ts, nd , and Re[tc]
at nd ≈ −0.09, showing the linear scaling of ts and nd . Here we set
tso = t0 = 1.

The explicit form of ts is usually very complex, but we
can obtain an analytical result in the short-time evolution
for a weak interaction strength or a small |Und |. After some
straightforward calculations, ts is given by (see Appendix B)

ts ≈
√

N1

N0 +
√

N2 + N3(mz − ndU )2
(13)

with N0 = 12t2
so, N1 = 3(1 ± 2nd ), N2 = −28t4

so(±10nd −
1) − 72t2

0 t2
so(±2nd + 1), and N3 = −28t2

so(±2nd + 1), where
± corresponds to the sign of mz. We clearly observe that ts is
associated with nd and tso. Since the contour lines of nd have
the linear form of interaction strength U and Zeeman coupling
mz, this characteristic time ts also has a similar linear scaling
for a fixed tso, which is presented in Fig. 3(a) and fully matches
with the numerical results.

B. Dynamical topological phase transition
and characteristic time tc

We now theoretically determine the characteristic time
tc from the dynamical topological phase transition of
postquenched Hamiltonian Hk(t ). As we know, the dynamical
topological phase transition is a phase transition in time driven
by sharp internal changes in the properties of a quantum
many-body state, and it is not driven by an external control
parameter [76,77]. Quantum quenching is one way to induce
the dynamical phase transitions. When we performing the
quench dynamics for this system, the value of |nd (t )| gen-

erally decays with the time evolution and approaches steady
state since the initial state is prepared into a nearly fully
polarized state for t < 0 and has nd (t = 0) ≈ ±0.5. When
the interaction strength satisfies U > −8t0, we find that the
time-dependent effective Zeeman coupling meff

z (t ) only passes
through one phase transition point, i.e., 4t0 for mz > 0 or
−4t0 for mz < 0. Moreover, the corresponding crossover may
occur multiple times. Hence Hk(t ) only changes from the
trivial (topological) regime at t = 0 to the topological (trivial)
regime for t > 0 when the interaction is repulsive (attractive).
To describe the critical time of the dynamical topologi-
cal phase transition, the characteristic time tc is naturally
defined as

tc ≡ min
{
t
∣∣meff

z (t ) = ±4t0
}
. (14)

We have tc = +∞ and 0 (tc = 0 and +∞) in the repul-
sive (attractive) interaction regime when |meff

z (t )| > 4t0 and
|meff

z (t )| < 4t0, respectively. Here tc = +∞ of the repulsive
interaction means that the topology of Hk(t ) is always triv-
ial in a long evolved time, while a finite tc implies that its
topology is changed from the trivial case with t < 0 to the
topological case with t = tc.

With the precise definition of tc, we next numerically show
it in Fig. 2, where meff

z (t ) only passes though the phase
transition point meff

z (tc) = 4t0 and decays (increases) for the
repulsive (attractive) interaction in the short time region. Note
that this feature can be described by the analytical nd (t ) in
Appendix B, where we have ṁeff

z (t ) ≷ 0 for Umz ≶ 0 due to
ṁeff

z (t ) = −Uṅd (t ). In addition, we should choose the mini-
mum timescale in Eq. (14) which is similar to ts, since the
instantaneous state is not self-consistent and there may be
multiple time points to satisfy this requirement.

Like Eq. (13), we also obtain an analytical result for tc in
the short-time evolution (see Appendix B) as follows:

tc ≈
√

P0 − √
P2 − 3P1(±mz − 4t0)/U

P1
(15)

with P0 = 6t2
so, P1 = 4t2

so(5t2
so + 19t2

0 ), and P2 = 6t2
so(t2

so −
19t2

0 ). Compared with ts, the characteristic time tc presents
a completely different scaling form in terms of the Zeeman
coupling and interaction strength, expect for the topological
phase boundaries [see Fig. 3(b)]. This also implies that ts = tc
happens on these topological boundaries. On the other hand,
we observe that finite tc only appears around the topological
phase boundaries. The reason is that Hk(t ) always remains
topological or trivial when it is far away from the phase
boundaries [this also causes the unchanged dynamical invari-
ant ν(t ) of Eq. (22) in the evolution], as we show in Figs. 5(b)
and 5(d).

C. Characteristic time t∗ and its linear scaling

We now theoretically determine the characteristic time t∗.
Since the postquenched parameters on the topological phase
boundaries keep meff

z (ts) = meff
z (tc), a special evolution time

can be defined on these topological phase boundaries by

t∗ ≡ min{t |nd (t ) = n∗
d}, (16)
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FIG. 4. (a) Schematic diagram for the motion of the nearly fully
polarized spin at Dirac points Di. The clockwise (counterclockwise)
motion of the spin implies the upward (downward) polarization of
the Hamiltonian at these points. (b) The polarization directions at
Dirac points Di determine the topology of the postquenched Hamil-
tonian. (c) Topological number W (t ) for Hk(t ). We have Ch1 = 1 for
the phase with (mz,U ) = (2, 2) due to tc = 0 < ts = 0.165, while
Ch1 = 0 for the phase with (mz,U ) = (3, 4) due to tc = 9.485 >

ts = 0.230. The insets show the changes of polarization directions
at Dirac points Di for Hk(t ). Here we set tso = t0 = 1, m(c)

x = mz,
m(c)

y = 0, and m(c)
z = 100.

which holds the nontrivial relation ts = tc [see Figs. 3(a) and
3(b)]. This point can be clearly observed by taking mz −
Und = ±4t0 in Eqs. (13) and (15), which synchronously gives

t∗ ≈
√

B1

B0 + √
B2

, (17)

where B0 = 6t2
so, B1 = 3(1 ± 2n∗

d )/2, and B2 = −114(1 ±
2n∗

d )t2
0 t2

so − 6(±10n∗
d − 1)t4

so; see Appendix B. For the param-
eters on the topological boundaries, the gap closing occurs at
Dirac points � or M, which is naturally captured by t∗. In
addition, it should be noted that t∗ is only a timescale cor-
responding to these topological boundaries, and it is slightly
different from the previous ts and tc, which can cover all
parameters. In particular, we see that the analytical t∗ is as-
sociated with n∗

d and tso, where n∗
d is usually a constant in

the topological phase boundaries and has the linear scaling
for the Zeeman coupling and interaction. Hence t∗ shall in-
herit these linear properties and only depend on the spin-orbit
coupled strength. As shown in Fig. 3, we have t∗ ∝ 1/t0 for
a strong spin-orbit coupling with tso = t0, which theoretically
gives t∗ = 0.176 when tso = t0 = 1, and this agrees with the
numerical result t∗ = 0.180 [see Fig. 5(b)].

V. MEAN-FIELD PHASE DIAGRAM DETERMINED
BY TIMESCALES

In this section, we establish the dynamical characteriza-
tion via the above three timescales. Further, we accurately
determine the Chern number by examining the spin dynam-

FIG. 5. (a) Mean-field phase diagram determined by the char-
acteristic time tc and t∗, where the postquenched parameters
A–F (stars) are chosen on the topological phase boundaries with
(mz,U ) = (1.0, 7.38), (2.0,4.92), (3.0,2.46), (4.0,0), (5.0,−2.46),
and (6.0, −4.92). (b) Dynamical evolution of meff

z (t ) and |ṅ↑(↓)(t )|
for A–F , where tc = t∗ = 0.180 (upper) and tb = t∗ = 0.180 (lower)
with the same scaling. (c) Dynamical evolution of |ṅ↑(↓)(t )|, where
tb = 0.165 for (mz,U ) = (3.0, 4.0) and (5.0, −1.0) while tb = 0.230
for (mz,U ) = (2.0, 2.0) and (4.0, −4.0). (d) Sign of Ṡz(Di, t ) at
four Dirac points. We have Ch1 = 1 for the topological phase with
(mz,U ) = (2.0, 2.0) due to tc = 0 < t∗ and Ch1 = 0 for the trivial
phase with (mz,U ) = (3.0, 4.0) due to tc = 9.485 > t∗. Here we set
tso = t0 = 1, m(c)

x = mz, m(c)
y = 0, and m(c)

z = 100.

ics at four Dirac points. In particular, we demonstrate the
correctness of the mean-field phase diagram by comparing
the dynamical measurement results with the theoretical self-
consistent results.

A. Dynamical characterization

In the previous quench dynamics, this interacting sys-
tem will yield the different timescales in the different
postquenched topological phases with the repulsive (attrac-
tive) interaction, when Hk(t ) is trivial (topological) at t = 0.
Specifically, the relations of three timescales are given via
the four regimes of Fig. 3(c). Regime I (U > 0, topological
phase): ts > tc, t∗ > tc, and t∗ < ts; regime II (U < 0, topo-
logical phase): ts < tc, t∗ < tc, and t∗ < ts; regime III (U > 0,
trivial phase): ts < tc, t∗ < tc, and t∗ > ts; regime IV (U < 0,
trivial phase): ts > tc, t∗ > tc, and t∗ > ts. Equivalently, the
correspondence between the characteristic time and the equi-
librium topological properties is given by

|Ch1| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for

{
ts > t∗ > tc, U > 0,

t∗ < ts < tc, U < 0,

0 for

{
ts < t∗ < tc, U > 0,

t∗ > ts > tc, U < 0.

(18)
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The formula provides a convenient dynamical way to de-
termine the mean-field topological phase by comparing any
two characteristic timescales. Moreover, both the numerical
results (Fig. 2) and the analytical results [Fig. 3(c)] confirm
this, especially for weak interaction U or small |Und |, as we
show in Fig. 3(d). Hence we only need to prepare an initial
nearly fully polarized state and perform quenching, and then
the mean-field topological phases can be directly determined
by comparing any two timescales.

B. Determination of Chern number

For the equilibrium mean-field topological phases of
Eq. (18), we further need to accurately determine the Chern
number by considering the features of spin dynamics. Specif-
ically, the time-dependent spin evolution of this interacting
system is described by the modified Landau-Lifshitz equa-
tion [123]

Ṡ(k, t ) = S(k, t ) × 2h(k, t ) (19)

with

Sx(k, t ) = [χk(t )η∗
k(t ) + χ∗

k (t )ηk(t )]/2,

Sy(k, t ) = i[χk(t )η∗
k(t ) − χ∗

k (t )ηk(t )]/2,

Sz(k, t ) = [|χk(t )|2 − |ηk(t )|2]/2.

(20)

The topological number W (t ) of the time-dependent
postquenched Hamiltonian Hk(t ) is determined by the spin
dynamics of Sz(Di, t ) at four Dirac points Di. The Chern
number Ch1 of the equilibrium mean-field Hamiltonian is then
obtained by W (ts).

We next show two fundamental spin dynamical properties
of this interacting system. First, the spin at four Dirac points
of the nearly fully polarized initial state will move around the
corresponding polarization direction of Hk(t ) after the quan-
tum quench. When the polarization direction is reversed, e.g.,
from upward to downward, the motion of spin will be reversed
at the same time, e.g., from clockwise to counterclockwise;
see Fig. 4(a). For this, we can use the motion of spins to
determine the polarization direction of Hk(t ) at Dirac points.
Second, since the polarization direction is associated with the
parity eigenvalue of the occupied eigenstate, the topology of
Hk(t ) can be identified from the polarization directions at
four Dirac points [68], as shown in Fig. 4(b). For instance,
the polarization directions at four Dirac points are the same
for an initial trivial Hamiltonian Hk(t ). Once it enters the
topological regime, the motion of spin at the � or M point
will be reversed, manifesting the change of the correspond-
ing polarization direction. This signal can be captured by
sgn[Ṡz(Di, t )], as shown in Fig. 5(d). Correspondingly, the
topological transition time of the motion of spin just gives the
characteristic time tc.

With the above two fundamental properties, we can define
the time-dependent dynamical invariant for Hk(t ) as

(−1)ν(t ) =
∏

i

sgn[Ṡz(Di, t )], (21)

with ν(t ) = 1 for the topological regime |meff
z (t )| < 4t0 and

ν(t ) = 0 for the trivial regime |meff
z (t )| > 4t0, respectively.

The topological transition time of this dynamical invariant

gives the characteristic time tc as follows:

tc =

⎧⎪⎪⎨
⎪⎪⎩

0 for ν(t ) = 1 (0), U > 0 (U < 0),

finite for ν(t ) = 1 ↔ ν(t ) = 0,

+∞ for ν(t ) = 0 (1), U > 0 (U < 0).

(22)

Here a finite tc is captured by the critical time of changing of
ν(t ) from 1 (0) to 0 (1) [see Figs. 3(b) and 5(d)], while the
unchanged ν(t ) in a long-time evolution hosts tc = 0 or +∞.
Now the topological number W (t ) of Hk(t ) and the Chern
number of HMF

k can be exactly given by

W (t ) = ν(t )

2

∑
i

sgn[Ṡz(Di, t )], Ch1 = W (ts). (23)

As an example, the numerical results in Fig. 4(c) show the
nontrivial topology with Ch1 = 1 and the trivial topology with
Ch1 = 0 for the postquenched system with (mz,U ) = (2, 2)
and (3,4), respectively. On the other hand, since there is only
one topological phase transition point in the dynamical evo-
lution, W (t ) has the same value at ts with t∗. Hence we also
have

Ch1 � W (t∗). (24)

It should be emphasized that either Eq. (23) or Eq. (24) can
facilitate the determination of Chern number of the equi-
librium mean-field topological phases for the postquenched
system. In the following, we take Eq. (24) in the experiment
for identifying the Chern number due to the easy measurement
of t∗.

VI. EXPERIMENTAL DETECTION

Based on the above topological characterization, we next
propose a feasible experimental scheme to detect the mean-
field topological phase diagram by directly measuring the
two characteristic timescales tc and t∗, without any prior
postquenched parameters such as mz and U . Note that the
measurement of ts is almost impossible in the recent exper-
iment, since it does not have any measurable quantities but
only corresponds to the self-consistency of the postquenched
Hamiltonian.

In a realistic experiment, identifying the timescale of tc
requires us to measure the spin dynamics of Sz(Di, t ) at four
Dirac points Di in a short-time evolution and calculate their
changing with the evolved time, i.e., Ṡz(Di, t ). tc is then
captured by the topological transition time of ν(t ) based on
Eq. (22). On the other hand, we need to measure the time-
dependent particle density n↑(↓)(t ) and calculate the fastest
changing of n↑(↓)(t ) with the evolved time and identify the
timescale of t∗ by an auxiliary time

tb ≡ min{t |n̈↑(↓)(t ) = 0}. (25)

We see that tb characterizes the evolution of the changes of
n↑(↓)(t ) the fastest, i.e., |ṅ↑(↓)(t )| is maximal. In particular,
tb = t∗ occurs on the topological phase boundaries, although
it is larger (smaller) than t∗ in the topological (trivial) regime
[see Fig. 5(c)]. This point can be clearly observed by an
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analytical result from Eq. (25), i.e.,

t∗ ≈
√

3

Q0 + Q1
(26)

with Q0 =
√

−135t2
0 + 606t2

0 t2
so + 57t4

so and Q1 = 57t2
0 +

15t2
so. This formula is consistent with Eq. (17). Also, we have

t∗ ≈ 0.178 for t0 = tso = 1, which is approximately equal to
t∗ = 0.176 in Eq. (17).

With the above observation, the mean-field topological
phase diagram can be obtained by only comparing both
timescales of tc and t∗; see Fig. 5(a). Considering that the 2D
QAH model was realized in cold atoms [60], and the inter-
action can be tuned in experiment [43], we hereby provide
the following four concrete steps to detect the equilibrium
mean-field topological phases for the cold-atom experiment:

Step I: Preparing the nearly fully polarized initial state for
the system with U = 0, which can be reached by tuning, say,
the magnetic field for ultracold atoms. By further varying the
two-photon detuning via the bias magnetic field to produce
a large mz, together with turning off one of the electro-optic
modulators to generate the small constant magnetization mxσx

or myσy [124], the nearly fully polarized state is now obtained.
Step II: Performing quench dynamics for this system with

U = 0. We suddenly change the magnetic field to produce a
finite mz = ±4t0 and turn off both of the electro-optic modu-
lators to generate mx(y) = 0, which drives the system to evolve
over time. Then, we measure the time-dependent particle den-
sity n↑(↓)(t ). The timescale of t∗ is obtained by the fastest
changing time point of n↑(↓)(t ). Note that this t∗ has the linear
scaling on the mean-field topological phase boundaries [see
Fig. 3(c)], and it is independent of U . Hence t∗ can be directly
employed to the cases of U �= 0.

Step III: Preparing the nearly fully polarized initial state
for the system with U �= 0. This step is similar to Step I. Here
U can be an unknown value.

Step IV: Performing quench dynamics for this system with
the nonzero U . For this we suddenly tune the system to a
regime with an unknown suitable mz and turn off both of
the electro-optic modulators to generate mx(y) = 0. Simulta-
neously, we measure the evolution of Sz(Di, t ) at four Dirac
points and obtain their changing with the evolved time, i.e.,
Ṡz(Di, t ). Then tc is captured by the topological transition time
of ν(t ) based on Eq. (22). Finally, the mean-field topological
phases are identified by comparing t∗ in Step II and tc in Step
IV, where the Chern number is given by Ch1 � W (t∗); see
Eq. (24).

With this scheme, the mean-field phase diagram of the
interacting Chern insulator can be completely determined,
which paves the way for experimentally study of topologi-
cal phases in interacting systems, and the discovery of new
phases.

VII. CONCLUSION AND DISCUSSION

In conclusion, we have studied the 2D QAH model with
a weak-to-intermediate Hubbard interaction by performing
quantum quenches. A nonequilibrium detection scheme for
the mean-field topological phase diagram is proposed by
observing three characteristic times ts, tc, and t∗ that emerged

in dynamics. We reveal three nontrivial dynamical properties:
(i) ts and tc capture the emergence of dynamical self-consistent
particle density and dynamical topological phase transition for
the time-dependent postquenched Hamiltonian, respectively,
while t∗ gives a linear scaling time on the topological phase
boundaries. (ii) After quenching the Zeeman coupling from
the trivial regime to the topological regime, ts > t∗ > tc (t∗ <

ts < tc) is observed for the repulsive (attractive) interaction.
(iii) The Chern number of postquenched mean-field topologi-
cal phase can be determined by comparing any two timescales.
These results provide a feasible scheme to detect the mean-
field topological phases of an interacting Chern insulator, and
they may be applied to the quantum simulation experiments.

The present dynamical scheme can be applied to the
Chern insulator with the weak-to-intermediate interaction.
On the other hand, when the general strong interactions are
considered, the system may host more abundant magnetic
phases [115–117]. Generalizing these dynamical properties to
the related studies and further identifying the rich topological
phases would be interesting and worthwhile work in the
future.
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APPENDIX A: EQUILIBRIUM ANALYTICAL
RESULTS

In the presence of the nonzero interaction, the equilibrium
mean-field Hamiltonian HMF

k self-consistently gives the dif-
ference of density for spin-up and spin-down particles as nd ≡
(n↑ − n↓)/2 under the mean-field theory. Here we explicitly
show

nd = 1

N

∑
k

−hz,k + Und

2
√

h2
x,k + h2

y,k + (hz,k − Und )2
. (A1)

Considering that |nd | < 0.5 is a small value due to the total
particle density being conserved, i.e., n↑ + n↓ = 1, we use
Taylor series at nd = 0 for the right-hand term of Eq. (A1),
which gives A0 + A1Und + A2U 2n2

d + · · · + AlU lnl
d ,
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FIG. 6. (a) Analytical coefficients A0, A1, and A2. (b) Absolute
error ε between the analytical results and the numerical results for
nd . (c) Analytical results of nd corresponding to the numerical results
shown in Fig. 1(d), giving the linear scaling. Here we set tso = t0.

with (l + 1)th-order truncation O(U l+1nl+1
d ). Here the co-

efficients Ai=0,1,...,l satisfy ∂A0/∂hz,k = −A1, ∂A1/∂hz,k =
−2A2, ∂A2/∂hz,k = −3A3, . . . . In principle, we can obtain
nd by solving nd ≈ A0 + A1Und + A2U 2n2

d + · · · + AlU lnl
d .

The analytical nd for l = 2 at a weak interaction or a small
Zeeman coupling is approximately given by

nd ≈ 2 − A1U −
√

(2 − A1U )2 − 4A0A2U 2

2A2U 2
, (A2)

with A0 = 1
N

∑
k

−hz,k

ek
, A1 = 1

N

∑
k

h2
x,k+h2

y,k

e3
k

, and A2 =
1
N

∑
k

3(h2
x,k+h2

y,k )hz

2e5
k

. Equation (A2) shows the scaling property

of nd for mz and U .
In addition, we observe that Ai can converge to zero for

an increased i; see Fig. 6(a). For a third-order truncation
O(U 3n3

d ) in Eq. (A2), the absolute error ε between analytical
and numerical results presents ε < 0.03 for |U | < 6t0, which
implies that the precision of third-order truncation is enough.
Therefore, Eq. (A2) is applicable to the almost completely
topological phase region and all the topological phase bound-
aries and a large trivial regions, as shown in Fig. 6(b). Also,
the analytical results are almost confirmed with the numerical
results for both a weak interaction or a small mz, as shown in
Fig. 6(c).

APPENDIX B: NONEQUILIBRIUM
ANALYTICAL RESULTS

Considering that the spin of initial state is nearly
fully polarized to downward or upward, we can take
[χk(0), ηk(0)]T ≈ (0, 1)T or [χk(0), ηk(0)]T ≈ (1, 0)T ,
which corresponds to the postquenched mz > 0 or mz < 0.
Further, the change of nd (t ) is small during a short-time

FIG. 7. Flowcharts for the self-consistent calculation of particle
density. (a) Completely self-consistent. (b) Partially self-consistent.

evolution, and it can be regarded as a constant in a very short
time. By solving Eq. (4), we can obtain nd (t ) ≈ nd,t , which is
given by

nd,t = ± 1

N

∑
k

−e2
k,t + (

h2
x,k + h2

y,k

)
(1 − cos 2tek,t )

2e2
k,t

, (B1)

where ek,t =
√

h2
x,k + h2

y,k + (hz,k − nd,tU )2 , and ± corre-
sponds to the sign of the postquenched mz. Similarly, we
use Taylor series at nd,t = 0 for the right-hand term of
Eq. (B1), which gives D0 + D1Und,t + D2U 2n2

d,t + · · · +
DlU lnl

d,t with (l + 1)th-order truncation O(U l+1nl+1
d,t ).

We next take the third-order truncation O(U 3n3
d,t ) to ap-

proximately obtain nd,t as follows:

nd,t ≈ 2 − D1U −
√

(2 − D1U )2 − 4D0D2U 2

2D2U 2
(B2)

with D0 = ±8t2
sot2 − [±1 ± 8t2

so(m2
z + 3t2

0 + 5t2
so)t4/3], D1 =

±16mzt2
sot4/3, and D2 = −(±8t2

sot4/3). Note that here we
have used Taylor series at t = 0 for D0,1,2 and have taken
sixth-order truncation O(t6) for t . Then this approximate nd,t

is only suitable for a short-time evolution or a small value of
|Und,t |. Finally, we explicitly give ts, tc, t∗, and tb by solving
the equations of nd,t = nd , mz − Und,t = ±4t0, nd (t ) = n∗

d ,
and n̈d,t = 0, respectively, where the theoretical results are
shown in Eqs. (13), (15), (17), and (26).

APPENDIX C: DYNAMICAL SELF-CONSISTENT
PROCESSES OF PARTICLE DENSITY

There are two cases of the dynamical self-consistent pro-
cesses to obtain the self-consistent particle density ñ↑(↓)(t ).
The first one is a completely self-consistent process, i.e., both
the wave function and the particle density are self-consistent,
as is shown in Fig. 7(a). By diagonalizing the time-dependent
Hamiltonian Hk(t ) and obtaining its eigenvector, �̃k(t ) =
[χ̃k(t ), η̃k(t )]T with negative energy. Next the instantaneous
wave function �k(t ) should equal �̃k(t ) at each momentum
k, i.e., �k(t ) = �̃k(t ). It is clear that the self-consistent wave
function directly gives n↑(↓)(t ) = ñ↑(↓)(t ) from Eqs. (5) and
(11). In particular, we emphasize that this system shall reach
a dynamical balance, and both meff

z and n↑(↓)(t ) do not evolve
with time when �k(t ) becomes the eigenvector of Hk(t ).
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The second one is a partially self-consistent process,
i.e., only the particle density is self-consistent, as is shown
in Fig. 7(b). After obtaining the eigenvector �̃k(t ) =
[χ̃k(t ), η̃k(t )]T with negative energy of Hk(t ), the difference
from the above process is that we directly take n↑(↓)(t ) equal
to ñ↑(↓)(t ), and we do not care about the instantaneous states.
It is clear that the self-consistent particle density is also given
by n↑(↓)(t ) = ñ↑(↓)(t ), but now the wave function is not self-
consistent, i.e., �k(t ) �= �̃k(t ). Physically, the particle density
is associated with the summation of the wave function at all

k, which implies that the wave function of each k may not
be self-consistent but the summation for all k can be self-
consistent.

Both processes can provide the self-consistent par-
ticle density of postquenched Hamiltonian Hk(t ), but
it is difficult to realize the completely self-consistent
particle density in a long-term evolution. The parti-
cle density is easily obtained in a short-time evolution,
which is also more helpful in capturing the nontrivial
dynamics.
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