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Hund’s coupling and spin-orbit interaction in the three-band Hubbard model:
Anomalous mass renormalization in Sr2RuO4
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We study electronic correlation effects in the three-band Hubbard model in presence of Hund’s and spin-orbit
couplings using slave-spin mean-field theory. We consider three different regimes of hopping parameter values
for the model on a square lattice. For orbital diagonal and isotropic hopping, we show that spin-orbit coupling
(SOC), in general, enhances electronic correlations via the reduction of orbital degeneracy. In presence of Hund’s
coupling J , SOC tends to oppose the effect of J on electronic correlations. Considering symmetry allowed
anisotropic hopping, we find that the quasiparticle weights become orbital selective in presence of interaction.
The effect of J is particularly interesting for the band filling of two particles per site. Here, the Janus-faced
effect of J on correlation is obtained only in the narrower band, whereas electronic correlation in the wider
band get reduced by J for all values of Hubbard repulsion U . For model parameters corresponding to Sr2RuO4,
interestingly, we find that the mass renormalizations in the bands become anomalous in presence of strong U
and J . The effective mass enhancement in the wider band becomes greater compared to that in the narrower
band. We show that it originates in the peculiar electronic band structure of Sr2RuO4, in which the spinon Fermi
surface topology changes in a particular way in the presence of interactions.
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I. INTRODUCTION

Correlated electrons in multiband systems have been a sub-
ject of intense research interests for long [1–12]. In multiband
materials with orbital degeneracy, Hund’s coupling J between
the intra-atomic electrons gives rise to new physics absent
in single band systems, such as the bad metallic behavior,
itinerant ferromagnetism, etc. [5,12]. The spin-orbit coupling
(SOC) is another important factor which is shown to give
rise to interesting phenomenon, such as the topological in-
sulating phases in materials [13–15]. The SOC strength λ is
generally strong in materials with heavy ions. In 3d electron
materials, electronic interaction is strong but the SOC is weak.
In 4d and 5d materials, electrons are more delocalized and
electron-electron interaction is weaker. At the same time, the
SOC is expected to be stronger due to the heavier atoms.
Therefore there is a possibility that all the three interaction
scales, e.g., Hubbard repulsion U , Hund’s exchange coupling
J and SOC λ, come into play together in these materials and
give rise to more exotic phases [16–20]. A few examples of
such materials are different families of iridates with iridium
in Ir4+ oxidation state [20–28], osmium oxides [29], materials
with localized electrons due to strong correlation [30–34],
etc. In materials where correlation is not strong enough so
that electrons are still delocalized, the interplay between SOC
and electronic correlation generally leads to different kinds
of topological phases, such as Weyl semimetal [14,35,36],
axion insulators [37,38], etc. On the other hand, in materials
with localized electrons, SOC can lead to highly anisotropic
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exchange couplings favorable to the exotic spin-liquid phase
[39,40]. Another particularly interesting example of a multi-
band material is Sr2RuO4 whose normal state properties bear
the distinctive signatures of effects of J and λ. The material
attracted considerable attention due to its unconventional su-
perconductivity at very low temperature which was thought to
be a spin-triplet superconductor though the issue still remains
unresolved [41,42].

Theoretically, the interplay of electronic correlations and
SOC has been studied within the multiband Hubbard model
by several authors mostly using dynamical mean-field theory
(DMFT) [43–50]. In the absence of SOC, the essential fea-
tures of the phase diagram of the three-band Hubbard model,
except for the bad metallic behavior at the band filling of N =
2 particles per site, is roughly understood in terms of the com-
petition between the atomic charge gap and the kinetic energy
[51]. The SOC term changes the local Hamiltonian, altering
the atomic gap structure and reducing the orbital degeneracy.
Therefore SOC is expected to make significant changes in the
ground state phase diagram. In a detailed DMFT study, Triebl
et al. [43] showed that for band fillings with N = 5 and N = 1
electrons per atom, the SOC enhances electronic correlations
with the effect being stronger for larger values of Hund’s
coupling J . Opposite to this effect, at half-filling with N = 3,
SOC makes the electronic correlations weaker. For N = 4, the
effect of SOC is minimal unless the value of SOC is very
high. Interestingly at the band filling of N = 2 electrons per
site, where strong J enhances effective correlations at smaller
U values, introduction of SOC is found to suppress this ef-
fect of J . The above overall DMFT picture notwithstanding,
it is imperative to examine the physics using the slave-spin
mean-field (SSMF) theory which deals with the ground state
directly and takes into account the exact density of states for
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the lattice [7,8,52,53]. Though the formalism has been applied
extensively to study the phase diagrams of various multiband
Hubbard models by numerous works [7–11,51,54–56], to our
knowledge it has not been applied so far to systems with
spin-orbit coupling.

In this work, we undertake this task and study the para-
magnetic ground state of the three-band Hubbard model in
presence of both Hund’s and spin-orbit couplings using the
SSMF theory. We consider a square lattice and consider
the model in three different regimes of hopping parameter
values. One is isotropic orbital diagonal hopping between
nearest-neighbor sites. In the second case, we include the
next-nearest-neighbor hopping allowed by symmetry which
makes bands anisotropic. Third, we consider parameter values
that correspond to the real material Sr2RuO4. We show that, in
general, in the absence of Hund’s coupling, the SOC enhances
electronic correlations via removal of orbital degeneracy and
the consequent reduction in kinetic energy. However in the
presence of J , it tends to oppose the effect of Hund’s cou-
pling on the correlations. In the case of anisotropic bands, the
electronic correlations become orbital selective in presence of
Hubbard repulsion U . At N = 2 particles per site, while J
shows a Janus-faced effect [57] on correlations in the narrower
bands, it reduces correlations in the wider band at all values of
U . Spin-orbit coupling changes the nature of Mott transition
to first order and reduces the critical interaction strength Uc

drastically. For parameter values corresponding to Sr2RuO4,
the effect of interaction is very interesting. Because of the
peculiar electronic band structure of Sr2RuO4, the spinon
Fermi surface topology changes in a particular way in pres-
ence strong U and J . It leads to the quasiparticle effective
mass in the wider band getting enhanced more compared to
that in the narrower band. The rest of the paper is organized as
follows. In Sec. II, we introduce the model and in Sec. III, we
describe the method. Results are described and discussed in
Sec. IV and the final concluding remarks are given in Sec. V.

II. MODEL

We consider the following three-band Hubbard model on
the square lattice appropriate for three t2g orbitals per site:

H = Ht + Hint + HSOC. (1)

The three t2g orbitals are dxz ≡ 1, dyz ≡ 2, and dxy ≡ 3. The
hopping Hamiltonian is given by

Ht =
∑
i jσ
mm′

T i j
mm′ (c†

imσ c jm′σ + H.c.) −
∑
imσ

εmσ nimσ (2)

and the Hubbard-Kanamori interaction term is given by

Hint =U
∑
im

nim↑nim↓ + U ′ ∑
im �=m′

nim↑nim′↓

+ U ′′ ∑
m<m′

iσ

nimσ nim′σ − J
∑

im �=m′
c†

im↑cim↓c†
im′↓cim′↑

+ J
∑

im �=m′
c†

im↑c†
im↓cim′↓cim′↑. (3)

The atomic spin-orbit coupling (SOC) term is given by

HSOC = λ
∑

i

Li · Si, (4)

where c†
imσ (cimσ ) creates (annihilates) an electron with spin

σ at site i, and orbital m ∈ {1, 2, 3}. The quantities T i j
mm′ -s are

the hopping matrix elements. The parameter U is intraorbital
Hubbard interaction strength and J is Hund’s exchange cou-
pling which favors atomic states with maximum total spin and
orbital angular momenta. εmσ is the atomic energy level for
orbital mσ . The Hamiltonian becomes rotationally invariant
to both spin and orbital degrees of freedom by choosing
U ′ = U − 2J and U ′′ = U − 3J . The Hamiltonian describes
a system where the degenerate d-orbital in the isolated atoms
undergo a crystal field splitting into a higher energy level eg

doublet with d3z2−r2 , and dx2−y2 symmetry and a lower one
t2g triplet with dxy, dyz, and dzx symmetry. At low tempera-
tures, the d-orbital electrons occupy the lower t2g levels and
the upper eg levels can be neglected since they lie higher in
energy. There are also effects of lattice deformation, which
we neglect here for simplicity. Here we consider the dynamics
of electrons in this lower t2g manifold where electrons hop
among the t2g orbitals. The angular momentum operator L0

projected into the t2g subspace L = Pt2g (−L0)Pt2g behaves as
effective angular momentum operator with l = 1. We consider
the spin-orbit coupling (SOC) within this subspace. The SOC
further splits the t2g triplet into lower quartet ( j = 3/2) and
upper doublet ( j = 1/2), which are spin-orbit coupled four-
fold and twofold degenerate orbitals, respectively. Here we
work within the basis {|yz ↑〉, |yz ↓〉, |zx ↑〉, |zx ↓〉, |xy ↑〉,
|xy ↓〉} in which the SOC term in the Hamiltonian given by

HSOC = λ
∑

i

Li · Si ≡
∑
iαβ

λα,βc†
iαciβ. (5)

The λα,β matrix elements are given by

λ = λ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 i 0 0 −1

0 0 0 −i 1 0

−i 0 0 0 0 i

0 i 0 0 i 0

0 1 0 −i 0 0

−1 0 −i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The above corresponds to a SOC energy of λ for the j = 1/2
doublet terms and that of −λ/2 for the j = 3/2 quadruplet
terms in the diagonal spin-orbit coupled basis. The hopping
matrix elements in the above allowed by symmetry have the
form [19] as shown in Table I. Regarding the physical values
of various parameters, it varies significantly among different
classes of materials [57,58]. In 3d transition metal oxides,
typical values of Hubbard interaction and Hund’s coupling are
U ∼ 3 eV and J ∼ 0.4 eV while the bandwidth is W ∼ 1 eV.
On the other hand, SOC is very weak, λ ∼ 0.05 eV [45]. This
translates to values, U/W ∼ 3, J/U ∼ 0.15, λ/W ∼ 0.01 for
these materials. In 4d oxides, U and J are slightly smaller
while SOC is slightly stronger. Typical estimates are U/W ∼2,
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TABLE I. Hopping amplitudes of the model allowed by
symmetry [19].

xz-xz yz-yz xy-xy xz-yz

T ±1,0,0 −t2 −t3 −t 0
T 0,±1,0 −t3 −t2 −t 0
T ±1,±1,0 0 0 −t1 −t4

T ±1,∓1,0 0 0 −t1 −t4

J/U ∼ 0.1 and λ/W ∼ 0.05. In 5d materials, Coulomb inter-
actions are much smaller compared to the bandwidth but SOC
is strong. Again typical estimates are U/W ∼ 0.5, J/U ∼
0.07. SOC can be as high as λ/W ∼ 0.1. The values of these
parameters considered here in our calculations are broadly
representative of the above range of values, though do not
exactly correspond any one particular material. However, for
Sr2RuO4 which is separately dealt with in Sec. IV C, the
parameter values considered are close to the actual parameter
values for the material.

III. SLAVE-SPIN MEAN-FIELD METHOD
WITH SPIN-ORBIT COUPLING

The slave-spin mean-field (SSMF) method used here has
been described in detail elsewhere [7,8,51,52,54]. Here we
outline the main steps highlighting the additional term that
comes due to spin-orbit interaction. In the slave-spin formal-
ism, the physical electronic Hilbert space is mapped into an
enlarged Hilbert space of fermions (spinons) and auxiliary
spin-1/2 (slave-spin) variables. Defining α ≡ mσ , we write
the physical electron states in terms of spinon and slave-spin
variables as follows:

|niα = 0〉 ⇒ ∣∣n f
iα = 0, Sz

iα = −1/2
〉
,

|niα = 1〉 ⇒ ∣∣n f
iα = 1, Sz

iα = +1/2
〉
, (7)

where n f
iα = f †

iα fiα is the number operator for spinons (quasi-
particles). Sz

iα is the slave-spin variable coupled to the
spin-orbital. The enlarged local Hilbert space also contains
the unphysical states which can be eliminated by imposing the
constraint, n f

iα = Sz
iα + 1

2 . The electron operators are decom-
posed accordingly as ciα = fiαOiα and c†

iα = f †
iαO†

iα . In the
Z2 representation, Oiα = S−

iα + giαS+
iα . After the slave-particle

transformation of the electron operators, the Hamiltonian of
Eq. (1) becomes

H =
∑
i j,αβ

Tiα, jβ (O†
iαOjβ f †

iα f jβ + H.c.) −
∑

iα

εαn f
iα

+
∑
iαβ

λα,βO†
iαOiβ f †

iα fiβ − μ
∑

iα

n f
iα

−
∑

iα

hiα

[
n f

iα −
(

Sz
iα + 1

2

)]
+ H S

int, (8)

where the chemical potential μ and Lagrange multipliers hiα

are introduced and the form of the interaction term H S
int is

defined as

H S
int ≡ U

∑
im

Sz
im↑Sz

im↓ + U ′ ∑
im �=m′

Sz
im↑Sz

im′↓

+ (U ′ − J )
∑

im<m′σ

Sz
imσ Sz

im′σ

− J
∑

im �=m′
S+

im↑S−
im↓S+

im′↓S−
im′↑

+ J
∑

im �=m′
S+

im↑S+
im↓S−

im′↓S−
im′↑, (9)

where Sz
iαSz

iα′ = Sz
iαSz

iα′ + (Sz
iα + Sz

iα′ )/2. By approximating
the ground state as |�〉 = |� f 〉|�S〉, the effective spinon
and slave-spin Hamiltonians H f = 〈�S|H |�S〉 and HS =
〈� f |H |� f 〉 are given by

H f =
∑
i j,αβ

Tiα, jβ (Biα, jβ f †
iα f jβ + H.c.)

+
∑
iαβ

λα,βBiα,iβ f †
iα fiβ

−
∑

iα

(μ + εα + hiα )n f
iα, (10)

HS =
∑
i j,αβ

Tiα, jβ (χiα, jβO†
iαOjβ + H.c.)

+
∑
iαβ

λα,βχiα,iβO†
iαOiβ

+
∑

iα

hiα

(
Sz

iα + 1

2

)
+ H S

int, (11)

where χiα, jβ = 〈� f | f †
iα f jβ |� f 〉 and Biα, jβ = 〈�S|O†

iαOjβ |�S〉
are the mean-field parameters to be calculated by solving the
spinon and slave-spin Hamiltonians self-consistently. We use
single site approximation to solve the slave-spin Hamiltonian,
where we take O†

iαOjβ ≈ O†
iα	β . The parameter 	β is given

by 〈Ojβ〉, and Biα, jβ becomes 	∗
α	β . The quasiparticle (QP)

weight is given by Zα = |	α|2. The quantity signifies the
degree of charge fluctuation in the system and forms an impor-
tant parameter in the theory. It also determines the effective
mass enhancement of the quasiparticles due to interaction
which is given by m∗ = m0/Zα . The parameter has the value
Zα = 1 in the noninteracting case, decreases with increasing
U and vanishes in the Mott insulating state. The spinon and
slave-spin Hamiltonians take the following forms:

H f =
∑
i j,αβ

Tiα, jβBα,β

(
f †
iα f jβ + H.c.

) +
∑
iαβ

λα,βBα,β f †
iα fiβ

−
∑

iα

(μ + εα + hiα )n f
iα, (12)

HS =
∑

iα

(ηiαO†
iα + H.c.) +

∑
iαβ

λα,βχiα,iβO†
iαOiβ

+
∑

iα

hiα

(
Sz

iα + 1

2

)
+ H S

int, (13)

where ηα = ∑
jβ Tiα, jβχiα, jβ	β .
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As mentioned above, the theory introduces the unknown
gauge factors giα through the definition Oiα = S− + giαS+.
The gauge factors are determined from the condition that the
slave-spin method yields the correct solution in the noninter-
acting limit (U = J = 0). Particularly, we must have Ziα = 1
in this limit. In the absence of the SOC term, the noninter-
acting slave-spin Hamiltonian H 0

S can be solved easily and it
gives the following expression for gauge factors [8,52,59]:

giα = 1√
n0

α

(
1 − n0

α

) − 1; n0
α = 〈

�0
f

∣∣n f
iα

∣∣�0
f

〉
. (14)

However, in the presence of the SOC term, the slave-spin
Hamiltonian H 0

S is off-diagonal in the spin-orbital index α

and we need to solve the Hamiltonian,

H 0
S =

∑
iα

(ηiαO†
iα + H.c.) +

∑
iαβ

λα,βχiα,iβO†
iαOiβ

+
∑

iα

hiα

(
Sz

iα + 1

2

)
(15)

and determine giα-s by requiring that Ziα = 1. We do this nu-
merically here, which brings about an additional complexity
in the calculations in presence of SOC. Also the noninteract-
ing solution may lead to a nonzero value for the Lagrange
multipliers hiα . This introduces an external orbital potential
in the spinon Hamiltonian and changes the spinon ground
state even in the noninteracting limit. To nullify the effect,
the spinon Hamiltonian is modified by subtracting the extra
potential from the chemical potential term. With all the in-
gredients in place, we solve the self-consistent equations and
obtain the mean-field parameters of the theory.

IV. RESULTS

Here, we study the paramagnetic phase diagram of the
model as a function of Hubbard interaction U , Hund’s ex-
change coupling J , and spin-orbit coupling λ. We consider
two different forms of hopping. One is orbital diagonal
isotropic hopping and another is anisotropic hopping allowed
by the symmetry and with parameter values that correspond to
Sr2RuO4 [19]. Before discussing the results, it is worthwhile
to examine the local Hamiltonian for a single site which can
be written as

Hint = (U − 3J )

2
N(N − 1) − 2JS2 − J

2
L2

+ 5

2
JN + λ

∑
i

Li · Si, (16)

where N, S, and L are the operators for the total particle
number, spin, and orbital angular momentum, respectively.
The ground state energy and degeneracy of the Hamiltonian
corresponding to the different number of particles are listed
elsewhere [50]. We can obtain the atomic gap for a given N
by using the relation,

�at (N ) = E0(N + 1) + E0(N − 1) − 2E0(N ). (17)

It is important to look at the atomic gap structure, as the phase
diagram of the model crucially depends upon the competition
between the atomic gap and kinetic energy. In the following,

0 1 2 3

U/W

0.0

0.5

1.0

Z

N = 3, J/U = 0

λ/t
0.00
0.25
0.50
1.00

0.0 0.4 0.8 1.2

U/W

0.0

0.5

1.0

Z

J/U = 0.2
N = 3 λ/t

0.00
0.25
0.50
1.00

0.0 0.5 1.0

λ/t

0.82

0.83

0.84

0.85 U/W = 0.5

(a) (b)

FIG. 1. Isotropic bands at half-filling. (a) The QP weight Z as a
function of U/W for different values of SOC strength λ shown in the
figure. Hund’s coupling J/U = 0. (b) Same as the previous figure,
but at J/U = 0.2. The inset in the second figure shows the increase
of Z with λ at a fixed U .

the values of λ and J are normalized with nearest-neighbor
hopping parameter t and Hubbard interaction U , respectively.

A. Isotropic hopping

First, we consider the model with isotropic hopping be-
tween nearest-neighbor sites. That is we set t = t2 = t3 and
t1 = t4 = 0 (Table I), and consider the model at integer band
fillings. We examine the phase diagram as a function of U ,
J and SOC parameter λ. Solving the spinon and slave-spin
Hamiltonians of Eqs. (12) and (13) self-consistently, we cal-
culate the quasiparticle (QP) weight Zα as a function of U for
different J and λ. In this case, the quasiparticle weight Zα is
independent of the spin-orbital index α and hence we drop it
in the following discussion.

The SSMF results for the model in the absence of λ are well
known [51,52]. At any integer filling, the ground state is para-
magnetic metallic at smaller U . The QP weight Z decreases
with increasing U and vanishes continuously at a critical
Uc, beyond which the state is Mott insulating. At half-filling
(N = 3), introducing Hund’s coupling J reduces the Uc value
drastically. This happens as the atomic gap, �at = U + 2J at
this filling increases with J and the energy cost for charge
transfer becomes larger. The half-filling results in the presence
of λ are shown in Fig. 1 where we plot Z as a function of
U/W (W is the noninteracting bandwidth) for various λ. The
left figure shows that as soon as SOC is introduced at J = 0,
the transition to the Mott insulating becomes first order. The
QP weight vanishes abruptly at a critical Uc which decreases
with increasing λ. Thus λ enhances the effect of correlation
in the strong coupling regime. If we look at the atomic gap
in Eq. (17), we find that �at in this case is independent of λ.
However, SOC splits the three degenerate band into a twofold
degenerate ( j = 3/2) and a nondegenerate ( j = 1/2) orbitals
and thus reduces the net kinetic energy. Therefore the effective
correlation in this case gets enhanced via reduction in kinetic
energy. The effect of λ in presence of J is qualitatively dif-
ferent [Fig. 1(b)]. With nonzero J , the Uc value already gets
diminished much due to the increase in �at with J . Introduc-
ing λ here slightly decorrelates the system with Z showing a
mild increase with λ as shown in the inset of Fig. 1(b).

For the band filling N = 2, Hund’s coupling J has very in-
teresting consequences to the phase diagram [57]. At smaller
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FIG. 2. Isotropic bands for N = 2 particles per site. (a) and
(b) show Z as a function of U/W for different values of λ at J/U = 0
and 0.2, respectively. The inset in the second figure shows the in-
crease of Z with λ at a fixed U . (c) Effect of λ on the kinetic energy
(KE). KE drops as λ is increased due to lifting of degeneracy.

U , J correlates the system more and gives rise to the bad
metallic phase. At larger U , it reduces effective electronic
correlation and pushes Uc to higher values. Now if we intro-
duce SOC at J = 0, we find the result to be similar to that
obtained in case of N = 3. As shown in Fig. 2(a), the QP
weight Z vanishes abruptly at a lower Uc value in presence
of λ and the transition to the Mott insulating state becomes
first order in nature. Similar effect of λ is observed for the
J > 0 case also as shown in Fig. 2(b). As mentioned before,
this happens due to the removal of orbital degeneracy by the
SOC. In order to see this, in Fig. 2(c), we plot the kinetic
energy (per site) as a function of SOC strength λ for the two
values of J . The figure clearly shows the drop in kinetic energy
or charge fluctuation as λ is increased. Coming back to the
plot in Fig. 2(b), the effect of λ here is very interesting. The
figure shows that in this case, the SOC indeed opposes the
Janus-faced effect of J on the electronic correlation mentioned
above. At lower U , λ pushes Z slightly up as shown in the inset
of Fig. 2(b), while it brings Uc down drastically from much
larger values in the absence of λ. It happens because at this
filling, λ raises the atomic gap �at as well as lowers the kinetic
energy. Both these effects help in enhancing the correlations.
At the filling of N = 4, we again find a similar effect of λ

on quasiparticle weight, e.g., SOC reduces Uc in the strong
coupling regime while it slightly enhances Z at moderate U .
This observation agrees qualitatively with the DMFT results
in Refs. [43,50]. However, it is important to mention that
there are strong qualitative differences between the moderate
U metallic phases at N = 2 and N = 4 [50]. For instance,
the local susceptibilities show distinctly different behavior at
these two fillings owing to the different values of total angular
momentum J below and above half-filling. We do not see the
above effect here as the frequency dependent quantities are not

accessible in our method. Also at fillings N = 1 and N = 5,
we find the effects to be qualitatively similar to the half-filling
J = 0 case.

A few remarks are in order here. The reduction of critical
interaction Uc by SOC in the results above appears some-
what drastic. We think this could be rather an artifact of
the single-site SSMF theory than an actual physical effect.
In the single-site approximation of SSMF theory, the spinon
kinetic energy gets renormalized essentially by the QP weight
Z instead of by the slave-particle kinetic energy, which is an
approximation. A consequence of this is that as soon as system
enters the Mott phase, it abruptly loses all the kinetic energy
and goes to the atomic limit which is an unphysical feature.
Its artifact will have its presence even in the metallic side and
likely more pronounced near the Mott transition point. This
has been mentioned earlier also in studies using other single-
site slave-particle theories [60]. Thus it is the inaccuracies of
the method in estimating the normalization of kinetic energy
near the Mott transition that is likely cause for the above
result.

B. Anisotropic hopping

In the previous section, we considered orbital diagonal
hopping between the nearest neighbor sites with uniform
strength. Here we consider also the hopping between next-
nearest-neighbor (NNN) sites. The symmetry of the t2g orbital
restricts NNN hopping between xy-xy orbitals (t1) and xz-yz
orbitals (t4) only, as given in Table I. Here we take t = t1 =
t2 = t3 = 1 and t4 = 0. Consequently the hopping between
xy-xy orbitals becomes anisotropic and the bandwidth of the
xy (m = 3) band becomes larger. The orbital selective behav-
ior in the multiband Hubbard model in presence of bands
of unequal widths or different orbital energies have been
studied extensively in the literature [7,61–65]. It has been
shown that, in general, the electrons in these nonequivalent
bands are localized to different degrees by electron-electron
interaction. The curves of quasiparticle weights Zm versus
U get split with respect to the band index m. Zm becomes
smaller for the narrower band. Depending on the model pa-
rameter values, the Zm values may vanish at the same U or
at different values of critical interaction Uc giving rise to the
orbital selective Mott transition (OSMT). Hund’s coupling
J is generally found to amplify the orbital selective behav-
ior. For J = 0, the atomic Hamiltonian has the full SU(4)
symmetry and the orbital fluctuations are high resulting in
weaker orbital selective behavior. J reduces this symmetry
and suppresses the orbital fluctuations due to which it is easier
for the electrons in different bands to sustain different degrees
of charge fluctuations. For example, in the two-band Hubbard
model with unequal bandwidths, the bands undergo a common
Mott transition unless the difference between the bandwidths
exceeds a threshold value [7]. This threshold comes down
with increasing J promoting the orbital selective behavior.
Here we are interested to see how spin orbit coupling alters
the scenario. As mentioned above, for our model parameters,
the bandwidths of the m = 1, 2 bands are same but smaller
than that of the m = 3 band. Since the QP weight becomes
orbital dependent but remains spin independent, we denote it
by Zm. First, we show the results at half-filling. In the absence
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FIG. 3. Anisotropic bands at half-filling. (a) QP weight Zm

(m = 1, 2, 3) as a function of U/W at J = 0 for two values of λ,
e.g., λ/t = 0 (top) and λ/t = 1 (bottom). (b) Same as the previous,
but at J/U = 0.2.

of λ, the results agree with the findings in the above studies.
In Fig. 3, we show the Zm versus U curves for two different
values of each parameters J and λ. As mentioned above, the
curves corresponding to different bandwidths get split with
the introduction of onsite repulsion U and the curves for Z1=2

corresponding to the narrower bands lie lower. Figure 3(a) in
the left panel shows that the difference between Z1=2 and Z3

is very small for the J = 0 case. This occurs because of much
larger orbital fluctuations in this case as the atomic multiplets
with different total orbital (L) and spin (S) angular momenta
are degenerate. For nonzero J (= 0.2U ) as shown in Fig. 3(b),
the splitting between the curves becomes considerably larger,
especially for intermediate values of U . In this case, the lowest
atomic multiplet has the maximal values of L and S. Excitation
to other multiplets has an energy cost proportional to J and
hence orbital fluctuations are suppressed. However in the large
U limit, the Zm values for the bands come closer again likely
because the charge fluctuation in this limit is less anyway.
And for the parameter values considered here, the system
undergoes a common Mott transition in both the cases. The
lower two figures in Fig. 3 correspond to nonzero value of λ

(λ/t = 1). We see that there is no dramatic effect of λ here.
Like in the isotropic case, λ increases correlations in strong
coupling regime via its effect of lifting the degeneracy and
reducing kinetic energy as shown before. The Mott transition,
which continues to occur at a single U value, becomes first
order and the Uc value get reduced sharply.

For N = 2 particles per site, the effect of Hund’s coupling
is again intricate. In the isotropic case, J has the Janus-faced
effect on electronic correlations. Here, J has similar effect for
the narrower bands (m = 1, 2). It reduces Z1=2 for moderate U
values but increases it in the strong coupling regime. However,
the effect of J on the wider band (m = 3) is different. It
increases Z3 for all values of U . This is shown in Fig. 4 where
we plot the curves for Z1=2 and Z3 in separate figures. In this
case also, we have a common Mott transition with Z1=2 and
Z3 vanishing at the same U value (may not be obvious in the
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FIG. 4. Anisotropic bands at N = 2 particles per site. (a) QP
weight Zm as a function of U/W for different values of J/U shown
in figure at λ/t = 0. (b) Same as the previous but at λ/t = 0.5.
The arrows show the general trend of how J affects the electronic
correlations.

figure). In Fig. 4(b), we show the results for a nonzero value
of λ. The SOC again influences the strong coupling phase by
bringing down Uc values drastically. The effects of λ at other
integer fillings are found to be qualitatively similar.

C. Parameters relevant to Sr2RuO4

Sr2RuO4 is one example of a real multiband material,
where all the three energy scales, e.g. the electron-electron
interaction, Hund’s coupling and SOC become operative si-
multaneously [19,41,42]. The relevant electronic degrees of
freedom in the material lie in the t2g orbitals of the Ru atoms
filled by four electrons and its essential features can be de-
scribed by the three-band Hubbard model on a square lattice.
The Fermi surface consists of three sheets, a holelike α (xz, yz
bands) sheet and two electronlike β (xz, yz bands) and γ (xy)
sheets [66]. The hopping between the xz-xz and yz-yz orbitals
are strongly one dimensional in nature and these two bands are
narrower. For the wider xy band, there is also sizable hopping
between next-nearest-neighbor sites and as we show here this
NNN hopping has nontrivial consequences to the electronic
band structure. The material attracted a lot of attention due to
the observation of unconventional superconductivity at very
low temperature [41]. However several aspects, including the
exact nature of the pairing symmetry, role of spin-orbit in-
teraction on the superconducting properties, etc. are still not
clear [42]. The normal state above the superconducting tran-
sition temperature behaves as a two-dimensional correlated
Fermi liquid [67]. The strong correlation in the system in
spite of its Hubbard interaction U being of moderate strength
has been shown to be a consequence of relatively stronger
Hund’s coupling J [68]. The spin-orbit coupling in the ma-
terial though not very strong, has interesting consequences to
the Fermi surface topology and to the dynamical properties
[19,42,69]. Another interesting property is the observed dif-
ferential mass enhancements of the electron quasiparticles in
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FIG. 5. Bands corresponding to Sr2RuO4 parameters. (a) QP
weight Zm as a function of U/W for two different values of λ

at J/U = 0. The upper (lower) figure corresponds to λ = 0 (0.1)
(b) Same as the previous but at J/U = 0.2. In this case, the values of
QP weight for the bands change order at large U .

different bands by electron-electron interaction. Indeed, the
mass enhancement in the wider band is found to be greater
[68,69] which is counterintuitive. Many of these results and
understandings have been obtained by DMFT calculations at
finite temperatures though a recent study [70] using numerical
renormalization group method has studied the properties of
the material down to zero temperature. Here we examine
the scenario for the ground state within the simpler SSMF
scheme.

For the quadratic part of the Hamiltonian in Eq. (1), we take
the parameter values to be the same as in Ref. [19]. That is,
we take hopping parameters to be t = 0.42, t1 = 0.17, t2 =
0.30, t3 = 0.03, t4 = 0.04 and the onsite energies εm = 0.10
for m = 1, 2 and εm = 0 for m = 3. We examine the proper-
ties for two values of the SOC strength, e.g., λ = 0, 0.1 and
vary U as well as J over wider ranges of values. The above
particular value of the hopping parameter t1 (NNN hopping
between the xy orbital) is crucial as it affects the band dis-
persion in a peculiar way. The results for quasiparticle weight
Zm for the band filling of N = 4 particles per site are shown in
Fig. 5. The figure shows that as soon as U is introduced, the Zm

curves get split again into two groups. The overlapping curves
for bands m = 1, 2 having the same bandwidth lie lower as
the bandwidth is smaller. The curve for the wider band m = 3
lie higher. At J = 0 [Fig. 5(a)], the difference in the Zm values
becomes maximum at an intermediate U . However, at larger
U , the curves come closer and the bands undergo a common
first order Mott transition at a single Uc value. For the small
value of λ (= 0.1) considered here, its effect appears negligi-
ble, which agrees with the results of previous studies [19,45].
Regarding the estimate of Z , it may be mentioned that meth-
ods like SSMF, rotationally invariant slave-boson (RISB) and
Gutzwiller approximation underestimate the enhancement of
quasiparticle renormalization compared to DMFT+CTQMC
values [10,49]. For example, for U ∼ 3 eV, J/U ∼ 0.2, and

Γ

X

M
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β

γ

t1 = 0.17

(a)

Γ

X

M
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β

γ

t1 = 0.05

(b)

FIG. 6. Spinon Fermi surface (FS) in Sr2RuO4 at two different
values of U in each figure. The gray lines correspond to noninteract-
ing bands at U = 0 and the colored lines correspond to U/W = 0.75
(J/U = 0.2). (a) The FS for t1 = 0.17, the true value of the parame-
ter. The topology of the FS changes with interaction. (b) The FS for
t1 = 0.05, an arbitrary small value of the parameter. In this case, the
change in the FS with interaction is negligible.

λ ∼ 0.1 eV, RISB estimate for Z is ∼0.6, whereas the same
value in DMFT+CTQMC is ∼0.3. Our estimate for the
value is also ∼0.6 which agrees well with the RISB result.
Figure 5(b) shows the curves for J/U = 0.2 which are very
interesting. For smaller U , the Zm curves start out splitting in
the same order as in the previous case. However, it crosses
each other at an intermediate U and the order reverses after
that. Thus at larger U values, the quasiparticle weight Zm in
the wider band becomes smaller implying greater enhance-
ment of effective mass for the band, an observation which is in
agreement with previous experimental and theoretical results
[68,69]. This phenomenon has been attributed to the presence
of a Van Hove singularity (VHS) in the band structure close
to the β sheet. We find that this comes mainly because of
the particular value of NNN hopping parameter (t1 = 0.17)
between the xy orbitals. In the SSMF scheme, it leads to the
spinon bands getting renormalized deferentially by interac-
tion. The signature of the effect is visible in the Fermi surface
(FS) of the spinon quasiparticles whose topology changes in
a particular way as a function of U . In Fig. 6(a), we show
the spinon FS at two different values of U . The gray lines
corresponds to the noninteracting band and the colored lines
correspond to a finite value of U (= 0.75W , J = 0.2U ). We
see that while the volumes of the α and γ sheets increase with
U , the β sheet shrinks in volume compared to the FS at U = 0.
This change in the FS topology with interaction is in quali-
tative agreements with previous ab initio calculation results
[66]. Two factors are necessary for this to happen. Presence
of Hund’s coupling J is of course required. In addition, we
find that the effect is obtained only for a small range of t1
values around the true value. If we tweak t1 to be too small
or too large, we do not find the crossing of the Zm curves or
any appreciable effect of interaction on the FS topology. This
is shown in Fig. 6(b) where we plot the FS at t1 = 0.05, an
arbitrary small value of the parameter. In this case, the change
in the FS with interaction is negligible. This indicates that
the intricate phenomenology in Sr2RuO4 can be attributed to
some extent to its peculiar band structure features.
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V. CONCLUSION

In conclusion, we studied the electron correlation effects
in multiband systems in presence of Hund’s coupling and
spin-orbit interaction in the context of the three-band Hubbard
model on a square lattice. We used the slave-spin mean-field
method which works for wider range of parameter values and
gives qualitatively correct results. We considered the model
in three different settings as far the hopping parameters are
concerned. For the model with orbital diagonal isotropic hop-
ping, we find results that are in qualitative agreement with
previous DMFT results. We find that SOC generally enhances
the electronic correlations via lifting of orbital degeneracy
and consequent suppression of kinetic energy. It changes the
nature of Mott transition to first order and reduces the critical
interaction Uc drastically. In presence of Hund’s coupling J ,
SOC is generally found to oppose the effect of J on electronic
correlations. In case of anisotropic hopping where the bands
have unequal widths, the correlations show orbital selective
behavior in presence of Hubbard interaction U , though the
bands undergo a common Mott transition for the parameter
values considered. Interestingly, for the band filling of two
particles per site, the effect of J also becomes orbital selec-

tive. Here, J shows the Janus-faced effect in the narrower
band while it reduces correlations in the wider band at all
values of U . We also considered the model with parameter
values that correspond to Sr2RuO4. The effect of interaction
in this case is very interesting. In presence of strong U and
J , the effective mass enhancement which is the inverse of the
quasiparticle weight, becomes greater in the wider band which
appears anomalous. The calculation suggests that this differ-
ential renormalization of the spinon bands occurs due to the
particular form of the hopping parameters. For the Sr2RuO4

hopping parameters, the interaction changes the spinon Fermi
surface topology in a significant way which does not occur if
we tweak the parameters. Thus our work have thrown lights
on some very interesting effects that occur as a result of
interplay of electronic correlations, spin-orbit coupling, and
band structure in multiband systems.
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