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Projected d-wave superconducting state: A fermionic projected entangled pair state study
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We investigate the physics of projected d-wave pairing states using their fermionic projected entangled pair
state (fPEPS) representation. First, we approximate a d-wave Bardeen-Cooper-Schrieffer state using the Gaus-
sian fPEPS. Next, we translate the resulting state into fPEPS tensors and implement the Gutzwiller projection
which removes double occupancy by modifying the local tensor elements. The tensor network representation of
the projected d-wave pairing state allows us to evaluate physical quantities in the thermodynamic limit without
employing the Gutzwiller approximation. Despite having very few variational parameters, such physically
motivated tensor network states are shown to exhibit competitive energies for the doped t-J model. We expect
that such construction offers useful initial states and guidance for variational tensor network calculations.
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I. INTRODUCTION

The projected Bardeen-Cooper-Schrieffer (BCS) states
play a prominent role in the studies of strongly correlated
electrons [1]. The state is obtained by eliminating the double
occupancies in the BCS wave function

|�〉 = PG|BCS〉, (1)

where PG = ∏
i(1 − ni↑ni↓) is the Gutzwiller projection op-

erator which implements the projection. The state consists of
resonating valence bonds (RVBs), which are believed to be
relevant to superconducting cuprates [2–4], frustrated mag-
nets [5], and a broad range of other phenomena in strongly
correlated physics. Subsequent theoretical and numerical in-
vestigations show that the projected BCS state in Eq. (1)
is indeed the low-energy candidate state of the relevant t-J
models and exhibits similar features as observed in supercon-
ducting cuprates [6–11].

To account for further intricacies such as competing orders,
the vanilla RVB state [4] has developed into a full-fledged
variational wave function [12–16]. Along with developments
of other numerical methods [17–24], a point has been reached
where uncertainties in the model Hamiltonian are even larger
than the achieved accuracy of a many-body solver. The situa-
tion calls for more realistic models with inputs from ab initio
calculations and experiments. In the meantime, it is worth
pursuing deeper synergy between different methods beyond
simply cross-checking their numerical data [18]. Such syn-
ergy will bridge the worlds of “educated guess of wave
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functions” and “solving Hamiltonians numerically,” poten-
tially offering more physical understandings.

An example of such promising synergy is to cast the family
of projected BCS states into tensor network states. Recently,
a number of works have developed methods for converting
projected fermionic states into matrix product states [25–34]
and used such translation to inspect state fidelity, study their
entanglement properties, and facilitate density-matrix renor-
malization group calculations.

Extending this progress to convert projected fermionic
states into two-dimensional tensor networks is highly desir-
able as this will allow one to investigate projected BCS states
using methods from the tensor network toolbox. Along this
line, there have been works constructing tensor network repre-
sentations of the RVB states based on their real space picture
[35–37]. In this work, we present a more generic approach
which is based on the Gaussian fermionic projected entangled
pair state (fPEPS) [38] and has a variable number of parame-
ters to achieve the translation. Then we use it to investigate the
projected d-wave pairing state in an infinite two-dimensional
lattice.

Our starting point is a fermionic quadratic Hamiltonian
with d-wave pairing on the two-dimensional (2D) square lat-
tice,

HBCS =
∑
k,σ

ξk f †
kσ fkσ +

∑
k

(�k f †
k↑ f †

−k↓ + �∗
k f−k↓ fk↑),

(2)
where fkσ ( f †

kσ ) is the fermion annihilation (creation) op-
erator in momentum space with spin index σ =↑,↓; ξk =
−2t (cos kx + cos ky) − μ; and �k = 2�d (cos kx − cos ky).
The hopping amplitude t is set to unity. The state |BCS〉 is the
ground state of HBCS parametrized by the chemical potential
μ and the d-wave pairing amplitude �d .
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FIG. 1. (a) The local fiducial state in Eq. (5) of a fPEPS. It is
a state formed by the physical fermions of spin up and down (blue
and red dots) and � flavors of virtual fermions reside on the bond
(green dots). The state is fully characterized by the local correlation
matrix in Eq. (6) if it is Gaussian. (b) Gutzwiller projection to the
local fPEPS tensor.

Given the BCS Hamiltonian in Eq. (2), we first find a
Gaussian fPEPS approximation to the pairing state |BCS〉 via
a variational calculation. As shown in Fig. 1(a), the Gaussian
fPEPS is formed by the physical fermions of spin up and
down (blue and red dots) and � flavors of virtual fermions
residing on each bond (green dots). Next, we translate the
Gaussian fPEPS, parametrized by its correlation matrix, to
fPEPS tensors and implement the Gutzwiller projection by
locally modifying the tensor elements. Having an approxi-
mated fPEPS representation of the projected BCS state in
Eq. (1) allows us to investigate its properties using tensor
network algorithms. We examine the validity of the Gutzwiller
approximation for the hole fugacity and report on the pairing
order parameter and variational energy of the projected d-
wave pairing state for the t-J model with various dopings.

II. METHOD

In this section, we present our method for obtaining the
fPEPS tensors of a projected BCS state and the workflow is
shown in Fig. 2. This section is organized as follows: We first
review the construction of Gaussian fPEPS [38] in Sec. II A
and the variational optimization of the Gaussian fPEPS
[39] in Sec. II B. Then we develop the method to cast the

FIG. 2. The recipe for preparing a Gutzwiller projected BCS
state in Eq. (1) as a fermionic PEPS and investigating its physical
properties via tensor network contraction.

Gaussian fPEPS to fPEPS tensors and implement the
Gutzwiller projection in Sec. II C and Sec. II D, respectively.
Finally, in Sec. II E, we discuss how to make the fPEPS
tensor obtained in Sec. II D compatible with the method of
contracting fPEPS tensors developed in Ref. [40].

A. Construction of Gaussian fPEPS

The fPEPS is formed by mediating the entanglement of
physical fermions ( f ) on lattice sites via virtual fermions
(u, l, d, r) residing on the bonds. Formally, it can be expressed
as [38,41]

|�〉 =
⎡
⎣⊗

〈i,j〉
〈ωij|

⎤
⎦[⊗

i

|Ai〉
]
, (3)

where |ωij〉 is a maximally entangled state of virtual fermions
on the 〈i, j〉 bond. More concretely, we use uiα, liα, diα, riα to
denote the annihilation operators of the virtual fermions at site
i, where α ∈ [1, . . . , �] is the flavor index and u, l, d, r refer
to up, left, down, and right, respectively. The horizontal bond
between two neighboring sites i and j = i + x̂ is defined by

|ωij〉 =
�∏

α=1

1√
2

(1 + r†
iαl†

jα )|vac〉, (4)

where |vac〉 is the vacuum of virtual fermions. The vertical
bonds are defined in a similar way.

Next, the local fiducial state [41] is generally expressed as

|Ai〉 =
∑

f ,u,l,d,r

A f
uldr | f 〉 ⊗ |uldr〉 , (5)

where | f 〉 denotes the local physical states, consisting of
empty, singly occupied (with either spin up or down), and
doubly occupied states. The basis |uldr〉 corresponds to the
Fock space of virtual fermions at site i.

Since the virtual bonds are fermionic Gaussian states, the
fPEPS in Eq. (3) would also be Gaussian, as long as the local
fiducial state |Ai〉 in Eq. (5) is a fermionic Gaussian state.
Such a state forms a subclass of fPEPS, namely the Gaussian
fPEPS [38]. The flavor number of virtual fermions controls
the expressibility of the Gaussian fPEPS. In the usual fPEPS
language, a Gaussian fPEPS with flavor number � has a bond
dimension D = 2�.

A great computational advantage of the Gaussian fPEPS
is that a powerful fermionic Gaussian formalism [42] can
be used for performing efficient computations, which we
briefly outline below. Throughout this work we consider
translationally invariant fPEPS on the 2D square lattice
with a one-site unit cell (generalization to multisite unit
cells and/or other lattices is straightforward though). Let
us omit the site index for now and label the physical and
virtual fermions at a local site as (c1, c2, c3, . . . , c4�+2) =
( f↑, f↓, r1, l1, r2, l2, . . . , r�, l�, d1, u1, d2, u2, . . . , d�, u�).
In terms of Majorana operators γ2μ−1 = c†

μ + cμ and
γ2μ = −i(c†

μ − cμ), the local fiducial state (5), being a
fermionic Gaussian state, is fully characterized by its
correlation matrix [42]


μν = i

2
〈A|[γμ, γν]|A〉, (6)
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where 
 is a real antisymmetric matrix satisfying 
2 =
−I(8�+4)×(8�+4). As such, the correlation matrix (6) can be
written as


 =
(

A B
−BT D

)
, (7)

where A and D are 4 × 4 and 8� × 8� real antisymmetric
matrices, respectively, and B is a 4 × 8� real matrix.

In a translationally invariant setup, both physical and
virtual Majorana modes can be transformed into modes in
momentum space with γk,μ = 1√

N

∑
j exp(−ik · j)γj,μ where

N = L2 is the total number of sites (L: number of sites along
x and y directions). The allowed values of k satisfy k =
2πn

L where n ∈ Z ⊕ (Z + 1
2 ) if the system has periodic (an-

tiperiodic) boundary condition along the x (y) direction [43].
Denoting the virtual bond state as |ω〉 = ⊗

〈i,j〉 |ωij〉, the cor-
relation matrix of the virtual bond state is written as (Gω

k )μν =
i
2 〈ω|[γk,μ, γ−k,ν]|ω〉 (μ, ν = 5, . . . , 8� + 4) and takes the
following explicit form [39]:

Gω
k =

⎡
⎣ �⊕

μ=1

(
eikx σ x

−e−ikx σ x

)⎤
⎦

⊕
⎡
⎣ �⊕

μ=1

(
eikyσ x

−e−ikyσ x

)⎤
⎦, (8)

where σ x is the Pauli matrix.
The correlation matrix of the Gaussian fPEPS (3), defined

by (
Gf

k

)
μν

= i

2
〈�|[γk,μ, γ−k,ν]|�〉, (μ, ν = 1, . . . , 4), (9)

is calculated by contracting the virtual modes and gives rise to
[38]

Gf
k = A + B

(
D + Gω

k

)−1
BT . (10)

This is a key result for the variational calculation below. We
provide a comprehensive proof of Eq. (10) in Appendix A.

B. Variational optimization of Gaussian fPEPS

For the next step, we determine an optimal Gaussian
fiducial state (5), such that the variational energy of the Hamil-
tonian HBCS [see Eq. (2)] is minimized within the family
of Gaussian fPEPS for a given flavor number �. The BCS
ground state of HBCS is thus approximated by a Gaussian
fPEPS. By using the correlation matrix in Eq. (9), the vari-
ational energy can be expressed as

〈HBCS〉 =
∑

k

ξk(ρk↑ + ρk↓) + �kηk + �∗
kη

∗
k (11)

with ρkσ = 〈 f †
kσ fkσ 〉 and ηk = 〈 f †

k↑ f †
−k↓〉, which can be

evaluated via the relation
∑

k ξk〈 f †
k↑ fk↑〉 = ∑

k ξk[ 1
2 −

1
2 (Gf

k )1,2],
∑

k ξk〈 f †
k↓ fk↓〉 = ∑

k ξk[ 1
2 − 1

2 (Gf
k )3,4], and ηk =

〈 f †
k↑ f †

−k↓〉 = 1
4 [(Gf

k )1,4 + (Gf
k )2,3 + i(Gf

k )2,4 − i(Gf
k )1,3].

We carry out the optimization following Ref. [39]. The
minimization is performed through the fiducial state’s correla-
tion matrix 
 in Eq. (7), which can be brought into a canonical

form


 = X T

⎡
⎣4�+2⊕

η=1

(
0 1

−1 0

)⎤
⎦X, (12)

where X is an orthogonal matrix. The matrices A, B, D in
Eq. (7) are hence functions of X , and so are the correlation
matrix G f

k in Eq. (10) and the variational energy in Eq. (11).
We optimize the real orthogonal matrix X by minimizing

the loss function using optimization on the Stiefel manifold.
The derivatives are calculated by using automatic differ-
entiation with JAX [44]. The optimization algorithm is the
conjugate gradient method offered by PYMANOPT [45]. This
calculation was done for a finite lattice in the momentum
space. Since the computational complexity scales linearly
with the system size, one can reach pretty large systems easily
[39]. The accuracy of such variational calculation can be ver-
ified by comparing the results with the exact solution of the
BCS Hamiltonian.

C. Translation of correlation matrix � into local tensor

To obtain the local tensor of Gaussian fPEPS A f
uldr = 〈 f | ⊗

〈uldr|Ai〉 [see Eq. (5)], we need to find out the fiducial state
|Ai〉 based on its correlation matrix 
.

To this end, we simply construct a single-site fiducial
Hamiltonian

h = −
∑
μν

i
μνγμγν (13)

using the correlation matrix for the fiducial state. This Hamil-
tonian is quadratic and contains 8� + 4 types of physical and
virtual Majorana fermions at a single site.

It is easy to prove that |Ai〉 is the unique ground state
of the fiducial Hamiltonian h. By using the orthogonal ma-
trix defined in Eq. (12), the Majorana operators can be
rotated into a new basis as γ ′ = Xγ . Notice that (X
X T )μν =
i
2 〈Ai| [γ ′

μ, γ ′
ν] |Ai〉 = [

⊕4�+2
η=1 ( 0 1

−1 0)]μν , which shows that
the Gaussian fiducial state |Ai〉 satisfies iγ ′

2m−1γ
′
2m |Ai〉 = |Ai〉

(m = 1, . . . , 4� + 2). As iγ ′
2m−1γ

′
2m is a fermion parity op-

erator and has eigenvalues ±1, the fiducial Hamiltonian h =
−i

∑
m γ ′

2m−1γ
′
2m = −∑

μν i
μνγμγν has |Ai〉 as its unique
ground state.

We convert the fiducial Hamiltonian h from the Majorana
basis to the original complex fermion basis [see Eq. (5)] and
find its ground state by diagonalizing h. By reshaping the state
vector ∈ C24�+2

into a five-leg tensor, we obtain A f
uldr up to an

unimportant overall phase.
Since the quadratic Hamiltonian conserves the fermion

parity, its ground state |Ai〉 has a definite parity. Therefore, the
tensor A f

uldr automatically inherits Z2 symmetry as the parity
of the state |Ai〉.

For obtaining the explicit form of |Ai〉, an exact diagonal-
ization of the fiducial Hamiltonian h is managable when the
number of physical and virtual modes at each site is relatively
small. This is indeed the case for our benchmark example,
which already shows good performance. When the number
of modes at each site is large, we provide a more efficient
approach based on the state overlap in Appendix B.
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D. Gutzwiller projection of Gaussian fPEPS

After obtaining a Gaussian fPEPS representation of the
BCS state, we implement the Gutzwiller projection on the
physical leg of the local tensor A f

uldr as shown in Fig. 1(b).
Since we carry out Gutzwiller projection in an infinite system
in the grand canonical ensemble, we include a fugacity term
in the empty configuration to account for the change of the
particle density caused by the removal of double occupancies
[46–49]. In this way, the projection operator reads

PG =
∏

i

z(1−ni↑−ni↓)/2(1 − ni↑ni↓), (14)

where z is the fugacity of holes. The Gutzwiller projection
operator is a local gate acting on the physical leg with the
matrix representation diag(

√
z, 1, 1, 0), where the basis of

this representation is (|0〉 , |↑〉 , |↓〉 , |↑↓〉). The zero in the
Gutzwiller projection gate sets the local tensor elements as-
sociated with doubly occupied physical fermions to zero.

In principle, in a grand canonical calculation, one needs to
tune the hole fugacity to maintain the average particle number.
The Gutzwiller approximation [47] provides an estimation of
the fugacity

z = 2δ

1 + δ
, (15)

where δ is the hole density. One sees that in the undoped case,
δ = 0, the projection removes both empty and double occu-
pancy configurations and only keeps singly occupied sites.

E. Tensor network contraction

The Gaussian fPEPS after the Gutzwiller projection is no
longer a Gaussian state, but preserves the fPEPS nature. To
investigate its physical properties, we employ tensor network
contraction algorithms for fPEPS [40]. Since the optimization
in Sec. II B can be done on a sufficiently large lattice, it is
essentially free of finite-size error. Thus, after translation and
Gutzwiller projection, we assemble the local tensors into an
infinite lattice and employ infinite tensor network contraction
algorithms. Note that one needs to take care of the swap gate
[50] when contracting the local tensors since it is a fermionic
tensor network.

To make the local tensor fully compatible with the dia-
grammatic notation for fPEPS in Ref. [40], one should pay
special attention to the fermion sign associated with the order
and form of virtual fermions in the definition of |Ai〉 and |ωij〉.

For example, we need to make sure that the order of
fermionic operators in the definition of |Ai〉 in Gaussian
fPEPS and fPEPS are the same. In Ref. [40], the ordering of
fermions in the local tensor is |ul f dr〉, while the tensor we
obtained in Sec. II C follows the order (c1, c2, . . . , c4�+2) =
( f↑, f↓, r1, l1, r2, l2, . . . , r�, l�, d1, u1, d2, u2, . . . , d�, u�).
In order to account for this difference, we introduce swap
gates to transform between these two different orderings.

Additionally, in Ref. [40] it is free to contract the vir-
tual bonds of two nearby fPEPS tensors without generating
swap gates. This implies that the adopted definition of vir-
tual fermion maximally entangled state is defined differently
from Eq. (4). For example, for the bond between site i and

j = i + x̂, one has

∣∣ωC
ij

〉 = 1√
2�

∑
{nα}

�∏
α=1

(r†
iα )nα

�∏
α=1

(l†
jα )nα |vac〉 , (16)

where nα ∈ {0, 1} is the occupation number of virtual
fermions.

This differs from Eq. (4) by the ordering of virtual fermions
if the flavor number � > 1. The differences between |ωC

ij〉 and
|ωij〉 can be expressed explicitly as∣∣ωC

ij

〉 = (−1)
∑�

α

∑�
β<α (r†

iαriα )(l†
jβ ljβ ) |ωij〉 (17)

for the neighboring sites i and j = i + x̂. For the case of j =
i + ŷ, riα and ljα are replaced by uiα and djα , respectively.

All coefficients in Eq. (17) can be absorbed into the local
tensor A f

uldr . Afterward, the tensor network state is compatible
with the fPEPS convention in Ref. [40] and the resulting local
tensor is suitable for an fPEPS tensor contraction code.

To compute expectation values, we consider an infinite
fPEPS and adopt the variational uniform matrix product state
method [51] to obtain the environment tensors of infinite
tensor networks [52]. We note that other methods (e.g., corner
transfer matrix renormalization group method [53,54]) are
also applicable.

III. RESULTS

The BCS Hamiltonian in Eq. (2) has Dirac points at k =
(±π

2 ,±π
2 ). When optimizing 
, we choose a suitable combi-

nation of the system size L and boundary condition to avoid
these exact zero modes, as we mentioned in Sec. II A.

First, as a sanity check, the expectation value of the
Hamiltonian in Eq. (2) is calculated from optimized Gaussian
fPEPS. The expectation value can be obtained in two different
ways. The first way is through tensor network contraction, and
the second way is using the correlation matrix [see Eq. (11)].
The result in Fig. 3 shows that the energies evaluated in
these two ways agree with each other. The small discrepancy
is due to the finite bond dimension of environments in the
tensor network contraction. Such discrepancy can be reduced
systematically by enlarging the bond dimension kept in the
contraction.

Next, we move on to the Gutzwiller projected states. We
denote the density of holes of unprojected fPEPS as δ and
that of Gutzwiller projected state as δG, respectively. With a
suitable choice of hole fugacity z, we expect δ = δG. Here, we
examine the Gutzwiller approximated fugacity z = 2δ/(1 +
δ) [47]. The result in Fig. 4 shows that the approximated
fugacity is smaller than needed since δ is larger than δG. Thus,
the fugacity should be enlarged to make sure that δ remains
unchanged after the Gutzwiller projection.

The projected d-wave pairing state is believed to be a good
candidate for the ground state of the t-J model [4] with the
Hamiltonian [56,57]

HtJ = −t
∑
〈i,j〉,σ

PG( f †
iσ fjσ + H.c.)PG + J

∑
〈i,j〉

(
Si · Sj − ninj

4

)
,

(18)
where Si = 1

2

∑
ab f †

i,aσab fi,b and ni = ∑
σ f †

iσ fiσ are spin and
charge density operators, respectively. We set J/t = 0.4 (t =
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FIG. 3. Absolute difference of energy between those obtained
from the correlation matrix of Gaussian fPEPS and direct tensor
network contraction of an infinite fPEPS. The hole density is set
to δ = 0.16 and the virtual fermion flavor number in the Gaussian
fPEPS is � = 2. χ is the bond dimension used in the variational uni-
form matrix product state algorithm [51]. This result reveals that for
small system size, the difference mainly comes from the finite-size
effect of Gaussian fPEPS and can be minimized by enlarging system
size. If the system size is large enough, the difference comes from the
finite bond dimension of environments in contraction. Nevertheless,
the difference is quite small.

1) and carry out a variational calculation with the Gutzwiller
projected d-wave ansatz.

Treating �d in Eq. (2) as the single variational parameter,
we need to optimize the variational energy of HtJ (denoted as
EtJ ) for each given hole concentration δG. In the calculation,
it is crucial to keep the same δG when varying �d since the
variational energy is very sensitive to δG. We achieve this by

FIG. 4. Hole density before (δ) and after (δG) the Gutzwiller
projection. Here, we consider � = 2 and L = 101. The deviation
of points from the blue line represents the error of the Gutzwiller
approximation for the hole fugacity in Eq. (15).

FIG. 5. The density of charge and pairing strength of the
Gutzwiller projected BCS state in the case of � = 2, δ = 0.16, �d =
0.25. The diameter of red circles scales with the quantity of density
of holes. The width of cyan and green lines scales with the absolute
value of pairing strength where the sign of the pairing strength is
positive (negative) for the cyan (green) lines.

tuning the fugacity using a bisection search as an inner loop
for the variational optimization of �d .

Figure 5 shows the measured correlations for an optimized
state. The state is uniform and does not exhibit magnetic or
charge order but hosts a d-wave superconducting order.

Directly observing a perfect dome shape in the order
parameter 1√

2
|〈 fi↑ fj↓ − fi↓ fj↑〉| for neighboring sites i, j is

difficult for some reasons. The convergence of the variational
uniform matrix product state algorithm is difficult for small
�d and δG. Thus, the range of investigated δG is limited
to (0.11,0.16). Besides, the tensor network contraction error
makes it difficult to find the optimal �d and corresponding
order parameter with high precision. As an outlook, it might
be possible to improve the convergence and precision by ex-
ploiting the SU(2) symmetry of the fPEPS in tensor network
contractions [58].

As the bisection search of z is unaffordable for � = 3,
we investigate the order parameter for � = 2. As shown in
Fig. 6, in the limited range of δG, the optimal variational
parameter �d decreases with doping and the pairing order
parameter increases with doping. On the other hand, the order
parameter increases with �d for a fixed doping. Putting these
three facts together, it can be expected that for larger δG, the

FIG. 6. Order parameter 1√
2
|〈 fi↑ fj↓ − fi↓ fj↑〉| (blue circle) for

neighboring sites i, j and optimal �d (orange square) versus δG for
� = 2 and L = 101. The order parameter is obtained by using the
tensor network contraction. For stability, the optimal �d is deter-
mined via a second degree polynomial fitting near the optimal points.
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FIG. 7. Energy per hole. In � = 2 cases, we vary �d to minimize
the energy of the t-J model for a given density of holes δG. Fugacity
in the Gutzwiller projector is tuned for each �d to ensure the final
δG be the same, which is crucial in finding optimized �d . For � = 3
cases, we used optimized �d and solved fugacity in � = 2 for each
δ to avoid a costly optimization of �d and solution of fugacity in
� = 3. Green squares are from SU(2) fPEPS calculations in [55].

order parameter will decrease as the optimal �d decreases
with doping and finally drop to zero. In conclusion, one would
obtain a dome shape in the order parameter versus doping.

Lastly, we compute the energy per hole (EtJ +
0.46778)/δG for � = 2 and 3 where −0.46778 is the
ground-state energy for the undoped case [59]. Increasing
bond dimension results in a lower energy expectation value,
reaching an energy per hole as low as −1.32. The energies
are higher than those obtained from direct optimization of
fPEPS in Refs. [17,55]. Figure 7 shows the energy per hole as
a function of doping. We compare the energy with the SU(2)
fPEPS results of Ref. [55] obtained at D∗ = 6, which amounts
to D ≈ 11 without symmetry. Note that for � = 3, our fPEPS
obtained from the Gutzwiller ansatz has bond dimension
D = 8. Besides, our fPEPS tensor is uniform, while Ref. [55]
uses a 2 × 2 or 5 × 2 unit cell. Constructing a tensor network
representation of projected d-wave pairing states opens the
way to provide good initial states in variational calculations
besides offering diagnosis from the tensor network toolbox.

IV. SUMMARY AND DISCUSSION

To summarize, we have developed a systematic method to
construct the fPEPS representation of projected BCS states.
Using the method, we investigated the physical properties
of the projected d-wave pairing state on an infinite square
lattice. In particular, the estimated variational energy for the
t-J model is comparable to the results from tensor network
optimizations. The code implementation is available online
[60].

Our approach can also be applied to other classes of pro-
jected fermionic states, such as those obtained from Chern
insulators and spin density wave states [61]. In certain cases,
one would need an enlarged unit cell in the construction and
contraction of tensor networks. In contrast to previous works

[35–37,62–64] which rely on an analytical PEPS represen-
tation of the RVB state, the present approach variationally
solves a fermionic quadratic Hamiltonian of unprojected
states using Gaussian fPEPS [39]. Thus, the present approach
has a broader range of applications and can be systematically
improved by increasing the bond dimension of the Gaussian
fPEPS tensor.

Partial Gutzwiller projection which suppresses but does
not eliminate double occupancies [65] can also be straight-
forwardly implemented. These states are relevant to the study
of Gossamer superconductors [66,67] and Hubbard models.
In principle, long-range Jastrow factors beyond the on-site
Gutzwiller projection can be applied by using its tensor net-
work form [68]. This class of states is considered to be crucial
for describing Mott transitions [69]. Further investigations of
these states with our method are left for future works.
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APPENDIX A: PROOF OF EQUATION (10)

To establish the relationship between the correlation matrix
of the Gaussian fPEPS and that of the fiducial state in Eq. (6),
we prove a general result below.

Let us consider a fermionic Gaussian state |ω〉 living in
the Hilbert space H2 with virtual Majorana modes dl (l =
1, . . . , 2m) and another fermionic Gaussian state |A〉 living in
the composite Hilbert spaceH1 ⊗H2 including both physical
and virtual Majorana modes [70], where the physical modes
are denoted as c j ( j = 1, . . . , 2n).

The overlap 〈ω|A〉 is also a fermionic Gaussian state and
lives in the physical Hilbert space H1. To calculate its corre-
lation matrix, it is convenient to work with density operators
and write the density operator of 〈ω|A〉 as

ρ f (c) = 〈ω|A〉〈A|ω〉 = trH2 [ρA(c, d )ρω(d )], (A1)

where trH2 is the partial trace over H2 and ρω (ρA) is the
density operator of |ω〉 (|A〉).

We shall establish a Grassmann integration approach to
calculate the partial trace in Eq. (A1). This approach uses the
Grassmann representations of the Gaussian density operators
ρω and ρA [42],

gω(τ ) = 1

2m
exp

(
i

2
τ T 
ωτ

)
, (A2)

and

gA(θ, ζ ) = 1

2n+m
exp

[
i

2
(θT ζ T )

(
A B

−BT D

)(
θ

ζ

)]
,

(A3)
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where θ = (θ1, . . . , θ2n)T is a vector of real Grassmann vari-
ables for the physical modes c = (c1, . . . , c2n)T and, similarly,
τ and ζ include Grassmann variables for virtual modes. Here

ω and ( A B

−BT D) are the correlation matrices of ρω and ρA,
respectively.

In the Grassmann representation, the partial trace over H2

in Eq. (A1) can be calculated using a Grassmann integration
as follows:

g f (θ ) = (−2)m
∫

DζDτ eζ T τ gA(θ, ζ )gω(τ ), (A4)

where g f (θ ) is the Grassmann representation of the (unnor-
malized) density operator for 〈ω|A〉 and the integration is over
Grassmann variables associated with virtual modes, with the
notation

∫
DζDτ = ∫

dζ2m · · · dζ1dτ2m · · · dτ1. The proof of
(A4) is done by comparing the outcomes of Eqs. (A1) and
(A4), where the former can be computed by expanding ρA and
ρω in terms of Majorana operators and performing the partial
trace, and the latter is computed by expanding the Grassmann
exponential and carrying out the integration over Grassmann
variables one by one.

After substituting Eqs. (A2) and (A3) into Eq. (A4) and
performing the Gaussian integration over ζ and τ , we obtain

g f (θ ) = 1

2n+m
Pf (
ω ) Pf

(
D − 
−1

ω

)
exp

(
i

2
θT 
fθ

)
, (A5)

where Pf denotes the Pfaffian for antisymmetric matrices and

f is the correlation matrix of 〈ω|A〉 and has the following
explicit form:


f = A + B
(
D − 
−1

ω

)−1
BT

= A + B(D + 
ω )−1BT . (A6)

Here we used 
−1
ω = −
ω as |ω〉 is a pure state.

We note that Eq. (10) is just the Fourier transformed ver-
sion of (A6) taking into account the translation invariance. It
is also worth mentioning that Eq. (A6) agrees with Eq. (C8)
in Ref. [71] but differs from those in Refs. [38,41,72] by the
sign in front of 
ω. This is due to that the Gaussian fPEPS
projector in Refs. [38,41,72] is defined through the Gaussian
map [42], which is different from Eq. (3).

APPENDIX B: OVERLAP-BASED TRANSLATION

Instead of diagonalizing the fiducial Hamiltonian in the
Fock space, we provide below an alternative approach to
obtain the explicit tensor form of |Ai〉. This approach is based
on an overlap formula between fermionic Gaussian states and
Fock states.

To start with, we rewrite the fiducial Hamiltonian (13)
in a Bogoliubov–de Gennes (BdG) form by converting the
Majorana operators γ back to original complex fermions,

H = (c† c)H
(

c
c†

)
, (B1)

where (c† c) is a row vector of fermionic creation and annihi-
lation operators for 4� + 2 physical and virtual fermions at a
local site (see Sec. II A). The BdG single-particle Hamiltonian

H is diagonalized by a Bogoliubov transformation

(a† a) = (c† c)

(
U V ∗
V U ∗

)
, (B2)

where (a† a) includes creation and annihilation operators of
Bogoliubov modes and the Bogoliubov matrices U and V
satisfy

U †U + V †V = I, U T V + V T U = O (B3)

with I (O) being the identity (zero) matrix.
The local fiducial state |Ai〉, being the ground state of H , is

annihilated by all a-fermion annihilation operators. Accord-
ing to Eq. (5), the tensor form of |Ai〉 can be obtained by
calculating each coefficient A f

uldr which is the overlap 〈 f | ⊗
〈uldr|Ai〉. 〈 f | ⊗ 〈uldr| denotes a Fock state in the c-fermion
basis and can generally be written as c 〈0|ciM′ · · · ci1 with 0 �
M ′ � 4� + 2 and 1 � i1 < · · · < iM ′ � 4� + 2, where c 〈0|
is the c-fermion vacuum.

Such overlap calculation can be carried out by rewriting
the Bogoliubov vacuum |Ai〉 in a suitable form [73], with the
help of the Bloch-Messiah decomposition [74](

U V ∗
V U ∗

)
=

(
D 0
0 D∗

)(
Ū V̄
V̄ Ū

)(
C 0
0 C∗

)
, (B4)

where D and C are unitary matrices and Ū and V̄ are real
matrices with the following form:

Ū =
⎛
⎝O ⊕

p upσ
0

I

⎞
⎠, V̄ =

⎛
⎝I ⊕

p ivpσ
y

O

⎞
⎠.

(B5)

Here up and vp are positive and satisfy u2
p + v2

p = 1, I (O)
is the identity (zero) matrix, and σ 0 and σ y are the 2 × 2
identity and Pauli matrices. For our purpose, it is convenient
to truncate the I (O) block in Ū (V̄ ) to obtain matrices

Ū ′ =
(
O ⊕

p upσ
0

)
M×M

, V̄ ′ =
(
I ⊕

p ivpσ
y

)
M×M

.

(B6)

Following Ref. [34], |Ai〉 is represented as

|Ai〉 = 1∏
p vp

b1 · · · bM |0〉c , (B7)

where b = c†D′V̄ ′ + c(D′)∗Ū ′. Here D′ is a (4� + 2) × M
matrix obtained by keeping the first M columns of the uni-
tary matrix D [see Eq. (B4)], which is an isometry satisfying
(D′)†D′ = IM×M .

With these results in hand, the tensor entry A f
uldr is calcu-

lated with Wick’s theorem as follows:

〈 f | ⊗ 〈uldr|Ai〉 = 1∏
p vp

c 〈0|ciM′ · · · ci1 b1 · · · bM |0〉c

= (−1)
1
2 M ′(M ′−1)∏

p vp
c 〈0|ci1 · · · ciM′ b1 · · · bM |0〉c

= (−1)
1
2 M ′(M ′−1)∏

p vp
Pf

(
OM ′×M ′ RM ′×M

−RT
M×M ′ QM×M

)
,

(B8)
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where Rm′m = c 〈0|cim′ bm |0〉c = (D′V̄ ′)im′ m and Qm′m =
c 〈0|bm′bm |0〉c = (Ū ′V̄ ′)m′m. Note, however, that the overlap
in Eq. (B8) vanishes if M and M ′ have different parity (this
automatically encodes the fermion parity symmetry). The
Pfaffian formula (B8) allows us to calculate the explicit tensor
form of |Ai〉. In our program, the Pfaffian is calculated with
an algorithm provided by Wimmer [75].

We can compare the pros and cons of Hamiltonian-based
translation and overlap-based translation: The complexity of
translation is quantified by N = 4� + 2. When employing
an overlap-based algorithm, we need to calculate matrix
Pfaffians for 2N−1 times. As the size of each matrix is of
order 2N × 2N , the computational cost of the overlap-based

translation is O(N3 × 2N−1). This complexity can be further
reduced to O(N2 × 2N−1) if a fast update technique for the
Pfaffian is used (see, e.g., Ref. [76]). Meanwhile, in the
Hamiltonian-based algorithm, the computational cost of ob-
taining the dominant eigenvector of a 2N × 2N matrix scales
as O((2N )2) = O(22N ).

When � is large, the Hamiltonian-based algorithm in
Sec. II C has a larger computational cost, but it is neverthe-
less more straightforward and intuitive. If � is so large that
an exact diagonalization of the fiducial Hamiltonian is not
feasible, one might also employ the density matrix renor-
malization group method [77] to obtain an approximation
of |Ai〉.
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