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We investigate the topological properties of the helical atomic chains occurring in elemental selenium and
tellurium. We postulate a realistic model that includes spin-orbit interaction and show this to be topologically
nontrivial, with a topological invariant protected by a crystalline symmetry. We describe the end-states, which are
orbitally polarized, with an orbital density modulation strongly peaked at the edge. Furthermore, we propose a
simplified model that decomposes into three orbital chains, allowing us to define a topological invariant protected
by a crystalline symmetry. We contrast this result with recent observations made for the orbital Su-Schrieffer-
Heeger model containing a p-orbital zigzag chain.
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I. INTRODUCTION

Topology has become one of the pillars of modern con-
densed matter research over the past decades [1–5]. Despite
the many possible classes of nontrivial topology identified
theoretically [6–10], and the many realizations of nontrivial
quantum materials identified experimentally [11–17], sug-
gested direct implementations of the most basic, prototypical
models for topological order are rare. Here, we propose that
elemental chalcogens selenium and tellurium naturally im-
plement an extension of one of the most fundamental and
most well-known topological models in condensed matter, the
Su-Schrieffer-Heeger (SSH) model [18].

The particular model realized in the spiral chains of
chalcogen crystals consists of three independent copies of
a period-three SSH model (SSH-3) [19]. This model differs
from the standard SSH model and the recently introduced
orbital SSH model [20,21], by having a three-site rather than
two-site periodicity and lacking exact particle-hole or chiral
symmetry [22–24]. It does, however, have a twofold rotational
symmetry that combines with time-reversal to guarantee ro-
bust end states in the gap between conduction and valence
band. In the chalcogens, the particular charge and orbitally
ordered ground state furthermore causes the topological end
states to carry a nonzero orbital polarization.

The elemental chalcogens have been studied for almost a
century [25–27] and have been long known to organise into
a chiral crystal structure consisting of weakly coupled spiral
chains [24–26]. Only recently has the origin of these spiral
chains been understood in terms of a combined charge and or-
bital instability of a simple-cubic parent structure [22,28,29].

*adam.klosinski@fuw.edu.pl

In this instability, a charge density wave develops among
quasi-one-dimensional chains of each of the three possible
p-orbital orientations. Weak Coulomb interaction between the
chains leads to a relative alignment of the charge density
waves into an emergent three-dimensional structure consisting
of spiral chains. Owing to the orbital origin of the charge
density distortions, the spiral structure is also orbitally ordered
[28–30]. Although the form of the orbital order depends on
the strength of the Coulomb interaction, the emerging spiral
lattice distortions and their origin in combined charge and
orbital order was recently shown to be robust [30].

The topology of the electronic state in the spiral con-
figuration of elemental chalcogens has not been extensively
studied, although there are reports from electronic structure
calculations that it undergoes a topological phase transition
from an insulator to a Weyl semimetal under strain [31,32].
Additionally, there are recent suggestions that surface states
may be identified on crystals of elemental selenium and tel-
lurium [33], but their topological origin has not yet been
conclusively established. The particular charge order in the
spiral chains, however, is a direct three-site generalization
of the famous two-site SSH model, while the orbital order
is strongly reminiscent of the so-called orbital SSH model
[20,21]. Here, we show that the elemental chalcogens are
indeed topologically ordered, exhibiting a direct realization
of some of the most fundamental known topological mod-
els, and giving rise to orbitally polarized end states. The
topological invariant characterising the order and end states
coincides with the one-dimensional line invariant appropriate
for time reversal symmetric systems with a twofold crystal
symmetry [34].

This paper is organized as follows: In Sec. II we intro-
duce the model for a helical chalcogen chain. We begin by
describing the chain geometry (Sec. II A). Then we define
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the model in two different bases, making use of the helical
symmetry (Secs. II B and II C), as well as a simplified version
of the model, for which the bond angle α = 90◦ and which
we call the cubic model (Sec. II D). In the final subsection
of Sec. II we discuss the symmetries of the chalcogen chain
(Sec. II E). In Sec. III we show the spectrum of the open
chalcogen chain obtained using exact diagonalization (ED)
(Sec. III A), where we observe in-gap states. We also give a
description of the bulk topological invariant (Sec. III B) and
discuss the bulk-boundary correspondence (Sec. III C). In the
final subsection of this section we discuss the end states of
the chalcogen chain (Sec. III D). In Sec. IV we provide a
detailed discussion of the topology of the chalcogen chain,
going beyond the invariant defined in Sec. III B. To that
end, in Sec. IV A we analyze the cubic model—a simplified
version of the chalcogen chain model, with the bond angle
α = 90◦. We show that this simpler model factorizes into three
SSH-3 chains, one of which supports end-states. These end
states are continuously linked to the end-states of the full
chalcogen model, allowing us to relate the topology of the
chalcogen chain to that of the SSH-3 model. In the final
subsection of Sec. IV we offer a comparison between the
chalcogen chain model and the orbital-SSH model described
in [20,21]. Finally, in the Appendices we provide a detailed
derivation of the end states in the continuous limit (Ap-
pendix A) and a more detailed analysis of the evolution of
the energy spectrum of the chalcogen chain with varying spin-
orbit coupling strength (Appendix B).

II. MODEL

A. Chain geometry and helical symmetry

We previously introduced an electronic model for the
helical chains in elemental chalcogens [30], which contains
three p-orbitals {px, py, pz}—but no spin. Here, we expand
this model to include spin and spin-orbit coupling. Following
the conclusions of Ref. [30], we assume the effects of the
weak Coulomb interaction to be negligible. The noninteract-
ing, electronic model for a single helix then contains three
distinct types of bonds, but it can be mapped onto a model
with only a single bond type using the helical symmetry.

Trigonal selenium and tellurium crystals consist of parallel,
weakly coupled helical chains arranged on a hexagonal lattice
[26,27,35]. When viewed from the top, atoms in each helix
collapse onto the vertices of an equilateral triangle, which
demonstrates that the helices are period-three, as shown in
Fig. 1. The period-three helix is characterized by a single
bond angle α (shown in Fig. 2), which can be treated as a
free parameter. For selenium αSe ∈ [102.5◦, 105.5◦], while for
tellurium αTe ∈ [102.4◦, 103◦]. Here we will use α = 103◦,
which we call the chalcogen model, though we will also con-
sider the model for α = 90◦, which we call the cubic model.

These models do not have translational invariance T by
one bond distance along the helix. However, the helical chain
model is invariant with respect to T ⊗ O ⊗ U , i.e., a product
of the aforementioned translation operator T times a certain
orbital rotation O and spin rotation U . Here the orbital rotation
O is a rotation of orbitals by angle 120-degrees around the axis
of the helix �a—cf. Fig. 2, which shows the orbital basis before

FIG. 1. The geometry of the helical chain: (a) top view, (b) side
view. Marked on the figure: the helical axis (�a), the axis normal to
the helical axis (�r), the GO basis vectors �x and �z (see Sec. II B for
details) and the shortest distance from each atom to the helical axis
(dashed lines).

[see panel (a)] and after the orbital rotation [see panel (b)].
Indeed, as Fig. 1(a) suggests, such a rotation, supplemented
by the translation by one bond distance along the helix, leaves
the sites (and therefore also orbitals) invariant. A bit more
subtle situation occurs for the spin rotation U—here, due to
the fact that spins are invariant w.r.t. a 720-degree rotation and
not a 360-degree one, the chosen angle of the rotation U has
to be 480◦, see Ref. [36] for a detailed discussion. Altogether,
the system is invariant w.r.t. a combination of: the translation
T by one bond distance along the helix times a 120-degree
orbital rotation O times a 480-degree spin rotation U around
the axis of the helix �a shown in Fig. 1 [36]. The 120-degree
orbital rotation symmetry O is best visible in Figs. 2(a) and
2(b), where two orbital bases are shown—the basis before the

FIG. 2. The helical chain in three dimensions. The global (a) and
the local (b) orbital bases are shown, with px , py, and pz orbitals
colored red, green, and blue, respectively. A shaded gray cylinder
is also marked, whose axis coincides with the helical axis �a of the
chain, shown in Fig. 1. In both cases the bond angle is α = 103◦.
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orbital rotation [see panel (a)] and the basis after the orbital
rotation [see panel (b)].

B. Period-three model

We choose a coordinate system with the ẑ axis along the
helical axis �a (see Fig. 1) and the x̂ axis in the direction of
the shortest line connecting the first site of the helix with the
helical axis �a (see Fig. 1, this distance is marked for each
atom by a dashed line). The first site is chosen arbitrarily. We
call this basis the global orbital (GO) basis. The GO basis
is shown in Fig. 2(a). Since the helix is period-three, the
unit cell consists of atoms at positions (r, 0, 0), (− r

2 ,
√

3r
2 , a),

(− r
2 ,−

√
3r
2 , 2a), and the translation vector is (0, 0, 3a). On

each chain site we have three p orbitals and spin-orbit cou-
pling, therefore the tight-binding model is given as follows:

H =
3∑

i=1

Ti ⊗ h(�ni ) ⊗ 12 − λ
∑

α=x,y,z

1N ⊗ Lα ⊗ σα, (1)

where σα are the Pauli matrices describing spin and
(Lα )βγ = −iεαβγ are the angular momentum L = 1 matrices.
λ is the spin-orbit coupling parameter. Note that the spin-orbit
term is negative, because we consider the realistic filling for
chalcogens—that is 2/3 [25,26,30]—and since for more-than-
half-filled orbital shells the sign of the spin-orbit coupling
term is negative [37]. The Ti operators are N × N matrices
which describe nearest-neighbor hopping between sites of the
helix of length N (we assume that N is divisible by three):

Ti =
N/3−1∑

j=1

( |i + 3 j〉〈i + 1 + 3 j| + H.c. ), (2)

with periodic boundary conditions |N + 1〉 ≡ |1〉. Finally,
h(�ni ) are the 3 × 3 matrices describing hopping between px,
py and pz orbitals along the bonds. They are given by Slater-
Koster rules:

h(�n) =
⎛
⎝n2

xδt + tπ −nxnyδt −nxnzδt
−nynxδt n2

yδt + tπ −nynzδt
−nznxδt −nznyδt n2

z δt + tπ

⎞
⎠

= (tπ − tσ )(�n · �L)2 + tσ13, (3)

where δt = tσ − tπ and tπ (tσ ) are the bonding amplitudes of
the π (σ ) bonds [38]. Since the helix is period-three, we have
three nonequivalent bond directions denoted as normalized
vectors �ni. They can be derived from the atomic positions as
functions of the bond angle α. They are given by

�n1 = 1

g(α)

(
−3

2
,

√
3

2
,
√

3 f (α)

)
, (4)

�n2 = 1

g(α)
(0,−

√
3,

√
3 f (α)), (5)

�n3 = 1

g(α)

(
3

2
,

√
3

2
,
√

3 f (α)

)
, (6)

with f (α) =
√

3
4 (cos α

2 )−2 − 1, and g(α) = 3
2 (cos α

2 )−1. Al-
ternatively, they can be expressed by the ratio of the helix

FIG. 3. Band structure of the chalcogen model described by
Eq. (1) (with α = 103◦, tπ/tσ = −1/3) with periodic boundary
conditions: (a) without spin-orbit coupling, λ/tσ = 0, and (b) with
spin-orbit coupling λ/tσ = 0.2. Occupied bands are colored blue,
unoccupied bands are colored gray.

pitch to the distance of the chain atoms from the helical axis
r, namely, q = a/r. The value of q is related to the bond
angle α by

cos α = 3 − 2q2

6 + 2q2
. (7)

Note that π
3 < α < π while 0 < q < ∞.

The band structure for the model of Eq. (1) is shown in
Fig. 3. It exhibits band gaps at 1/3 and 2/3 filling, which
are substantial for realistic values of the spin-orbit coupling
parameter λ, as discussed in Sec. III A below.

C. Period-one model

Note that the model of Eq. (1) has a symmetry whenever N
is divisible by three described by the operator Q,

Q = T ⊗ O ⊗ U = T ⊗ exp

[
i
2π

3
Lz

]
⊗ exp

[
i
8π

3

σz

2

]
.

(8)

This represents a cyclic shift by one site along the helix com-
bined with a 120-degree rotation of orbitals and a 480-degree
rotation of spins. O and U are the orbital and spin rotations
discussed in Sec. II A and T is

T = |N〉〈1| +
N−1∑
r=1

|r〉〈r + 1|. (9)

Here, r labels the sites along the chain.
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From [H, Q] = 0 and the choice of N ∈ 3N we see that in
the eigenbasis of Q the Hamiltonian H is decomposed into
N 6 × 6 diagonal blocks. The easiest way to perform such de-
composition, however, is by defining a unitary transformation,

V =
N−1∑
r=0

|r + 1〉〈r + 1| ⊗ exp

[
i
2πr

3
Lz

]
⊗ exp

[
i
8πr

3

σz

2

]
,

(10)

that acts locally in each unit cell. Transforming the
Hamiltonian to the new basis, which we will call the local
orbital (LO) basis, we get

H ′ =
(

T ⊗ h(�n1) exp

[
−i

2π

3
Lz

]
⊗ exp

[
−i

8π

3

σz

2

]
+ H.c.

)

−λ
∑

α=x,y,z

1N ⊗ Lα ⊗ σα, (11)

where H ′ = V HV †, with H defined in Eq. (1). In the LO basis,
the Hamiltonian has a single-site unit cell. Now we can easily
go to k space by inserting the eigenvalues of T to get

H ′(k) =
(

eikh(�n1) exp

[
−i

2π

3
Lz

]
⊗ exp

[
−i

8π

3

σz

2

]
+ H.c.

)

−λ
∑

α=x,y,z

Lα ⊗ σα. (12)

Note that this Hamiltonian can also be put in a form that
does not depend on the choice of the coordinate system by
substituting

Lz → �m · �L,

σz → �m · �σ (13)

in H ′. In the above, �m is a normalized vector along the axis of
the helix and h(�n1) is already given in coordinate-independent
form in Eq. (3).

D. The cubic model (α = 90◦)

The model becomes especially simple for α = 90◦ (the
cubic model case), when a different basis choice is convenient.
In the period-1 case we use the coordinate independent form
of H ′(k) and set the direction of the helix as �m = (1, 1, 1)/

√
3

and of the first bond as �n1 = (0, 0, 1). This is a valid basis
choice for any α, and we call this basis choice the local cubic
orbital (LCO) basis, as it makes the cubic model Hamiltonian
especially simple. In this basis, the orbital hopping part of the
Hamiltonian becomes

h(�n1) exp

[
−i

2π

3
�m · �L

]
=

⎛
⎝0 tπ 0

0 0 tπ
tσ 0 0

⎞
⎠. (14)

Transforming back to the period-3 model, for α = 90◦ we
get Eqs. (1)–(3) with

�n1 = (0, 0, 1), (15)

�n2 = (1, 0, 0), (16)

�n3 = (0, 1, 0). (17)

FIG. 4. The helical chain for α = 90◦. At each site of the chain
the GCO basis is shown (see Sec. II D), with px , py, and pz orbitals
colored red, green, and blue, respectively. A shaded gray cylinder
is also marked, whose axis coincides with the helical axis �a of the
chain, shown in Fig. 1. The cubic environment is made apparent.

We call the LCO basis transformed back to the period-three
model the global cubic orbital (GCO) basis. It is shown in
Fig. 4 for the α = 90◦ case.

E. Symmetries of the model

Besides the T ⊗ O ⊗ U helical symmetry the Hamiltonian
has two other important symmetries:

(i) Time-reversal symmetry 
 = iKσy (K is complex
conjugation), which leads to Kramers degeneracies at time-
reversal invariant momenta since 
2 = −1, and


H ′(k)
−1 = H ′(−k)�. (18)

(ii) R—a 180-degree rotation symmetry around the axis �r
normal to the helical axis and going through one of the atoms
(see Fig. 1). In the LO basis the form of R is

R = exp[iπLx] ⊗ exp
[
iπ

σx

2

]
, (19)

and it acts on the Hamiltonian as

RH ′(k)R−1 = H ′(−k). (20)

As a further consequence of these two symmetries, there exist
an antiunitary operator V = 
R such that

VH ′(k)V−1 = H ′(k)�, (21)

and V2 = 1. Consequently, there exists a basis in which the
Hamiltonian is purely real.

III. RESULTS

A. Exact diagonalization of an open chain

We begin with the exact diagonalization (ED) of the
chalcogen model Hamiltonian in Eq. (1) with open boundary
conditions. We use the chain length N = 501. The spectrum
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FIG. 5. The spectrum of the chalcogen model in Eq. (1)
(α = 103◦, tπ/tσ = −1/3) on a finite open chain of length N = 501,
for different values of λ/tσ . The end states are colored red, the
occupied bulk states are colored blue, and the unoccupied bulk states
are colored gray.

is presented in Fig. 5. We find that in a finite chalcogen
chain with weak spin-orbit interaction four states separated
from the continuum appear in each of the two gaps. Their
presence suggests a nontrivial topology of the chain—this will
be investigated in the following subsections. The results of
Fig. 5 also show that as the spin-orbit coupling λ increases,
the upper gap—where the Fermi level is located—closes for
λcrit./tσ ≈ 0.57. The in-gap states disappear after the gap clos-
ing, indicating a topological phase transition. The authors of
Ref. [39] give the values of the spin-orbit splitting between
outermost orbitals, equal to 1.5λ/tσ , as 0.23 for selenium and
0.49 for tellurium. This gives λ/tσ = 0.15 for selenium and
λ/tσ = 0.33 for tellurium.

The in-gap states in the lower gap disappear into the bulk at
around λ/tσ = 0.8, while the gap remains open even for very
large λ/tσ . We will disregard the lower gap in our analysis as it
lies deep below the Fermi energy. A more detailed discussion
of both gaps is presented in Appendix B.

B. Bulk topological properties

In this subsection we examine the bulk properties and the
topological invariant. The system has a spatial symmetry R
that can be regarded as a spinful inversion. Therefore, inspired
by Ref. [40], we search for the Z� invariant by looking at the
spectrum of the Wilson loop operator W . Its matrix elements
can be calculated using a gauge-invariant formula,

Wnm = 〈En(k1)|Pn f (k2) . . .Pn f (kN )|Em(k1)〉, (22)

where k j = 2π j/N , while |Em(k j )〉 are the eigenstates of
H ′(k) in Eq. (12), and N should be taken large enough to
assure convergence. Notice that only the filled bands are con-
sidered in the band labels m and n. The operators Pn f (k) are
projectors on the occupied subspace for a given k:

Pn f (k) =
n f∑

n=1

|En(k)〉〈En(k)|. (23)

Here, n f is the index of the occupied state corresponding to
the largest eigenvalue (energy).

Due to the symmetry R, the spectrum of the W operator
consists of the values: +1, −1 or pairs of complex conjugate
numbers of unit modulus [40]. The number of −1 appearances
we denote as N(−1). Note that if R was spinless, as in Ref. [40],
then N(−1) would be equal to the difference in number of
occupied states for which R = −1 between k = 0 and k = π

and it would be a topological invariant. In the present case,
however, such difference gives zero because in each Kramers
doublet we always find two opposite R eigenvalues.

From the general classification involving mirror symme-
tries [8], and more specific work of Ref. [34], it follows that
we can have only one nontrivial phase. Therefore, we define a
Z2 topological invariant as

ν = 1

2
N(−1) mod 2. (24)

This expression is equivalent to the invariant of Ref. [34], and
is valid as long as N(−1) is even. This is always satisfied as the
bands come as time-reversal partners and each pair contributes
to N(−1) either 0 or 2. For the chalcogen model we find that
the invariant takes values ν = 1 and ν = 0 at 2/3-filling for
λ < λcrit. and λ > λcrit., respectively. The critical value λcrit.

coincides with the gap closing in Fig. 5.
Finally, we would like to point out that in one dimen-

sion, the bulk-boundary correspondence appears robustly only
when there is a symmetry that binds the end-states to zero
energy, so either chirality or particle-hole symmetry. In any
other case, end-states that appear in the gap can be shifted up
or down in energy by a local potential and forced to join the
bulk continuum. There are, however, results indicating that a
nontrivial Zak phase of the bulk bands leads to charge accu-
mulation at the ends of the system which sometimes manifests
itself as the presence of end states [41,42]. In our case, the
appearance of the end-states in Fig. 5 is fully consistent with
the invariant ν in Eq. (24). However, to better understand what
conditions lead to their presence, in the next section we will
discuss the bulk-boundary correspondence in our model.

C. Bulk-boundary correspondence

To establish the robustness of the end states, we performed
an expansion of the model defined by Eq. (12) around the
point of the upper gap closing. There are two values of
pseudomomentum k for which the gap closes (see Fig. 3),
symmetric with respect to the point k = 0. For now we will
focus on the gap closing at pseudomomentum k0 > 0.

To expand the Hamiltonian around the gap closing point,
we first apply a basis change uk0,λcrit. to the eigenbasis of
the chalcogen model Hamiltonian in Eq. (12) at k = k0 and
λ = λcrit.. Next, we apply a projection P of the resulting
Hamiltonian onto the two eigenstates forming the Dirac cone
at k0 to obtain an effective 2 × 2 Hamiltonian

h(k, λ) = Puk0,λcrit. H
′(k) u†

k0,λcrit.
P. (25)

By doing this we find that the eigenbasis of the model
at the gap-closing point (k0, λcrit. ) is exactly the basis in
which the entire Hamiltonian uk0,λcrit. H

′(k)u†
k0,λcrit.

is real and
whose existence is guaranteed by symmetry (see Sec. II E).
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Consequently, h(k, λ) is also real and we can write it as

h(k, λ) = s(k − k0, λ)σ0 + f (k − k0, λ)σx + g(k − k0, λ)σz,

(26)

where s(0, λcrit. ) = E0 (the gap closing energy) and
f (0, λcrit. ) = g(0, λcrit. ) = 0. After subtracting the scalar
term, the effective 2 × 2 Hamiltonian

h̃(k, λ) = h(k, λ) − s(k − k0, λ)σ0, (27)

becomes chiral.
The standard bulk-boundary correspondence guarantees

that the chiral Hamiltonian h̃(k, λ) leads to zero-energy end
states upon interfacing with a trivial phase. For h(k, λ), how-
ever, this is not necessarily the case. This is due to the fact
that the scalar term, while irrelevant for the topology of the
bulk, does not commute with h̃(k, λ) on an open chain and
can therefore affect the end states. Nevertheless, a detailed
calculation shows that in this case the end states survive in
the gap (see Appendix A for details).

D. Orbital polarization of the end states

We have analyzed the character of the end states by looking
at their eigenvectors obtained using ED on an open chain (see
Fig. 6) of size N = 213. The most transparent representation
is obtained in the GCO basis. Looking at Fig. 6(a), we see that
the charge density of the end states decays exponentially away
from the edge and that the end states have a strong orbital
polarization. The latter is dictated by the bulk bond pattern
and carries a predominantly py orbital character. Since in our
calculation the break in the chain occurs where a py-type
dimer would occur in an infinite chain.

One can identify this result as one closely related to the
result presented in Fig. 6(b). It shows the end states of the
cubic model (α = 90◦) in the absence of spin-orbit coupling
(λ = 0). In this case the end states have a purely py orbital
character and the exponentially decaying end state is modu-
lated by a period-three, 1-1-0 charge density wave (CDW). We
have verified that not only in the GCO basis, but indeed in any
global orbital basis the perfect orbital polarization observed in
Fig. 6(b) is absent in Fig. 6(a). The physical understanding of
this profound result is studied in detail in Sec. IV A.

We conclude that the spin-orbit interaction and the increase
in bond angle change the nature of the end states only slightly,
introducing a small admixture of the other two p-orbitals and
weakly breaking the 1-1-0 CDW modulation in the py orbital
density. However, the density of the py orbital in the end
state is still almost zero on every third site. The nonzero px

and pz orbital density is due to the fact that both relevant
terms—the finite spin-orbit coupling λ and the deviation from
the 90-degree bond angle α—introduce coupling between the
p orbitals, which is absent in the model without these terms.
We note in passing that if one were to further increase α, be-
yond the value α = 103◦ in chalcogens, one would necessarily
encounter a topological phase transition. This is because for
α = 180◦ the helical chain becomes a simple chain which is
not gapped at 2/3 filling and therefore cannot be a topological
insulator. However, we have verified that the invariant (24) is
robust up to at least α = 120◦, well beyond the bond angle
reported for chalcogens.

FIG. 6. The end-state orbital density for a chain cut
across two y bonds: (a) for the chalcogen model of Eq. (1)
(α = 103◦, tσ /tπ = −1/3) with λ/tσ = 0.2 < λcrit./tσ , (b) for the
cubic model (α = 90◦, tσ /tπ = −1/3) with λ/tσ = 0, see Eq. (28) in
Sec. IV A. In both panels we use the GCO basis defined in Sec. II D
(see Fig. 4). Also shown in panel (b) is a schematic picture of the
end-state charge density along the helix for the cubic model. The
calculation was performed for a chain of length N = 213 sites.

IV. DISCUSSION

A. Cubic model (α = 90◦) with λ = 0

In what follows we discuss the physical origin of the
topological invariant and the orbital polarization of the end
states. To this end we turn our attention to the cubic model,
which is considerably simpler than the chalcogen model. We
uncover a mapping of the cubic model for λ = 0 onto a SSH-3
model with a strong-weak-weak band pattern. In the follow-
ing subsections we discuss the implications of this finding
by showing: (i) its relevance for the chalcogen model, and
(ii) its relation to the (orbital) SSH model.

We consider a simplified cubic (α = 90◦) model:

H0 ≡ H
∣∣∣
λ=0, α=90◦

, (28)

where H is defined in Eq. (1). Here it is useful to use the GCO
basis, in which the Hamiltonian takes a particularly simple
form (see Sec. II D for details). In this basis the x, y and
z axes point along the bonds of a simple cubic lattice and
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the helix bonds correspond to consecutive bonds on a simple
cubic lattice (see Fig. 4).

The Hamiltonian of Eq. (28) separates into two indepen-
dent spin channels,

H0 =
⊕

σ

Hσ
0 . (29)

Furthermore, each spin block separates into three independent
orbital channels,

Hσ
0 =

3⊕
γ=1

Hσ,γ

0 , (30)

each described by a SSH-3 chain. The chains corresponding
to different orbitals are shifted by one lattice distance from
one another. Their k-space Hamiltonians (in the GCO basis)
are given by

Hσ,1
0 (k) =

⎛
⎝ 0 tπ tσ e−ik

tπ 0 tπ
tσ eik tπ 0

⎞
⎠, (31)

Hσ,2
0 (k) =

⎛
⎝ 0 tσ tπe−ik

tσ 0 tπ
tπeik tπ 0

⎞
⎠, (32)

Hσ,3
0 (k) =

⎛
⎝ 0 tπ tπe−ik

tπ 0 tσ
tπeik tσ 0

⎞
⎠. (33)

Thus, each of the three SSH-3 chains has a strong bond
followed by two weak bonds, i.e., a strong-weak-weak bond
pattern. This is also visible in the dimer pattern presented in
Fig. 7. Note that the properties of the SSH-3 model are quite
different than those of the standard SSH model, as the above
Hamiltonians are not chiral-symmetric and are gapless at half-
filling. Therefore, we cannot get an insulating phase protected
by a winding number in contrast to the standard SSH model
(see Sec. IV C).

From the point of view of the crystalline symmetry all three
models of Eqs. (31), (32), and (33) are inversion-symmetric,
being a manifestation of the R symmetry present in the helix,
but only in the first SSH-3 model the unit cell is compatible
with the inversion symmetry taking a form of

I =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, (34)

and yielding

IHσ,1
0 (k)I−1 = Hσ,1

0 (−k). (35)

Now we can use the inversion-invariant of Ref. [40] to charac-
terize the insulating phases of Hσ,1

0 (k) at n = 1/3 and n = 2/3
filling. The invariant is given by the difference of number
of occupied bands with inversion eigenvalue −1 between
k = 0 and k = π . If there are no degeneracy at high-symmetry

FIG. 7. Dimers forming in the cubic model with λ = 0 in
Eq. (28). The helical chain is defined in a cubic environment. Each
dimer type, indicated by a different color, appears on every third
bond. For each dimer type a distinct orbital tunneling amplitude is
amplified, so that each orbital experiences a tσ −tπ−tπ strong-weak-
weak tunneling amplitude when moving along the chain. This gives
an SSH-3 model for each orbital flavor.

points, this comes down to

ν ′ =
n f∑

n=1

|〈En(0) I |En(0)〉 − 〈En(π )| I |En(π )〉|, (36)

where ν ′ is a positive-integer topological invariant and n f is
the index of the topmost occupied band. For our choice of tσ
and tπ , we find that ν ′ = 1 both for n f = 1 (n = 1/3 filling)
and n f = 2 (n = 2/3 filling). Thus, according to the argu-
ments given in Ref. [41], we can expect that the open-chain
version supports end states, which we discuss below.

Since the models Hσ,γ

0 (k) are related by a cyclic shift by
one lattice site, no matter how we cut the helical chain of the
cubic model we should observe a pair of end states (in each
spin channel). These end states are nothing other than the end
states of the inversion-symmetric SSH-3 chain Hσ,1

0 (k).
By analogy to the ordinary SSH model, it is possible to

derive the exact analytic form of the end-states of the model
Hσ,1

0 . It turns out that their energy is equal to ε± = ±tπ , so
they satisfy the real-space Schrödinger equation of the form(

Hσ,1
0 − ε±

)|ψ±〉 = 0, (37)

with the eigenvectors of the left end states given by

〈i|ψL
−〉 = η η 0 η2 η2 0 η3 η3 0 · · · , (38)

and

〈i|ψL
+〉 = −η η 0 η2 − η2 0 − η3 η3 0 · · · , (39)

where η stands for the ratio of the hopping amplitudes,
η = |tπ/tσ |. This shows that these states can be normalized
only for η < 1 (this marks the boundary of the topological
phase). The right end-states share the same energies and can
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FIG. 8. The spectrum of the cubic model (α = 90◦,
tπ/tσ = −1/3) on a finite open chain of Eq. (40) for chain
length N = 501, for different values of λ/tσ . The end states are
colored red, the occupied bulk states are colored blue and the
unoccupied bulk states are colored gray.

be obtained from the left ones by applying inversion symmetry
I, so effectively reversing the order of coefficients of the
above vectors. These states are the exponentially decaying
1-1-0 CDW end states of Fig. 6(b) [43]. We have verified
that |ψL

±〉 summed over both spin channels agree with the
orbital densities shown in Fig. 6(b), as obtained from exact
diagonalization of H0 in Eq. (28).

B. Relation between cubic and chalcogen models

We now turn our attention to a more complex model than
that in the previous subsection. While we still keep α = 90◦,
we consider a finite value of the spin-orbit coupling λ. The
Hamiltonian of this cubic model is

Hcubic(λ) ≡ H
∣∣∣
α=90◦

, (40)

where H is given by Eq. (1). In Fig. 8 we plot the spectrum
of the cubic model (40) on a finite open chain with α = 90◦
as a function of λ/tσ . The result is very similar to the one
obtained for the chalcogen model (Fig. 5). For any value of
λ below the gap closing at λcrit./tσ ≈ 0.68 we observe end
states. Moreover, the end states with and without spin-orbit
coupling are adiabatically connected in both gaps.

The similarity of Fig. 8 to Fig. 5, as well as that of Fig. 6(a)
to Fig. 6(b), shows that the difference between the realistic
chalcogen model of Eq. (1) and the simplified cubic model
of Eq. (40) is purely quantitative. Consequently, we conclude
as follows. While both the cubic model with λ = 0 [see
Eq. (28) and also Fig. 7] and the chalcogen model (1) pos-
sess a nontrivial Lau-Brink-Ortix invariant, given by Eq. (24),
only the cubic model with λ = 0 has an additional invariant
[44], given by Eq. (36). This means that these models are
not topologically equivalent. Nevertheless, they are linked by
their respective end states: one observes that the end states of
the chalcogen model [Fig. 6(a)] remain similar to these of the
cubic model with λ = 0 [Fig. 6(b)]. This is commonly seen
in topological systems, when upon weak symmetry breaking
a change in the invariant (by nature discontinuous) is accom-
panied by only a quantitative change in the end states [45].

Therefore, the insight gained from studying the end states of
the SSH-3 model can be approximately used to understand the
end states of the chalcogen model.

C. Comparison with the orbital SSH model

In this section we study electrons in a right-angle zigzag
chain on a plane with two active orbitals—the in-plane p
orbitals px and py [20,21], which are parallel to the two zigzag
bonds. This Hamiltonian has two lattice sites in the unit cell,
a and b. We consider the filling of 1/2. This model is the
orbital SSH model discussed in Refs. [20,21], and is given
by the following Hamiltonian:

HSSH =
2∑

i=1

T̃i ⊗ h̃i ⊗ 12, (41)

where T̃i operators are N × N matrices which describe
nearest-neighbor hopping between sites of a zigzag chain of
length N (assuming that N is divisible by 2):

T̃i =
N/2−1∑

j=1

( |i + 2 j〉〈i + 1 + 2 j| + H.c. ), (42)

with periodic boundary conditions |N + 1〉 ≡ |1〉. The 2 × 2
matrices h̃i describe hopping between px and py orbitals along
the two distinct bonds:

h̃1 =
(

tσ 0
0 tπ

)
, (43)

h̃2 =
(

tπ 0
0 tσ

)
. (44)

The orbital SSH model of Eq. (41) is topologically non-
trivial with four in-gap states. The topological phase is easy
to understand by analogy to the SSH model [18]. First, note
that the spin channels separate and one needs to consider
only one spin. Second, note that the ∝ tσ tunneling processes
in Eqs. (43) and (44) link px orbitals along x bonds and
py orbitals along y bonds, while the tπ tunneling processes
link the remaining orbitals on each bond. Since there are no
processes mixing orbital flavors, this gives rise to two copies
of a half-filled SSH model, one in each orbital channel. The
tunneling amplitudes in each channel follow a weak-strong
pattern (|tπ/tσ | < 1), with the patterns shifted by one lattice
distance from each other. The emerging dimer pattern is illus-
trated in Fig. 9.

In the SSH model we find end states in a finite chain
obtained by cutting an infinite chain across two strong bonds
(dimers), that is bonds with a larger absolute value of tunnel-
ing amplitude—in our case tσ . In other words, the presence of
end states is dependent on the cut, i.e., if one cuts across two
weak bonds, no end states are found. In Fig. 9 we see that no
matter how we cut the chain in the orbital SSH model we will
always cut two dimers—it is just the orbital character of these
dimers that depends on the cut. We should therefore always
find end states in the orbital SSH chain.

The analogy with two decoupled and shifted SSH chains
(per spin channel) allows us to understand the four end states
in the orbital SSH model. They stem from the bulk invariant—
the winding number of the SSH model. This is in contrast
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FIG. 9. Dimers forming in the orbital SSH model. The zig-zag
chain is defined on a simple square lattice. Each dimer type, indicated
by a different color, appears on every second bond. For each dimer
type a distinct orbital tunneling amplitude is amplified, so that each
orbital experiences a strong-weak tunneling amplitude when moving
along the chain. This gives an SSH model for each orbital flavor.

to the cubic model at λ = 0 of Eq. (28) (and, therefore, also
the chalcogen model). For the SSH model the invariant comes
from the fundamental chiral symmetry and is therefore robust,
unaffected by lattice deformations. In the cubic model, on
the other hand, we find an underlying SSH-3 model which is
gapless at half-filling and cannot exhibit end-states protected
by chiral symmetry. Instead the end states are protected by the
crystalline symmetry (see above).

V. CONCLUSION

In this work, we have studied the topological properties of
the single-element chalcogen crystals selenium and tellurium.
To this end, we have concentrated our efforts on investigating
an electronic model with active p orbital degrees of freedom
in helical chains—since such chains form the backbone of
the chalcogen crystal structure. While we leave the coupling
between the chalcogen chains for a later study, this is not ex-
pected to alter the main findings of this work on the existence
of topological end states. Rather, the coupling is expected to
allow the end states to bundle into coherent surface states.

Our work has two main results: First, we have shown that
the occupied electronic bands of a realistic model for the
chalcogen chains carry a Z2 topological invariant. The in-
variant is nontrivial for realistic values of spin-orbit coupling
and becomes trivial only for unrealistically large values. The
invariant is related to the number of particular eigenvalues of
the Wilson loop operator ν [40], and is protected by the 180◦
rotation symmetry R around an axis �r normal to the helical
chain. The end states arising in the topologically nontrivial
phase of the open chain are orbitally polarized, i.e., depending
on the particular cut of the helical chain, they have a predom-
inantly px, py, or pz orbital character.

Second, we have demonstrated that the onset of the nontriv-
ial topology can be understood in terms of a simplified cubic
model. This model also describes a helical chain with active
p orbital degrees of freedom, but, unlike for the chalcogens,
with the bond angle within the helix being 90◦ and with van-
ishing spin-orbit coupling. While the topological properties of
the cubic model without spin-orbit coupling are equivalent to
the ones found in the realistic chalcogen chain, its topology
can also be simply understood as stemming from the topolog-
ical properties of an SSH-3 model. The SSH-3 model shows
a strong-weak-weak bond pattern in one of the three p orbital
flavors (px or py or pz), its topological invariant ν ′ is protected
by the inversion symmetry I, and the end states are entirely
orbitally polarized.

Note that the SSH-3 model is not only different from the
standard SSH model [18], but also from its orbital variant [21].
The latter contains a set of two standard SSH chains in each
spin channel, one per each p-orbital channel. Furthermore,
both the orbital SSH model and the standard SSH model have
a winding-number topological invariant protected by chiral
symmetry.

Note added. After this work was completed, we became
aware of a recent study of the electronic structure of Se
and Te [46]. There, it is suggested that the one-dimensional
Se/Te chains are chiral SSH chains. In contrast, we show
that the topology of the chalcogen chain stems from the exact
Lau-Brink-Ortix invariant [34]. It can also be understood by
analogy to the SSH-3 model, which is topologically distinct
from the chiral SSH model.
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APPENDIX A: END STATES IN THE CONTINUOUS LIMIT

In this section we investigate whether the chirality-
breaking scalar term in the chalcogen chain model linearized
around the upper gap closing [Eq. (26)] affects the in-gap
states. To this end we use the standard adiabatic argument
saying that interfacing a nontrivial phase of h(k, λ) with the
vacuum is equivalent to going from the nontrivial to trivial
phase by changing the parameters of the model. This involves
passing through the gapless point. The linear expansion of
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FIG. 10. The spectrum of the cubic model of Eq. (40) (α = 90◦,
tσ /tπ = −1/3) for both positive and negative values of λ/tσ . The end
states are colored red, the occupied bulk states are colored blue and
the unoccupied bulk states are colored gray. The λ/tσ < 0 part of
the spectrum corresponds to the filling 1/3, while the λ/tσ � 0 part
of the spectrum to the filling 2/3—as indicated by the coloring of
bands [for more on the link between the sign of λ and the filling
see discussion in Sec. II B, under Eq. (1)]. The inset shows the spin-
orbit coupling eigenvalues in the p shell. A symmetry is visible in
the DOS upon changing the sign of the spin-orbit interaction, the
filling from 1/3 to 2/3 or vice versa, and performing an electron-hole
transformation.

h(k, λ) around the gap closing point is given by

hlin. = h(k0 + δk, λcrit. + δλ)

= E0 + δλ(a1 + a2σx + a3σz ) + δk(b1 + b2σz )

+ O(δk2, δλ2), (A1)

where ai and bi are real numbers. To study the real-space
interface between trivial and nontrivial phases we work in the
continuum setting:

δk = −i∂x,

δλ = λ(x), (A2)

and we search for solutions of the Schrodinger equation of the
form

hlin.

(
ψa(x)
ψb(x)

)
= E

(
ψa(x)
ψb(x)

)
, (A3)

or equivalently:

−i M∂x

(
ψa(x)
ψb(x)

)
+ Rλ(x)

(
ψa(x)
ψb(x)

)
= (E − E0)

(
ψa(x)
ψb(x)

)
,

(A4)

with

M =
(

b1 + b2 0
0 b1 − b2

)
, (A5)

and

R =
(

a1 + a3 a2

a2 a1 − a3

)
. (A6)

We look for solutions of the homogenous equation, that is
we look for a state whose energy is equal to the gap closing
energy E0. We use the ansatz

ψa(x) = Ca exp

(
γ

∫
λ(x)dx

)
, (A7)

ψb(x) = Cb exp

(
γ

∫
λ(x)dx

)
. (A8)

The homogenous equation now reads

λ(x) exp

(
γ

∫
λ(x)dx

)
A

(
Ca

Cb

)
= 0, (A9)

with

A =
(−ib+γ + a+ a2

a2 −ib−γ + a−)

)
. (A10)

If λ(x) �= 0, a solution exists for such γ that Det(A) = 0.
In the case of the chalcogen chain with realistic parameters,
that is α = 103◦, tσ = 1, and tπ/tσ = −1/3, we found two
solutions: γ1 = −0.582 + 0.056i, and γ2 = 0.582 + 0.056i,
i.e., γ2 = −γ ∗

1 .
Depending on the shape of the domain wall, only one of

these solutions is physical and we can set the other to zero so
that �i(±∞) = 0. For instance, choosing

λ(x) = � tanh
( x

w

)
,∫

λ(x)dx = �w log cosh
( x

w

)
> 0 , (A11)

where for x → −∞ we have a topological phase with
λ = λcrit. − �, and for x → +∞ a trivial phase with
λ = λcrit. + �, we set Ca,2 = Cb,2 = 0. Then the solution is

�1(x) =
(

Ca,1

Cb,1

)
exp

(
γ1w� log cosh

x

w

)
. (A12)

We obtain the localization length of the domain-wall state by
taking the limit of large x,

�1(x → ±∞) ∝ e|x|�γ1 , (A13)

hence the localization length is

ξ = 1

�|Re(γ1)| . (A14)

This characterizes one end state. A similar analysis of the
other gap closing point, for k′

0 < 0, yields another.
Since the homogenous solution describes a state with en-

ergy E0—that is in the middle of the gap for all values of
λ(x) < λcrit.—and whose localization length is finite, the con-
clusion from the above calculation is that in the vicinity of
the gap closing the localized end state will survive in the gap
even in the presence of the scalar term which breaks the chiral
symmetry. Let us reiterate that this conclusion applies only in
the region around the gap closing, where the linearized model
is valid. In particular, the pinning of end states to the gap
for all λ(x) < λcrit. is a feature which is in contrast with the
dispersion of the end states in the upper gap observed in the
full model (see Fig. 5). The reason for this is that the linearized
model is a two-band p-orbital model and consequently the
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spin-orbit interaction in this model is much simpler than that
in the full model, namely,

Hsoc,lin. ∝ −λLz ⊗ σz. (A15)

As a result, the linearized model does not capture the evolu-
tion of the end-state energy. It does, however, show that the
end states survive near the gap closing, and taken together
with the results of exact diagonalization (see Fig. 5) it al-
lows us to conclude that the end states do indeed survive for
λ(x) < λcrit..

APPENDIX B: DOS AS A FUNCTION OF λ

In this Appendix, we provide a simple understanding of the
evolution of DOS of the cubic model of Eq. (40) (α = 90◦)
with varying spin-orbit interaction strength λ. Even though
for simplicity we only consider the cubic case, the results of
this section are also valid for the chalcogen model of Eq. (1)
(α = 103◦).

An observation can be made about Fig. 8—the spectrum of
the cubic model on an open chain for λ = 0, given by Eq. (28),
is symmetric with respect to E/tσ = 0. However, this model is
not chiral—this is a feature of the open chain alone. Because
of this, for λ = 0, the spectrum around 1/3 filling looks the
same as the spectrum around 2/3 filling. For λ �= 0, however,
the physics in the two cases becomes different. While in

the upper gap we observe a gap closing, in the lower gap
we do not. This asymmetry is the consequence of the fact
that spin-orbit interaction breaks particle-hole symmetry. The
large λ/tσ limit, as well as the gap closing, can be better
understood by considering the orbital character of the bands.

The key observation is that, generally, and in particular
at the gap closing momentum k = π/3, the top and bottom
bands have a predominantly lz = ±1 character, while the mid-
dle band has a predominantly lz = 0 character, where lz is
the projection of the electron angular momentum onto the
z axis of the orbital basis [30]. Consequently, the j = 1/2
pseudospin states are concentrated mostly in the middle band,
while the j = 3/2 pseudospin states dominate the top and
bottom bands. Because the spin-orbit energy is positive for
the j = 1/2 pseudospin states and negative for the j = 3/2
pseudospin states, we observe an upwards trend in the energy
evolution of the middle band, which is not observed in the top
and bottom bands. What follows is that there occurs a crossing
of the two top bands but no crossing of the bottom two bands,
a features which is visible in Figs. 5 and 8.

Finally, note that if the filling were 1/3 instead of 2/3, then
the spin-orbit interaction would change sign [see discussion in
Sec. II B, under Eq. (1)]. Therefore, the DOS in Figs. 5 and 8
would flip around the E/tσ = 0 axis in addition to the Fermi
level moving to the lower gap—see Fig. 10. Consequently, the
topological properties for the 1/3 filling are the same as for the
2/3 filling.
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