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We introduce a ZN stabilizer code that can be defined on any spatial lattice of the form � × CLz , where � is a
general graph. We also present the low-energy limit of this stabilizer code as a Euclidean lattice action, which we
refer to as the anisotropic ZN Laplacian model. It is gapped, robust (i.e., stable under small deformations), and
has lineons. Its ground-state degeneracy (GSD) is expressed in terms of a “mod N-reduction” of the Jacobian
group of the graph �. In the special case when space is an L × L × Lz cubic lattice, the logarithm of the GSD
depends on L in an erratic way and grows no faster than O(L). We also discuss another gapped model, the ZN

Laplacian model, which can be defined on any graph. It has fractons and a similarly strange GSD.
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I. INTRODUCTION

In recent years, there has been a rapid development in the
study of exotic lattice models in condensed matter systems.
Some models, known as fractons [1–3] exhibit a variety of
surprising features. These include a robust ground-state de-
generacy (GSD) that grows sub-extensively in the system size
[4], as well as particle excitations with restricted mobility.
Many of these unusual properties can be understood as follow-
ing from their exotic global symmetries. These symmetries are
also the underlying reasons why these lattice models defy a
conventional continuum limit. See [5–10] for reviews on these
novel topological phases of matter and their exotic global
symmetries.

Most of these exotic lattice models are defined on a cubic
lattice, or lattices with additional structure such as foliation
[11–21]. It is then natural to ask if there are exotic models
that can be defined on a general lattice graph. Recently, two
such lattice models, the Laplacian φ-theory and the U (1)
Laplacian gauge theory, were proposed in [22,23] using the
discrete Laplacian operator �L. (See also [24] for a model
along this line.) The former has a large GSD being the number
of spanning trees of the spatial graph, which is a common
measure of complexity, but it does not have fractons. The latter
has defects representing immobile fracton particles, but it has
no large GSD.

The ZN version of the U (1) Laplacian gauge theory has a
large GSD and fractons, but the GSD is not robust against
perturbations by local operators. This motivates us to con-
sider a certain anisotropic generalization, which we call the
anisotropic ZN Laplacian model.1 It has the following salient

1The relation between the ZN Laplacian model and its anisotropic
uplift is analogous to that between the 2+1D ZN Ising plaquette
model [25] and the 3+1D anisotropic lineon model in [13,26].

features, some of which are reminiscent of the celebrated
Haah’s code [2]:

(1) It can be placed on a spatial lattice of the form � × CLz ,
where � is a general graph and CLz is a cycle graph on Lz

vertices, or a 1D periodic chain with Lz sites. See Fig. 1.
(2) The GSD is robust2 and is given by

GSD = | Jac(�, N )|2, (1.1)

where Jac(�, N ) is a “mod N-reduction” of the Jacobian
group Jac(�) of �.

(3) It has lineons that can only move in the z direction if �

is an infinite two-dimensional square lattice.
(4) In the special case when the spatial lattice is a Lx ×

Ly × Lz cubic lattice and when N = p is prime, we have

logp GSD

= 2 dimZp

Zp[X,Y ]

(Y (X − 1)2 + X (Y − 1)2, X Lx − 1,Y Ly − 1)
.

(1.2)

The definition and the explicit evaluation of this formula are
discussed in Appendix C. It depends on the number-theoretic
properties of Lx, Ly. Interestingly, there exists a sequence of
Lx, Ly going to infinity such that the logp GSD ∼ O(Lx, Ly),
but there is also a sequence such that logp GSD stays at order
1 if p > 2. See Fig. 2.

We present this model both in terms of the low-energy limit
of a stabilizer code in the Hamiltonian formalism, and in terms

2On a general graph, there is no notion of locality, and therefore
we cannot discuss local operators and match them between the UV
and the IR theories. Consequently, the discussion of robustness is
ambiguous. This is not the case on regular lattices where the usual
discussion of local operators and robustness applies. In that case, the
anisotropic model is robust as we will show in Sec. III B 4.
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FIG. 1. The spatial lattice � × CLz : the black lines correspond to
the edges of the graph �, and the green lines represent the z-links
between two copies of �. Each site of the lattice is labeled as (i, z),
where i denotes a vertex of the graph � and z denotes a vertex of CLz .

of a Euclidean lattice model using an integer BF action [27].
We compare the four Laplacian lattice models in Table I.3

Following [22,23,25–35], we focus on the exotic global
symmetries of this model. The symmetries of the models on
� (the first three models in Table I) are not subsystem global
symmetries. The symmetry operators are supported on most
(or all) of the sites of �, rather than on a small subset of
them. The precise subset depends delicately on the details
of �. Yet there are many such symmetries. In this sense
these symmetries are generalizations of the dipole symmetries
[36,37] on cubic lattices, which are also supported on the
entire lattice. The difference is that the dipole symmetries
have simple dependence on the coordinates, while here the
dependence on the coordinates is more complicated.

This is not the case in the anisotropic ZN Laplacian model
(the fourth model in Table I). Here the symmetries act at
fixed z and in that sense they are subsystem symmetries. (See
[38,39] for other anisotropic fractal models with symmetries
that act at fixed z.) In fact, as we will discuss below, at low
energy these symmetries are independent of z and are similar
to one-form global symmetries.4

The rest of the paper is organized as follows. In Sec. II we
introduce some necessary graph theory background, including

3In the table we assume the θ angle of the U (1) Laplacian theory is
not π , otherwise the GSD is 2.

4More generally, we can classify symmetries by the difference
operators that annihilate the transformation parameters α. For ex-
ample, on a regular lattice, an ordinary symmetry has �xα = �yα =
�zα = 0, a dipole symmetry has �x�xα = �x�yα = �y�yα = 0,
etc. (And, of course, α can carry more indices for the various fields or
directions in spacetime.) More interesting examples arise in theories
associated with Haah’s code [2], where the difference equations are
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FIG. 2. The logarithm of the ground-state degeneracy logN GSD
of the 3+1D anisotropic ZN Laplacian model of lineons on a cubic
lattice with L × L × Lz sites (i.e., � = CL × CL) for N = 2 (red) and
N = 3 (blue), and 1 � L � 100. While logN GSD grows steadily as
∼4L for N = 2, it behaves erratically for N = 3. In fact, for N = 3,
there are infinitely many L for which it is just 2, and also infinitely
many L (powers of 3) for which it is ∼4L. Here the GSD for both
N = 2, 3 was calculated using techniques from commutative algebra
explained in Appendix C 1. In Sec. IV B, we give a simpler derivation
of the GSD for N = 2 by relating the 3+1D anisotropic Z2 Laplacian
model to the 3+1D anisotropic Z2 lineon model [13,26] on a tilted
lattice.

the discrete Laplace operator and the Jacobian group of a
graph. In Sec. III we introduce the stabilizer code and the
Euclidean integer BF action for the anisotropic ZN Laplacian
model. We derive the general expression for the GSD (1.1)
and discuss the restricted mobility of the lineon defects from
timelike symmetries.5 Section IV considers the special case
when the spatial lattice is a cubic lattice and when N is prime.
The GSD reduces to (1.2) and we discuss its asymptotic be-
haviors. Appendix A discusses ZN -valued discrete harmonic
functions on a general graph. Appendixes B and C contain the
detailed computation of the GSD and the mobility restrictions
for the anisotropic ZN Laplacian model on a cubic lattice with
N a prime number. In Appendix D, we study the ZN Laplacian
model of fractons, which is not robust.

II. GRAPH THEORY PRIMER

In this section, we review some well-known facts about a
finite graph, and ZN -valued functions on the graph. A good
reference on this subject is [40]. See also [22] for more dis-
cussion on these topics in related lattice models.

Let � be a simple, undirected, connected graph on N ver-
tices.6 Here simple means there is at most one edge between

(�x + �y + �z )α = 0 and [�x�y + �y�z + �z�x + 2(�x + �y +
�z )]α = 0.

5See [35] for a definition of spacelike and timelike global sym-
metries and their applications to the ground-state degeneracy and
restricted mobility constraints.

6Note that N in ZN is different from N, the number of vertices of
�.
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TABLE I. The comparison of four exotic lattice models that can be defined on a general graph �. The model is robust if it has no relevant
local operator. See Sec. III B 4 for more details on what we mean by robustness.

Model Spatial lattice GSD Defects Robust

Laplacian φ theory [22,23] � | Jac(�)| None No
U (1) Laplacian gauge theory [22,23] � 1 Fracton Yes
ZN Laplacian model Appendix D � | Jac(�, N )| Fracton No
Anisotropic ZN Laplacian model Secs. III and IV � × CLz | Jac(�, N )|2 Lineon Yes

any two vertices and no self-loop on any vertex, undirected
means the edges do not have any orientation, and connected
means there is a path between any two vertices of the graph.
We use i to denote a vertex (or site), and 〈i, j〉 to denote an
edge (or link) of the graph. We write 〈i, j〉 ∈ � if there is an
edge between vertices i and j in �.

Let di be the degree of vertex i, i.e., the number of edges
incident on i. The Laplacian matrix L of � is an N × N
symmetric matrix defined as follows: Lii = di for every vertex
i, Li j = −1 if there is an edge 〈i, j〉 between vertices i and j,
and Li j = 0 otherwise.

A. Discrete Laplacian operator �L and its Smith decomposition

Consider a ZN -valued function f (i) on the vertices of the
graph. We define the discrete Laplacian operator �L as

�L f (i) :=
∑

j

Li j f ( j) = di f (i) −
∑

j:〈i, j〉∈�

f ( j)

=
∑

j:〈i, j〉∈�

[ f (i) − f ( j)], (2.1)

where the equalities are modulo N . This is one of the most
natural and universal difference operators that can be defined
on any such graph �.

We are interested in the following two questions:
(1) What are all the ZN -valued functions h(i) that satisfy

the discrete Laplacian equation

�Lh(i) = 0 mod N? (2.2)

They are known as the ZN -valued discrete harmonic functions,
and we denote the set of such functions as H(�,ZN ).7

(2) We define an equivalence class of ZN -valued functions
by saying that two functions g(i) and g̃(i) belong to the same
class if there is a ZN -valued function f (i) such that

g̃(i) − g(i) = �L f (i) mod N. (2.3)

In this case, we write g̃(i) ∼ g(i). What are all the distinct
equivalence classes under the equivalence relation “∼”?

Interestingly, both questions can be answered using the
Smith decomposition [42] of the Laplacian matrix L [43]. The
Smith normal form of L is given by three matrices R, P, and
Q, such that

R = PLQ, or Rab =
∑
i, j

PaiLi jQ jb, (2.4)

7It is also known as the group of balanced vertex weightings [41].

where P, Q ∈ GLN(Z), and R = diag(r1, . . . , rN). Here ra’s
are nonnegative integers, known as the invariant factors of
L, such that ra divides ra+1 for a = 1, . . . , N − 1. While R is
uniquely determined by L, the matrices P and Q are not. For
a connected graph �, we have ra > 0 for a = 1, . . . , N − 1,
and rN = 0.

We state the answers to the two questions here (see Ap-
pendix A for details):

(1) Any ZN -valued discrete harmonic function takes the
form

h(i) =
N∑

a=1

NQia pa

gcd(N, ra)
mod N, (2.5)

where pa = 0, . . . , gcd(N, ra) − 1 for a = 1, . . . , N. In other
words, H(�,ZN ) is isomorphic to the finite Abelian group∏N

a=1 Zgcd(N,ra ). Here the group operation is simply the sum. It
is well defined because if h1, h2 ∈ H(�,ZN ), then h1 + h2 ∈
H(�,ZN ).

(2) Any equivalence class is uniquely represented by the
ZN -valued function

g(i) =
N∑

a=1

pa(Q−1)ai mod N, (2.6)

where pa = 0, . . . , gcd(N, ra) − 1 for a = 1, . . . , N. In other
words, the set of all equivalence classes is isomorphic to the
finite Abelian group

∏N
a=1 Zgcd(N,ra ). Here the group operation

is simply the sum which is well defined because if g̃1 ∼ g1 and
g̃2 ∼ g2, then g̃1 + g̃2 ∼ g1 + g2.

It follows that the number of ZN -valued discrete harmonic
functions and the number of equivalence classes are both∏N

a=1 gcd(N, ra), which is the order of the finite Abelian
group

∏N
a=1 Zgcd(N,ra ). We will have more to say about this

group below.

B. Jacobian group of a graph

The finite Abelian group encountered above is intimately
related to the Jacobian group Jac(�), which is a natural finite
Abelian group associated with a general graph �.8 In terms of
the invariant factors of the Laplacian matrix L, we have the

8It has several different names in the graph theory literature, in-
cluding the sandpile group [44], the group of components [45], or the
critical group [46] of �, and it is related to the group of bicycles [41]
of �.
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following isomorphism

Jac(�) ∼=
N−1∏
a=1

Zra . (2.7)

The order of Jac(�) is the most fundamental and well-studied
notion of complexity in graph theory. What we have here is a
“mod N-reduction” of the Jacobian group:

Jac(�, N ) ∼=
N∏

a=1

Zgcd(N,ra ). (2.8)

As we will see below, the group Jac(�, N ) plays an crucial
role in the ZN Laplacian models.

III. ANISOTROPIC ZN LAPLACIAN MODEL ON A GRAPH

In this section, we study a robust gapped lineon model on
a spatial lattice of the form � × CLz , where � is a simple,
connected, undirected graph, and Lz is the number of sites in
the z direction (see Fig. 1). We refer to it as the anisotropic
ZN Laplacian model because it is the anisotropic extension
along the z direction of the ZN Laplacian model analyzed in
Appendix D.

A. Hamiltonian for the stabilizer code

In the Hamiltonian formulation of the anisotropic
ZN Laplacian model, there are a ZN variable U (i, z)
and its conjugate variable V (i, z), i.e., U (i, z)V (i, z) =
e2π i/NV (i, z)U (i, z), on every site of � × CLz . There are also
a ZN variable Uz(i, z + 1

2 ) and its conjugate variable Vz(i, z +
1
2 ), i.e., Uz(i, z + 1

2 )Vz(i, z + 1
2 ) = e2π i/NVz(i, z + 1

2 )Uz(i, z +
1
2 ), on every z-link of � × CLz .

The Hamiltonian is

H = −γ1

∑
i,z

G(i, z) − γ2

∑
i,z

F

(
i, z + 1

2

)
+ H.c., (3.1)

where

G(i, z) = Vz

(
i, z + 1

2

)†

Vz

(
i, z − 1

2

)

×
∏

j:〈i, j〉∈�

V (i, z)V ( j, z)†,

F

(
i, z + 1

2

)
= U (i, z + 1)†U (i, z)

×
∏

j:〈i, j〉∈�

Uz

(
i, z + 1

2

)
Uz

(
j, z + 1

2

)†

.

(3.2)

The two kinds of terms are shown in Fig. 3. Since all the terms
in this Hamiltonian commute with each other, it is a stabilizer
code.

The model enjoys the duality transformation

U (i, z) → Vz
(
i, z + 1

2

)
, Uz

(
i, z + 1

2

)→ V (i, z),

V (i, z) → Uz
(
i, z + 1

2

)†
, Vz

(
i, z + 1

2

)→ U (i, z)†. (3.3)

Vz

V †
z

V †

V 3

V †

V †

U3
z

U†
z

U†
z

U†
z

U†

U

(a) G )b(mret- F -term

FIG. 3. The two kinds of stabilizer terms in the Hamiltonian (3.1).

It exchanges the two kind of terms in the Hamiltonian and
therefore it maps the model with (γ1, γ2) to the model with
(γ2, γ1). As a result, for γ1 = γ2, this model is self-dual.

The ground states satisfy G(i, z) = 1 and F (i, z + 1
2 ) = 1

for all i, z. The excited states are violations of G = 1 or F = 1,
which we call electric and magnetic excitations respectively.
These excitations are mobile along the z direction so they
are at least z-lineons. Their mobility constraints along the
graph � are more complicated. We postpone that discussion
to Sec. III B 3.

We could also take γ1, γ2 → ∞, in which case, the Hilbert
space consists of only the ground states, and the Hamiltonian
is trivial. The Euclidean presentation of this model in this limit
will be discussed later in Sec. III B.

We are particularly interested in those operators that com-
mute with the Hamiltonian (3.1) and act nontrivially on its
ground states. They are the global symmetry operators of the
model in the low-energy limit, and they are also known as the
logical operators of the stabilizer code. We choose a basis of
these symmetry operators as follows: the electric symmetry
operators are9

W̃z(a) =
∏
i,z

V (i, z)(Q−1 )ai , a = 1, . . . , N,

W̃

(
a; z + 1

2

)
=
∏

i

Vz

(
i, z + 1

2

) N
gcd(N,ra ) Qia

, (3.4)

z = 0, . . . , Lz − 1,

and the magnetic symmetry operators are

Wz(a) =
∏
i,z

Uz

(
i, z + 1

2

)(Q−1 )ai

, a = 1, . . . , N,

W (a; z) =
∏

i

U (i, z)
N

gcd(N,ra ) Qia , z = 0, . . . , Lz − 1,

(3.5)

9In fact, the operator
∏

z V (i, z), which is local in � and extends in
the z direction, also commutes with the Hamiltonian. Here we choose
to work with the basis of W̃z(a) because the latter has a simpler
commutation relation with W (a; z). Similarly,

∏
z Uz(i, z + 1

2 ) also
commutes with the Hamiltonian and is local in �, but we choose to
work in the basis of Wz(a) for the same reason.
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where Q and ra are defined in (2.4). These operators generate
a Jac(�, N )2 electric symmetry and a Jac(�, N )2 magnetic
symmetry.

For each a, the four operators in (3.4) and (3.5) are
all Zgcd(N,ra ) operators. Clearly, W (a; z)gcd(N,ra ) = W̃ (a; z +
1
2 )gcd(N,ra ) = 1. [In fact, when acting on the ground states,
the operators W̃ (a; z + 1

2 ) and W (a; z) are independent
of z.] Moreover, the operator Wz(a) satisfies Wz(a)ra = 1
when acting on the ground states,10 which when combined
with the obvious relation Wz(a)N = 1 gives the relation
Wz(a)gcd(N,ra ) = 1. The same conclusion holds for W̃z(a) as
well.

The basis of symmetry operators defined in (3.4) and (3.5)
is chosen such that they satisfy the following commutation
relations:

W (a; z)W̃z(b) = exp

[
2π iδab

gcd(N, ra)

]
W̃z(b)W (a; z),

a, b = 1, . . . , N, (3.6)

and similarly for the other pair. So for each a = 1, . . . , N,
there are two independent copies of Zgcd(N,ra ) Heisenberg
algebras, leading to a ground-state degeneracy of11

GSD =
N∏

a=1

gcd(N, ra)2 = | Jac(�, N )|2. (3.7)

B. Euclidean presentation

We now discuss the Euclidean presentation of the
anisotropic ZN Laplacian model. We place the theory on a
Euclidean spacetime lattice CLτ

× � × CLz , where � × CLz is
the spatial slice. We use (τ, i, z) to label a site in the spacetime
lattice, where i denotes a vertex of the graph �.

We use the integer BF formulation of [27]. The integer BF
action of the anisotropic ZN Laplacian model is

S = 2π i

N

∑
τ,i,z

(
− m̃τ

(
τ, i, z + 1

2

)[
�zm

(
τ, i, z + 1

2

)

−�Lmz

(
τ, i, z + 1

2

)]
+ m̃z

(
τ + 1

2
, i, z

)

×
[
�τ m

(
τ + 1

2
, i, z

)
− �Lmτ

(
τ + 1

2
, i, z

)]

+ m̃

(
τ + 1

2
, i, z + 1

2

)[
�τ mz

(
τ + 1

2
, i, z + 1

2

)

−�zmτ

(
τ + 1

2
, i, z + 1

2

)])
, (3.8)

10This is because Wz(a)ra =∏i,z Uz(i, z + 1
2 )ra (Q−1 )ai =∏

i, j,z Uz(i, z + 1
2 )Pa j L ji =∏ j[

∏
z U ( j, z + 1)U ( j, z)†]Pa j =1, where

we used the facts that RQ−1 = PL, and F = 1 on the ground states.
11The power of 2 in (3.7) is related to the fact that the

anisotropic ZN Laplacian model is the anisotropic extension of the
ZN Laplacian model of Appendix D, whose GSD is | Jac(�, N )|
(D14). This is similar to the relation GSD3+1D anisotropic ZN lineon model =
(GSD2+1D ZN Ising plaquette model )2.

where the integer fields (mτ , m, mz ) have a gauge symmetry

mτ ∼ mτ + �τ k + Nqτ ,

m ∼ m + �Lk + Nq, (3.9)

mz ∼ mz + �zk + Nqz,

where k and (qτ , q, qz ) are integers, and similarly for
(m̃τ , m̃, m̃z ). [Note that, when working modulo N , the second
line of (3.9) is exactly the equivalence relation discussed in
(2.3).]

The theory is self-dual under the map (mτ , m, mz ) →
(m̃τ , m̃, m̃z ) and (m̃τ , m̃, m̃z ) → −(mτ , m, mz ).

The integer BF action (3.8) describes the ground states
of a stabilizer code given by the Hamitonian (3.1). Here
we will not elaborate on the relation between the Euclidean
and Hamiltonian presentations. We refer the readers to Ap-
pendix C.2 of [27] for an analogous discussion of the relation
between the 2+1D ZN toric code and the 2+1D ZN gauge
theory in the integer BF presentation.

1. Ground-state degeneracy

We can count the number of ground states by counting
the number of solutions to the “equations of motion” of
(m̃τ , m̃, m̃z ) modulo gauge transformations:

�zm − �Lmz = 0 mod N,

�τ m − �Lmτ = 0 mod N, (3.10)

�τ mz − �zmτ = 0 mod N.

A gauge field (mτ , m, mz ) that satisfies (3.10) is a flat ZN

gauge field. We can use the gauge freedom in k to set
mτ (τ + 1

2 , i, z)|τ �=0 = 0 mod N , and mz(τ, i, z + 1
2 )|z �=0 = 0

mod N . In this gauge choice, the last line of (3.10) implies
that

�τ mz
(
τ + 1

2 , i, z + 1
2

)∣∣
z=0 = 0 mod N,

�zmτ

(
τ + 1

2 , i, z + 1
2

)∣∣
τ=0 = 0 mod N. (3.11)

The first two lines of (3.10) then imply that

�τ m
(
τ + 1

2 , i, z
) = 0 mod N,

�zm
(
τ, i, z + 1

2

) = 0 mod N, (3.12)

which in turn imply that

�Lmz
(
i, z + 1

2

)∣∣
z=0 = 0 mod N,

�Lmτ

(
τ + 1

2 , i
)∣∣

τ=0 = 0 mod N. (3.13)

The remaining τ and z-independent gauge freedom, m(i) ∼
m(i) + �Lk(i), is exactly the equivalence relation in (2.3). So,
after gauge fixing, we can set m(i) to be of the form (2.6),
i.e., there are | Jac(�, N )| independent holonomies in m(i).
Since mz(i, z + 1

2 )|z=0 and mτ (τ + 1
2 , i)|τ=0 satisfy (3.13),

which is exactly the discrete Laplace equation (2.2), they
are of the form (2.5). So there are | Jac(�, N )| independent
holonomies in both of them. Finally, the set of gauge trans-
formations k(τ, i, z) that do not act on (mτ , m, mz ) satisfy
�τ k = �zk = �Lk = 0 mod N . In other words, k(τ, i, z) =
k(i) is independent of τ, z, and k(i) satisfies the discrete
Laplace equation (2.2). So such gauge transformations are of
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the form (2.5), and there are | Jac(�, N )| of them. Therefore,
the ground-state degeneracy is

GSD = | Jac(�, N )|3
| Jac(�, N )| = | Jac(�, N )|2 =

N∏
a=1

gcd(N, ra)2.

(3.14)

2. Global symmetry

There is an electric symmetry associated with the shift of
(mτ , m, mz ) by a flat ZN gauge field. By the analysis following
(3.10), up to gauge transformations, the electric (spacelike)
symmetry acts as12

m(τ, i, z) → m(τ, i, z) + λ(i),

λ(i) =
N∑

a=1

pa(Q−1)ai,

mz

(
τ, i, z + 1

2

)
→ mz

(
τ, i, z + 1

2

)
+ δz,0λz(i),

λz(i) =
N∑

a=1

NQia pz,a

gcd(N, ra)
, (3.15)

where pa and pz,a are both integers modulo gcd(N, ra) for
a = 1, . . . , N. There is also a magnetic (spacelike) symmetry
which acts on m̃ and m̃z in a similar way.

The electric (spacelike) symmetry is generated by the Wil-
son operators of (m̃τ , m̃, m̃z ):

W̃z(a) = exp

⎡
⎣2π i

N

∑
i,z

(Q−1)aim̃z

(
τ + 1

2
, i, z

)⎤⎦,

W̃

(
a; z + 1

2

)
= exp

[
2π i

gcd(N, ra)

×
∑

i

m̃

(
τ + 1

2
, i, z + 1

2

)
Qia

]
, (3.16)

for a = 1, . . . , N and z = 0, . . . , Lz − 1. The electrically
charged operators are the Wilson operators of (mτ , m, mz ),
i.e., W (a; z) and Wz(a). Similarly, the magnetic (spacelike)
symmetry is generated by W (a; z) and Wz(a), while the mag-
netically charged operators are W̃z(a) and W̃ (a; z + 1

2 ). These
are the operators in (3.4) and (3.5) in the low-energy limit. The
commutation relation (3.6) can now be understood as a mixed
’t Hooft anomaly between electric and magnetic spacelike
symmetries.

3. Timelike symmetry and lineons

The integer BF action has defects, which extend in the time
direction, such as

Wτ (i, z) = exp

[
2π i

N

∑
τ

mτ

(
τ + 1

2
, i, z

)]
. (3.17)

12These are symmetries of the action (3.8) because �τ m, �zm, and
�τ mz are clearly unaffected by the shifts, whereas �Lmz is shifted
by δz,0�Lλz(i) = 0 mod N because λz(i) is a ZN -valued discrete
harmonic function (2.5).

This describes the world-line of an infinitely heavy particle of
unit charge at position (i, z). It also represents the low-energy
limit of an electric excitation at position (i, z) in the stabilizer
code (3.1). We can deform the defect to

exp

[
2π i

N

∑
τ<0

mτ

(
τ + 1

2
, i, z

)]

× exp

⎡
⎣2π i

N

∑
z�z′′<z′

mz

(
0, i, z′′ + 1

2

)⎤⎦

× exp

⎡
⎣2π i

N

∑
τ�0

mτ

(
τ + 1

2
, i, z′

)⎤⎦. (3.18)

This configuration describes a particle moving along the z
direction.

Next, we discuss the mobility of the particle along the
graph �. Such a motion is constrained by the timelike global
symmetry, which acts on extended defects rather than the
operators or states of the Hilbert space (see [35] for more
discussions on timelike global symmetries). Up to gauge
transformation, the electric timelike symmetry acts as13

mτ

(
τ + 1

2
, i, z

)
→ mτ

(
τ + 1

2
, i, z

)
+ δτ,0λτ (i),

λτ (i) =
N∑

a=1

NQia pτ,a

gcd(N, ra)
, (3.19)

where pτ,a = 0, . . . , gcd(N, ra) − 1. Hence, the group of
electric timelike symmetry is Jac(�, N ).

Two defects at sites (i, z) and (i′, z′) carry the same time-
like charges, or equivalently, a particle can hop from (i, z) to
(i′, z′), if and only if14

Qia = Qi′a mod gcd(N, ra), ∀a = 1, . . . , N. (3.21)

In other words, the timelike charges Qia encode the superse-
lection sector of a defect.

13This is a symmetry of the action (3.8) because �zmτ is clearly
unaffected by the shift, and �Lmτ is shifted by δτ,0�Lλτ (i) = 0
mod N because λτ (i) is a ZN -valued discrete harmonic function
(2.5).

14Indeed, when this condition holds, the defect that “moves” a
particle from (i, z) to (i′, z′) at time τ = 0 is given by

exp

[
2π i

N

∑
τ<0

mτ

(
τ + 1

2
, i, z

)]

× exp

⎡
⎣−2π i

N

∑
a, j

(
Qia − Qi′a

gcd(N, ra)

)
r̃aPa jm(0, j, z)

⎤
⎦

× exp

⎡
⎣2π i

N

∑
z�z′′<z′

mz

(
0, i′, z′′ + 1

2

)⎤⎦

× exp

⎡
⎣2π i

N

∑
τ�0

mτ

(
τ + 1

2
, i′, z′

)⎤⎦, (3.20)

where for each a, r̃a is the integer solution of the equation r̃ara =
gcd(N, ra) mod N .
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Similarly, there are defects of m̃τ which represent the low-
energy limit of magnetic excitations of the stabilizer code
(3.1). By the self-duality, similar mobility restrictions apply
to the defects of m̃τ due to a Jac(�, N ) dual magnetic timelike
symmetry.

While this selection rule (3.21) is not very intuitive, we
will give strong mobility constraints in the special case where
the spatial lattice is a cubic lattice (i.e., � is a 2D torus
graph CLx × CLy ) in Sec. IV. In particular, under some mild
conditions, the particles can move only along the z direction,
i.e., they are lineons.

4. Robustness

Let us examine the robustness of the low-energy theory.
Typically, in order to address this question we should map
local operators in the UV theory to local operators in the IR
theory. However, if � is a general graph, it has no notion of
locality and we cannot discuss local operators. Therefore, the
usual discussion of robustness does not apply. Instead, we
will restrict � to be a regular lattice (such as square lattice,
honeycomb lattice, cubic lattice, etc.), where there is an un-
ambiguous notion of locality and we can consider localized
operators. (One might be able to extend the discussion to
the case of an infinite graph � with some restrictions on its
connectivity. We will not attempt to do it here.)

The only operators that act nontrivially on the ground states
are W̃ (a; z) and W̃z(a) of (3.16), and similarly, W (a; z) and
Wz(a). It is clear that Wz(a) and W̃z(a) are supported over Lz

sites in the z direction, so they are not finitely supported in
the infinite volume limit. Now, we show that W (a; z) is not
finitely supported when � is a regular lattice. Assume to the
contrary that it is finitely supported. It generates a Jac(�, N )
magnetic symmetry that shifts the gauge field m̃(τ + 1

2 , i, z′)
by δz′,z f (i), where f (i) is a ZN -valued discrete harmonic
function. The support of f (i) is precisely the support of the
operator W (a; z), so f (i) is also finitely supported. However,
on a regular lattice, there is no nontrivial finitely supported
discrete harmonic function.15 Therefore, W (a; z) cannot be
finitely supported. Similarly, W̃ (a; z + 1

2 ) is also not finitely
supported.

Since there are no finitely supported operators that act
nontrivially in the space of ground states, the anisotropic ZN

Laplacian model is robust. We can deform the microscopic
model with finitely supported operators. As long as their coef-
ficients are small enough, they map to localized deformations
of the low-energy theory. However, since there are no local
pointlike operators acting in the low-energy theory, it cannot
change.

15For example, on a square lattice with coordinates (x, y), let
f (x, y) be a finitely supported discrete harmonic function. Consider
a large rectangular region R that contains the support of f (x, y),
i.e., f (x, y) = 0 for (x, y) outside R. Using the discrete Laplace
equation �L f (x, y) = 0 at the points immediately outside R, one
can show that f (x, y) = 0 at the points immediately inside R. By
induction, f (x, y) = 0 everywhere inside R. This argument extends
to any regular lattice. It also extends to a more general class of
graphs, but we do not discuss this here.

IV. 3+1D ANISOTROPIC ZN LAPLACIAN MODEL
ON A TORUS

In this section, we analyze the GSD and restricted mobility
of the anisotropic ZN Laplacian model on an Lx × Ly × Lz

cubic lattice with periodic boundary condition, i.e., � is a
2D torus graph CLx × CLy . On � = CLx × CLy , we have the
following identification between the lattice points:

(x, y) ∼ (x + Lx, y) ∼ (x, y + Ly). (4.1)

Throughout this section, we use (x, y) to denote a vertex of the
2D torus graph, and reserve i to denote a vertex of a general
graph �. Then the discrete Laplacian operator �L takes the
more familiar form �2

x + �2
y in the xy plane.

A. Upper bound on logN GSD

It is clear from (3.7) that the GSD depends only on prop-
erties of � and is independent of Lz. Here we give an upper
bound on how fast logN GSD can grow with Lx, Ly.

Recall that the GSD of the anisotropic ZN Laplacian model
is | Jac(�, N )|2 (3.7). As we showed in Sec. II A, | Jac(�, N )|
is also the number of equivalence classes under the equiva-
lence relation “∼” in (2.3). Combining these facts, we have

GSD =
∣∣∣∣ {g(i)}
g(i) ∼ g(i) + �L f (i)

∣∣∣∣
2

, (4.2)

where g(i) and f (i) are ZN -valued functions on the graph �.
When � is the 2D torus graph CLx × CLy , interpreting the

equivalence relation as a gauge symmetry, we can gauge fix
g(x, y) = 0 mod N everywhere except at x = 0, 1, or at y =
0, 1. In other words, the number of sites where g(x, y) �= 0
after gauge fixing is at most 2 min(Lx, Ly). Since g(x, y) is ZN -
valued, it follows that the number of nontrivial configurations
of g(x, y) is at most N2 min(Lx,Ly ). Therefore,

logN GSD � 4 min(Lx, Ly). (4.3)

B. N = 2

When N = 2, the stabilizer terms (3.2) simplify to

G(x, y, z) = Vz

(
x, y, z + 1

2

)
Vz

(
x, y, z − 1

2

)

×
∏

εx,εy=±1

V (x + εx, y + εy, z),

F

(
x, y, z + 1

2

)
= U (x, y, z + 1)U (x, y, z)

×
∏

εx,εy=±1

Uz

(
x + εx, y + εy, z + 1

2

)
.

(4.4)

Here the product of the four V ’s in G and the product of the
four Uz’s in F both involve only the four sites around the “ π

4 -
tilted plaquette” centered at (x, y). This is illustrated in Fig. 4.
Therefore, each stabilizer term of the 3+1D anisotropic Z2

Laplacian model is equivalent to a stabilizer term of the 3+1D
anisotropic Z2 lineon model of [13,26] on a “π

4 -tilted” lattice.
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(x, y)

y

x

y x

FIG. 4. The stabilizer terms (4.4) of the 3+1D anisotropic Z2

Laplacian model are equivalent to those of the 3+1D anisotropic
Z2 lineon model of [13,26] on a “ π

4 -tilted” lattice (the z direction
is suppressed in this figure). In particular, the product of V ’s in G
and the product of Uz’s in F involve only the four sites around the
“ π

4 -tilted plaquette” centered at (x, y). Such a plaquette consists of
only red sites or only blue sites but not both. One such red tilted
plaqutte is shown. The red and blue sublattices might or might not
give independent copies of the 3+1D anisotropic Z2 lineon model
depending on the parities of Lx and Ly in the identifications (4.1).
We use the coordinates (x′, y′) for the tilted lattice, which are related
to the original coordinates (x, y) as x′ = x+y

2 and y′ = x−y
2 . They are

integers on the blue sublattice, and half-integers on the red sublattice.

Let us define the coordinates (x′, y′) = ( x+y
2 ,

y−x
2 ) for the

tilted lattice. The tilted lattice decomposes into two sublat-
tices: those with integral (x′, y′) and those with half-integral
(x′, y′). These are shown in blue and red in Fig. 4. Observe
that any tilted plaquette consists of sites from only one of
the sublattices. Therefore, locally, there are two copies of the
3+1D anisotropic Z2 lineon model, one on each sublattice.
On an infinite lattice, these two copies are independent. How-
ever, the identifications (4.1) can couple them: when Lx and Ly

are both even, the two sublattices are decoupled and there are
two copies of the 3+1D anisotropic Z2 lineon model, whereas
when Lx or Ly is odd, the two sublattices are identified, so
there is only one copy of the 3+1D anisotropic Z2 lineon
model. In all these cases, the identifications on the tilted lattice
for the 3+1D anisotropic Z2 lineon model are given in (B6),
(B9), and (B13).

We present the GSD and mobility restrictions in this model
for Lx = Ly = L and refer the readers to Appendix B on re-
sults for arbitrary Lx and Ly. The ground-state degeneracy is
given by

GSD =
{

24L, L even,

24L−2, L odd.
(4.5)

This is in agreement with the plot for N = 2 in Fig. 2, and it
saturates the bound in (4.3) when L is even. Furthermore, a
z-lineon cannot hop between different sites in the xy plane.
In contrast, a dipole of z-lineons separated in the (1,±1)
direction can move in the (1,∓1) direction in the xy plane.
These mobility restrictions follow from the relation between
the 3+1D anisotropic Z2 Laplacian model and the 3+1D
anisotropic Z2 lineon model on the tilted lattice.

To conclude, the N = 2 anisotropic Laplacian model is
made out of the known anisotropic lineon model of [13,26],
with a relatively simple GSD (4.5). The next subsection dis-
cusses the anisotropic Zp Laplacian model with p an odd
prime, which is a genuinely new model and has a much more
intricate GSD.

C. N = p prime larger than 2

When N = p is a prime larger than 2 we can follow [47]
and use techniques from commutative algebra to compute the
ground-state degeneracy. We show that the GSD is given by
(1.2). See Appendix C 1 for the meaning and derivation of this
expression.

The expression in (1.2) can be simplified in some spe-
cial cases. Let q �= p be another odd prime such that p is a
primitive root modulo qm, where m � 1, i.e., p is the gen-
erator of the multiplicative group of integers modulo qm,
denoted as Z×

qm .16 Then for Lx = pkx qm and Ly = pky qm, where
kx, ky, m � 0, we show that

logp GSD = 2[2pmin(kx,ky ) − δkx,ky ]. (4.6)

We see that the bound (4.3) is saturated whenever kx �= ky

and m = 0, i.e., there are infinitely many Lx, Ly for which
logp GSD scales as O(Lx, Ly). On the other hand, when kx =
ky = 0, we have logp GSD = 2 for any m, i.e., there are also
infinitely many Lx, Ly for which logp GSD remains finite.

The last statement relies on the existence of an odd prime
q such that p is a primitive root modulo qm for all m � 1. A
sufficient condition for this is that p is a primitive root modulo
q2 [[48], Sec. 2.8]. For example, 3 is a primitive root modulo
52, so for p = 3, we can choose q = 5. Similarly, for p = 5, 7,
we can choose q = 7, 11 respectively. In fact, one can verify
numerically that for all p � 109, there is such a q. However,
there is no proof of existence of such q for arbitrary p.

Interestingly, Artin’s conjecture on primitive roots [49]
states that there are infinitely many prime q such that p is
a primitive root modulo q.17 Whenever Lx = Ly = q for any
such q, we find that logp GSD = 2. This gives another infinite
family of Lx, Ly for which logp GSD remains finite. However,

16For any positive integer n, the set of all integers a such that 1 �
a < n and gcd(a, n) = 1 form a group under multiplication, known
as the multiplicative group of integers modulo n, and denoted as Z×

n .
It is cyclic exactly when n = 1, 2, 4, qm, or 2qm, where q is an odd
prime and m � 1 [[48], Sec. 2.8]. Whenever Z×

n is cyclic, it has a
single generator, and the notion of “primitive root modulo n” is well
defined.

17Note that p being a primitive root modulo q does not imply that
p is a primitive root modulo q2.
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Artin’s conjecture is still unproven, except under the assump-
tion of the generalized Riemann hypothesis [50], which is also
unproven.

We can apply similar techniques to determine the mobility
of z-lineons in the xy plane as well. (See Appendix C 2 for
more details.) There exist certain special values of Lx, Ly (e.g.,
Lx = Ly = qm, where q is an odd prime such that p is a prim-
itive root modulo qm) for which the z-lineons are completely
mobile in the xy plane. However, on an infinite square lattice,
any finite set of z-lineons is completely immobile (unless
they can be annihilated), assuming that their charges and the
separations between them are fixed during the motion, i.e.,
they cannot move “rigidly.”

It is surprising that the set of Lx, Ly for which logp GSD
remains finite and the z-lineons are completely mobile is
intimately related to well-known open problems in number
theory.

Note added. Recently [51] appeared on arXiv, which
studies the same anisotropic ZN Laplacian model using its
stabilizer code.
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APPENDIX A: ZN-VALUED FUNCTIONS ON A GRAPH

In this Appendix, we analyze the space of ZN -valued har-
monic functions and the equivalence classes of ZN -valued
functions on a general graph �. We use the Smith decomposi-
tion (2.4) of the Laplacian matrix L to give complete answers
of these two questions mentioned in Sec. II A.

Recall that the Smith normal form of L is given by R =
PLQ, where P, Q ∈ GLN(Z), and R = diag(r1, . . . , rN). Here
ra’s are nonnegative integers such that ra divides ra+1 for
a = 1, . . . , N − 1. While R is uniquely determined by L, the
matrices P and Q are not.

In the index notation of (2.4), we have Rab = raδab =∑
i, j PaiLi jQ jb. While all the indices here run from 1 to N,

only i, j have a natural interpretation as vertices of the graph
�.

We can now answer the first question raised in Sec. II A:
find all the ZN -valued discrete harmonic functions. We first
transform the ZN -valued function h(i) to a new basis:

h′
a =

∑
i

(Q−1)aih(i) mod N, (A1)

In this basis, the discrete Laplace equation (2.2) is “diagonal”:

rah′
a = 0 mod N, a = 1, . . . , N. (A2)

We can solve this equation independently for each a. The most
general solution is

h′
a = N pa

gcd(N, ra)
mod N, a = 1, . . . , N, (A3)

where pa = 0, . . . , gcd(N, ra) − 1. Transforming back to the
original basis, the most general ZN -valued discrete harmonic
function is

h(i) =
N∑

a=1

NQia pa

gcd(N, ra)
mod N. (A4)

Let us now address the second question raised in Sec. II A:
find all the equivalence classes under the equivalence relation
“∼.” Since the Laplacian matrix L is symmetric, taking the
transpose of R = PLQ gives another Smith decomposition
R = QT LPT . Using this, we transform the ZN -valued function
g(i) to a (different) new basis

g′′
a =

∑
i

g(i)Qia mod N. (A5)

We define g̃′′
a similarly for another function g̃(i) in the same

equivalence class. In this basis, the equivalence relation (2.3)
is “diagonal”:

g̃′′
a − g′′

a = ra f̂a mod N, (A6)

where f̂a =∑i f (i)P−1
ia mod N . Therefore, the equivalence

class of g(i) is completely determined by N congruence
classes:

g′′
a mod gcd(N, ra), a = 1, . . . , N. (A7)

Going back to the original basis, a representative of the equiv-
alence class “pa mod gcd(N, ra)” is

g(i) =
N∑

a=1

pa(Q−1)ai mod N, (A8)

where pa = 0, . . . , gcd(N, ra) − 1 for a = 1, . . . , N.

APPENDIX B: 3+1D ANISOTROPIC Z2 LAPLACIAN
MODEL

In this Appendix, we use the relation between the 3+1D
anisotropic Z2 Laplacian model of Sec. IV B and the 3+1D
anisotropic Z2 lineon model to compute the GSD and re-
stricted mobility of the former.

1. Ground-state degeneracy

Recall that the stabilizer terms of the 3+1D anisotropic Z2

Laplacian model are given by (4.4), which are equivalent to
those of the 3+1D anisotropic Z2 lineon model of [13,26] on
a tilted lattice. Moreover, the latter is an anisotropic extension
of the 2+1D Z2 Ising plaquette model [25] on the tilted lattice.

Now, the identifications on the original lattice are (4.1)

(x, y) ∼ (x + Lx, y) ∼ (x, y + Ly). (B1)

In the new coordinates (x′, y′) = ( x+y
2 ,

y−x
2 ), the identifica-

tions on the tilted lattice take the schematic form

(x′, y′) ∼ (x′ + Lu
x′ , y′ + Lu

y′
) ∼ (x′ + Lv

x′ , y′ + Lv
y′
)
. (B2)

125121-9



GORANTLA, LAM, SEIBERG, AND SHAO PHYSICAL REVIEW B 107, 125121 (2023)

(a) Lx, Ly even (b) Lx odd, Ly even (c) Lx, Ly odd

FIG. 5. The minimal identifications on the blue sublattice of Fig. 4 for different parities of Lx and Ly. The black circles represent the
identifications (4.1), and the shaded regions represent the fundamental domains of the blue sublattice under these identifications.

The authors of [32] analyzed the 2+1D Z2 Ising plaquette
model on a 2D spatial torus with such identifications. Their
strategy was to reduce the identifications to the form

(x′, y′) ∼ (x′ + MLeff
x′ , y′) ∼ (x′ + KLeff

x′ , y′ + Leff
y′
)
, (B3)

where gcd(M, K ) = 1. Then they showed that

GSD2+1D Z2 Ising plaq = gcd(2, M )2Leff
x′ +Leff

y′ −1
. (B4)

It follows that (see footnote 11)

GSD3+1D aniso Z2 lineon = [ gcd(2, M )2Leff
x′ +Leff

y′ −1]2
. (B5)

Let us use these results to compute the GSD of the 3+1D
anisotropic Z2 Laplacian model:

(1) Lx, Ly even: In this case, the identifications in (4.1) do
not couple the two sublattices. So there are two independent
copies of the 3+1D anisotropic Z2 lineon model, and we can
work with one copy at a time, say, the blue sublattice in Fig. 4.
In the new coordinates (x′, y′), the minimal identifications on
the blue sublattice are [see Fig. 5(a)]

(x′, y′) ∼
(

x′ + Lx

2
, y′ − Lx

2

)
∼
(

x′ + Ly

2
, y′ + Ly

2

)
.

(B6)

Let (L̃x, L̃y) be the integer solution of the equation L̃xLx +
L̃yLy = gcd(Lx, Ly). Then, in the notation of (B3), we have

MLeff
x′ = lcm(Lx, Ly),

KLeff
x′ = 1

2 (L̃xLx − L̃yLy), (B7)

Leff
y′ = 1

2 gcd(Lx, Ly),

and hence,

GSD = [ gcd(2, M )2Leff
x′ +Leff

y′ −1]4
. (B8)

Here the power is 4 rather than 2 because there are two
copies of the 3+1D anisotropic Z2 lineon model, one on each
sublattice.

(2) Lx odd, Ly even: In this case, the identifications in (4.1)
couple the two sublattices so that effectively there is only one
sublattice, say the blue sublattice in Figure 4. Hence, there
is only one copy of the 3+1D anisotropic Z2 lineon model.
The minimal identifications on the blue sublattice are [see
Fig. 5(b)]

(x, y) ∼ (x + 2Lx, y) ∼ (x, y + Ly), (B9)

which can be written as

(x′, y′) ∼ (x′ + Lx, y′ − Lx ) ∼
(

x′ + Ly

2
, y′ + Ly

2

)
, (B10)

in the new coordinates (x′, y′). Let (L̃x, L̃y) be the integer
solution of the equation L̃xLx + L̃y( Ly

2 ) = gcd(Lx,
Ly

2 ). Then,
in the notation of (B3), we have

MLeff
x′ = 2 lcm

(
Lx,

Ly

2

)
,

KLeff
x′ = L̃xLx − 1

2
L̃yLy, (B11)

Leff
y′ = gcd

(
Lx,

Ly

2

)
,

and hence,

GSD = [ gcd(2, M )2Leff
x′ +Leff

y′ −1]2
. (B12)

(3) Lx, Ly odd: In this case, once again, the identifications
in (4.1) couple the two sublattices so that effectively there is
only one sublattice, say the blue sublattice in Fig. 4. Hence,
there is only one copy of the 3+1D anisotropic Z2 lineon
model. The minimal identifications on the blue sublattice are
[see Fig. 5(c)]

(x, y) ∼ (x + 2Lx, y) ∼ (x + Lx, y + Ly), (B13)

which can be written as

(x′, y′) ∼ (x′ + Lx, y′ − Lx ) ∼
(

x′ + Lx + Ly

2
, y′ − Lx−Ly

2

)
,

(B14)

in the new coordinates (x′, y′). Let (L̃x, L̃y) be the integer
solution of the equation L̃xLx + L̃y( Lx−Ly

2 ) = gcd(Lx,
Lx−Ly

2 ).
Then, in the notation of (B3), we have

MLeff
x′ = LxLy

gcd
(
Lx,

Lx−Ly

2

) ,
KLeff

x′ = L̃xLx + L̃y

(
Lx + Ly

2

)
,

Leff
y′ = gcd

(
Lx,

Lx − Ly

2

)
, (B15)
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and hence,

GSD = [ gcd(2, M )2Leff
x′ +Leff

y′ −1]2
. (B16)

When Lx = Ly = L, we have

Leff
x′ = Leff

y′ = L

M
, K = 1, M =

{
2, L even,

1, L odd.
(B17)

Then the above expressions for the ground-state degeneracy
simplify to

GSD =
{

24L, L even,

24L−2, L odd.
(B18)

2. Mobility restrictions

Let us now discuss the mobility of the z-lineons in the xy
plane in the 3+1D anisotropic Z2 Laplacian model. First, note
that in the 2+1D Z2 Ising plaquette model on a 2D spatial
torus given by the identifications (B3), the defect describing a
single particle of unit charge can “hop” from (x′, y′) to (x′ +
gcd(2, M )Leff

x′ , y′) [35]. This motion is nontrivial if and only
if gcd(2, M ) = 1 and M > 1. It follows that the z-lineons of
the 3+1D anisotropic Z2 lineon model, in addition to moving
along the z direction, can “hop” in the xy plane in the same
way.

In particular, consider Lx = Ly = L. It follows from (B17)
that the two conditions gcd(2, M ) = 1 and M > 1 cannot be
simultaneously satisfied for any L. Therefore, the z-lineons
cannot hop in the xy plane, but can only move in the z direction
(and hence the name lineon).

A dipole of z-lineons at (x, y) and (x + s, y ± s), where s ∈
Z, can move in the (1,∓1) direction. This follows from the
motion of a dipole of fractons in the 2+1D Z2 Ising plaquette
model in the direction orthogonal to their separation.

APPENDIX C: 3+1D ANISOTROPIC Zp LAPLACIAN
MODEL

In this Appendix, we use techniques from commutative
algebra to compute the ground-state degeneracy and analyze
the restricted mobility of the 3+1D anisotropic Zp Laplacian
model of Sec. IV C when p > 2 is prime. Such techniques
were used to analyze translationally invariant Pauli stabilizer
codes [47]. All the mathematical facts used here can be found
in standard textbooks on the subject, such as [52,53].

1. Ground-state degeneracy

Recall the relation (4.2) between the GSD of the
anisotropic ZN Laplacian model and the number of equiva-
lence classes of ZN -valued functions under the equivalence
relation “∼” of (2.3). Here we set N = p > 2, where p
is prime,18 and � = CLx × CLy , the 2D torus graph. We
first find an exact expression for the logp GSD in terms of
commutative-algebraic quantities using the relation (4.2), then
explain how to compute this expression in general using a
Gröbner basis, and finally compute it explicitly for some

18Actually, all of the following discussion up to (C36) works even
for p = 2. The discussion after that does not work for p = 2 for
reasons we will explain later.

special values of Lx, Ly. In particular, we show that there are
infinitely many Lx, Ly for which logp GSD is O(Lx, Ly), and
also infinitely many Lx, Ly for which logp GSD is finite.

a. Exact expression for logp GSD

Since there are LxLy points in the � = CLx × CLy torus
and since we are interested in Zp-valued functions on that
space, it is clear that there are pLxLy such functions. As in
(2.3), they fall into equivalence classes g(x, y) ∼ g̃(x, y) when
g(x, y) − g̃(x, y) = �L f (x, y) mod p. We would like to find
the number of such equivalence classes.

As a first step, we give a more abstract description of these
pLxLy functions. Let R = Zp[X,Y ] be the ring of polynomi-
als with coefficients in Zp, and j = (Qx, Qy) be the ideal
of R generated by the polynomials Qx(X,Y ) = X Lx − 1 and
Qy(X,Y ) = Y Ly − 1. Given two polynomials F, G ∈ R, we
write19

F(X,Y ) = G(X,Y ) mod j, (C1)

if and only if F(X,Y ) − G(X,Y ) is a polynomial in j. The set
of equivalence classes modulo j is the quotient ring R/j.

Any equivalence class of R/j is represented by a unique
polynomial that is a Zp-linear combination of the monomials
X aY b with 0 � a < Lx and 0 � b < Ly. (Here we used the
equivalence relations to remove higher powers of X or Y . This
is a special case of a more general procedure, called complete
reduction, which we will describe below.) Therefore, the num-
ber of equivalence classes is pLxLy . In fact, since Zp is a field,
R/j can be thought of as a vector space over Zp. The above
monomials form a basis of this vector space, so

dimZp R/j = LxLy. (C2)

Here “dimZp” denotes the dimension of a vector space over
Zp.

It is convenient to represent a Zp-valued function f (x, y)
on the 2D torus graph � = CLx × CLy as a polynomial rep-
resenting an equivalence class of the quotient ring R/j as
follows:

f̂ (X,Y ) =
Lx−1∑
x=0

Ly−1∑
y=0

f (x, y)X Lx−x−1Y Ly−y−1 mod j. (C3)

f̂ (X,Y ) can be thought of as a lattice Fourier transform of
f (x, y) with X = eikx and Y = eiky , which depend on the mo-
menta kx and ky.

Observe that, for any integer 0 � k < Lx, we have

X k f̂ (X,Y )

=
⎡
⎣Lx−k−1∑

x=0

Ly−1∑
y=0

f (x + k, y)X Lx−x−1Y Ly−y−1

+
Lx−1∑

x=Lx−k

Ly−1∑
y=0

f (x−Lx+k, y)X Lx−x−1Y Ly−y−1

⎤
⎦ mod j,

(C4)

19We do not write the “mod p” explicitly because we are working
in Zp[X,Y ].
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so X can be interpreted as the generator of translations in the x
direction.20 The fact that translating in x by Lx takes the graph
CLx back to itself is related to the trivial equation

X Lx f̂ (X,Y ) = f̂ (X,Y ) mod j. (C5)

Also, the difference operator �x is associated with the polyno-
mial X − 1. For convenience, we define the displaced discrete
Laplacian operator, denoted by �̃L, as

�̃L f (x, y) = (�2
x + �2

y

)
f (x + 1, y + 1). (C6)

[Here we extended f (x, y) to a periodic function on Z2.] It is
associated with the polynomial

P̃(X,Y ) = Y (X − 1)2 + X (Y − 1)2. (C7)

In general, any local difference operator in the xy plane, after
an appropriate displacement, is associated with a polynomial
S ∈ R satisfying S(1, 1) = 0.

Let i = (P̃) be the ideal of R generated by the polynomial
P̃(X,Y ). Then i/(i ∩ j) ∼= (i + j)/j is an ideal of the quotient
ring R/j.21 In fact, it is the subspace of the vector space
R/j that corresponds to the Zp-valued functions of the form
�̃L f (x, y).

It is then clear that the quotient

R/j

(i + j)/j
∼= R/(i + j) (C8)

corresponds to the set of equivalence classes of Zp-valued
functions under the equivalence relation “∼” of (2.3) on the
2D torus graph CLx × CLy . It follows that

logp GSD = 2 dimZp R/(i + j), (C9)

or more explicitly,

logp GSD = 2 dimZp

× Zp[X,Y ]

(Y (X − 1)2 + X (Y − 1)2, X Lx − 1,Y Ly − 1)
.

(C10)

Below we give a general procedure to compute this quantity.

b. Computing logp GSD using Gröbner basis

One way to compute the (vector space) dimension of
R/(i + j) is by first computing the Gröbner basis of the ideal
i + j. Before defining a Gröbner basis, we need an ordering on
all the monomials. For our purposes, it is sufficient to define a
lexicographic monomial ordering: X mY n  X kY l if and only
if m > k, or m = k and n > l . Then, for any polynomial

20Our functions f (x, y) are defined on LxLy points. They can be
extended to periodic functions on Z2. Then it is straightforward to
apply k translations. The expression (C4) corresponds to applying
such k translation and then expressing the result in terms of the func-
tion f (x, y) in the fundamental domain 0 � x � Lx − 1, 0 � y �
Ly − 1. Equivalently, we can use the periodicity of f to write (C4)

as X k f̂ (X,Y ) =∑Lx−1
x=0

∑Ly−1
y=0 f (x + k, y)X Lx−x−1Y Ly−y−1 mod j.

21Here i + j = (P̃, Qx, Qy ) is the ideal of R generated by the three
polynomials P̃(X,Y ), Qx (X,Y ), and Qy(X,Y ). It is known as the
sum of ideals i and j.

F(X,Y ), we define its leading term as the term that has the
largest monomial among all the terms.

Now, we say a polynomial F(X,Y ) is reducible with re-
spect to a set of polynomials G = {G1, . . . , Gn} if some term
of F(X,Y ) is a multiple of the leading term of one of the
Gi(X,Y )’s. We say it is irreducible otherwise.

Given an ideal I of R and a polynomial F ∈ R, one can
ask what the equivalence class of F(X,Y ) in R/I is. One way
to answer this question is to reduce F(X,Y ) with respect to a
generating set B of I repeatedly until we are left with a poly-
nomial H(X,Y ) that is irreducible with respect to B. [Such a
procedure is known as a complete reduction of F(X,Y ) with
respect to B.] One might hope that H(X,Y ) uniquely specifies
the equivalence class of F(X,Y ). However, for a generic B,
the H(X,Y ) so obtained depends on the choices made in the
repeated reductions, and hence, may not be unique.

A Gröbner basis G = {G1, . . . , Gn} is a special generating
set of I such that F(X,Y ) can be written as

F(X,Y ) = H(X,Y ) +
n∑

i=1

Hi(X,Y )Gi(X,Y ), (C11)

where H(X,Y ) is uniquely determined by the requirement that
it is irreducible with respect to G .22 In this case, we write

F(X,Y ) = H(X,Y ) mod G . (C12)

It follows that there is a one-one correspondence between
R/I and the set of all polynomials that are irreducible with re-
spect to G . Indeed, the set of all monomials that are irreducible
with respect to G forms a basis of the vector space R/I.
From this we conclude that dimZp R/I equals the number of
monomials that are irreducible with respect to G .

While there is an algorithm, known as Buchberger’s al-
gorithm, to compute a Gröbner basis of an ideal given its
generators, it is not always easy to compute it analytically.23

Nonetheless, for fixed values of p, Lx, Ly, the Gröbner basis,
and therefore the GSD, can be readily computed with the
help of computer programs. Let us do an explicit calculation
for the GSD when p = 3 and Lx = Ly = 4 as an example.
Using the GroebnerBasis command with Modulus → 3 in
Mathematica, we can compute the Gröbner basis for the ideal
(P̃, Qx, Qy) = (Y (X − 1)2 + X (Y − 1)2, X 4 − 1,Y 4 − 1) in
this case. We find G = {Y 4 − 1, XY + X − Y 3 − Y 2, X 2 +
Y 3 − Y 2 + Y + 1} under the lexicographic ordering X  Y .
The leading terms of G are {Y 4, XY, X 2}, and the five irre-
ducible monomials with respect to G are 1,Y,Y 2,Y 3, X . We
conclude that dimZ3 R/(i + j) = 5, and hence log3 GSD =
10. In fact, the plot of logN GSD as a function of Lx = Ly = L
in Fig. 2 was obtained exactly in this way.

22Note that Hi(X,Y )’s are not uniquely determined by this pro-
cedure. Indeed, shifting H1(X,Y ) by G2(X,Y ) and H2(X,Y ) by
−G1(X,Y ) gives another complete reduction of F(X,Y ) with respect
to G .

23For the ideal j = (Qx, Qy ), the generating set {Qx, Qy} is already
a Gröbner basis, and moreover, the irreducible monomials are X xY y

for 0 � x < Lx and 0 � y < Ly, which form a basis of R/j. [This
fact was used in the analysis leading to (C2).] However, for the ideal
i + j = (P̃, Qx, Qy ), the generating set {P̃, Qx, Qy} is not always a
Gröbner basis.
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Fortunately, for the problem at hand, it is possible to sim-
plify the expression (C9) for the GSD further analytically. To
prepare for the simplified expression, we first define a few
things:

A field F is algebraically closed if any polynomial in F [X ]
can be factorized completely into linear factors in F [X ]. For
example, R is not algebraically closed because the polyno-
mial X 2 + 1, which is in R[X ], cannot be factorized into
linear factors in R[X ]. In contrast, it is well known that C
is algebraically closed. Every field, by definition, contains the
multiplicative identity 1.

The characteristic of a field is the smallest positive integer
n such that 1 + · · · + 1(n times) = 0. It is clear that Zp is a
field of characteristic p. By convention, the characteristics of
Q, R, and C are all defined to be 0. It is known that the
characteristic of any field is either 0 or a prime number. As
we see, there are several fields with the same characteristic p.

For finite fields, the field is uniquely specified by the num-
ber of its elements and the characteristic. In particular, for
any integer k � 1 and prime p, Fpk denotes the unique (up to
field isomorphisms) finite field of order pk and characteristic
p. Furthermore, Fp∞ denotes the unique algebraically closed
field of characteristic p.24

Let S = Fp∞ [X,Y ] be the ring of polynomials in X,Y with
coefficients in Fp∞ . We use the same symbols i and j for
the ideals of S generated by the polynomials P̃(X,Y ) and
Qx(X,Y ), Qy(X,Y ) respectively. The algebraic set of i + j,
denoted as V (i + j), is the set of distinct solutions (X0,Y0) ∈
F2

p∞ of the system of polynomial equations

X Lx − 1 = Y Ly − 1 = P̃(X,Y ) = 0. (C13)

We will find it convenient to parametrize Lx and Ly in terms
of the order of our group Zp as

Lx = pkx L′
x, Ly = pky L′

y, gcd(p, L′
x ) = gcd(p, L′

y ) = 1.

(C14)

Now, for each solution (X0,Y0) ∈ V (i + j), we define the poly-
nomials

Q̃x,X0 (X,Y ) = (X − X0)pkx
, Q̃y,Y0 (X,Y ) = (Y − Y0)pky

,

(C15)

and the ideal i′X0,Y0
= (P̃, Q̃x,X0 , Q̃y,Y0 ) of S .

With these preparations, the simplified expression for the
GSD (C9) is

logp GSD = 2
∑

(X0,Y0 )∈V (i+j)

dimFp∞ S/i′X0,Y0
. (C16)

It is obtained using techniques from commutative algebra (see
e.g., [52,53]), that were used in [47]. For readers who are
familiar with such techniques, a derivation of (C16) is given
below. Others, who are willing to accept it, can skip directly to
Appendix C 1 d, where we compute the GSD for some special
values of Lx, Ly explicitly.

24More explicitly, Fp∞ =⋃∞
n=1 Fpn! . Here we used the fact that Fpk

is a subfield of Fpm if and only if k divides m.

c. Derivation of (C16)

Since R/(i + j) is a finite-dimensional vector space over
Zp, it is an Artinian ring,25 and hence, it has finitely many
maximal ideals.26 Moreover, for an Artinian ring, it is known
that

R/(i + j) ∼=
⊕
m

[R/(i + j)]m, (C17)

where the sum is over all maximal ideals of R/(i + j), and
[R/(i + j)]m denotes the localization of R/(i + j) at m.27 It
follows that

logp GSD = 2
∑
m

dimZp[R/(i + j)]m. (C18)

So we can compute dimension for each term in the sum and
then add them up. However, the maximal ideals of R/(i + j)
are a bit complicated to work with. Instead, we proceed as
follows.

We can replace Zp by Fp∞ in (C9) and get the same answer
for logp GSD. More concretely, we have28

dimZp R/(i + j) = dimFp∞ S/(i + j), (C19)

where, on the right-hand side, i and j are ideals of S generated
by the same polynomials as before. Since S/(i + j) is also
Artinian, we have

logp GSD = 2
∑
m

dimFp∞ [S/(i + j)]m, (C20)

where the sum is over all maximal ideals of S/(i + j). We now
characterize the maximal ideals of S/(i + j).

25A ring R is Artinian if it satisfies the descending chain condition,
i.e., if I1 ⊇ I2 ⊇ I3 ⊇ · · · is a descending chain of ideals, then there
is a k � 1 such that Ik = Ik+1 = Ik+2 = · · · . For example, the ring
of integers Z is not Artinian because (2) ⊃ (4) ⊃ (8) ⊃ · · · , where
(n) denotes the ideal generated by the integer n. On the other hand,
for any integer n, the ring of integers modulo n, Z/(n) = Zn, is
Artinian. Moreover, any ring that is also a finite dimensional vector
space over a field is always Artinian, which is exactly the case here.

26A proper ideal is an ideal that is not the ring itself. For example,
in Z, the ideal (4) is proper because it does not contain 1. (The only
ideal containing 1 is the entire ring itself.) A maximal ideal is a
proper ideal that is not contained in any other proper ideal except
itself. For example, in Z, (4) is not a maximal ideal because it is
contained in the proper ideal (2). The latter is maximal; in fact, the
ideal (n) is maximal if and only if n is prime.

27Intuitively, given a multiplicatively closed subset S of a ring R,
the localization of R with respect to S, denoted as S−1R, means
“formally adding multiplicative inverses” for all the elements of S.
For example, in Z, the subset of nonzero integers is multiplicatively
closed, and localizing with respect to this set gives the rationals Q.
In any ring R, given a maximal ideal m, the set R \ m is always
multiplicatively closed. So we define the localization of R at m,
denoted by Rm, as the localization of R with respect to R \ m.

28Given a field F , one can talk about extending it to a larger field
F ′ such that F is a subfield of F ′. For example, R is a subfield of C,
or equivalently, C is an extension of R. Now, let V be a vector space
over F . One can “extend the base field” from F to F ′ by tensoring
V with F ′, denoted as V ⊗F F ′. Then dimF V = dimF ′ (V ⊗F F ′).
Since Fp∞ is an extension of Zp, the result in (C19) follows.
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By the correspondence theorem for quotient rings, the max-
imal ideals of S/(i + j) are in one-one correspondence with
the maximal ideals of S that contain the ideal i + j. Moreover,
since Fp∞ is algebraically closed, by Hilbert’s Nullstellensatz,
the maximal ideals of S are in one-one correspondence with
ideals of the form (X − X0,Y − Y0), where (X0,Y0) ∈ F2

p∞ .
Now, the ideal (X − X0,Y − Y0) contains i + j if and only if
(X0,Y0) is a root of all the polynomials in i + j. It follows that
the maximal ideals of S/(i + j) are in one-one correspondence
with ideals of S of the form (X − X0,Y − Y0), where (X0,Y0)
is a solution of the system of polynomial equations

X Lx − 1 = Y Ly − 1 = P̃(X,Y ) = 0, (C21)

i.e., (X0,Y0) ∈ V (i + j), the algebraic set of i + j. Then

logp GSD = 2
∑

(X0,Y0 )∈V (i+j)

dimFp∞ [S/(i + j)](X−X0,Y −Y0 ).

(C22)

We can simplify it further. Let Li = pki L′
i with gcd(p, L′

i ) =
1. Recall that since Fp∞ is algebraically, any polynomial in
Fp∞ [X ] can be factorized completely into linear factors in
Fp∞ [X ]. Using this fact, we have

X Lx − 1 = (X L′
x − 1)pkx =

∏
ξ∈Fp∞ :ξL′

x =1

(X − ξ )pkx
; (C23)

that is, there are L′
x distinct ξ ’s in Fp∞ that satisfy ξLx = 1,

each with multiplicity pkx .
Let (X0,Y0) ∈ V (i + j). It is clear that X0 is one of the ξ ’s

in (C23). Consider the localization S(X−X0,Y −Y0 ). Recall that
every element outside the ideal (X − X0,Y − Y0) becomes
a unit in the localization S(X−X0,Y −Y0 ).29 In particular, the
polynomial Qx(X,Y ) = X Lx − 1 generates the same ideal in
S(X−X0,Y −Y0 ) as the polynomial Q̃x,X0 (X,Y ) = (X − X0)pkx be-
cause the other linear factors in (C23) associated with ξ �= X0

all have inverses.30 Similarly, Qy(X,Y ) = Y Ly − 1 generates
the same ideal as Q̃y,Y0 (X,Y ) = (Y − Y0)pky . It follows that

(i + j)(X−X0,Y −Y0 ) = (P̃, Q̃x,X0 , Q̃y,Y0 )(X−X0,Y −Y0 ), (C24)

in the localization S(X−X0,Y −Y0 ). Here we use the notation Im to
denote the ideal in Sm generated by the image of the ideal I ⊆
S under the localization map S → Sm, where m is a maximal
ideal of S .

Defining i′X0,Y0
= (P̃, Q̃x,X0 , Q̃y,Y0 ), we then have

[S/(i + j)](X−X0,Y −Y0 )
∼= S(X−X0,Y −Y0 )/(i + j)(X−X0,Y −Y0 )

∼= S(X−X0,Y −Y0 )/(i′X0,Y0
)(X−X0,Y −Y0 )

∼= (S/i′X0,Y0
)(X−X0,Y −Y0 ), (C25)

where in the first and third lines, we used the slogan “lo-
calization commutes with quotienting,” and the second line

29A unit is an element of the ring that has a multiplicative inverse.
In any ring, the multiplicative identity 1 is its own inverse, so it is
always a unit. In particular, in Z, ±1 are the only units, whereas in
Q, any nonzero rational is a unit.

30More abstractly, if r is one of the generators of an ideal I of R,
then we can replace it by ur, where u is a unit.

follows from (C24). Now, the quotient S/i′X0,Y0
is also Ar-

tinian, and by Hilbert’s Nullstellensatz, its only maximal ideal
is (X − X0,Y − Y0). Hence, by a result similar to the one in
(C17), we have(

S/i′X0,Y0

)
(X−X0,Y −Y0 )

∼= S/i′X0,Y0
, (C26)

and therefore,

logp GSD = 2
∑

(X0,Y0 )∈V (i+j)

dimFp∞ S/i′X0,Y0
. (C27)

d. Computation of logp GSD for special values of Lx, Ly

Given the expression (C16) for the GSD, all we need to
do now is to compute a Gröbner basis of i′X0,Y0

in S for each
(X0,Y0) ∈ V (i + j). First, we note certain “symmetries” in the
set V (i + j). Recall that V (i + j) is the set of (X0,Y0) ∈ F2

p∞
that solve the system of polynomial equations

X L′
x − 1 = Y L′

y − 1 = P̃(X,Y ) = 0, (C28)

where we used the facts that X Lx − 1 = (X L′
x − 1)pkx and

Y Ly − 1 = (Y L′
y − 1)pky in F2

p∞ [X,Y ]. [Here we used the
parametrization (C14).] Given a solution (X0,Y0) of (C28), we
can generate three more solutions using the transformations

X0 → X −1
0 , Y0 → Y −1

0 , (C29)

because the equations (C28) are invariant under these trans-
formations. (These transformations are well defined because
X0 �= 0 and Y0 �= 0.) Furthermore, if L′

x = L′
y, we can generate

four more solutions using the exchange

X0 ↔ Y0. (C30)

It is clear that (1,1) is the only solution that is invariant under
all these transformations. We will exploit these transforma-
tions in our analysis below.

In general, it is hard to compute a Gröbner basis of i′X0,Y0

for arbitrary (X0,Y0) ∈ F2
p∞ except when (X0,Y0) = (1, 1).

So below we specialize to those values of Lx, Ly for which
(X0,Y0) = (1, 1) is the only solution of (C28). These special
values of Lx, Ly contain infinite families of Lx, Ly with inter-
esting behaviors of GSD.

(1) Consider the special case L′
x = L′

y = 1, where (C28)
becomes

X − 1 = Y − 1 = P̃(X,Y ) = 0. (C31)

Clearly, (X0,Y0) = (1, 1) is the only solution of (C31). In this
case, changing the variables X and Y to X̃ = X − 1 and Ỹ =
Y − 1, we have i′1,1 = (X̃ 2Ỹ + X̃Ỹ 2 + X̃ 2 + Ỹ 2, X̃ pkx

, Ỹ pky ).
We can assume that kx � ky without loss of generality. Then,
with a lexicographic monomial order on X̃ , Ỹ with X̃  Ỹ , a
Gröbner basis of i′1,1 is given by the following:

(1) When ky > 0,

G1(X̃ , Ỹ ) = Ỹ pky
,

G2(X̃ , Ỹ ) = X̃Ỹ pky −1δkx,ky , (C32)

G3(X̃ , Ỹ ) = X̃ 2 + (X̃ + 1)Ỹ 2
pky −3∑
i=0

(−Ỹ )i − X̃Ỹ pky −1δkx,ky .
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(2) When ky = 0,

G1(X̃ , Ỹ ) = Ỹ ,

G2(X̃ , Ỹ ) = X̃δkx,0 + X̃ 2(1 − δkx,0
)
. (C33)

The set of monomials that are irreducible with respect to
this Gröbner basis are

{Ỹ i : 0 � i < pky} ∪ {X̃Ỹ j : 0 � j < pky − δkx,ky

}
.

(C34)

They form a basis of S/i′1,1, so we have

dimFp∞ S/i′1,1 = 2pky − δkx,ky . (C35)

By (C16), we conclude that

logp GSD = 2
(
2pky − δkx,ky

)
. (C36)

(2) Next, we generalize the previous special case to L′
x =

L′
y = q with q > 2 a prime such that p is a primitive root

modulo q.31 Then (C28) becomes

X q − 1 = Y q − 1 = P̃(X,Y ) = 0. (C37)

We will show that X0 = Y0 = 1 is the only solution of (C37).
We argue by contradiction. We assume that there is a solution
with X0 �= 1. Then any other solution (X0,Y0) of (C37) is
obtained from a solution of the form (X0, X s

0 ) for some 1 �
s � (q − 1)/2 using the transformations (C29) and (C30).32

Since X q
0 = 1 and X0 �= 1, X0 is a root of the cyclotomic poly-

nomial �q(X ) =∑q−1
j=0 X j . Moreover, since (X0, X s

0 ) satisfies

P̃(X,Y ) = 0, X0 is also a root of the polynomial P̃(X, X s). We
can write

P̃(X, X s) = X (X s − 1)2 + X s(X − 1)2 = X (X − 1)2P̂s(X ),

(C38)

where

P̂s(X ) =
(

s−1∑
i=0

X i

)2

+ X s−1. (C39)

P̂s(X ) is a nonzero polynomial in Zp[X ] because P̂s(0) = 1
mod p for s > 1, and 2 mod p for s = 1.33 Since X0 is a
root of P̃(X, X s) and X0 �= 0, 1, it must be a root of P̂s(X ).
We now use the fact that �q(X ) is the minimal polynomial
of X0 in Zp[X ] because p is a primitive root modulo q [[54],

31In other words, p is a generator of the multiplicative group of
integers modulo q, denoted as Z×

q . For any positive integer n, the
order of the group Z×

n is known as the Euler totient function of n,
denoted as ϕ(n). It is easy to see that ϕ(qm ) = qm − qm−1 for any
odd prime q and any m � 1.

32Since X0 �= 1, X q
0 = 1, and q is prime, X0 is a primitive qth root

of unity, i.e., powers of X0 generates all the qth roots of unity. Since
Y q

0 = 1, it is a qth root of unity, and hence, Y0 = X s
0 for some 0 � s <

q. But s �= 0 because there is no solution of (C37) of the form (X0, 1)
for X0 �= 1. Moreover, using the transformation (C29), (X0, X q−s

0 ) is
also a solution, so we can restrict s to the range 1 � s � (q − 1)/2.

33This is not true for p = 2 because P̂s(X ) = 0 identically for s =
1, so there is always a solution of (C28) of the form (X0, X0) even for
X0 �= 1.

Sec. 11.2.B]. This means �q(X ) divides P̂s(X ). But this is
impossible because

degX P̂s(X ) = 2s − 2 � q − 3 < q − 1 = degX �q(X ),

(C40)

so there is no such X0. In other words, when p is a primitive
root modulo q, the only solution of (C37) is (1,1). Then, by the
analysis in point 1 above, logp GSD is again given by (C36).

(3) We now generalize as follows. Let q > 2 be a prime
such that p is a primitive root modulo qm for some m � 2. Set
L′

x = L′
y = qm, so that (C28) becomes

X qm − 1 = Y qm − 1 = P̃(X,Y ) = 0. (C41)

Again, we argue by contradiction that the only solution of
(C41) (X0,Y0) ∈ F2

p∞ is (1,1). We assume that X0 �= 1. Then
any other solution (X0,Y0) of (C41) is obtained from a solution
of the form (X0, X s

0 ) for some 1 � s � (qm − 1)/2 using the
transformations (C29) and (C30). Actually, the range of s
can be smaller than this. Let qr be the order of X0 for some

0 � r � m, i.e., X qr

0 = 1, but X qr′

0 �= 1 for any r′ < r. Since
r = 0 corresponds to the trivial solution (1,1), we have r > 0.
Then 1 � s � (qr − 1)/2. We consider two cases:

(3) s � ϕ(qr )/2: [See footnote 31 for the definition of
ϕ(qr ).] Since the order of X0 is qr , it is a root of the cyclotomic
polynomial �qr (X ) =∑q−1

j=0 X jqr−1
. Since X0 �= 0, 1, it is also

a root of the polynomial P̂s(X ) in (C39). We now use the
fact that �qr (X ) is the minimal polynomial of X0 in Zp[X ]
because p is a primitive root modulo qr [[54], Sec. 11.2.B].34

This means �qr (X ) must divide P̂s(X ). But this is impossible
because

degX P̂s(X )=2s − 2 � ϕ(qr ) − 2 < ϕ(qr )= degX �qr (X ),

(C42)

so there is no such X0.
(4) ϕ(qr )/2 < s � (qr − 1)/2: Let X0 = Z2

0 , where Z0 also
has order qr . [Such a Z0 exists because gcd(2, q) = 1 for q >

2] Then the solution (X0,Y0) is of the form (Z2
0 , Z2s

0 ). By the
transformation (C29), (Z2

0 , Zt
0) is also a solution, where t =

qr − 2s. Then

ϕ(qr )

2
< s�qr − 1

2
⇒ 1 � t < qr−1�qr − qr−1

2
=ϕ(qr )

2
,

(C43)

where the rightmost inequality holds for q > 2. Clearly, Z0 is
a root of �qr (X ). Since (Z2

0 , Zt
0) satisfies P̃(X,Y ) = 0, Z0 is a

root of P̃(X 2, X t ). We can write

P̃(X 2, X t ) = X 2(X t − 1)2 + X t (X 2 − 1)2

=
{

X (X − 1)2P̌1(X ), t = 1,

X 2(X − 1)2P̌t (X ), t > 1,
(C44)

34Here we used the fact that p is a primitive root modulo qm ⇒ p
is a primitive root modulo qr for all r � m. In fact, for m � 2, p is
a primitive root modulo qm ⇒ p is a primitive root modulo qm+1.
Combining these facts, p is a primitive root modulo q2 ⇒ p is a
primitive root modulo qm for all m � 1 [[48], Sec. 2.8].
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where

P̌t (X ) =
{

X + (X + 1)2, t = 1,(∑t−1
i=0 X i

)2 + X t−2(X + 1)2, t > 1.
(C45)

P̌t (X ) is a nonzero polynomial because P̌t (0) = 1 mod p
for t �= 2, and 2 mod p for t = 2.35 Since Z0 is a root of
P̃(X 2, X t ) and Z0 �= 0, 1, it is a root of P̌t (X ) as well. We
now use the fact that �qr (X ) is the minimal polynomial of
Z0 in Zp[X ] because p is a primitive root modulo qr [[54],
Sec. 11.2.B]. This means �qr (X ) must divide P̌t (X ). But this
is impossible because

degX P̌t (X ) = t + max(t, 2) − 2 + δt,1 � 2t < ϕ(qr )

= degX �qr (X ), (C46)

where in the third line, we used (C43). So there is no such Z0.
Therefore, when p is a primitive root modulo qm, then (1,1)

is the only solution of (C41), and hence, logp GSD is still
given by (C36).

To conclude, when Lx = pkx qm and Ly = pky qm, where q
is an odd prime such that p is a primitive root modulo qm,
and kx, ky, m � 0, the ground-state degeneracy of the 3+1D
anisotropic Zp Laplacian model is given by

logp GSD = 2
[
2pmin(kx,ky ) − δkx,ky

]
. (C47)

When m = 0, we see that logp GSD scales as 4 min(Lx, Ly).
This gives an infinite family of Lx, Ly for which logp GSD is
O(Lx, Ly).

Say q is such that p is a primitive root modulo q2. Then p
is a primitive root modulo qm for all m � 1 (see footnote 34).
Then, for kx = ky = 0 and any m � 0, we see that logp GSD =
2, a finite number. This gives an infinite family of Lx, Ly for
which logp GSD remains finite.36

Note that the last conclusion relies on the existence of
an odd prime q such that p is a primitive root modulo q2.
However, we do not know of a proof for general p. Another
interesting possibility is the following. By Artin’s conjecture
on primitive roots [49],37 there are infinitely many prime q
such that p is a primitive root modulo q. (Recall from footnote
34 that this does not imply that p is a primitive root modulo
q2.) Then choosing Lx = Ly = q for all such q gives another
infinite family of Lx, Ly for which logp GSD = 2. However,
Artin’s conjecture is still unproven, except under the assump-
tion of the generalized Riemann hypothesis [50], which is also
unproven.

2. Mobility restrictions

We now discuss the mobility of z-lineons in the xy plane
in the 3+1D anisotropic Zp Laplacian model. The lineons

35Once again, this is not true for p = 2 because P̌t (X ) = 0 identi-
cally when t = 2, so there is always a solution of (C28) of the form
(Z2

0 , Z2
0 ) even for Z0 �= 1.

36In contrast, when N = 2, log2 GSD in (B18) always scales as 4L
for any L. This is because, when p = 2, the above arguments do not
go through, as explained in footnotes 33 and 35.

37The conjecture is actually stronger: the set of such q has positive
asymptotic density inside the set of all primes.

are represented as defects in the low-energy theory and their
motion is implemented by operators acting at fixed time.

These operators fall into two kinds. First, there are opera-
tors supported in a small region, e.g., the line joining the two
points. Second, there are also situations where the operator
spans over O(Lx, Ly) sites. Operators of the second kind exist
only for certain special values of Lx, Ly depending on some
number-theoretic properties of Lx, Ly, whereas the first kind
exist for all Lx, Ly. In particular, only the first kind exist on an
infinite square lattice. (See the discussion in [23,35].)

As an example of the second kind of operator, consider
Lx = Ly = qm, where q > 2 is a prime such that p is a prim-
itive root modulo qm. In Appendix C 1, we showed that for
Lx = Ly = qm, where q > 2 is a prime such that p is a prim-
itive root modulo qm, the ground-state degeneracy is given
by logp GSD = 2. It follows that | Jac(Cqm × Cqm , p)| = p, or
equivalently, Jac(Cqm × Cqm , p) = Zp. Therefore, in this case,
the only selection imposed by the Jac(Cqm × Cqm , p) timelike
symmetry is that the total charge of the defects is conserved
modulo p. In particular, a z-lineon can move anywhere within
the xy plane when Lx = Ly = qm. However, we show below
that a z-lineon is completely immobile when � is an infinite
square lattice. This means, the operator that moves a z-lineon
on the 2D torus graph Cqm × Cqm must be of the second kind.

We now show that a z-lineon is completely immobile on
an infinite square lattice. In fact, we show that any finite
configuration of z-lineons is completely immobile (except in
some trivial cases) as long as their charges and the separations
between them are fixed during the motion, i.e., we allow only
“rigid” motion. Without this restriction, the groups of lineons
can move. We will not discuss this motion.

Our analysis will be similar to the analogous discussion
in [23]. The main difference between them is that here our
variables are in Zp and therefore various properties of the
polynomials will depend on p.

Consider n z-lineons, with charges qi and positions (xi, yi )
for i = 1, . . . , n, described by the defect

exp

[
2π i

p

∑
τ

n∑
i=1

qimτ

(
τ + 1

2
, xi, yi

)]
. (C48)

(Since they are z-lineons, we can assume without loss of
generality that they all have the same z coordinate, and omit
writing it.) They can move “rigidly” by (x0, y0) �= (0, 0) if
there is a defect of the form

exp

[
2π i

p

∑
τ<0

n∑
i=1

qimτ

(
τ + 1

2
, xi, yi

)]

× exp

⎡
⎣2π i

p

l∑
j=1

s jm(0, x j, y j )

⎤
⎦

× exp

⎡
⎣2π i

p

∑
τ�0

n∑
i=1

qimτ

(
τ + 1

2
, xi + x0, yi + y0

)⎤⎦.

(C49)
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This defect is gauge invariant if and only if

n∑
i=1

qi[k(0, xi + x0, yi + y0) − k(0, xi, yi )]

=
l∑

j=1

s j
(
�2

x + �2
y

)
k(0, x j, y j ) mod p, (C50)

for any integer gauge parameter k in (3.9).
Using a formal Laurent power series

k̂(X,Y ) =
∑

(x,y)∈Z2

k(0, x, y)X −xY −y, (C51)

associated with the gauge parameter k(0, x, y), the condition
(C50) can be written as

(X x0Y y0 − 1)Q(X,Y ) = S(X,Y )P(X,Y ) mod p, (C52)

where

P(X,Y ) = (X − 2 + X −1) + (Y − 2 + Y −1) (C53)

is the Laurent polynomial (i.e., an element of
Zp[X, X −1,Y,Y −1]) associated with the discrete Laplacian
operator �2

x + �2
y , and

Q(X,Y ) =
n∑

i=1

qiX
xiY yi , S(X,Y ) =

l∑
j=1

s jX
xjY y j

(C54)

are also Laurent polynomials. The coefficients and monomials
in Q(X,Y ) and S(X,Y ) are obtained from the defect (C49).

If there is a Laurent polynomial R(X,Y ) such that
Q(X,Y ) = R(X,Y )P(X,Y ), then (C52) can be trivially satis-
fied by choosing S(X,Y ) = (X x0Y y0 − 1)R(X,Y ). However,
in this case, the defect (C48) can end at τ = 0 as follows:

exp

[
2π i

p

∑
τ<0

n∑
i=1

qimτ

(
τ + 1

2
, xi, yi

)]

× exp

⎡
⎣−2π i

p

l ′∑
j′=1

r j′m(0, x j′ , y j′ )

⎤
⎦, (C55)

where r j′’s and (x j′ , y j′ )’s are obtained from R(X,Y ) =∑l ′
j′=1 r j′X xj′Y yj′ . Therefore, in this case, the defect (C49)

describes the annihilation of the n z-lineons at their original
positions and their creation at positions displaced by (x0, y0)
at time τ = 0.

A more interesting situation occurs for a defect like (C49)
when Q(X,Y ) cannot be written as R(X,Y )P(X,Y ) for any
Laurent polynomial R(X,Y ). Then, to satisfy (C52), P(X,Y )
and X x0Y y0 − 1 must share a nontrivial factor.38 Let us show
that this cannot happen. In the following, it is crucial that
(x0, y0) �= (0, 0).

38By nontrivial factor we mean a nonconstant Laurent factor that is
not a Laurent monomial.

First, note that P(X,Y ) is nonconstant and irreducible up
to a monomial in Zp[X, X −1,Y,Y −1] for any odd prime p.39

So all we need to show is that X x0Y y0 − 1 is not a multiple of
P(X,Y ) in Zp[X, X −1,Y,Y −1].

Let pk be the largest power of p that divides both x0

and y0, i.e., x′
0 = x0/pk and y′

0 = y0/pk are integers and d =
gcd(x′

0, y′
0) is not divisible by p. Then, in Zp[X, X −1,Y,Y −1],

we have

X x0Y y0 − 1 = (X x′
0Y y′

0 − 1)pk = [(X x′′
0Y y′′

0 − 1)T(X,Y )]pk
,

(C56)

where x′′
0 = x′

0/d , y′′
0 = y′

0/d , and T(X,Y ) =∑d−1
c=0 (X x′′

0Y y′′
0 )c.

Now, T(1, 1) = d �= 0 mod p, whereas P(1, 1) = 0, so
T(X,Y )pk

is not a multiple of P(X,Y ). Since gcd(x′′
0 , y′′

0 ) = 1,
the factor X x′′

0 Y y′′
0 − 1 is nonconstant and irreducible up to

a monomial for any p [56]. So (X x′′
0Y y′′

0 − 1)pk
is also not a

multiple of P(X,Y ). Therefore, X x0Y y0 − 1 is not a multiple
of P(X,Y ).

To conclude, a finite set of z-lineons cannot move “rigidly”
in the xy plane in the 3+1D anisotropic Zp Laplacian model,
unless they can be annihilated.

APPENDIX D: ZN LAPLACIAN MODEL ON A GRAPH

In this Appendix, we analyze a gapped fracton model on
a simple, connected, undirected spatial graph �. We refer to
it as the ZN Laplacian model because the theory is defined
using the discrete Laplacian operator �L on the graph �. The
anisotropic ZN Laplacian model in Sec. III is an anisotropic
extension of this ZN Laplacian model by adding another di-
rection.

1. Hamiltonian

In the Hamiltonian formulation of the ZN Laplacian model,
there are a ZN variable Ui and its conjugate variable Vi, i.e.,
UiVi = e2π i/NViUi, on every site of the graph � where i labels
the sites. The Hamiltonian is

H = −γ1

∑
i

Gi + H.c., (D1)

where

Gi =
∏

j:〈i, j〉∈�

ViV
†
j . (D2)

39A polynomial in Zp[X,Y ] is said to be irreducible if it cannot
be written as a product of two nonconstant polynomials. A Laurent
polynomial F(X,Y ) in Zp[X, X −1,Y,Y −1] is said to be irreducible
up to a monomial if X aY bF(X,Y ) is an irreducible polynomial for
some a, b ∈ Z. For example, P(X,Y ) is irreducible up to a mono-
mial because P̃(X,Y ) = XY P(X,Y ), given by (C7), is an irreducible
polynomial. The irreducibility of P̃(X,Y ) for any prime p > 6 fol-
lows from [[55], Corollary 3]. It is easy to verify by hand, or in
Mathematica, that it is irreducible even for p = 3, 5. It is, how-
ever, not irreducible for p = 2 because P̃(X,Y ) = (XY + 1)(X + Y )
mod 2. This is one way of seeing why a dipole of z-lineons separated
in (1, ±1) direction can move in (1,∓1) direction in the 3+1D
anisotropic Z2 Laplacian model.
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Here 〈i, j〉 means i and j are connected by an edge in the
graph �.

Since all the Gis commute, the ground states satisfy Gi = 1
for all i and the excitations are violations of Gi = 1. We could
take the limit γ1 → ∞, in which case, the Hilbert space con-
sists of only the ground states and the Hamiltonian is trivial.
The Euclidean presentation of this model in this limit will be
discussed later in Appendix D 2.

We are particularly interested in those operators that com-
mute with the Hamiltonian (D1) and act nontrivially on its
ground states. They are the global symmetry operators of the
model in the low-energy limit.

The electric symmetry operators are Vi, which trivially
commute with the Hamiltonian. Since the ground states sat-
isfy Gi = 1, some of these operators are equivalent when
acting on the ground states. The independent symmetry op-
erators are

W̃λ =
∏

i

V λ(i)
i , (D3)

where λ(i) takes the form (2.6)

λ(i) =
N∑

a=1

pa(Q−1)ai, pa ∼ pa + gcd(N, ra). (D4)

Let us explain the identification on pa. We have pa ∼ pa +
N because V N

i = 1. We also have pa ∼ pa + ra because
ra(Q−1)ai =∑ j Li jPa j and

∏
i V

Li j

i = 1 when acting on the
ground states. Combining the two identifications, we get
pa ∼ pa + gcd(N, ra). The symmetry operators generate a
Jac(�, N ) electric symmetry.

The magnetic symmetry operators are

Wλ̃ =
∏

i

U λ̃(i)
i , (D5)

where λ̃(i) obeys �Lλ̃(i) = 0 mod N , and the most general
solution takes the form (2.5)

λ̃(i) =
N∑

a=1

NQia p̃a

gcd(N, ra)
, p̃a ∼ p̃a + gcd(N, ra). (D6)

The symmetry operators generate a Jac(�, N ) magnetic sym-
metry.

A convenient basis of electric and magnetic spacelike sym-
metry operators is given by

W̃ (a) =∏i V (Q−1 )ai
i ,

W (a) =∏i U
N

gcd(N,ra ) Qia

i (D7)

for a = 1, . . . , N. Both W (a) and W̃ (a) are Zgcd(N,ra ) opera-
tors. They satisfy the commutation relations

W (a)W̃ (b) = exp

[
2π iδab

gcd(N, ra)

]
W̃ (b)W (a),

a, b = 1, . . . , N. (D8)

For each a, there is only one b that has nontrivial commutation
relation. So for each a, there is an independent Zgcd(N,ra )

Heisenberg algebra generated by W (a) and W̃ (a), leading to

a ground-state degeneracy

GSD =
N∏

a=1

gcd(N, ra) = | Jac(�, N )|. (D9)

2. Euclidean presentation

We now discuss the Euclidean presentation of the ZN

Laplacian model. We place the theory on a Euclidean space-
time lattice CLτ

× �, where � is the spatial slice. We use (τ, i)
to label a site in the spacetime lattice. The integer BF action
of the ZN Laplacian theory is

S = 2π i

N

∑
τ,i

m̃

(
τ + 1

2
, i

)[
�τ m(τ, i) − �Lmτ

(
τ + 1

2
, i

)]
,

(D10)

where the integer fields m̃ and (mτ , m) have an integer gauge
symmetry

m̃ ∼ m̃ + Nk̃,

mτ ∼ mτ + �τ k + Nqτ , (D11)

m ∼ m + �Lk + Nq,

where k, k̃, and (qτ , q) are integers. [Note that, when working
modulo N , the last line of (D11) is precisely the equivalence
relation discussed in (2.3).] The integer BF action (D10)
describes the ground states of the Hamiltonian (D1).

a. Ground-state degeneracy

We can count the number of ground states by counting the
number of solutions to the “equations of motion” of (mτ , m):

�τ m̃ = 0 mod N, �Lm̃ = 0 mod N. (D12)

The first equation implies that m̃(τ, i) is independent of τ .
Then, as discussed in Sec. II A, the general solution is

m̃(i) =
N∑

a=1

NQia pa

gcd(N, ra)
, pa ∼ pa + gcd(N, ra). (D13)

Therefore, the ground-state degeneracy is

GSD =
N∏

a=1

gcd(N, ra) = | Jac(�, N )|. (D14)

b. Global symmetry

The above ground-state degeneracy can also be obtained
from the (spacelike) global symmetry. There are electric
(spacelike and timelike) and magnetic (spacelike) global sym-
metries, whose groups are both

Jac(�, N ) =
N∏

a=1

Zgcd(N,ra ). (D15)

The electric global symmetry acts as

(mτ , m) → (mτ , m) + (λτ , λ), (D16)

where (λτ , λ) is a flat ZN gauge field, i.e., �τλ − �Lλτ = 0
mod N . Using k, we can set λτ (τ + 1

2 , i)|τ �=0 = 0 mod N .
Then, by flatness, we have �τλ = 0 mod N . This in turn
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implies that �Lλτ (τ + 1
2 , i)|τ=0 = 0 mod N , which is the

discrete Laplace equation (2.2).
The remaining time-independent gauge freedom, λ(i) ∼

λ(i) + �Lk(i), is precisely the equivalence relation in (2.3).
Therefore, we can gauge fix λ(i) to

λ(i) =
N∑

a=1

pa(Q−1)ai, (D17)

where pa = 0, . . . , gcd(N, ra) − 1. Since λτ (τ + 1
2 , i)|τ=0

satisfies the discrete Laplace equation, the most general so-
lution is (2.5)

λτ

(
τ + 1

2
, i

)∣∣∣∣
τ=0

=
N∑

a=1

NQia pτ,a

gcd(N, ra)
, (D18)

where pτ,a = 0, . . . , gcd(N, ra) − 1. The parameters pτ,a and
pa generate the electric timelike and spacelike global symme-
tries respectively.

The magnetic spacelike global symmetry acts as

m̃

(
τ + 1

2
, i

)
→ m̃

(
τ + 1

2
, i

)
+ λ̃(i), λ̃(i)

=
N∑

a=1

NQia p̃a

gcd(N, ra)
,

(D19)

and p̃a = 0, . . . , gcd(N, ra) − 1.
A convenient basis of electric and magnetic spacelike sym-

metry operators is given by

W̃ (a) = exp

[
2π i

N

∑
i

(Q−1)aim̃

(
τ + 1

2
, i

)]
,

W (a) = exp

[
2π i

gcd(N, ra)

∑
i

m(τ, i)Qia

]
(D20)

for a = 1, . . . , N. These operators are the low-energy counter-
part of the operators in (D7). The commutation relation (D8)
can now be understood as a mixed ’t Hooft anomaly between
the electric and magentic spacelike symmetries.

c. Timelike symmetry and fractons

The ZN Laplacian model has defects that extend in the time
direction, such as

Wτ (i) = exp

[
2π i

N

∑
τ

mτ

(
τ + 1

2
, i

)]
. (D21)

This describes the world-line of an infinitely heavy particle of
unit charge at position i ∈ �.

Below we discuss the timelike global symmetry that acts
on these defects. The electric timelike symmetry acts as

mτ

(
τ + 1

2
, i

)
→ mτ

(
τ + 1

2
, i

)
+ δτ,0

N∑
a=1

NQia pτ,a

gcd(N, ra)
.

(D22)

Therefore, two defects at sites i and i′ carry the same timelike
charges, or equivalently, a particle can hop from i to i′, if and
only if

Qia = Qi′a mod gcd(N, ra), a = 1, . . . , N. (D23)

Indeed, when this condition holds, the defect that “moves” a
particle from i to i′ at time τ = 0 is given by

exp

[
2π i

N

∑
τ<0

mτ

(
τ + 1

2
, i

)]

× exp

⎡
⎣−2π i

N

∑
a, j

(
Qia − Qi′a

gcd(N, ra)

)
r̃aPa jm(0, j)

⎤
⎦

× exp

⎡
⎣2π i

N

∑
τ�0

mτ

(
τ + 1

2
, i′
)⎤⎦, (D24)

where r̃a is an integer such that r̃ara = gcd(N, ra) mod N .
While the selection rule (D23) is not very intuitive, it leads

to strong mobility constraints in the special case where the
spatial lattice is a square lattice (i.e., � is a 2D torus graph
CLx × CLy ). This will be shown in Appendix D 3 b. In particu-
lar, under some mild conditions, the particles are completely
immobile, i.e., they are fractons.

d. Robustness

We now discuss the robustness of the low-energy limit of
the ZN Laplacian model. The only operators that act nontriv-
ially on the ground states are W (a) and W̃ (a) of (D20). W (a)
is an extended operator with support spanning over the entire
graph. In contrast, W̃ (a) can be written as a product of local
operators of the form e

2π i
N m̃(τ+ 1

2 ,i). [In (D20) we defined W̃ (a)
in such a way that its commutation relation (D8) with the
extended operator W (a) is simple.] Since these local operators
act nontrivially in the space of ground states, the low-energy
limit of the model is not robust.

3. Examples

a. � = CLx

Let � be a cycle graph, i.e., � = CLx , where Lx is the num-
ber of sites in the cycle. The operator �L associated with the
Laplacian matrix of � is the same as the standard Laplacian
operator �2

x in the x direction.
In this case, the ZN Laplacian model simplifies to the

1+1D rank-2 ZN tensor gauge theory of [35]. Indeed, the
diagonal entries in the Smith normal form of L are

ra =
⎧⎨
⎩

1, 1 � a < Lx − 1,

Lx, a = Lx − 1,

0, a = Lx.

(D25)

To be more concrete, we can write R = PLQ, where

R =
⎛
⎝ILx−2 0 0

0T Lx 0
0T 0 0

⎞
⎠, P =

(
P̃ 0
1T 1

)
,

Q =
(

Q̃ 1
0T 1

)
, (D26)
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where P̃ and Q̃ are (Lx − 1) × (Lx − 1) integer matrices given
by

P̃a,x+1 = min{a, x + 1},
Q̃x+1,a = δx+1,a − (x + 1)(1 − δx,Lx−2)δa,Lx−1, (D27)

where a = 1, . . . , Lx, and x = 0, . . . , Lx − 1. For example, for
Lx = 5, the 4 × 4 matrices P̃ and Q̃ are

P̃ =

⎛
⎜⎜⎝

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎞
⎟⎟⎠, Q̃ =

⎛
⎜⎜⎝

1 0 0 −1
0 1 0 −2
0 0 1 −3
0 0 0 1

⎞
⎟⎟⎠. (D28)

The electric (timelike and spacelike) and magnetic (space-
like) symmetries of the ZN Laplacian gauge theory are ZN ×
Zgcd(N,Lx ). These are in agreement with the 1+1D rank-2 ZN

tensor gauge theory of [35].

b. � = CLx × CLy

Let � be a torus graph, i.e., � = CLx × CLy , where Lx and Ly

are the number of sites in the x-cycle and y-cycle. The operator
�L associated with the Laplacian matrix of � is the same as
the standard Laplacian operator �2

x + �2
y on a square lattice.

In this case, the ZN Laplacian model can be viewed as the
ZN version of the Laplacian φ-theory or the ZN version of the
U (1) Laplacian gauge theory discussed in [22,23]. Its ground-
state degeneracy is the square root of that of the anisotropic
ZN Laplacian model, which is computed in Appendix C 1.
When N is a prime, the GSD of the ZN Laplacian model is
thus

logN GSD

= dimZN

ZN [X,Y ]

(Y (X − 1)2 + X (Y − 1)2), X Lx − 1,Y Ly − 1)
.

(D29)

The GSD depends on Lx, Ly in an erratic way. There exists
a sequence of Lx, Ly where the logN GSD ∼ O(Lx, Ly), but

there also exists a sequence where the GSD stays at order 1 if
N > 2.

Like the GSD, the mobility of a particles depends on
number-theoretic properties of Lx, Ly. Since the mobility of
these particles is the same as the mobility of the z-lineons of
the 3+1D anisotropic ZN Laplacian model in the xy plane, the
analysis of Appendix C 2 applies here. In particular, when N
is an odd prime, there are infinitely many values of Lx, Ly for
which a single particle is completely mobile. In contrast, on an
infinite square lattice, any finite set of particles is completely
immobile (unless they can be annihilated), assuming they
move “rigidly.”

When N = 2, the ZN Laplacian model is equivalent to two
copies of a known model, the Z2 Ising plaquette model [25],
when both Lx and Ly are even, and only one copy when Lx

or Ly is odd. Therefore, the GSD and mobility restrictions of
the Z2 Laplacian model are relatively simple in this case, and
follow from the analysis in Appendix B.

Let us contrast the ZN Laplacian model with the 2+1D
rank-2 ZN tensor gauge theory discussed in [57–61], which is
another 2+1D generalization of the 1+1D rank-2 ZN tensor
gauge theory. These two models differ in several aspects:

(1) The ZN tensor gauge theory has a ground-state degen-
eracy of

N3gcd(N, Lx )gcd(N, Ly )gcd(N, Lx, Ly). (D30)

In particular, the GSD of ZN tensor gauge theory is always
bounded by N6, whereas there are infinitely many Lx, Ly

for which logN GSD of the ZN Laplacian model scales as
O(Lx, Ly), at least when N is prime.

(2) Relatedly, the low-energy limit of the ZN tensor gauge
theory is robust, whereas the low-energy limit of the ZN

Laplacian model is not.
(3) A particle in the ZN tensor gauge theory can always

hop by N sites on an infinite square lattice,40 whereas a parti-
cle in the ZN Laplacian model is completely immobile on an
infinite square lattice, at least when N is prime.

40More precisely, this is true for an electrically charged particle.
Magnetically charged particles come in two flavors: x-lineons, which
can move anywhere in the x direction but can only hop by N sites in
the y direction, and similarly y-lineons.
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