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Superconducting phase transition in planar fermionic models with Dirac cone tilting
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The chiral and superconducting gaps are studied in the context of a planar fermion model with four-fermion
interactions. The effect of the tilt of the Dirac cone on both gaps is shown and discussed. Our results point to
two different behaviors exhibited by planar fermionic systems. We show that there is a threshold value t̃∗ for
the effective tilt parameter such that when |t̃| < t̃∗, the superconducting phase persists for negative values of the
superconducting coupling constant. For positive values of the superconducting coupling constant, the induction
of a superconducting gap by a chemical potential exists, which is similar to the one seen in graphenelike systems.
For |t̃| > t̃∗ and a negative superconducting coupling constant, the superconducting phase can be present, but it is
restricted to a smaller area in the phase portrait. Our analysis also shows that when |t̃| > t̃∗ and for positive values
for the superconducting coupling constant, the induction of a superconducting gap in the presence of a chemical
potential is ruled out. In this case, the increase of the chemical potential works in favor of the manifestation of a
metallic phase.
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I. INTRODUCTION

The possibility of the superconducting phase in the Weyl
fermion system is one of the popular topics in condensed-
matter physics. The discovery of a tilted Weyl dispersion in
realistic materials, for example, type-II Weyl semimetals, has
accelerated the related research on this topic. The detailed
verification of the phase diagram for these types of systems is
of relevance for researchers in the field. Here we approach this
important problem from the point of view of quantum field
theory techniques. Since the seminal work of Gross and Neveu
[1], where the authors use quantum field theory (QFT) tools
to describe two-dimensional massless fermions with quartic
interactions, much attention was expended to apply QFT tech-
niques in low-dimensional systems and with special attention
to condensed-matter problems. One of the most interesting
examples of the applications of QFT in condensate matter is
the study of graphene [2]. In this almost planar system, the
electrons obey linearly dispersing relations and the fermionic
excitations are well described by a relativistic Dirac equa-
tion in (2+1) dimensions.

The Lorentz symmetry is respected by the electrons in
graphene due to its relativistic characteristics, but this fea-
ture is an exception compared to the majority of materials
in condensed matter. Some of the condensed-matter systems,
where the dispersion in the proximity of band touching points
can be generically linear and resemble the Weyl equation, do
not respect Lorentz symmetry [3–6]. Even though there are
quasiparticles in the aforementioned systems that behave like
Weyl fermions [7], these systems are described by Weyl-like
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Hamiltonians and, thus, these quasiparticles are by con-
struction massless and more stable against gap formation in
comparison to Dirac ones [8].

Our proposal in this paper is to study how the properties as-
sociated with Weyl fermions influence the formations of chiral
and superconducting gaps in planar systems. Superconductiv-
ity was studied in three-dimensional Weyl semimetals of both
types I and II with a particular effect of the tilting of the Dirac
cone [9]. From the experimental side, despite the challenges,
there have been studies in heterostructures consisting of thin
films of half-metal and spin-singlet superconductor [10]. The
theoretical study of superconducting instabilities in Dirac and
Luttinger fermions has also been recently analyzed [11]. Here
we will extend the usual Weyl Hamiltonian used in the de-
scription of Weyl semimetals (WSMs) [12,13] by introducing
two forms of four-fermion interactions that will allow for a
chiral phase and a superconducting phase. We also analyze the
properties of this system under the effects of a finite chem-
ical potential, which in practice models the doping process.
This will allow us to study the allowed phase transitions in
a (2 + 1)-dimensional Gross-Neveu (GN)-type model, which
describes the competition between the chiral symmetry break-
ing and superconductivity. These two phenomena will dispute
the true ground state of the system through the intensity of the
coupling constants and as a function of the chemical potential.
Let us also recall that chiral symmetry and its breaking can be
seen as a way to describe the metal-insulator phase transition
in these planar systems. Thus, the study of chiral symmetry
breaking in planar systems by GN-like four-fermion interac-
tions has become a useful tool for qualitative analysis of the
two-dimensional system and has already been used success-
fully in many different contexts [14–32].

In this paper, we also want to address the question of
the production of a superconducting phase in the model and
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how the tilting of the Dirac cone affects it. The phenomenon
of electron pairing in the vast majority of superconductors
follows the Bardeen-Cooper-Schrieffer (BCS) theory of su-
perconductivity. The BCS theory describes the condensation
of electrons into pairs with antiparallel spins in a singlet
state with an s-wave symmetry. The s-wave channel will be
the superconducting channel that will be addressed in this
paper. Several works have already indicated that supercon-
ductivity appears in planar systems, such as twisted bilayer
graphene [33], normal trilayer graphene [34], and twisted
trilayer graphene as well [35,36]. However, here we address
the effects caused by the tilt of the Dirac cone on the combined
chiral and superconducting phases and how it might influence,
in particular, the superconducting gap.

The tilting, the coupling constants for the chiral and pairing
interactions in the superconducting channel, and the chemical
potential provide four independent parameters. From the cou-
pling constants, we can present a phase diagram in the case
where the tilt factor and the chemical potential take values
that are of practical interest. In particular, we find that the
existence of the superconducting phase strongly depends on
whether the tilt factor is larger or smaller than a threshold
value t̃∗, which we explicitly estimate both analytically and
numerically, besides depending as well on the sign of the
pairing interaction in the superconducting channel.

The remainder of this paper is organized as follows.
In Sec. II, we briefly discuss the main properties of two-
dimensional Dirac and Weyl semimetal systems. In Sec. III,
we present the extension of the model that describes the
four-fermion interactions for the excitonic and superconduct-
ing channels. The effective thermodynamic potential for the
system is derived through the mean-field and one-loop semi-
classical approximation level. The effects of the anisotropy,
tilting of the Dirac cone, and chemical potential are taking
into account in this derivation. In Sec. IV, we show and
discuss the effect of the chemical potential μ on the effec-
tive thermodynamic potential and we present the chiral and
superconductivity gap equations of the system. In Sec. V,
we discuss the phase transition of the system as a function
of the chemical potential. In Sec. VI, our conclusions and
remarks are presented, along with the discussion of the pos-
sible implications of our results to some current experimental
planar materials of interest. Two Appendices are also included
where some technical details are presented. Throughout
this paper, we will be considering the natural units where
h̄ = kB = c = 1.

II. TWO-DIMENSIONAL WEYL SEMIMETALS

In this section, we present the main details of the
representation of the low-energy electronic excitations in
the two-dimensional Weyl semimetals. Within the tight-
binding approximation calculated for the honeycomblike
lattices, the low-energy dynamics of the two-dimensional
system of Weyl fermions can be described by the
Hamiltonian [12,13]

Ht (p) = vF [(t · p)τ 0 + (ξx px )τ x + (ξy py)τ y], (2.1)

where vF is the Fermi velocity, t is called the tilt vector
that describes the Dirac cone tilt, ξ = (ξx, ξy) is the vector

that describes the anisotropy of the material, τ 0 = 1 is the
2 × 2 identity matrix, and τ x,y are the Pauli matrices. In the
limit t → 0 and ξx = ξy = 1, we recover the Hamiltonian
of the isotropic graphene. The tilt vector t is related to the
separation between the Dirac cones in the Weyl semimetal.
A consequence of the non-null tilt term in Eq. (2.1) is that the
Dirac points, denoted by D and D′, no longer coincide with the
Brillouin corners K and K ′ (see, e.g., Ref. [12]). In particular,
type-I Weyl semimetals are characterized by |t| < 1, while
type-II ones are characterized by |t| > 1. From the Hamilto-
nian given by Eq. (2.1), one finds that the spectrum is given
by

Eλ(p) = vF [t · p + λ

√
(ξx px )2 + (ξy py)2], (2.2)

where λ = ±1 represent the conduction and valence bands,
respectively. Note that to be able to associate λ = +1 with a
positive and λ = −1 with a negative energy state, it is required
that [12,13] √(

tx
ξx

)2

+
(

ty
ξy

)2

= |t̃| < 1, (2.3)

where |t̃| is called the effective tilt parameter.
The Hamiltonian given by Eq. (2.1) commutes with the

chirality operator defined as

C = (ξx px )τx + (ξy py)τy√
(ξx px )2 + (ξy py)2

, (2.4)

with the eigenvalues given by α = ±1. Taking into account
all the degeneracies of the system, the free Weyl fermion
can be described with a four-component spinor, and a Dirac-
like Lagrangian density can be written as follows (see, e.g.,
Ref. [37]):

L =
N∑

k=1

iψ̄kMμνγμ∂νψk, (2.5)

where ψ is a four-component Dirac fermion. The γ matrices
are written as

γ μ = τμ ⊗
(

1 0
0 −1

)
, (2.6)

with μ = 0, 1, 2, τμ = (τz, iτx, iτy), ψ̄ = ψ†γ 0, and τz is
the third Pauli matrix. The γ matrices obey the identity
γ μγ ν = ημν + iεμνλγ3γλ, where γ3 = (1 0

0 −1) and ημν =
diag(+,−,−). Thus, it is straightforward to prove that the γ

matrices obey the algebra {γ μ, γ ν} = 2ημν . The matrix M in
Eq. (2.5) is explicitly given by

M =
⎛
⎝1 −vFtx −vFty

0 −vF ξx 0
0 0 −vF ξy

⎞
⎠. (2.7)

We can see M as representing an analog of an effective metric.
One also notices that Mμν contains the parameters that ex-
plicitly break the Lorentz symmetry, which is a consequence
of the tilting of the Dirac cone. It is easy to show that the
Lagrangian density given by Eq. (2.5) has a discrete chiral

125120-2



SUPERCONDUCTING PHASE TRANSITION IN PLANAR … PHYSICAL REVIEW B 107, 125120 (2023)

symmetry given by ψ → γ5ψ and ψ̄ → −ψ̄γ5, with

iγ5 =
(

0 1
−1 0

)
. (2.8)

Throughout the next sections, one follows Ref. [37] and
chooses the mass term that breaks the chiral symmetry as ψ̄ψ .

III. CHIRAL AND DIFERMION INTERACTIONS

To write an effective Lagrangian density that can describe
the (2+1)-dimensional Weyl semimetal with both chiral sym-
metry breaking (excitonic pairing) and superconductivity
(Cooper pairing), two forms of four-fermion interactions can
be introduced [20]. One of them is a four-fermion interaction
for the scalar fermion-antifermion and the other one is for the
scalar difermion channel. The complete model can then be
written as

L =
N∑

k=1

ψ̄k (iMμνγμ∂ν + γ 0μ)ψk + G1vF

2N

(
N∑

k=1

ψ̄kψk

)2

+ G2vF

2N

N∑
k=1

(
ψT

k Cψk
) N∑

j=1

(
ψ̄ jCψ̄T

j

)
, (3.1)

where C = iγ 2 is the charge conjugation matrix and G1 and
G2 are the coupling constants for the chiral and difermion
channels. The coupling constants G1 and G2 are negative for
an attractive interaction, while they are positive for a repulsive
interaction. The attractive/repulsive nature of the couplings
will be decisive for the phase transition patterns analyzed in
the subsequent sections. The effective action of the model can
be expressed as

exp(iSeff ) =
∫

Dψ̄DψD�D�∗Dσ

× exp

{∫
d3x

[
N

2G1vF
σ 2 + N

2G2vF
�∗�

+
N∑

k=1

ψ̄k (iMμνγμ∂ν + γ 0μ + σ )ψk

+ �∗

2
ψT

k Cψk + �

2
ψ̄kCψ̄T

k

]}
, (3.2)

where σ = G1vF
N

∑N
j=1 ψ̄ jψ j , � = G2vF

N

∑N
j=1 ψT

j Cψ j , and

�∗ = G2vF
N

∑N
j=1 ψ̄ jCψ̄T

j . We can explicitly integrate over
the fermion field (for the technical details, see Appendix A)
and the effective action can be rewritten as Seff (σ,�,�∗) =
N
∫

d3x�(σ,�,�∗), where � is the effective thermodynam-
ics potential,

�(σ,�,�∗) = 1

2G1vF
σ 2 + 1

2G2vF
�∗�

+
2∑

i=1

∫
d3 p

(2π )3
lnλi(p), (3.3)

with λi denoting the eigenvalues of B = CDC−1DT − |�|2,

with D = Mμνγμ∂ν + γ 0μ − σ , which are given by

λ1,2 = σ 2 + [p0 − vF (t · p)]2 − v2
F p̃2 − μ2 − |�|2

±2
√

σ 2
{
[p0 − vF (t · p)]2 − v2

F p̃2
}+ v2

F μ2p̃2,

(3.4)

with p̃ = (ξx px, ξy py). Using the identity∫ ∞

−∞
d p0 ln(p0 − A) = iπ |A|, (3.5)

we find that

2∑
i=1

∫
d3 p

(2π )3
ln λi(p) = −

∫
d2 p

(2π )2
(|�+| + |�−|),

(3.6)

where

�± = vF (t · p) +
√

Ẽ2 + μ2 + |�|2 ± 2
√

σ 2|�|2 + μ2Ẽ2,

(3.7)

and Ẽ2 = v2
F p̃2 + σ 2. Finally, for constant configurations

σ0 = 〈σ 〉 and �0 = 〈�〉 = 〈�∗〉, we find

�(σ0,�0, μ) = 1

2G1vF
σ 2

0 + 1

2G2vF
�2

0

−
∫

d2 p

(2π )2
(|�+

0 | + |�−
0 |), (3.8)

where �±
0 = �±(σ = σ0,� = �0). Note that the momentum

integral in Eq. (3.8) is divergent in the ultraviolet limit and,
thus, the effective potential given by Eq. (3.8) needs to be
renormalized. The renormalization of Eq. (3.8) is described
below.

A. Renormalization

Taking μ = 0 in Eq. (3.8), we will have that �±
0 = t · p +√

p̃2 + (σ0 ± �0)2 and, therefore,

�(σ0,�0) = 1

2G1vF
σ 2

0 + 1

2G2vF
�2

0

−
∫

d2 p

(2π )2
|vF (t · p) +

√
v2

F p̃2 + (σ0 + �0)2|

−
∫

d2 p

(2π )2
|vF (t · p) +

√
v2

F p̃2 + (σ0 − �0)2|.
(3.9)

The linear term t · p in Eq. (3.9) vanishes in the integration
over the angular variable,1 but the integral in Eq. (3.9) is still
divergent. Thus, applying the rescaling ξx,y px,y → px,y and
integrating with the introduction of a momentum cutoff �,

1We use the identity
∫ 2π

0 dθ |a cos θ + b| = 2πb�(b − a), where
�(x) is the Heaviside function, for a > 0 and b > 0.
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one defines the renormalization conditions,

1

g1(m)
= vF

d2�(σ0,�0)

dσ 2
0

∣∣∣
σ0=m,�0=0

= 1

G1
+ 2m

πvF ξxξy
− �

πvF ξxξy
(3.10)

and

1

g2(m′)
= vF

d2�(σ0,�0)

d�2
0

∣∣∣
σ0=0,�0=m′

= 1

G2
+ 2m′

πvF ξxξy
− �

πvF ξxξy
, (3.11)

where m and m′ are regularization scales. Going further, defin-
ing the renormalized couplings g1 and g2 as

1

g1
= 1

g1(m)
− 2m

πvF ξxξy
(3.12)

and

1

g2
= 1

g2(m′)
− 2m′

πvF ξxξy
, (3.13)

the renormalized effective thermodynamic potential finally
can be expressed as

�ren(σ0,�0) = 1

2g1vF
σ 2

0 + 1

2g2vF
�2

0

+ (σ0 + �0)3

6πv2
F ξxξy

+ |σ0 − �0|3
6πv2

F ξxξy
. (3.14)

B. Phase diagram of the system at μ = 0

Let us first specialize in the analysis of the effective ther-
modynamic potential and its properties in the case of a null
chemical potential. In this perspective, we analyze the two
sectors, the chiral and the superconductor ones, individually.
This will allow us to extract the main characteristics of the
model. After this analysis, we can then compare the results
and show where each phase will be mandatory in the system.

The minima of Eq. (3.14) are given in terms of the gaps
σ̄c and �̄c, which are defined as σ̄c = πvF ξxξy/|g1| and
�̄c = πvF ξxξy/|g2|. By analyzing the thermodynamic poten-
tial given by Eq. (3.14), in the absence of tilting, it can be
established that the system can be characterized by three
phases, according to the values of σ , �, and the coupling
constants. We follow the same classification used in Ref. [21]
which studied the nontilted system. Phase I: this is the sym-
metric phase, where both vacuum expectations values for the
chiral and superconducting phases are zero, σ0 = �0 = 0, and
which can take place when g1 > 0 and g2 > 0. Phase II: in
this phase, σ0 = σ̄c 	= 0 and �0 = 0 and it can happen when
g1 < 0. Phase III: in this phase, σ0 = 0 and �0 = �̄c 	= 0
and it can happen when g2 < 0. When g1 and g2 are simul-
taneously negative, the system is characterized as phase II if
|g1| > |g2| and as phase III for |g1| < |g2|. In the next two
sections, we will analyze how the effects of both tilting and
chemical potential affect these different phases allowed by the
model.

IV. TILTING EFFECTS ON THE SUPERCONDUCTING GAP

Let us now turn on the effects of the tilting of the Dirac
cone on the different three phases allowed by the model and
described at the end of Sec. III. It is useful to first focus on
the pure chiral phase (when �0 = 0), where we here briefly
reproduce some of the results obtained in Ref. [37]. After that,
we will analyze the case of the superconducting gap in detail.

A. The pure chiral phase (�0 = 0)

By considering the pure chiral phase, i.e., by considering
�0 = 0, one notices that

(�±
0 )|�0=0 = E±

σ = vF (t · p) + |Ẽ0 ± μ|, (4.1)

where Ẽ0 =
√

v2
F p̃2 + σ 2

0 . Assuming μ > 0, one finds in this
case that the effective thermodynamic potential (3.14) be-
comes

�ren(σ0, 0, μ)

= σ 2
0

2g1vF
+ σ 3

0

3πv2
F ξxξy

−
∫

d2 p

(2π )2
(|E+

σ | + |E−
σ | − 2Eσ )

= σ 2
0

2g1vF
+ σ 3

0

3πv2
F ξxξy

−
∫

d2 p

(2π )2
(μ − Ẽσ + |μ − Ẽσ |)

= σ 2
0

2g1vF
+ σ 3

0

3πv2
F ξxξy

− 2
∫

d2 p

(2π )2
(μ − Ẽσ )�(μ − Ẽσ ),

(4.2)

with Ẽσ = vF (t · p) +
√

v2
F p̃2 + σ 2

0 and we have used the
identity x + |x| = 2x�(x). From Eq. (4.2), one can derive the
gap equation,

1 + sign(g1)σ0

σ̄c
+ 2g1

∫
d2 p

(2π )2

�(μ − Ẽσ )√
v2

F p̃2 + σ 2
0

= 0. (4.3)

It follows from Eq. (4.3) that for g1 > 0, the chiral symmetry
is maintained for any μ > 0. We can also see that the effect
of the effective tilt parameter |t̃| in Eq. (4.3) is to enhance
the effect of the chemical potential and, hence, to lower the
point of chiral symmetry restoration. In particular, for g1 <

0, the chiral symmetry breaks for μ < μc and is restored for
μ > μc, where the critical chemical potential μc is found to
be given by [37]

μc =
√

1 − |t̃|2σ̄c. (4.4)

Therefore, we can say that the presence of the nonvanishing
tilt parameter tends to facilitate the chiral symmetry restora-
tion. One also finds from Eq. (4.3) that the chiral order
parameter, which is the solution of (4.3), jumps discontin-
uously from σ0 = σ̄c to σ0 = 0 as we change the chemical
potential from μ < μc to μ > μc. This is a first-order transi-
tion that exists for both the nontilted case |t̃| = 0 and the tilted
case |t̃| 	= 0.
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The charge density n is defined as

n = −N
∂�ren(σ0, 0, μ)

∂μ

∣∣∣∣∣
σ0=〈σ0〉

. (4.5)

The exact expression for n can be readily calculated from
�ren(σ0, 0, μ) and it reads

n(g1 > 0) = Nμ2

2πv2
F ξxξy(1 − |t̃|2)3/2

, (4.6)

when g1 > 0, and

n(g1 < 0) = N
(
μ2 − μ2

c

)
2πv2

F ξxξy(1 − |t̃|2)3/2
�
(
μ2 − μ2

c

)
, (4.7)

when g1 < 0.
In the next section, one turns to the analysis of the super-

conducting phase.

B. The pure superconducting phase (σ0 = 0)

In the case of a pure superconducting phase, i.e., consider-
ing now σ0 = 0, and using the identity

(�±
0 )|σ0=0 = E±

� = vF (t · p) +
√

(vF |p̃| ± μ)2 + �2
0, (4.8)

the effective thermodynamic potential (3.14) can be written as

�ren(0,�0, μ) = �2
0

2g2vF
+ �3

0

3πv2
F ξxξy

−
∫

d2 p

(2π )2

{|E+
� | + |E−

� |

− 2
[
vF (t · p) +

√
v2

F |p̃|2 + �2
0

]}
. (4.9)

Performing the momentum integrals in Eq. (4.9), one finds

�ren(0,�0, μ)

= �2
0

2g2vF
+
(
μ2 + �2

0

)3/2

3πv2
F ξxξy

−
μ2
√

μ2 + �2
0

2πv2
F ξxξy

− μ�2
0

2πv2
F ξxξy

ln

⎛
⎜⎝μ +

√
μ2 + �2

0

�0

⎞
⎟⎠

+ 1

2πξxξyv
2
F

I (�0, μ), (4.10)

where the function I (�0, μ) is derived explicitly in
Appendix B and given by Eq. (B8). The effective thermo-
dynamic potential given by Eq. (4.10) is shown in Fig. 1(a)
for g2 < 0, while for g2 > 0 it is shown in Fig. 1(b) for
g2 > 0, where we have considered some representative values
of the effective tilt parameter and for the chemical potential.
The emergence of a superconducting gap � 	= 0 due to the
combined effect of the tilt and chemical potential is noted. Let
us analyze in more details the contribution of the tilt parameter
for the superconducting gap. New features generated by the
tilt of the Dirac cone will influence the superconducting gap
for both the g2 > 0 and g2 < 0 scenarios and are explained
below.

FIG. 1. Effective thermodynamic potential for (a) g2 < 0 and
(b) g2 > 0, in units of �0 = N�̄3

c/(πv2
F ξxξy ) as a function of �/�̄c.

From the effective thermodynamic potential, one derives
the gap equation,

sign(g2) +
√

x2 + y2 − y ln

(
y +

√
x2 + y2

x

)

+ 1

2x

∂I (x, y)

∂x
= 0, (4.11)

where x = �0/�̄c, y = μ/�̄c. The superconducting gap that
is induced by the chemical potential and the tilt parameter is
shown in Figs. 2(a) and 2(b), for the cases of g2 < 0 and for
g2 > 0, respectively.

In Fig. 2, the numerical results for the superconducting gap
are shown as a function of the chemical potential and some
representative values for the effective tilt parameter |t̃|.

In the case g2 < 0, which is shown in Fig. 2(a), one can
see that the tilt increases �c for a given μ > μ∗

<. In the par-
ticular value μ∗

< = μ∗
<(|t̃|) is where the tilt parameter starts

to contribute to the superconducting gap. The behavior of
μ∗

< as a function of |t̃| is shown in Fig. 3. We find that
there is a threshold value for the effective tilt parameter t̃∗,
such that when |t̃| < t̃∗, the superconducting gap is given by
�0 = �t=0 for any μ. However, for values of |t̃| > t̃∗ and
when μ > μ∗

<, the superconducting gap is given by �0 = �t.
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FIG. 2. Superconducting gap for (a) g2 < 0 and (b) g2 > 0 in-
duced by the chemical potential and the tilt parameter in units of �̄c

for some representative values of |t̃|.

On the other hand, in the case of μ < μ∗
<, the superconducting

gap is given instead again by �0 = �t=0. Let us obtain an
explicit estimation for this particular value for the effective
tilt parameter t̃∗. For μ > μ∗

<, the superconducting gap takes

FIG. 3. The normalized chemical potential μ∗
< as a function

of |t̃|. The thin vertical dashed line represents the threshold value
|t̃| = t̃∗.

the exact form �c(μ > μ∗
<) = �t, where

�t = |t̃|μ√
1 − |t̃|2

. (4.12)

Moreover, in order to extract the asymptotic behavior of the
superconducting gap shown in Fig. 2, one first notes that in
the gap equation for the nontilted case (t̃ = 0), the last term in
Eq. (4.11) vanishes. Hence, for t̃ = 0,

sign(g2) +
√

x2 + y2 − y ln

(
y +

√
x2 + y2

x

)
= 0.

Now, it is reasonable to assume that in the large-y limit, the
normalized gap solution x becomes a linear function of the
normalized chemical potential y, i.e., x = λy + c, with c a
constant. Hence, considering the asymptotic limit y, x � c
and multiplying Eq. (4.13) by 1/y, one obtains that λ satisfies

√
λ2 + 1 − ln

(√
λ2 + 1 + 1

λ

)
≈ 0. (4.13)

The above equation has one positive solution given by λ 
0.66. The threshold value t̃∗ for which the effective tilt pa-
rameter begins to drive the superconducting gap is determined
when the superconducting gap, given by Eq. (4.12), becomes
parallel to the asymptotic linear behavior of the tiltless gap
equation, i.e., we must have �t = λμ. This leads to the rela-
tion

|t̃|√
1 − |t̃|2

= λ. (4.14)

The solution of the above equation gives us the result t̃∗ 
0.55 when using the solution for λ obtained from Eq. (4.14).
This result agrees quite well with the numerical results ex-
pected from Figs. 2 and 3.

When g2 < 0, for any value of the tilt parameter |t̃| < t̃∗,
the effect of the tilt parameter in the superconducting gap
vanishes for any μ, and the superconducting gap of the system
obeys the solid gray curve shown in Fig. 2(a). We can also
analyze the situation for the case of g2 > 0. Analyzing now
the case for g2 > 0, we are able to uncover another structure
for the superconducting gap. As can be seen in Fig. 2(b), in
this case we have two different situations. When |t̃| < t̃∗, the
tilt parameter only contributes for the chemical potential up
to the values μ∗

>, μ < μ∗
>, e.g., as in the case seen by the

blue curve in Fig. 2(b). This particular value μ∗
> = μ∗

>(|t̃|)
sets a lower limit where the tilt parameter stops contributing
to the superconducting gap. The behavior of μ∗

> is shown in
Fig. 4. When |t̃| > t̃∗, the superconducting gap will be exactly
�c(|t̃| > t̃∗) = �t. As seen in Fig. 4, we now have that when
g2 > 0, for values of μ > μ∗

> the superconducting gap is
given by �0 = �t=0, and for μ < μ∗

> the superconducting
gap is given by �0 = �t. For |t̃| > t̃∗, the superconducting
gap is given by �0 = �t for any μ.

Finally, we can explicitly compute the charge density,

n = −N
∂�ren(0,�0, μ)

∂μ

∣∣∣∣
�0=〈�0〉

, (4.15)
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FIG. 4. Plot of the normalized chemical potential μ∗
>. The thin

vertical dashed line represents the threshold value |t̃| = t̃∗.

which can be expressed through an exact expression and given
by

n = N

4πv2
F ξxξy

[
μ

√
μ2 + �2

0

+�2
0 ln

(
μ +

√
μ2 + �2

0

�0

)]∣∣∣∣∣
�0=〈�0〉

+ N
∂I (�0, μ)

∂μ

∣∣∣∣∣
�0=〈�0〉

, (4.16)

where 〈�0〉 is the solution of Eq. (4.11), which can be found
numerically for both the g2 > 0 and g2 < 0 cases. From the
inequality Re

√
|t̃|2μ2 − (1 − |t̃|2)�2

0 	= 0, one finds that the
contribution for the charge density from the function I is
non-null only for 〈�0〉 < �t. Thus, based on Fig. 2(a), this
contribution is non-null only for μ < μ∗

<. In the case where
g2 > 0, on the other hand, from Fig. 2(b), the density will
receive extra contributions only for μ > μ∗

>.

V. PHASE STRUCTURE FOR μ �= 0

Previous works [20,20,23,24] have shown that it is suffi-
cient to analyze the chiral-superconducting phase structure by
comparing the vacuum properties in the σ0 = 0 and �0 = 0
axes. Here we follow the same strategy. Through this analysis
of the local minimum in each axis, we can compare them and
find the global minimum which defines the real phase of the
system. For instance, as shown in the previous section, for
fixed g1 < 0, there is a chemical potential for coexistence,
μc(g2). The value of μc(g2) defines the lower bound for
the chemical potential such that for μ > μc(g2), the system
is in the superconducting phase (phase III), for μ < μc(g2)
the system is in the chiral symmetry-breaking phase (phase
II), and for μ = μc(g2) both phases II and III coexist. This
coexistence point μ = μc(g2) defines a first-order transition
between phases II and III. In the case of g2 < 0, there is
another particular value for the chemical potential, μ∗

<, as
discussed in the previous section, such that for μ > μ∗

<, the
superconducting phase stops to drive the system in favor

FIG. 5. Phase portrait for the normalized chemical potential
(|g1|μ) vs g2/|g1| for g1 < 0 and when (a) |t̃| = 0.3 < t̃∗ and
(b) |t̃| = 0.9 > t̃∗. The thin dashed lines represent the value for
the chemical potential of coexistence in the nontilted case. Phases
I, II, and III represent the metallic phase (with σ0 = �0 = 0), the
insulating phase (with σ0 	= 0 and �0 = 0), and the superconducting
phase (with σ0 = 0 and �0 	= 0), respectively.

of the chiral phase. The opposite happens when g2 > 0, in
which case there is now a value for the chemical potential,
μ = μ∗

>, that becomes an upper bound and, for μ < μ∗
>, it is

when the superconducting phase stops to drive the system in
favor of the chiral phase. Finally, the chiral symmetry will be
restored for μ >

√
1 − |t̃|2σ̄c. Let us now show the different

phase portraits that will display the above structure relating
the chemical potential with the superconducting coupling con-
stant g2 of the system when assuming g1 < 0, which is the
relevant situation for nontrivial chiral and superconducting
gaps.

For illustration, in Fig. 5(a), we show the phase portrait
when |t̃| = 0.3 < t̃∗ and in the region ranging from negative
to positive values for g2, while in Fig. 5(b), the phase portrait
is shown for the case |t̃| = 0.9 > t̃∗. For reference, in both
Figs. 5(a) and 5(b), the phase portrait in the nontilted case,
|t̃| = 0, is shown by the light-gray dashed line, which matches
the result previously obtained in Ref. [20]. Note that in the
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nontilted case, |t̃| = 0, the lines of coexistence separate phase
II, which lies below the dashed line, from phase III, which
lies above it. There is no phase I (where the chiral and su-
perconducting phases are absent) in this case. Looking at the
region where g2 < 0 in the case |t̃| < t̃∗ shown in Fig. 5(a), it
is apparent that the presence of the effective tilt parameter |t̃|
does not qualitatively change the phase portrait with respect to
that of the nontilted case. The structure of the phase transition
can be summarized as a first-order phase transition between
the insulating phase and the superconducting phase for a
given μc(g2), represented by the black line. In this case, the
superconducting phase is present for μ > μc(g2) in the same
manner as in the nontilted situation. Looking now at the region
where g2 > 0 for the case |t̃| < t̃∗, also shown in Fig. 5(a), one
can notice that the superconductivity induced by the chemical
potential still exists, but in a smaller area when compared
to the nontilted case (dashed line). We recall that from the
results shown in the previous section, for μ < μ∗

> and when
μ >

√
1 − |t̃|2σ̄c, phase I takes place. Thus, in this case, one

finds a point of coexistence, (μt , gt
2), which separates phases

I–III, which is given by

(
μt , gt

2

)∣∣
g2>0, |t̃|<t̃∗ =

(√
1 − |t̃|2
|g1| ,

√
1 − |t̃|2
μ∗

>

)
. (5.1)

The presence of the coexistence point as a consequence of the
tilt of the Dirac cone is one of our main results, showing a
quite different behavior when compared to the results in the
nontilted case [20].

Going further, looking at the case for g2 < 0 and |t̃| > t̃∗,
which is shown in Fig. 5(b), one notices a much stronger
change in the phase portrait as compared to the region with
g2 < 0 shown in Fig. 5(a). The presence of the tilt effectively
causes the superconducting gap to stop to drive the system
for μ > μ∗

< and phase I now takes place for μ >
√

1 − |t̃|2σ̄c.
The phase portrait in this case displays a much restricted area
for the superconducting phase. The superconducting phase
occurs only for values of |g2|/|g1| � 1. In this case, one coex-
istence point also appears and it is found to be given by

(
μt , gt

2

)∣∣
g2<0, |t̃|>t̃∗ =

(√
1 − |t̃|2
|g1| ,−

√
1 − |t̃|2
μ∗

<

)
. (5.2)

Finally, looking at the region where g2 > 0 shown in Fig. 5(b),
the induction of a superconducting phase due to the chemical
potential is ruled out for any value of the chemical poten-
tial and the phase transition occurs between phases I and II.
Through the increase of the chemical potential and in the pres-
ence of a tilt satisfying |t̃| > t̃∗, both effects work in favor of
the chiral symmetric phase. This can be seen by the enlarged
region for phase I shown in Fig. 5(b) when compared to the
nontilted case. This is our other main result that is extracted
from the phase portrait. It shows once more the effect of the
tilt on hindering the formation of gaps in the system and, in
this case, the formation of an induced gap due to the presence
of the chemical potential. The role of the threshold value for
the effective tilt parameter t̃∗ becomes quite evident when
contrasting the two panels in Fig. 5.

VI. CONCLUDING REMARKS

In this paper, we have investigated the phase diagram of
the Weyl fermion system with four-fermion interactions that
introduce the effects of both chiral and superconducting gaps.
Furthermore, we have focused on the effect of the tilt factor of
the Dirac cone. As one of our main results, it is the demon-
stration, both analytically and numerically, of the presence
of a threshold value for the effective tilt parameter t̃∗ beyond
which the value of the tilting of the Dirac cone strongly affects
the superconducting gap. More specifically, one explicitly
finds that t̃∗  0.55. The stability of the superconducting
phase is also found to be much different, whether the tilting
factor is lower or higher than t̃∗. At this value for the effective
tilt parameter, the system behaves completely differently un-
der the formation of the chiral and superconducting gaps when
compared to the nontilted case. In the case where |t̃| < t̃∗, the
superconducting phase persists for a negative superconducting
coupling constant, which is responsible for the attractive in-
teraction in the Cooper channel. A first-order phase transition
occurs for a chemical potential for coexistence, as seen by the
black curve in Fig. 5(a). This feature is similar to the results
for graphene and other two-dimensional materials [20]. One
also sees that for g2 > 0, the induction of a superconducting
gap due to the presence of a chemical potential exists. This
induction, however, only happens for stronger values of the
coupling constant g2 since the metallic phase appears for
small values of the superconducting coupling constant. Due
to the presence of a metallic phase, we were able to find the
expression for the point of coexistence, which is given by
Eq. (5.1).

While for values of |t̃| < t̃∗ the changes to the phase por-
trait seen in Fig. 5(a) are of a qualitative nature, when the
effective tilt exceeds the threshold value, the changes now
become quantitative. When |t̃| exceeds the value t̃∗, the su-
perconducting phase now becomes restricted to a smaller area
in the phase portrait. Indeed, in this case, the superconducting
phase occurs only for regions with small and negative su-
perconducting coupling constant. Through a first-order phase
transition, the metallic phase takes place for a sufficient large
superconducting coupling constant and chemical potential.
One also finds the analytic expression for the point of co-
existence in this case, which is given by Eq. (5.2). Finally,
one shows that our qualitative analysis points to the fact that
for g2 > 0, the superconducting gap induced by the chemical
potential is ruled out and a first-order phase transition occurs
between phases I and II at the chemical potential for coexis-
tence, which is represented by the black curve in Fig. 5(b). The
presence and role of the threshold value for the effective tilt
parameter represent one of the main important results shown
in this paper.

We can try to explore the consequences of the results
we have obtained for some known planar systems which
have been currently studied in laboratory experiments. For
example, using the experimental data obtained from the
two-dimensional (2D) organic conductor α − (BEDT-TTF)2I3

[38,39], the estimated effective tilt parameter is found to be
|t̃|  0.76 (see, e.g., Ref. [37]). This case occurs in the sit-
uation where |t̃| > t̃∗  0.55, which we have discovered in
this paper. From our results, this implies that the inducing of
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a superconducting gap should be absent in this material. It
would be interesting to probe this prediction using this type of
material in the laboratory. By also accounting for the results
obtained from the analysis of Ref. [37], we can also conclude
that this same system should exhibit a metallic phase, which
would become very strong under doping. On the other hand,
we can also compare with the predictions that our results
would imply for the case of quinoid-type graphene under
uniaxial strain [12]. In this case, the estimated values for the
effective tilt parameter are such that |t̃| � 0.06 for moderate
deformations. From our results, we can conclude that for this
material, the properties of the superconducting gap should be
similar to the graphene case, which includes the induction
of a superconducting gap by the chemical potential. To the
authors’ best knowledge, we are not aware of other materi-
als where the value of the tilt parameter has been provided,
at least as far as two-dimensional materials are concerned.
We are hopeful that as new two-dimensional materials are
experimentally probed and fabricated, new data from those
experiments will help to shed light on the results we have
presented here.

The study of possible two-dimensional fermionic systems
where our results can be of interest can be exploited in several
directions. First, since the evaluation of t̃∗ is based on the
large-N limit of the effective thermodynamical potential, it is
possible that this result receives quantum corrections beyond
the large-N approximation. This can be an interesting exten-
sion of the present work. Going further, the presence of an
anomalous Hall effect [37,40,41] in the 2D Weyl semimetal
indicates the possibility that the tilt of the Dirac cones could
modify the superconducting gap under the presence of an
external magnetic field. Moreover, since the tilt of the Dirac
cone introduces a special direction in the system, the analysis
of the p-wave superconducting gap properties in this context
could bring new features. This can be another problem of
interest that can be a target of further investigation. These
problems are possible lines of study that our results motivate
and we hope to address them in the future.

ACKNOWLEDGMENTS

Y.M.P.G. is supported by a postdoctoral grant from Fun-
dação Carlos Chagas Filho de Amparo à Pesquisa do Estado
do Rio de Janeiro (FAPERJ). R.O.R. acknowledges financial
support of the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES) - Finance Code 001 and by re-
search grants from Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq), Grant No. 307286/2021-
5, and from Fundação Carlos Chagas Filho de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ), Grant No.
E-26/201.150/2021.

APPENDIX A: PERFORMING THE PATH INTEGRAL
OVER THE FERMION IN EQ. (3.2)

Here we show some of the details of the path integral
over the fermions in Eq. (3.2), which leads to the effective
thermodynamic potential. Adopting the procedure described
in Ref. [20], we assume two anticommuting four-component
Dirac spinor fields q(x) and q̄(x). Then, Eq. (3.2) can be

rewritten as

I =
∫

DqDq̄ ei
∫

d3x
[
q̄Oq− �

2 qT Cq− �∗
2 q̄Cq̄T

]
, (A1)

where O = iMμνγμ∂ν + μγ 0 − σ and C = iγ 2 is the charge
conjugation matrix. Using the Gaussian path integral identi-
ties∫

Dpei
∫

d3x[− 1
2 pT Ap+ηT p] = (det A)

1
2 e− i

2

∫
d3xηT A−1η (A2)

and∫
Dp̄ei

∫
d3x[− 1

2 p̄Ap̄T +η p̄T ] = (det A)
1
2 e− i

2

∫
d3xη̄A−1η̄T

, (A3)

and by also considering A = �C, q̄O = ηT , OT q̄T = η, one
finds, after integrating over q and q̄, the result

I =
∫

DqDq̄ ei
∫

d3x[q̄Oq− �
2 qT Cq− �∗

2 q̄Cq̄T ]

= (det �C)
1
2

∫
Dq̄e

i
2

∫
d3x{q̄[�∗C+O(�C)−1OT ]q̄T }

= (det �C)
1
2 {det[�∗C + O(�C)−1O]} 1

2

= [det(�2 + OC−1OT C)]
1
2 , (A4)

where we have assumed � = �∗ in the last step [we are not
interested in the phase of the superconducting order param-
eter, but solely on its absolute (modulus) value]. Using the
relations C−1γ T

μ C = −γμ and ∂T
μ = −∂μ, one finds that

I = [det(−�2 + O+O−)]1/2 = (det B)
1
2 , (A5)

with O± = iMμνγμ∂ν ± μγ 0 − σ . Finally, using the identity
det B = exp(Tr ln B), one finds

ln I = 1

2
tr(ln B) =

∫
d3x

2∑
i=1

∫
d3 p

(2π )3
ln λi(p), (A6)

where

λ1,2 = σ 2 + [p0 − vF (t · p)]2 − v2
F p̃2 − μ2 − |�|2

±2
√

σ 2
{
[p0 − vF (t · p)]2 − v2

F p̃2
}+ v2

F μ2p̃2

(A7)

are the eigenvalues of B.

APPENDIX B: THE EFFECTIVE
THERMODYNAMIC POTENTIAL

In this section, one shows some of the details for the deriva-
tion of the effective thermodynamic potential. From Eq. (4.9),
we obtain

�ren(0,�0, μ) = �2
0

2g2vF
+ �3

0

3πv2
F ξxξy

−
∫

d2 p

(2π )2

{ |E+
� | + |E−

� |

− 2
[
vF (t · p) +

√
v2

F |p̃|2 + �2
0

]}
, (B1)

125120-9



Y. M. P. GOMES AND RUDNEI O. RAMOS PHYSICAL REVIEW B 107, 125120 (2023)

where E±
� = vF (t · p) +

√
(vF |p̃| ± μ)2 + �2

0. The effective
thermodynamic potential depends on momentum integrals of
the form

i± =
∫

d2 p

(2π )2

{|E±
� | − [

vF (t · p) +
√

v2
F |p̃|2 + �2

0

]}
.

(B2)

Then, �ren(0,�0, μ) can be written as

�ren(0,�0, μ) = �2
0

2g2vF
+ �3

0

3πv2
F ξxξy

− i+ − i−. (B3)

It can now be shown that for μ > 0, E+
� > 0 for all p > 0.

Hence, after some algebraic steps, one finds

i+ = 1

2πv2
F ξxξy

∫ ∞

0
d pp

[√
(p + μ)2 + �2

0 −
√

p2 + �2
0

]
.

(B4)

For E−
� , one has that E−

� > 0 only for p < p− and for p > p+,
where

p± = 1

(1 − |t̃|2)

[
μ ± Re

√
|t̃|2μ2 − (1 − |t̃|2)�2

0

]
, (B5)

where Re means the real part. From the above expressions,
then, it follows that∫

d2 p

(2π )2
|E−

� |

= 1

2πv2
F ξxξy

×
∫ ∞

0
d pp

∫ 2π

0

dθ

(2π )

[∣∣|t̃|p cos θ +
√

(p − μ)2 + �2
0

∣∣]
= 1

2πv2
F ξxξy

∫ ∞

0
d pp

√
(p − μ)2 + �2

0

�
[√

(p − μ)2 + �2
0 − |t̃|p], (B6)

where we have used the identity
∫ 2π

0
dθ
2π

|a cos θ + b| =
b�(b − a) for a > 0 and b > 0 in the last step, and
�(x) is the Heaviside function. Finally, the inequality√

(p − μ)2 + �2
0 − |t̃|p > 0 is respected when p < p− and

p > p+. In particular, one notes that in the limit |t̃| →
0, one finds p+ = p− = μ. Therefore, using the fact that∫ p−

0 + ∫∞
p+ = ∫∞

0 − ∫ p+
p−

, it follows that

i− = 1

2πv2
F ξxξy

∫ ∞

0
d pp

[√
(p − μ)2 + �2

0 −
√

p2 + �2
0

]

− 1

2πv2
F ξxξy

∫ p+

p−
d pp

√
(p − μ)2 + �2

0

= 1

2πv2
F ξxξy

{∫ ∞

0
d pp

[√
(p − μ)2 + �2

0 −
√

p2 + �2
0

]

− I (�0, μ)

}
, (B7)

where

I (�0, μ) =
∫ p+

p−
d pp

√
(p − μ)2 + �2

0

= (
2�2

0 − μ2 + 2p2
+ − μp+

)√
�2

0 + (p+ − μ)2

+ 3�2
0μ tanh−1

⎡
⎢⎣ p+ − μ√

�2
0 + (p+ − μ)2

⎤
⎥⎦

− (
2�2

0 − μ2 + 2p2
− − μp−

)√
�2

0 + (p− − μ)2

− 3�2
0μ tanh−1

⎡
⎢⎣ p− − μ√

�2
0 + (p− − μ)2

⎤
⎥⎦. (B8)

In normalized units x = �0/�̄c, y = μ/�̄c, I (x, y) is given
by

I (x, y) = (
2x2 − y2 + 2z2

+ − yz+
)√

x2 + (z+ − y)2

+ 3x2y tanh−1

[
z+ − y√

x2 + (z+ − y)2

]

− (2x2 − y2 + 2z2
− − yz−)

√
x2 + (z− − y)2

− 3x2y tanh−1

[
z− − y√

x2 + (z− − y)2

]
, (B9)

with z± defined as

z± = 1

(1 − |t̃|2)

[
y ± Re

√
|t̃|2y2 − (1 − |t̃|2)x2

]
. (B10)

Finally, after integration over the momentum p, one can
write the renormalized effective thermodynamic potential for
the superconducting phase (when σ0 = 0) as

�ren(0,�0, μ)

= �2
0

2g2vF
+
(
μ2 + �2

0

)3/2

3πv2
F ξxξy

−
μ2
√

μ2 + �2
0

2πv2
F ξxξy

− μ�2
0

2πv2
F ξxξy

ln

⎛
⎜⎝μ +

√
μ2 + �2

0

�0

⎞
⎟⎠

+ 1

2πξxξyv
2
F

I (�0, μ). (B11)
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