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Supergravity model of the Haldane-Rezayi fractional quantum Hall state
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Supersymmetry and supergravity were invented in the 1970s to solve fundamental problems in high-energy
physics. Even though neither of these ideas has yet been confirmed in high-energy and cosmology experiments,
they have been beneficial in constructing numerous theoretical models including superstring theory. Despite the
absence of supersymmetry in particle physics, it can potentially emerge in exotic phases of strongly correlated
condensed matter systems. In this paper, we propose a supergravity model that describes the low-energy physics
of the Haldane-Rezayi state, a gapless quantum Hall state that occurs in a half-filled Landau level. We show
that the corresponding edge modes of the Haldane-Rezayi state and the Girvin-MacDonald-Platzman algebra
appear naturally in the supergravity model. Finally, we substantiate our theoretical findings with numerical exact
diagonalization calculations that support the appearance of the emergent graviton and gravitino excitations in the
Haldane-Rezayi state.
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I. INTRODUCTION

Supergravity, the theory that combines supersymmetry
(SUSY) and general relativity, is one of the most exciting
ideas in physics. It has played a central role in the develop-
ment of high-energy physics in the past five decades. After
the discovery of general relativity in 1915, the unification of
space-time geometry with internal symmetries was the central
theme that Einstein explored during the later part of his life.
Supersymmetry, which interchanges bosons and fermions,
was independently discovered by Gervais and Sakita in 1971
[1], Golfand and Likhtman in 1971 [2], and Volkov and
Akulov in 1972 [3]. Supersymmetry provides a natural con-
nection between the space-time and internal symmetries [4].
Supersymmetry may explain how Higgs mass is robust to
quantum corrections and solve the hierarchy problem with a
price—the appearance of superpartners of standard model par-
ticles. Since no superpartner has been found so far at the Large
Hadron Collider, SUSY can be, at best, spontaneously broken.
However, the breaking of SUSY induces massless Goldstone
fermions. Supergravity, which in four dimensions was first
formulated in 1973 by Volkov and Soroka [5], can salvage
this problem. The gravitino, with spin 3/2, plays the role of
a gauge field for SUSY which gets a huge mass after eating
all the massless Goldstone fermions. Supergravity in higher
dimensions was the first concrete realization of Einstein’s
dream of a unified field theory [6]. The development of super-
gravity was also a key contributing factor in the string theory
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revolution. The duality between a supergravity theory on the
bulk and a conformal field theory (CFT) on the boundary,
named AdS/CFT correspondence, provides a unique tool to
probe quantum field theory in the strong coupling regime [7].
Even though supersymmetry and supergravity have not yet
been confirmed in high-energy physics experiments, super-
symmetry can emerge in exotic phases of strongly correlated
quantum matter, in particular, fractional quantum Hall (FQH)
states [8–11] as well as topological superconductors [12] and
cold atomic gases [13–15].

The fractional quantum Hall effect (FQHE) was observed
experimentally in 1982 by Tsui, Stormer, and Gossard [16],
and the experimental findings were theoretically explained a
year after by Laughlin using his eponymous wave function
[17]. These discoveries lead to Nobel Prizes for Tsui, Stormer,
and Laughlin. To this date, FQHE remains one of the most
fertile playgrounds to probe the physics of strong correla-
tions in condensed matter systems. Indeed, the discovery of
FQHE opened a new field of research—the topological order
in strongly correlated systems, of which FQHE is the simplest
example and the only one confirmed experimentally in con-
densed matter [18]. FQHE is realized when a two-dimensional
electron gas is placed in a large perpendicular magnetic field.
The magnetic field turns the Fermi liquid of electrons into
highly degenerate bands known as Landau levels (LLs) and
FQHE arises when a LL is partially filled. The magnetic field
completely quenches the kinetic energy of the electrons and
the physics is entirely dictated by the Coulomb repulsion
between the electrons. This setting realizes a wide variety
of topological phases depending on the filling fraction and
the effective interaction between electrons, which in turn is
determined by the LL that is partially occupied. Consequently,
many theoretical models have been proposed to explain the
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different phases realized in FQH systems [19–22]. Certain
FQH states can host non-Abelian anyonic excitations that can
form building blocks of a fault-tolerant topological quantum
computer [23]. The FQH states also serve as a potential av-
enue to look for emergent graviton(s) in a condensed matter
system [24–30].

In this paper, we propose a N = (1, 1) supergravity model
that describes the low-energy physics of the Haldane-Rezayi
(HR) state [31,32] which occurs at the filling fraction ν = 1/2
and is believed to be a compressible state [33–36]. Our model
predicts the existence of a spin-3/2 excitation, the gravitino, in
addition to the spin-2 graviton, which is the long-wavelength
limit of the magnetoroton excitation that is expected to ap-
pear in every FQH state [37]. We connect the supergravity
model with the bimetric theory of FQH states [38] and ob-
tain the Girvin-MacDonald-Platzman (GMP) algebra in the
long-wavelength limit [37]. We also show that our bulk Chern-
Simons (CS) theory leads exactly to the conformal field theory
(CFT) on the boundary that is known to describe the HR
state [33,39]. In addition, we provide numerical evidence in
support of the existence of the emergent graviton and gravitino
excitations. Our paper further reinstates that FQHE provides
an ideal setting to study exotic theoretical models.

II. SUPERGRAVITY MODEL OF HALDANE-REZAYI
STATE

In this section, we will present the superalgebra and pro-
pose the supergravity action that describes the low-energy
physics of the Haldane-Rezayi state. In our construction,
the graviton corresponds to the long-wavelength limit of the
magnetoroton excitation and the gravitino represents the long-
wavelength limit of the neutral fermion excitation.

A. Nonrelativistic N = (1, 1) superalgebra

We will consider a N = (1, 1) supergravity model with the
SUSY algebra given by

[J ,Pa]= εa
bPb, [Qα, Qβ ]= γ a

αβPa, [J , Qα]= 1
2 γ̂ β

αQβ.

(1)

Here J is the generator of spatial rotations, P is the generator
of spatial translations, and Qα is the generator of supersym-
metries. In Eq. (1), a, b = 1, 2 are the spatial indices and
α, β = 1, 2 denote the spinor indices. Our conventions on the
Dirac matrices γ are given in Appendix A. The superbracket
used in Eq. (1) is defined as

[A, B] = AB − (−1)FAFB BA, (2)

where FA is the fermion number of operator A. The relation of
the algebra stated in Eq. (1) to the usual N = (1, 1) superal-
gebra is described in Appendix A.

Let T be the generator of background electromagnetic
U (1) transformations which commute with all the other
generators. The bilinear invariants of the central extended
superalgebra are given by

〈JJ 〉 = μ1, 〈T T 〉 = μA, 〈J T 〉 = μB,

〈PaPb〉 = μ2δab, 〈QαQβ〉 = iμ3εαβ, (3)

and εαβ = iσy. The coefficients μ1, μ2, μ3, μA, μB are con-
stants and hence also invariant under the action of the
superalgebra. These invariants are used to define the super-
trace on the basis of the superalgebra. The computation of the
supertrace in our action is given in Appendix B.

We then introduce the background U (1) electromagnetic
connection

Aμ = AμT , (4)

with Aμ being the background electromagnetic field, and the
supergravity connection

Bμ = ω̂μJ + êa
μPa + ψα

μQα. (5)

The field components of the supergravity connection B are
dynamical fields that describe the low-energy physical degrees
of freedom of the HR state. The SUSY transformations of the
connections are given by

δξA = 0, (6)

δξB = dξαQα + [B, ξαQα], (7)

with the infinitesimal SUSY transformation ξαQα . From the
explicit SUSY transformation given in Eq. (7), we see that

δξ ω̂μ = 0, δξ êa
μ = γ a

αβψα
μξβ, δξψ

α
μ = ∂μξα + 1

2 ω̂μγ̂ α
βξβ.

(8)

As we will see, the invariance of the spin connection under
supersymmetry transformations implies the SUSY invariance
of the charge density operator. We define the super field
strength F = dB + [B,B] with its explicit form in terms of
field components being

F = (dω̂)J + T aPa + T αQα, (9)

and the definition of torsion is

T a = dêa + (
ω̂εb

a
) ∧ êb + γ a

αβψα ∧ ψβ,

T α = dψα + 1
2 ω̂γ̂ α

β ∧ ψβ. (10)

The Bianchi identity is 0 = dF + [B,F], which in compo-
nents becomes

0 = dR = ddω̂,

0 = dT a + (
ω̂εb

a
) ∧ T b − (

Rεb
a
) ∧ eb + γ a

αβψα ∧ T β,

0 = dT α + 1
2

(
ω̂γ̂ α

β

) ∧ T β − 1
2

(
Rγ̂ α

β

) ∧ ψβ. (11)

B. Supergravity action

Employing the extended superalgebra in the previous sec-
tion, we will construct the supergravity model that captures
the low-energy dynamics of the HR state. We consider the
Chern-Simons (CS) action that couples the background elec-
tromagnetic field with the supergravity sector

LCS = sTr

(
ν

μA4π
A ∧ dA + α

μB
A ∧ dB + B ∧ dB

+ 2

3
B ∧ B ∧ B

)
, (12)
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where sTr is the super trace with the property

sTr(AB) = (−1)FAFB sTr(BA). (13)

We see that the action of Eq. (12) is SUSY invariant when the
super field strength satisfies F = 0, i.e., on shell.1Using the
algebra of Eq. (A6) and the bilinear invariants given in Eq. (3),
we can rewrite the action in terms of field components. The
explicit form of the supergravity CS action is

LCS = ν

4π
A ∧ dA + αA ∧ dω̂ + μ1ω̂ ∧ dω̂

+ μ2

2
δabêa ∧ T b + iμ3εαβψα ∧ T β. (14)

The equation of motion of êa gives us the zero torsion con-
straint

T a = dêa + (
ω̂εb

a
) ∧ êb + γ a

αβψα ∧ ψβ = 0. (15)

In the original bimetric theory for FQH states [38], there is
no êa ∧ T b term and ω̂ was defined in term of ê through a
torsion-free condition. Therefore, we drop the êa ∧ T b term2

but keep the torsion-free condition of Eq. (15) to replace ω̂ in
terms of ê and ψ .

We define the (pseudo-)inverse vielbein Êμ
a with the fol-

lowing properties:

Êμ
a êa

ν = δμ
ν , Êμ

a êb
μ = δb

a. (16)

Rectangular vielbeins appeared in effective theories of FQH
in [40–42]. The torsion-free condition (15) can be solved to
write the emergent spin connection in terms of the emergent
vielbein. The spatial component of emergent spin connection
is given by

ω̂i = −εi jε
klεb

a
(
Ê j

a ∂k êb
l + Ê j

a γ b
αβψα

k ψ
β

l

)
. (17)

As we show in Sec. II C the gravitino contributions to the
above solution vanish when the Rarita-Schwinger gauge is im-
posed. Using the gauge ψα

t = 0, on the nondynamical spinor
field, we obtain the explicit expression of the time component
of the emergent spin connection

ω̂t = 1
2εb

aÊ i
a

[
∂t ê

b
i − (

∂iê
b
t + εc

bω̂iê
c
t

)]
. (18)

We then arrive at the CS supergravity action

LCS = ν

4π
A ∧ dA + αA ∧ dω̂ + μ1ω̂ ∧ dω̂

+ iμ3εαβψα ∧ T β, (19)

with the explicit form of the spin connection given in Eqs. (18)
and (17). In the Lagrangian of Eq. (19), ν = 1/2 is the filling
fraction of the HR state and the first term of (19) gives the
Hall conductance σH = 1/2 in units of e2/h. We will see in
the next section that the corresponding boundary theory of the
CS supergravity action of Eq. (19) is the CFT of edge modes
of the HR state.

Some comments are in order. In comparison with the bi-
metric theory of FQH states [38], the bosonic sector is similar

1To satisfy SUSY off shell, one would need to add auxiliary fields
to the action. We leave this approach for future work.

2By imposing the bilinear invariant 〈PP̄〉 = 0.

to an emergent spin connection that describes the dynami-
cal spin-2 excitation. This excitation is the long-wavelength
limit of the magnetoroton excitation, the universal collective
mode in FQH systems proposed by Girvin, MacDonald, and
Platzman [37] as the lowest LL (LLL) projected charge den-
sity wave. The magnetoroton was shown to have spin-2 in
the long-wavelength limit and reinterpreted as a dynamical
emergent metric [24,26,38]—the FQH graviton. The last term
of Eq. (19) belongs to the fermionic sector, which represents
the dynamical spin-3/2 mode—the gravitino excitation of the
HR state. As we have seen, the bosonic and fermionic sectors
transform to each other under the SUSY transformation of
Eq. (8).

C. Rarita-Schwinger gauge

The emergent dynamical metric is defined through the
emergent vielbein as follows [38]:

ĝi j = δabêa
i êb

jδi j . (20)

The graviton dynamics is described by the emergent metric
with the unimodular constraint3

det (ĝi j ) = 1, (21)

which in turn implies

det
(
êa

i

) = 1. (22)

Using the SUSY transformation of vielbein given in Eq. (8),
we see that the constraint det (êa

i ) = 1 is SUSY invariant up to
leading order of perturbation4 if the spinor field ψα

i satisfies
the Rarita-Schwinger (RS) constraint5

γ
μ
αβψα

μ = 0, (23)

which is nothing but the constraint for spin- 3
2 degree of free-

dom to be described by ψα
i [43]. Using the explicit form of the

gamma matrices given in Eq. (A3)and the Majorana condition
(see Appendix A) on the spinor field, the RS condition implies
ψx = iψy. The RS condition and the explicit form of the
gamma matrices imply that the contribution from spinor field
ψα

i in the emergent spin connection of Eq. (17) are canceled
by the anticommutativity of Grassmann variables. We can
solve for ω̂i in terms of the vielbein to get

ω̂i = −εi jε
klεb

aÊ j
a ∂k êb

l . (24)

One can see from the above argument that the RS constraint
on the fermion field is nothing but the SUSY complement of
the unimodular constraint on the vielbein. The RS constraint
has been used to construct the spin-3/2 field in other contexts
[44–46]; in particular, it was used to construct the gravitino
field in various supergravity models [43,47–49]. One conse-
quence of the RS constraint and Eq. (24) is that the emergent
gravitino ψα

μ is a neutral fermion that does not couple directly

3The constraint det ĝ = 1 removes the spin-0 dilaton degree of
freedom, leaving only the spin-2 degrees of freedom.

4We consider êa
i = δa

i + δêa
i , where δêa

i is treated as a perturbation
on the flat background space-time.

5This constraint comes from δξ êa
a = 0, which is required to pre-

serve the constraint det (êa
i ) = 1 under SUSY transformations.
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to the background electromagnetic field Aμ. However, it can
couple to Aμ indirectly through the emergent graviton.

D. Charge density operator and the GMP algebra

The GMP algebra [37,50] determines the commutation
relation of the LLL-projected charge density operator at dif-
ferent wavelengths

[ρ(k), ρ(q)] = 2i e
1
2 (k·q) sin

(
k × q

2
�2

B

)
ρ(q), (25)

where the magnetic length �B = 1/
√

B. The GMP algebra was
shown to be equivalent to the W∞ algebra discovered in the
string theory context [21,51]. In this section, we will show that
our model satisfies the GMP algebra in the long-wavelength
limit.

From the action of Eq. (19), we obtain the charge density
operator by variation of the action with respect to the scalar
potential

ρ = δS
δA0

= νB

2π
+ α

2
εi j R̂ = ρ̄ + δρ, (26)

where ρ̄ = νB
2π

is the average charge density of the FQH state.
The emergent Ricci curvature is given by

R̂ = 2√
ĝ
εi j∂iω̂ j, (27)

where the emergent metric satisfies the unimodular constraint
det(ĝi j ) = 1. Equation (26) relates the charge density to the
emergent curvature; it connects the magnetoroton excitation,
the charge density wave, to the emergent graviton. Further-
more, we see that the charge density is invariant under the
SUSY transformation of Eq. (8).

The coupling of the background magnetic field with the
time component of the emergent spin connection in the action
is given by the term αBω̂0. Using the solution given in Eq. (18)
we see that only the time derivative of êa

i arises in this term
and êa

t only has spatial derivatives.6 This implies the canonical
commutation relations[

Ê i
a(x), êb

j (x
′)
] = − i

α
εa

bδi
jδ(x − x′). (28)

With the commutation relation of Eq. (28) and the definition
of charge density given in Sec. II D in terms of the emergent
spin connection, one can obtain the long-wavelength limit of
the GMP algebra [38,52]

[δρ(k), δρ(q)] = i�2
B(k × q)δρ(k + q). (29)

The algebra of Sec. II D is the classical version of the W∞
algebra named w∞. It is also the algebra of area-preserving
diffeomorphisms that should be fulfilled by a proper effective
theory of FQHE [53].

6Since no time derivatives of êa
t contribute to the action, this com-

ponent of the emergent vielbein can be thought of as a Lagrange
multiplier.

III. BOUNDARY THEORY

In this section, we derive the boundary theory associated
with the dynamical emergent spin connection ω̂ and the grav-
itino ψα given by the action stated in Eq. (19) in the absence
of perturbation of the background electromagnetic field, i.e.,
magnetic field B = B̄ is a constant, and no applied electric
field E = 0.

A. Bosonic sector equations of motion

From the action given in Eq. (19), we obtain the equa-
tions of motion for the dynamical fields. Varying the action
with respect to the gravitino field gives us that the fermionic
torsion vanishes, i.e.,

T α = 0. (30)

In the bosonic sector, if we vary the action with respect to the
emergent spin connection we get

δω̂S =
∫

d3x U μδω̂μ, U μ = − 1
2εμνλ

(
1
2αFνλ + μ1R̂νλ

)
.

(31)

Now we need to convert the variation of the spin connection
to a variation of the vielbein. This can be done using Eqs. (18)
and (24) or by directly using the results of Ref. [54]. The final
result is

δêS = 2
∫

d3x (ελ(μ∇λU ν)Êaν )δêa
μ. (32)

Thus the equations of motion are

∇i(αB + 2μ1R) = 0, ∇(iR̂ j)t − 2δi j∇kR̂kt = 0, (33)

where we have used the absence of electric field E = 0. Tak-
ing a trace, the second one simplifies to

∇ iR̂it = 0, ∇(iR̂ j)t = 0. (34)

Thus the only degree of freedom in the curvature is

∇[iR̂ j]t = − 1
2εi j∂t R̂, (35)

which follows from the Bianchi identity. From Eq. (33), the
equation of motion of vielbein in the absence of perturbation
of the external electromagnetic field requires a constant emer-
gent curvature R̂ in space at any given time. We choose this
constant to equal zero since, from Sec. II D, the total electric
charge of a FQHE state in a homogeneous magnetic field
should be Q = Area × ρ = Area × ν B̄

2π
. Therefore, the equa-

tion of motion of the bosonic sector requires spin connection
to be a pure spatial rotation

ω̂i = ∂iϕ. (36)

B. Boundary action

We consider the manifold M where the spatial region is
the upper half plane y � 0 and the boundary ∂M is at y = 0
coordinatized by t and x.7

7A similar analysis can be done with a circular spatial boundary
instead of a line.
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Take the action

S =
∫

M
αĀ ∧ dω + μ1

∫
M

ω̂ ∧ dω̂ + iμ3

∫
M

εαβψα ∧ T β.

(37)

The variation of the action is then

δS=
∫

M
αB̄ ∧ δω+2μ1

∫
M

dω̂ ∧ δω̂ + 2iμ3

∫
M

εαβδψα ∧ T β

− μ1

∫
∂M

ω̂ ∧ δω̂ − iμ3

∫
∂M

εαβψα ∧ δψβ. (38)

The bulk terms give the equations of motion as discussed be-
fore. For the boundary terms to vanish, we take the boundary
conditions

(ω̂t − vbω̂x )|∂M = 0,(
ψα

t − v f ψ
α
x

)|∂M = 0, (39)

where vb and v f are the velocities of the bosonic and fermionic
boundary modes, respectively.

To obtain the boundary action, we consider solutions that
satisfy the initial data constraints from the equations of mo-
tion. For the bosonic sector, we have ω̂i = ∂iϕ, i.e., the spin
connection is a pure spatial rotation gauge mode.8 For the
gravitino, the constraint is that the spatial part of the torsion
vanishes, T α

i j = 0, whose solution is given by

ψα
i = Di[(e

− 1
2 ϕγ̂ )αβχβ] = (e− 1

2 ϕγ̂ )αβ∂iχ
β, (40)

where D is the covariant derivative of the spinor field with
respect to the emergent spin connection and the right-hand
side is interpreted as a matrix exponential. It is convenient
to write this in the Weyl basis where γ̂ is diagonalized (see
Appendix A), which gives

ψα
i =

⎛
⎝e− i

2 ϕ
∂iχ

e+ i
2 ϕ

∂iχ̄

⎞
⎠. (41)

Using the constraints, we rewrite the CS action as

S = μ1

∫
M

d3x εi j[−ω̂i∂t ω̂ j + ω̂t∂iω̂ j + ω̂i∂ jω̂t ]

+ iμ3

∫
M

d3x εi jεαβ

[−ψα
i Dtψ

β
j + ψα

i D jψ
β
t

]
. (42)

Since the emergent spin connection is flat, we can write the
above as a boundary term after integration by parts and use
the constraints and the boundary conditions [Eq. (39)] to get

S = μ1

∫
∂M

dt dx[∂xϕ∂tϕ − vb(∂xϕ)2]

+ iμ3

∫
∂M

dt dx[∂xχ∂−χ̄ − ∂xχ̄∂−χ ], (43)

where ∂− = ∂t − v f ∂x. The chiral bosonic action is the
Floreanini-Jackiw action [55]. Since for fermionic fields

8In terms of the emergent vielbein this mode corresponds to a local
rotation of the flat vielbein: ê1

x = Ê x
1 = ê2

y = Ê y
2 = cos ϕ and −ê1

y =
−Ê y

1 = ê2
x = Ê x

2 = sin ϕ.

(AB)† = B̄Ā the fermionic action is the same as the HR
boundary action given in Milovanović and Read [39] and in
Gurarie et al. [33]. Notice that, in Ref. [56], the boundary
theory of the Moore-Read state was constructed using N =
(1, 0) supersymmetry; the boundary theory of [56] has a chiral
boson and a copropagating Majorana fermion. In contrast,
we consider N = (1, 1) supersymmetry in our model; as a
consequence, the boundary theory includes a chiral boson
and a complex fermion (even though our bulk gravitino is
Majorana from the point of view of the bulk spatial geometry).

The physical model of the edge of quantum Hall liquid
was proposed by Wen [57], in which the edge modes are
chiral Luttinger liquids. Assuming bulk-edge correspondence
holds, the boundary theory is the effective theory that relates
to the topological properties of the bulk, and the electron
wave function in bulk can be constructed from the correlations
of the effective edge theory. However, in realistic quantum
Hall systems, one needs to add perturbations, including the
interactions between edge modes, to the boundary theory. The
perturbations depend on the physical details of the confining
potential and the interactions between electrons. The modifi-
cations of the edge theory lead to quantum phase transitions
that describe the quantum Hall edge reconstructions [58] that
were suggested in experiments [59–61].

IV. NUMERICAL CONFIRMATION OF THE EMERGENT
GRAVITON AND GRAVITINO

The Haldane-Rezayi (HR) state [31,32] is described by the
wave function

�HR
1/2 = Det

(
1

(z↑
i − z↓

j )2

) ∏
i, j

(z↑
i − z↓

j )2

×
∏
i< j

(z↑
i − z↑

j )2
∏
i< j

(z↓
i − z↓

j )2e
− ∑

i

(
|z↑i |2+|z↓i |2

4�2
B

)
, (44)

where Det stands for determinant, z↑
i denotes the two-

dimensional coordinate of the ith electron with spin up
|↑〉 parametrized as a complex number with z=x−iy, and
z↓

j denotes the coordinate of the jth electron with spin
down |↓〉. The HR wave function of Eq. (44) can be
constructed for an even number of particles and describes
an S=0 spin-singlet state at ν=1/2. The HR state is an
exact zero-energy9 state of the hollow-core10 Hamiltonian
parametrized in terms of Haldane pseudopotentials [62] as

9The fact that the HR wave function is a zero mode of the hollow-
core Hamiltonian can be seen by noting that when two particles of
the same spin separated by a distance r approach each other, the HR
wave function vanishes at least as r3 (a factor of r from the Fermi
statistics imposed by the determinant and a factor of r2 from the
ν=1/2 bosonic Laughlin intraspin correlations), while when two par-
ticles of opposite spin separated by a distance r approach each other,
terms in the expansion of the HR wave function vanish as r0 [when
the factor of 1/(z↑

i − z↓
j )2 from the expansion of the determinant is

canceled by the corresponding factor in the interspin correlations∏
i, j (z

↑
i − z↓

j )2] or r2 (from just the interspin correlations) but not as
r1. Therefore, the HR wave function has no amplitude in the relative
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FIG. 1. Spectrum and gaps of the collective modes of the ν=1/2 Haldane-Rezayi spin-singlet state obtained from exact diagonalization
of the V1 Haldane pseudopotential Hamiltonian in the spherical geometry for N particles in the presence of 2Q flux quanta. The left panel
(a) shows the spectrum for an even number of electrons which supports the Haldane-Rezayi ground state and the real spin S=0 magnetoroton
mode. The center panel (b) shows the spectrum for an odd number of electrons which supports the real spin S=1/2 neutral fermion mode. The
right panel (c) shows a thermodynamic extrapolation of the long-wavelength limit of the density-corrected magnetoroton and neutral fermion
gaps obtained from a quadratic fit in 1/N . The extrapolated energies are shown on the plot with the number in the parentheses indicating the
error in the intercept.

{V0,V1,V2,V3, . . .}={0, 1, 0, 0, . . .}, where Vm is the energy
cost of placing two electrons in the relative angular momen-
tum m state. The HR wave function of Eq. (44) sans the
determinant factor is just the bosonic ν=1/2 Laughlin state
made up of all the particles and the 1/2 Laughlin state is
precisely described by the first two terms of the Lagrangian
given in Eq. (19). From here on in, for ease of notation,
we shall drop the ubiquitous Gaussian factor from the wave
functions.

All our numerical calculations are carried out in the spher-
ical geometry [62]. In this geometry, N electrons move on the
surface of the sphere at the center of which sits a magnetic
monopole that emanates a radial flux of strength 2Qhc/e. The
HR state on the sphere occurs for an even number of elec-
trons N when the flux 2Q=2N−4. In Fig. 1(a) we show the
spectrum of the aforementioned hollow-core V1-only (strength
of which is set to unity as above) Hamiltonian for N=12
particles.11 Aside from the zero-energy HR ground state, we
can identify a set of low-lying excitations that carry the same
spin S=0 as the HR ground state and form a collective mode
analogous to the magnetoroton branch of excitations seen in
other FQH states.

Inspired by a recent parton construction of the collective
modes of FQH states [29], we propose that the magnetoro-
tonlike mode for the HR state can be described by the wave
function

�
HR magnetoroton
1/2 = Det

(
1

(z↑
i − z↓

j )2

)∏
i, j

(z↑
i − z↓

j )2

× �CFE
1/2 ({z↑})

∏
i< j

(z↓
i − z↓

j )2, (45)

angular momentum m=1 channel and thus has zero energy for the V1

Hamiltonian.
10This Hamiltonian is hollow core since it has V0=0 and thus does

not give any energy penalty to placing two electrons at their closest
approach.

11Results for smaller systems are similar and the next system of
N=14 which has a Hilbert space dimension of about 4 billion is
beyond our reach.

where �CFE
1/2 ({z↑}) describes the composite fermion [22] exci-

ton (CFE) mode of the bosonic ν=1/2 Laughlin state [17]
made from only the spin-up electrons.12 This magnetoro-
ton branch of excitations extends from total orbital angular
momentum L=2 to L=N/2 [63] [consistent with the iden-
tification of the states shown in Fig. 1(a)] in the spherical
geometry [62]. The wave number q�B on the plane is related
to L as q�B=L/R, where R=√

Q is the radius of the sphere
(in units of �B) and thus the long-wavelength gap of the mag-
netoroton mode is obtained by looking at its L=2 gap. The
wave function given in Eq. (45) is amenable to large system
evaluations using the Monte Carlo method [64,65] in real
space (first quantization). However, it is difficult to evaluate
the V1 energy of this wave function for large sizes since the
V1 interaction is not smooth in real space. A different version
of the magnetoroton mode can be constructed by replacing
the CFE state with the GMP density mode ansatz [37,50]. In
the long-wavelength limit of our interest, the CFE and GMP
versions of the wave function given in Eq. (45) are identical
[66,67]. The wave function given in Eq. (45) predicts that the
HR graviton has a negative chirality, the same as the chirality
of the graviton of the Laughlin states [29,68,69]. This is also
consistent with the fact that the HR state is annihilated by a
short-range Hamiltonian [70].

To look for other low-lying collective modes of the HR
state, we calculate the spectrum of the V1-only Hamiltonian
for an odd number of electrons at the same ground state flux
2Q=2N−4. For an odd number of electrons too, the flux
2Q is even and Q is thus integral which produces integral
L values for all the states in this Hilbert space. In Fig. 1(b)
we show the V1 spectrum for N=11 electrons.13 In this spec-
trum, we can identify a set of low-lying states that carry
spin S=1/2 (since the excitation occurs for an odd number
of particles, it carries an odd half-integral spin) and form a
collective mode which we call the neutral fermion mode in
analogy to the neutral fermion branch of excitations seen in

12Since up and down spins are on an equal footing in the HR wave
function, one could also create the CFE in spin-down electrons.

13Results for smaller systems are similar and the next system of
N=13 which has a Hilbert space of about half a billion is beyond our
reach.
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the Moore-Read state [8,71]. The smallest L for the neutral
fermion excitation is L=1 and thus, in the long-wavelength
limit, it carries an angular momentum of J=3/2 relative to
the ground state (composed of an L=1 and S=1/2 excitation
and since the mode occurs for Jz=Lz+Sz=1+1/2=3/2 it has
J=3/2 instead of J=1/214). At the moment, it is not clear
how to construct the wave function of the neutral fermionlike
mode for the HR state (see Sec. V for some speculative ideas
in that direction). We note here that it might be possible to
use the Jack polynomial decomposition of the HR state [72]
to construct both its magnetoroton and neutral fermion modes
[10] in Fock space (second quantization). However, since this
approach is restricted to small systems, with it we will not be
able to access the long-wavelength limit of the modes that are
of primary focus in the current work.

Finally, we look at the long-wavelength limits of the
magnetoroton and neutral fermion gaps which are respec-
tively the L=2 magnetoroton and J=3/2 neutral fermion
gaps.15 In Fig. 1(c) we show a thermodynamic extrapolation
of the gaps as a function of 1/N . Before extrapolation to
the thermodynamic limit, the gaps of the finite systems are
density corrected [73], i.e., the gaps are multiplied by a fac-
tor of

√
2Qν/N which corrects for the fact that the density

for a finite system on the sphere N/(4πQ�2
B) is different

from that in the thermodynamic limit ν/(2π�2
B). The density

correction weakens the N dependence of the gaps. In the long-
wavelength limit, we find that the neutral fermion is gapless
(within error bars), which is consistent with previous theoreti-
cal expectations [34,74]. On the other hand, the magnetoroton
shows a finite gap. A note of caution is warranted here: for
spinful systems, there may be stronger finite-size effects than
fully polarized systems since only a few systems are amenable
to exact diagonalization. For a large system, we expect that in
the long wave number limit, i.e., q�B→∞, the neutral fermion
and magnetoroton gaps would converge to the same value.16

For the systems’ sizes accessible to us, the long wave number
limits of the two gaps are still different from each other.

In the incompressible FQH states such as the Laughlin
[17], Moore-Read [75,76], or Jain states [22], the entire mag-
netoroton branch is gapped and its long-wavelength spin-2
excitation acquires a mass term as constructed explicitly in
Ref. [38]. However, for the compressible composite fermion
Fermi sea state at ν=1/2 the magnetoroton is gapless at zero
momentum and thus its graviton is massless [68]. In the case
of the HR state, although the state is gapless, its magnetoroton

14For J�5/2, since S=1/2, L�2, while we clearly see a low-energy
state with L=1 in Fig. 1(b).

15Although we have not been able to get the full spectrum for N=13
we have been able to get the gap of the J=3/2 excitation for this
system and that data point has been included in Fig. 1(c).

16As we suggest in Sec. V the neutral fermion is likely to be
composed of a CF particle (CFP) in one spin and a CF hole (CFH)
in the other spin. The CFE is also made up of a CFP and a CFH
but both the excitations reside in the same spin species. In the limit
q�B→∞ the CFP and CFH are far away from each other and thus do
not interact. Therefore, it does not make a difference as to whether
the CFP and CFH carry the same spin (as in the magnetoroton) or
have opposite spins (as in the neutral fermion).

could be gapped (as the available numerical results suggest),
which implies a massive graviton [74]. One can add the fol-
lowing mass term of the graviton to our action [38]:

Sm = −
∫

d3x
√

g
m

2

(
1

2
ĝi jg

i j − γ

)2

, (46)

where gi j is the ambient metric and ĝi j is the emergent metric
defined in Eq. (20). In Eq. (46) γ > 2, m > 0 are parameters
that determine the graviton mass [38,52]. On the other hand,
the gravitino seems to remain massless. The mass term of
Eq. (46) breaks the supersymmetry as one should not expect
that the emergent supersymmetry works exactly. The addi-
tional mass term does not change the main conclusions in the
previous sections.

V. CONCLUSIONS AND OUTLOOK

To summarize, we demonstrated that the N = (1, 1) su-
pergravity can be realized in the bulk of the Haldane-Rezayi
quantum Hall state at filling fraction ν = 1/2. We proposed a
nonrelativistic superalgebra acting on two spatial dimensions.
We constructed the CS supergravity action in which the gravi-
ton and gravitino are emergent dynamical degrees of freedom
that correspond to the low-lying magnetoroton and neutral
fermion excitations in the HR state. We were able to repro-
duce the corresponding edge theory and the long-wavelength
limit of the GMP algebra from our proposed model. We also
identified the emergent graviton and gravitino excitations by
numerical simulation of the HR Hamiltonian on a sphere.
Even though our numerical results suggest that the emergent
graviton is massive, which suggests the breaking of supersym-
metry, for larger systems, the graviton and gravitino may both
go soft in the long-wavelength limit. Numerical computations
on larger systems sizes, that would give closer access to the
long-wavelength limit, are needed to conclusively determine
the graviton mass.

We further proposed a trial wave function of the magne-
toroton excitation for the HR state in Eq. (45). However, the
construction of a trial wave function of the neutral fermion
mode for the HR state remains an open question. One naive
construction would be to use

�HR neutral fermion
1/2 = Det

(
1

(z↑
i − z↓

j )2

)∏
i, j

(z↑
i − z↓

j )2

× �CFH
1/2 ({z↑})�CFP

1/2 ({z↑}). (47)

Here �CFH
1/2 ({z↑}) describes the composite fermion hole (CFH)

of the bosonic ν=1/2 Laughlin state made from only the spin-
up electrons and �CFP

1/2 ({z↓}) describes the composite fermion
particle (CFP) of the bosonic ν=1/2 Laughlin state made
from only the spin-down electrons (one could also put the
CFH in spin down and CFP in spin up). The CFH carries
an orbital angular momentum of LCFH=(N+1)/4, while the
CFP carries LCFH=(N−1)/4.17 This neutral fermion branch

17The CFP and CFH in a Laughlin state made of N ′ particles carries
L=N ′/2 [63].
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of excitations would extend from total orbital angular mo-
mentum L=3/2 to L=N/2 on the sphere and for odd N these
orbital angular momenta will be half integral. However, the
flux at which the HR state occurs is 2Q=2N−4 and is al-
ways even (for both even and odd N) and thus produces only
integral values of L. Furthermore, the matrix for which the
determinant is evaluated for odd-N is nonsquare. Thus this
naive construction does not work. This suggests that perhaps
one has to modify the determinant factor to construct this
excitation by going to a related system with an even number
of particles. From exact diagonalization, it appears that the
neutral fermion mode extends from L=1 to L=(N+1)/2.
However, it cannot be described by just the magnetoroton
of the spin-up electrons [although the maximum L for that
matches with (N+1)/2] since the magnetoroton starts only
from L=2 (the L=1 exciton is eliminated upon projection to
the LLL). We speculate that a construction similar to that car-
ried out by one of us et al. [11] for the neutral fermion of the
Moore-Read state can be used to construct the wave function
of the neutral fermion for the HR state. We can include an
additional particle in the spin-down sector to get an effective
system with an even number of particles18 and then create
a CFP in up spin and a CFH in down spin as stated above.
By adding the angular momentum of the CFP and CFH,
we expect the neutral fermion mode to extend from L=0 to
L=[(N+1)/2]/2+[(N+1)/2]/2=(N+1)/2 [this is indeed the
largest L up to which we see the mode extend till in Fig. 1(b)].
The L=0 state then gets eliminated upon projection to the
LLL (like the L=1 magnetoroton exciton gets projected out).

The FQH gravitons which are the long-wavelength limit of
the magnetoroton excitations can be probed in inelastic light
scattering experiments [77,78]. The chirality of the graviton
can also be determined with circular polarized Raman scatter-
ing [46]. In principle, photoluminescence [8] experiments can
detect the gravitino excitation, which is the long-wavelength
limit of the neutral fermion mode, in the bulk.

Our results can potentially be extended to shed light on the
nature of other unpolarized paired states like the Belkhir-Jain
spin singlet [79,80] and the Halperin 331 [81] states that both
occur at half filling and are expected to be fully gapped [74].
Very recently, by evaluating the energies of the graviton and
gravitino excitations, the authors of Ref. [82] have suggested
that the ν=5/2 FQH state, modeled by the Moore-Read wave
function, is in the vicinity of the proposed supersymmetric
point [11]. A supersymmetric model that captures the bulk
physics of the Moore-Read state is still an open question [82].
Since the proposed supersymmetry of the boundary modes
for the Moore-Read state is N = (1, 0) [56], one expects
that the same supersymmetry should be shared by the bulk
theory. Aside from these states, which can all be interpreted as
paired states of composite fermions [34], supersymmetry can
be a useful tool to describe the recently proposed Zn-ordered
superconducting states of composite bosons [83]. In general,
it appears that paired states of electron-vortex composites can

18Then we have an equal number of up and down spins
N↑=N↓=(N+1)/2, which would put both spins on an equal footing
and also allow for a construction of the determinant of a square
matrix as in the HR ground state wave function of Eq. (44).

harbor supersymmetry. We expect that the model proposed in
this paper can provide some suggestions for further investi-
gations. We also defer the coupling of dynamical emergent
graviton and gravitino with the background geometry for fu-
ture work.
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APPENDIX A: DIRAC ALGEBRA AND N = (1, 1)
SUPERSYMMETRY IN TWO SPATIAL DIMENSIONS

In this Appendix, we summarize the Dirac algebra and the
convention we used in this paper. In the signature (+,+), we
consider the Clifford algebra of the gamma matrices

γaγb + γbγa = −2δabI, (A1)

where I is the 2 × 2 identity matrix and δab is the metric in a
Cartesian basis. We also define γ̂ as

γ̂ = 1
2εabγaγb, (A2)

where εab is the totally antisymmetric tensor in two dimen-
sions. It will be convenient to use the following Weyl (chiral)
form of the Dirac algebra which diagonalizes γ̂ :

γx = iσy =
(

0 1
−1 0

)
, γy = iσx =

(
0 i
i 0

)
,

γ̂ = iσz =
(

i 0
0 −i

)
, (A3)

where σi are the standard Pauli matrices.
A spinor ψα is given by a two-component matrix

ψα =
(

ψ1

ψ2

)
. (A4)

If the Dirac matrices are chosen as in Eq. (A3), then the
Majorana condition on the spinor is ψ2 = ψ1. Spinor indices
can be raised and lowered with the antisymmetric symbols εαβ

and εαβ .
Next, we show that the algebra in Eq. (1) is equivalent to

the N = (1, 1) supersymmetry algebra. Take the holomorphic
complex coordinate on the plane as z = x + iy and its complex
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conjugate. The holomorphic/antiholomorphic translations are
then

Pz = 1
2 (Px − iPy), Pz̄ = Pz. (A5)

Similarly, decompose the rotation into chiral
holomorphic/antiholomorphic components J = i(J − J̄ ).
The supersymmetry generator is a Majorana spinor operator
Qα = (Q, Q̄). In terms of these, using Eq. (A3), Eq. (1) is
equivalent to the chiral holomorphic algebra

[J,Pz] = Pz, [Q, Q] = 2Pz, [J, Q] = 1
2 Q, (A6)

and its complex conjugate. Now identifying J = L0, Pz =
L−1, and Q = G−1/2, we see that Eq. (A6) is the subalgebra
of global holomorphic supersymmetries within the Neveu-
Schwarz superalgebra (see [84,85]). Including the complex
conjugate algebra then gives us the full global N = (1, 1)
supersymmetries in two dimensions.19

APPENDIX B: DERIVATION OF THE ACTION

In this section, we will explicitly derive the action (14)
using the algebra (1) and the bilinear invariants (3). We use
the complex vielbein basis

êμ = 1
2

(
êx
μ + iêy

μ

)
, ¯̂eμ = 1

2

(
êx
μ − iêy

μ

)
(B1)

to rewrite the connection B
Bμ = ω̂μJ + êμPz + ¯̂eμPz̄ + ψ̄μQ̄ + ψμQ. (B2)

We work to expand explicitly the last term of the CS action
(12)

sTr(B ∧ B ∧ B) = sTr(εμνλBμBνBλ). (B3)

Let us consider the terms with J , P,Pz̄ in (B3)

sTr[εμνλω̂μJ (êνPz ¯̂eλPz̄ + ¯̂eνPz̄ êλPz )

+ εμνλ ¯̂eμPz̄(êνPzω̂λJ + ω̂νJ êλPz )

+ εμνλêμPz( ¯̂eνPz̄ω̂λJ + ω̂νJ ¯̂eλPz̄ )]. (B4)

Using the property of the super trace (13), the first term of
(B4) can be written as

sTr[εμνλ(ω̂μJ êνPz ¯̂eλPz̄ + êλPzω̂μJ ¯̂eνPz̄ )]

= sTr[εμνλ(ω̂μJ êνPz ¯̂eλPz̄ − êνPzω̂μJ ¯̂eλPz̄ )]

= sTr[εμνλω̂μêν
¯̂eλ[J ,Pz]Pz̄]

= εμνλω̂μêν
¯̂eλ sTr[iPzPz̄]

= iμ2ε
μνλω̂μêν

¯̂eλ = iμ2ω̂ ∧ ê ∧ ¯̂e, (B5)

where we used the commutation relation of J and P and the
bilinear invariants (3). Similarly, the second term and the last
term of (B4) give the same results

sTr[εμνλ ¯̂eμPz̄(êνPzω̂λJ + ω̂νJ êλPz )] = iμ2ω̂ ∧ ê ∧ ¯̂e,

(B6)

19Note that in a two-dimensional CFT the bosonic symmetry gener-
ators can be extended to the Virasoro algebra and its supersymmetric
extension is the Neveu-Schwarz algebra.

sTr[εμνλêμPz( ¯̂eνPz̄ω̂λJ + ω̂νJ ¯̂eλPz̄ )] = iμ2ω̂ ∧ ê ∧ ¯̂e.

(B7)

Consequently, the terms with J ,Pz,Pz̄ of (B3) give us

i3μ2ω̂ ∧ ê ∧ ¯̂e. (B8)

Subsequently, we consider the terms with Pz, Q̄, Q̄ in (B3)

sTr[εμνλêμPzψ̄νQ̄ψ̄λQ̄ + εμνλψ̄μQ̄ψ̄νQ̄êλPz

+ εμνλψ̄μQ̄êνPzψ̄λQ̄]. (B9)

We use the anticommutation of Grassmannian fields to rewrite
the first term of (B9) as

sTr[εμνλêμPzψ̄νQ̄ψ̄λQ̄] = εμνλêμψ̄νψ̄λsTr
[
Pz

1
2 [Q̄, Q̄]

]
= εμνλêμψ̄νψ̄λsTr[PzPz̄]

= μ2ε
μνλêμψ̄νψ̄λ

= μ2ê ∧ ψ̄ ∧ ψ̄. (B10)

The second term and the last term of (B9) give similar results.
Consequently, the terms with Pz, Q̄, Q̄ in (B3) give

3μ2ê ∧ ψ̄ ∧ ψ̄. (B11)

Similarly, the terms with P̄z, Q, Q in (B3) give

3μ2 ¯̂e ∧ ψ ∧ ψ. (B12)

Finally, we consider the terms with J , Q, Q̄ in (B3)

sTr[εμνλω̂μJ (ψνQψ̄λQ̄ + ψ̄νQ̄ψλQ)

+ εμνλψ̄μQ̄(ψνQω̂λJ + ω̂νJψλQ)

+ εμνλψμQ(ψ̄νQ̄ω̂λJ + ω̂νJ ψ̄λQ̄)]. (B13)

The first term of (B13) can be manipulated as

sTr[εμνλ(ω̂μJψνQψ̄λQ̄ + ω̂μJ ψ̄νQ̄ψλQ)]

= sTr[εμνλ(ω̂μJψνQψ̄λQ̄ + ψλQω̂μJ ψ̄νQ̄)]

= εμνλω̂μψνψ̄λsTr[[J , Q]Q̄]

= εμνλω̂μψνψ̄λsTr

[
i

2
QQ̄

]

= −μ3

2
ω̂ ∧ ψ ∧ ψ̄, (B14)

where we used (13) and the anticommutation of Grassman-
nian fields. The other terms of (B13) give the same results.
Consequently, the terms with J , Q, Q̄ in (B3) give

−3μ3

2
ω̂ ∧ ψ ∧ ψ̄. (B15)

Using the invariants (3) and Eq. (5), we can easily obtain

sTr(B ∧ dB) = μ1ω̂ dω̂ + μ2

2
δabêad êb + iμ3εαβψαdψβ.

(B16)
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After converting the terms in sTr(B ∧ B ∧ B) to the normal coordinate basis, we have the following result:

sTr

(
B ∧ dB + 3

2
B ∧ B ∧ B

)
= μ1ω̂ dω̂ + μ2

2
δabêad êb + μ2êa ∧

(
ω̂

2
εba ∧ êb + δabγ

b
αβψα ∧ ψβ

)

+ iμ3εαβψαdψβ + i
μ3

2
ψαεαβ ∧ ω̂γ̂ β

γ ∧ ψγ . (B17)

Using the definition of the torsion (10), we obtain explicitly the terms with coefficients μ1, μ2, and μ3 in the action (14) in the
main text.
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