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Pair binding and enhancement of pairing correlations in asymmetric Hubbard ladders
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Asymmetric two-leg Hubbard ladders with different on-site interactions Uy and hoppings ty on each leg are
investigated using the density-matrix renormalization group method and exact diagonalizations. The pairing
found in symmetric ladders is robust against the introduction of the leg asymmetry. When studying pairing,
one-band Hubbard ladder models are better described as one-dimensional correlated two-band models than as
sublattices of higher-dimensional systems. The asymmetric Hubbard ladder provides us with a simple model for
studying pairing in the crossover regime between charge-transfer and Mott insulators.
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I. INTRODUCTION

Correlated electron models on ladder lattices have been
studied for almost 30 years with the aim of shedding light
on the origin of unconventional superconductivity in layered
and ladderlike cuprate compounds [1–5]. The key idea is
that the one-dimensional (1D) ladderlike sublattice is less
difficult to study but retains the essential properties of the
two-dimensional (2D) lattice. This approach is still widely
used because investigations of truly 2D models for correlated
electrons remain extremely challenging [6]. Many studies
have focused on lightly doped two-leg ladders with equiv-
alent legs. They have shown that the low-energy properties
of one-band Hubbard ladders are consistent with a Luther-
Emery phase [7] with d-wave-like (quasi-long-range) pairing
correlations [8–12], which can be seen as the 1D precursor of
a d-wave superconducting phase in higher dimensions.

Investigations of the more generic but also more challeng-
ing three-band Hubbard model [13] on ladders have been rare
and less conclusive [14–17]. A recent study did not find a
Luther-Emery phase in that model with realistic parameters
for cuprates [17]. It is also noticeable that recent studies
suggest a completely opposite situation in two dimensions:
The one-band Hubbard model is likely not superconduct-
ing [18] while the three-band Hubbard model could describe
the superconducting phase of layered cuprates [19]. These
contradictions call into question the adequacy of correlated
ladder models for studying unconventional superconductivity
in cuprates.

Here, we report on our study of an asymmetric two-leg
Hubbard ladder with different on-site interactions Uy and hop-
pings ty on each leg [20] (see Fig. 1). This model can also be
seen as a two-band Hubbard chain [21]. Thus it can describe
both the doping of a Mott insulator such as the one-band
Hubbard model and the doping of a charge-transfer insulator
such as the three-band Hubbard model, but it is simpler than
the latter and includes the former as a special case.

Our results show that the pairing found in symmetric
Hubbard ladders is robust against the introduction of a leg
asymmetry. Thus when studying pairing properties, one-band
ladder models are better seen as 1D two-band correlated

models than as sublattices of higher-dimensional lattices. We
conclude that asymmetric ladder models provide us with an
interesting opportunity to study pairing upon doping in sys-
tems lying in between charge-transfer and Mott insulators.

II. MODEL AND METHODS

The Hamiltonian of the asymmetric two-leg Hubbard lad-
der shown in Fig. 1 is

H = −
∑
x,y,σ

ty(c†
x+1,y,σ cx,y,σ + c†

x,y,σ cx+1,y,σ )

− t⊥
∑
x,σ

(c†
x,2,σ cx,1,σ + c†

x,1,σ cx,2,σ )

+
∑
x,y

Uy

(
nx,y,↑ − 1

2

)(
nx,y,↓ − 1

2

)
, (1)

where cx,y,σ (c†
x,y,σ ) is an annihilation (creation) operator for

an electron with spin σ on the site with coordinates (x, y),
y = 1 (first leg) or y = 2 (second leg), and the rung index
x runs from 1 to the ladder length L. The electron number
operators are denoted n̂x,y,σ = c†

x,y,σ cx,y,σ . The range of the
average site density is 0 � n � 2 with n = 1 corresponding
to a half-filled ladder. As the Hamiltonian is symmetric under
a particle-hole transformation, we discuss only electron dop-
ing, i.e., n � 1. The particle-hole symmetry can be removed
to mimic the asymmetry in superconducting cuprates using
on-site potentials that differ from −Uy/2 but we have not
explored this generalization yet.

The Hamiltonian (1) depends on five parameters
(t⊥, ty,Uy, y = 1, 2). As both legs and their relative phase can
be exchanged without changing the model properties, we can
restrict ourselves to the case t⊥ � 0 and �U = U1 − U2 � 0.
The single-particle spectrum of the noninteracting asymmetric
two-leg ladder (Uy = 0) is made of two bands of equal width
4t‖ with the average leg hopping t‖ = |t1 + t2|/2. Thus all
energies presented here are given in units of t‖. Moreover, it
is convenient to introduce �t = t1 − t2 as a measure of the
asymmetry of intraleg hoppings. In the dimer limit (t⊥ � |ty|)
the eigenstates are more conveniently expressed with the
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FIG. 1. Sketch of the asymmetric Hubbard ladder described by
the Hamiltonian (1) with different on-site repulsions Uy and hoppings
ty on each leg (y = 1, 2) and interchain hopping t⊥.

average interaction Ū = (U1 + U2)/2 and the difference
�U = U1 − U2. However, we find that the pairing properties
depend essentially on the ratio uy = Uy/ty. Thus we will use
both parametrizations in the discussion of our results.

Here, we focus on two quantities, the pair binding energy
and pair correlation functions. Let E0(N↑, N↓) be the ground-
state energy of the ladder system with Nσ electrons of spin
σ . The pair binding energy (PBE) for two added (+) or two
removed (−) electrons is given by

E±
pb =2E0(N↑ ± 1, N↓)−E0(N↑ ± 1, N↓ ± 1)−E0(N↑, N↓).

(2)

The single-particle gap is defined as

Ep = E0(N↑ + 1, N↓) + E0(N↑ − 1, N↓) − 2E0(N↑, N↓)

(3)

and the charge gap is defined as

Ec = 1
2 [E0(N↑ + 1, N↓ + 1) + E0(N↑ − 1, N↓ − 1)

− 2E0(N↑, N↓)]. (4)

Moreover, the spin gap is defined as

Es = E0(N↑ + 1, N↓ − 1) − E0(N↑, N↓). (5)

At half filling the PBE becomes

Epb = E+
pb = E−

pb = Ep − Ec. (6)

In our discussion of the PBE we present results for E−
pb only.

E+
pb gives similar results with negligible differences.

A positive PBE means that the system gains energy when
doped electrons build bound pairs. Thus it is a necessary but
not sufficient condition for the 1D precursor of a supercon-
ducting phase. Better evidence is given by the long-range
behavior of correlation functions although this is more diffi-
cult to determine accurately with numerical methods. We have
investigated general pairing correlation functions of the form

C = 〈c†
x0,y0,↑c†

x′
0,y

′
0,↓cx′,y′,↓cx,y,↑〉, (7)

where electron pairs are created and annihilated on
two pairs of nearest-neighbor sites, {(x0, y0), (x′

0, y′
0)} and

{(x, y), (x′, y′)}, respectively. For instance, correlations be-
tween a rung pair around the ladder center (x0 ≈ L/2) and a
pair on the second leg are given by

C(x − x0) = 〈c†
x0,1,↑c†

x0,2,↓cx,2,↓cx+1,2,↑〉. (8)

Rung-rung correlations are obtained with {x0 = x′
0, y0 �=

y′
0, x = x′, y �= y′}, e.g.,

CR(x − x0) = 〈c†
x0,1,↑c†

x0,2,↓cx,1,↓cx,2,↑〉, (9)

while leg-leg correlations correspond to {|x0 − x′
0| = 1, y0 =

y′
0, |x − x′| = 1, y = y′}, e.g.,

CL(x − x0) = 〈c†
x0,2,↑c†

x0+1,2,↓cx,2,↓cx+1,2,↑〉. (10)

These correlation functions decrease as (x − x0)−2 in the non-
interacting limit Uy = 0. Pairing correlations are said to be
enhanced when they decay more slowly than in a noninteract-
ing system. In 1D the slowest possible decay is C(x − x0) ∼
(x − x0)−1, which corresponds to quasi-long-range pairing
correlations.

In lightly doped symmetric ladders, i.e., the Hamilto-
nian (1) with t1 = t2 = t and U1 = U2 = U > 0, one finds
a positive PBE accompanied by an enhancement of pairing
correlations with a d-wave-like structure at intermediate cou-
pling U/t [8–11]. This phase with gapless charge excitations
but gapped spin excitations is consistent with a Luther-Emery
phase [7]. Robust pairing was found in a Kondo-Heisenberg
model [21] that can be obtained in the strong-coupling
limit Uy � |ty|, |t⊥| of the model (1) while pair-density-wave
(PDW) correlations were found to be enhanced in another
Kondo-Heisenberg model [22] that corresponds to the limiting
case U1 � |ty|, |t⊥| with U2 = 0. In the special case of a single
noninteracting leg (U2 = 0 with U1 > 0, t1 = t2) a positive
pair binding energy is obtained upon doping away from half
filling for intermediate couplings but no enhancement of pair-
ing correlations has been found [23,24]. To the best of our
knowledge the intermediate regime with finite but different
parameters Uy and ty in both legs has not been investigated
yet.

We investigate the asymmetric ladder (1) using the density-
matrix renormalization group (DMRG) method [25–29] and
exact diagonalizations [30]. DMRG has been extensively
and successfully used to study ladder systems for almost
three decades [8,27]. In particular, it was employed to in-
vestigate pairing effects in various ladders with inequivalent
legs [21–24], which correspond to limiting cases of (1). We
employ DMRG to compute the ground-state properties of
ladders with open boundary conditions and an even number of
rungs up to L = 200. We keep up to m = 2048 density-matrix
eigenstates in our calculations yielding discarded weights of
the order of 10−6 or smaller. We always repeat the calculations
for several numbers m and extrapolate the ground-state energy
to the limit of vanishing discarded weights in order to estimate
the DMRG truncation error [31]. Additionally, we compute
the properties of the ground states and lowest excited states
in short ladders with periodic boundary conditions and up to
L = 6 rungs using the Lanczos diagonalization method [30].

III. RESULTS

A. Pair binding energy

We first discuss our findings for the pair binding energy.
Figure 2 shows the PBE as function of the interchain hopping
t⊥ for various asymmetries in ladders with L = 128 rungs
and an average density n = 1.125. In Fig. 2(a) we quantify
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FIG. 2. Pair binding energy E−
pb as function of t⊥ for ladders with

length L = 128 and average density n = 1.125. (a) Ladders with
u1 = u2 = 20/3 and various �t � 0 (see Table I). (b) Ladders with
�t = 1, u1 = 20/3, and various couplings U2 = u2t2 = u2/2 > 0
(see Table II). (c) Ladders with �U = 0 and various �t (see Ta-
ble III). Error bars show the size of DMRG truncation errors.

TABLE I. Model parameters and maximum pair binding energies
shown in Fig. 2(a). In all cases u1 = u2 = 20/3.

No. t1 t2 �t U1 U2 �U t⊥ E−
pb

1 1 1 0 20/3 20/3 0 1.367 0.19
2 8/7 6/7 2/7 160/21 120/21 40/21 1.371 0.184
3 4/3 2/3 2/3 80/9 40/9 40/9 1.378 0.163
4 8/5 2/5 6/5 32/3 8/3 8 1.333 0.127
5 2 0 2 40/3 0 40/3

TABLE II. Model parameters and maximum pair binding ener-
gies shown in Fig. 2(b). In all cases U1 = 10, t1 = 1.5, and t2 = 0.5
(⇒�t = 1 and u1 = 20/3).

U2 u2 �U t⊥ E−
pb

10 20 0
7.5 15 2.5 1.1 0.046
5 10 5 1.35 0.126
2.5 5 7.5 1.4 0.141
0 0 10 1.6 0.056

and vary the asymmetry using �t while u1 = u2 = 20/3 is
kept fixed. Note that �U also varies. The parameters used
in Fig. 2(a) are listed in Table I. We observe that the PBE is
positive in a narrow range of interchain hopping and exhibits a
maximum at t⊥ ≈ 1.4t‖. See Table I for the maximum values
and positions. Range and maximum are the largest for the
symmetric ladder (�t = �U = 0) but both decrease slowly
with increasing asymmetry �t . For the largest asymmetry
(�t = 2 ⇒ t2 = U2 = 0), however, the PBE vanishes for all
interchain hoppings. We did not investigate whether the region
of positive PBE disappears exactly at �t = 2 or for a lower
value.

In Fig. 2(b) we vary the asymmetry using u2 while �t = 1
and u1 = 20/3 are kept fixed. Again this means varying �U .
The parameters used in Fig. 2(b) are listed in Table II. We
observe again that the PBE is positive in a narrow range of the
interchain hopping with maxima around t⊥ ≈ 1.4t‖ when u2

is close to u1. Clearly, the PBE maxima and the ranges where
E−

pb is positive diminish when the asymmetry between u2 and
u1 becomes larger. See Table II for the maximum values and
positions. Note that the positive PBE for small t⊥ at U2 = 0
are due to finite-size effects (see the discussion below) and
larger DMRG truncation errors in that limit. We know exactly
that the system is a four-component Luttinger liquid with
dominant antiferromagnetic spin correlations for t⊥ = 0 [23].

Similarly, we can vary the asymmetry using u2 while �U
and u1 = 20/3 are kept fixed. This implies that �t varies. This
is illustrated in Fig. 2(c) for �U = 0. The parameters used
in this figure are listed in Table III. We again find that the
PBE is positive in a narrow range of interchain hoppings with
maxima by t⊥ ≈ 1.4t‖ when u1 = u2(⇒ �t = 0). Clearly,
maxima and ranges diminish gradually when the asymmetry
between u2 and u1 becomes larger. See Table III for the
maximum values and positions. For the largest asymmetry
(u2/u1 = 3 ⇒ �t = 1) the PBE is negative for all interchain
hoppings.

TABLE III. Model parameters and maximum pair binding ener-
gies shown in Fig. 2(c). In all cases �U = 0 and u1 = 20/3.

t1 t2 �t U1 = U2 u2 t⊥ E−
pb

1 1 0 20/3 20/3 1.367 0.1896
12/11 10/11 2/11 80/11 8 1.345 0.175
6/5 4/5 2/5 8 10 1.28 0.117
4/3 2/3 2/3 80/9 40/3 1.2 0.018
3/2 1/2 1 10 20
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FIG. 3. Pair binding energy E−
pb as function of u1 = U1/t1 and

u2 = U2/t2 for two electrons added to a half-filled 2 × 6 ladder with
t1 = 4/3, t2 = 2/3 (⇒�t = 2/3), and t⊥ = 4/3.

Our DMRG results show that positive PBE can be found in
very asymmetric ladders as long as u1 = U1/t1 and u2 = U2/t2
remain close. The largest PBEs are obtained with couplings in
the intermediate range uy = 5–10. We have confirmed these
findings using exact diagonalizations of short asymmetric
ladders with periodic boundary conditions to calculate E−

pb
systematically as a function of u1 and u2. For instance, Fig. 3
shows the PBE for two electrons added to a half-filled 2 × 6
ladder (⇒n = 7/6 ≈ 1.17) with t1 = 4/3, t2 = 2/3 (⇒�t =
2/3), and t⊥ = 4/3. Clearly, positive PBEs are observed only
when u1 and u2 are close and E−

pb is the largest for intermediate
values of uy.

We also study the PBE as a function the density in the range
1 � n � 1.5. For instance, Fig. 4 shows results for ladders
with L = 128 rungs. The model parameters are the first four
parameter sets listed in Table I corresponding to the maxima
observed in Fig. 2(a). We see that in all cases the PBEs remain
clearly positive over a rather broad range of densities. Thus
the phase diagram of the model (1) exhibits an extended phase
with pair binding.

 0
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FIG. 4. Pair binding energy E−
pb as a function of the average

density n for ladders with L = 128 rungs. The model parameters are
listed in Table I. Error bars show the size of DMRG truncation errors.
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FIG. 5. Pair binding energy E−
pb as a function of the inverse ladder

length for an average density n = 1.125. The model parameters are
listed in Table I. Error bars show the size of DMRG truncation errors.

To confirm the existence of pair binding in the thermody-
namic limit we have analyzed E−

pb as a function of the ladder
length L up to L = 200. For instance, Fig. 5 shows E−

pb as a
function of 1/L for the first four parameter sets listed in Ta-
ble I, i.e., for the maxima observed in Fig. 2(a). We see clearly
that the PBE approaches a finite value for 1/L → 0 in all four
cases. Similarly, we find that the gaps for charge excitations
vanish for long ladders while the gaps for spin excitations
remain finite (see Fig. 6). These findings are compatible with
a Luther-Emery phase [7].

An important question is how energy is saved in the pair
formation. To answer this question we have analyzed the
variations of the five contributions to the ground-state energies
E0(N↑, N↓) and thus to the PBE separately: the three hopping
terms and the two interaction terms in (1). Unfortunately,
theses variations are significantly larger than E−

pb and almost
cancel each other to result in the small positive or negative
PBE reported here. Thus it is not possible to determine what
kind of energy is saved by forming the bound electron pairs.

B. Pairing correlations

Finally, we have studied pair correlation functions (7) in
finite-size ladders. Despite the difficulty of determining the
long-range behavior of correlation functions from finite-size
systems, we observe clear evidence for the enhancement of
pairing correlations where the PBE is positive. For instance,
Fig. 7 shows the rung-leg correlations (8) for the first four
parameter sets listed in Table I corresponding to the maxima
observed in Fig. 2(a). Clearly, they decay as |x0 − x|−1. Other
pair correlation functions, such as for rung-rung (9) and leg-
leg (10) pairs, are also enhanced, as shown in Fig. 8, but
none decays more slowly than the rung-leg correlations (8).
We note that rung-leg correlations are negative, at least for
short distances |x0 − x|, while the rung-rung and leg-leg cor-
relations are positive. In symmetric ladders this is viewed as
reminiscent of electron pairs with d-wave symmetry in 2D
systems [10]. The fact that we find the same pairing structure
in asymmetric ladders calls this analogy into question because
the systems studied here bear no relation to rotational symme-
tries in higher dimensions.
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FIG. 6. (a) Single-particle gap Ep, (b) spin gap Es, and (c) charge
gap Ec as a function of the inverse ladder length for an average
density n = 1.125. The model parameters are listed in Table I. Error
bars show the size of DMRG truncation errors.

In particular, we find the strongest quasi-long-range pairing
correlations where the PBE reaches a maximum as a function
of t⊥. To quantify the quasi-long-range order we fit correlation
functions using a power law β|x − x0|−α with fit parameters
α and β. The resulting exponent α for the rung-leg correlation
function (8) is shown in Fig. 9 for the first four parameter sets
listed in Table I. Clearly, α is minimal and reaches the value 1
for t⊥ ≈ 1.4t‖.

Finally, we have also analyzed density-density and spin-
spin correlation functions. We have not found any significant
qualitative difference between these correlations in symmetric
and asymmetric ladders when the PBE is positive and pairing
correlations are enhanced. In particular, spin-spin correlations
decrease exponentially with distance, in agreement with the

10-4

10-3

10-2

10-1

 1  10  100

|C
(|x

0-
x|

)|

|x0-x|

#1
#2
#3
#4

FIG. 7. Absolute value of the pair correlation function (8) for
ladders with L = 128 rungs and a density n = 1.125. The dashed
lines are ∼|x0 − x|−1 and ∼|x0 − x|−2. The model parameters are
listed in Table I.

observation of a small but finite spin gap in that regime.
Thus pairing, density, and spin correlations do not reveal any
difference in the pairing structure when the ladder asymmetry
is modified.

FIG. 8. Absolute value of pair correlation functions for ladders
with L = 128 rungs and a density n = 1.125. (a) For the leg-leg pair
correlation function (10) and (b) for the rung-rung pair correlation
function (9). The dashed lines are ∼|x0 − x|−1 and ∼|x0 − x|−2. The
model parameters are listed in Table I.
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FIG. 9. Exponent α of pairing rung-leg correlations (8) as func-
tion of t⊥ for ladders with L = 128 rungs and a density n = 1.125.
The model parameters are listed in Table I.

IV. DISCUSSION AND OUTLOOK

Our results show that the pairing occurring in symmet-
ric Hubbard ladders is robust against asymmetry in the legs
as long as U1/t1 ≈ U2/t2. The pairing strength and the pair
structure revealed by correlation functions remain similar
when an asymmetry is introduced. Thus it is questionable
whether the pairing found in symmetric ladders is a precursor
for (possible) superconductivity in the 2D one-band Hub-
bard model. In particular, the pairing structure observed in
two-leg ladders does not seem to be related to a possible d-
wave symmetry in two dimensions. In our opinion, the ladder
model (1), including the symmetric case, is better seen as a
1D two-band correlated electron model than as a sublattice of
higher-dimensional system.

In contrast, a 2D system of weakly coupled symmetric two-
leg ladders seems to reproduce the d-wave pairing correlations
of the Hubbard model on a square lattice [32]. It would be
interesting to investigate a 2D system of coupled asymmetric
ladders to determine whether the pairing structure is really
related to a rotational symmetry of the square lattice.

An advantage of the model (1) is that we can study the in-
fluence of various interactions on the occurrence and strength
of pairing. Numerically we have found pairing only at inter-
mediate couplings (e.g., uy ≈ 5–10 and t⊥/t‖ ≈ 0.5–1.5). For
this reason, we could not yet obtain an approximate analytical
solution for the relevant parameter regime that could explain

the pairing mechanism. In particular, pairing does not occur
in the strong interchain coupling regime (i.e., large t⊥) where
strong rung singlets are formed. Thus the occurrence and
structure of pairs cannot be explained by the formation of rung
(hole or doublon) pairs to preserve rung singlets on the other
rungs.

Nevertheless, it is clear that when pairing occurs upon
doping away from half filling, the half-filled ladder is in
a crossover regime between a Mott insulator and a two-
band charge-transfer insulator. On the one hand, in the weak
interchain coupling limit (t⊥ � |ty|) the asymmetric lad-
der corresponds to two almost independent Hubbard chains,
which are known exactly to be Mott insulators [33–35] at
half filling. Low-energy charge excitations move along the
legs in this limit. On the other hand, in the strong interchain
coupling limit (t⊥ � |ty|) the asymmetric ladder corresponds
to a system of L almost independent rungs. At half filling
its low-energy physics resemble a charge-transfer insulator
with localized excitations on the rungs. (In the classification
of Ref. [36] charges transfer from the bonding to the anti-
bonding rung states separated by an energy gap � ≈ 2t⊥.)
However, pairing occurs in the intermediate regime t⊥ ≈ t‖,
where charge excitations involve both rung and leg directions.

Similarly, the physics of undoped cuprate compounds lies
in between pure 2D charge-transfer and Mott insulators. On
the one hand, they are often classified as charge-transfer in-
sulators because it is easier for charge excitations to move
between orbitals in the same unit cell than to move between
unit cells [36]. This physics can be described by a limit of the
three-band Hubbard model. On the other hand, assuming that
doped holes occupy primarily oxygen atoms, the low-energy
physics of the three-band Hubbard model at low doping can
be described by the one-band Hubbard model away from half
filling [37], which is a doped Mott insulator [33]. However,
realistic parameters for cuprate compounds lie in between
these two limiting cases [1]. Therefore, we think that further
studies of the asymmetric ladder model (1) could provide
us with useful information about the pair binding physics in
correlated electron systems between charge-transfer and Mott
insulators, such as the superconducting cuprate compounds.
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