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Rashba spin-orbit coupling in the square-lattice Hubbard model:
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The Rashba-Hubbard model on the square lattice is the paradigmatic case for studying the effect of spin-orbit
coupling, which breaks spin and inversion symmetry, in a correlated electron system. We employ a truncated-
unity variant of the functional renormalization group which allows us to analyze magnetic and superconducting
instabilities on equal footing. We derive phase diagrams depending on the strengths of Rasbha spin-orbit
coupling, real second-neighbor hopping, and electron filling. We find commensurate and incommensurate
magnetic phases which compete with d-wave superconductivity. Due to the breaking of inversion symmetry,
singlet and triplet components mix; we quantify the mixing of d-wave singlet pairing with f-wave triplet pairing.
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I. INTRODUCTION

Topological superconductors are amongst the most de-
sirable materials, due to their huge potential for future
information processing technology and fault-tolerant quantum
computation [1]. Such materials can be designed as hetero- or
hybrid structures via proximity effect [2—6], or the topological
superconductivity arises as an intrinsic many-body instability
in a correlated electron system. The latter is usually associated
with odd-parity or spin-triplet pairing, exemplified through
the archetypal chiral p-wave state [7,8]. Triplet superconduc-
tors are rare in nature [9—11], but it was appreciated in the past
years that spin-orbit coupling (SOC) is beneficial to stabilize
triplet superconductivity. As a consequence, there is growing
interest in correlated materials involving heavy elements or
hetero- and hybrid structures in which the inversion symmetry
is broken at the interface.

Prominent material realizations involve interfaces of tran-
sition metal oxides such as LaAlOs;/SrTiOs. Interestingly,
magnetic moments seem to be omnipresent at the inter-
face. Experimental reports include both ferromagnetic and
antiferromagnetic order [12], but also spiral magnetism
seems to be possible [13], hinting at the role of Rashba
spin-orbit coupling. A particularly remarkable result is the
observation of the coexistence of magnetism and supercon-
ductivity [14,15]. It was further shown that there are effective
ways of tuning the strength of the Rashba coupling at the
interface by an applied electric field [16]. The tunability of
Rashba spin-orbit coupling was also reported in the related
iridate heterostructure LaMnQOs; /SrlrO; by varying the growth
conditions [17].
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The heavy-fermion superconductor CeColns/YbColns
constitutes another example where Rashba coupling and
electron correlations coexist [18,19]. The material has the
intriguing property that the Rashba spin-orbit strength can be
tuned by varying the number of layers in the YbColns blocks.
Superconductivity is mediated by magnetic fluctuations [20],
underlining the importance of analyzing magnetic and super-
conducting instabilities simultaneously.

CePt3Si is one of the best-studied instances of a strongly
correlated material with inversion symmetry breaking that
becomes superconducting at low temperatures [21-23]. In
CePt3Si, the absence of a mirror plan induces a Rashba
spin-orbit coupling. Experiments hinted at the unconventional
nature of the superconductor and found line nodes in the
spectrum, which could be explained through singlet-triplet
mixing due to spin-orbit coupling [23,24].

One of the most surprising developments in the past few
years are the recent results on the overdoped high-temperature
superconductor Bi;Sr,CaCu,;0s45 (Bi2212) [25]. Cuprates
are a prototype system where the degree of strong correla-
tions leads to a complex interplay of competing interactions;
however, Rashba spin-orbit coupling was assumed to be neg-
ligible. In the recent work, a nontrivial spin texture with
spin-momentum locking was observed in Bi2212, one of
the most-studied cuprate superconductors. These results chal-
lenge the standard modeling for cuprates involving Hubbard
models, and emphasize the need for extending correlated elec-
tron models with Rashba coupling.

Motivated by these and other material examples [23,26],
the role of Rashba spin-orbit coupling on the phase dia-
gram of Hubbard models has attracted considerable interest

©2023 American Physical Society
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in the past decade [27-34]. Several of these theoretical works
have used mean-field methods, random-phase approximation,
weak-coupling methods, or other approximate approaches. A
major challenge is to account for particle-hole instabilities
(e.g., spin and charge density waves) and particle-particle in-
stabilities (i.e., superconductivity) and analyze them on equal
footing.

In this paper, we employ the truncated-unity functional
renormalization group (TUFRG) method, and demonstrate
that it represents an efficient and powerful method to tackle
the described task. In Sec. II we introduce model and method.
In Sec. IIT we present our results consisting of phase diagrams
established through analysis of particle-hole and particle-
particle instabilities. We conclude in Sec. IV.

II. MODEL AND METHOD
A. Square lattice Hubbard-Rashba model

We consider a model of electrons on the two-dimensional
square lattice. The noninteracting part of the Hamiltonian is
composed of two terms, spin-independent hopping Hy;, and
Rashba SOC Hsoc,

Hkm— § tlj io jG’

ijo

Hsoc =ia Y 1;j(6 x 1ij)7 e €y

ijoo!

Here, C(T) annihilates (creates) an electron with spin o at lat-

tice site i. We allow nonzero hopping among nearest (¢;;y = 1)
and next-nearest (#(;;) =t') neighbors. The SOC strength
is controlled by «, which couples via the cross product of
the Pauli matrices 6 = (6, 6y, 6; )T with the bond vectors r; j
connecting sites i and j.

We complement the noninteracting Hamiltonian
Hy = Hyin + Hsoc with a purely local Hubbard interaction

Znn )
with n;, = cl e

i C; the occupation number and U the interaction
strength. Motivated by insights gained from weak coupling
renormalization group studies [31,35], we treat the interacting
part Hi,, with the functional renormalization group (FRG). A
short introduction is given below.

lllt -

B. Functional renormalization group

The unbiased nature of the FRG allows us to explore
the realm of possible phase transitions of the Rashba-
Hubbard model. Using FRG, we can obtain information on
particle-particle (superconducting) and particle-hole (mag-
netic, charge, etc.) instabilities on equal footing. Furthermore,
the general scope of FRG trivially allows for the mixing of
singlet and triplet components of the superconducting order
parameter, which are expected to occur in this model due
to the unconventional d-wave order of the Hubbard model
in conjunction with the Rashba-SOC. While there have been
no previous studies of the repulsive square lattice Rashba—
Hubbard model using FRG, the limiting case o = 0—the
square lattice Hubbard model—has been most thoroughly

i PR

FIG. 1. Diagrammatic representation of the FRG flow equation.
The two-particle nodes represent the effective interaction at scale I‘X”
while the connecting lines are a propagator G* and its derivative
ﬁG“ denoted by the line intersecting the loops. We indicate the
three different two-particle irreducible diagram classes (channels):
particle-particle P, crossed particle-hole C, and direct particle-hole
D. Each is associated with one distinct transfer momentum.

covered [36—42] and is used as a benchmark in Appendix A.
Previous FRG studies including Rashba-SOC have been car-
ried out on the triangular lattice for (i) a model with attractive
U [43] and (ii) a materials-oriented model of twisted bilayer
PtSe, [26].

Derivations of the FRG equations can be found in
Refs. [44-47] among others, here we only give the briefest
overview of our chosen approximations: The diagrammatic
representation of our single-loop, non-SU (2) flow equation is
given in Fig. 1. During the calculation we neglect higher
loop orders, the flow equations for the self-energy -4I'®),
as well as the three-particle interactions —F © focusmg on
the effective two-particle interaction F(‘”. As regulator for the
two-point Greens function we choose the Q2-cutoff [38], where
GMNw, k) = #}G(w, k). Moreover, we restrict ourselves to
zero temperature 7 = 0. As we disregard frequency depen-
dencies and the self-energy feedback [48] of the effective
interaction we are able to evaluate all occurring Matsubara
frequency integrations analytically.

To reduce computational complexity we employ the trun-
cated unity extension to the FRG [38,39,49]. Importantly,
this retains momentum conservation at the vertices, broken
in N-patch schemes [50], but required to accurately capture
spin-momentum locking. For a more complete technical dis-
cussion of the approximations and numerical implementations
we refer the reader to Ref. [47].

To obtain a prediction for the low-energy two-particle
interaction Fgf) without the artificial scale, we solve the
differential equation of Fig. 1 starting at infinite (large com-
pared to band width) scale A, and integrate successively
towards zero. When encountering a phase transition, associ-
ated elements of I'® will diverge, driven by the diverging
susceptibilities, and the truncation at the four-point vertex I'®
introduced above is no longer valid. We therefore terminate
the integration at this critical scale A. and analyze the ef-
fective two-particle interaction 1"(4 to determine the type of
ordering associated with the transition.

C. Analysis of results

As the TUFRG scheme naturally splits the vertices into
particle-particle (P) and particle-hole (C, D) channels (see
Fig. 1), we can start the analysis by finding the channel that
dominantly contributes to the divergence of I'®. Thereafter,
we calculate interacting susceptibilities (x,'7;”*”*) where Mat-
subara summations have been performe({ analytically. We

125115-2



RASHBA SPIN-ORBIT COUPLING IN THE SQUARE- ...

PHYSICAL REVIEW B 107, 125115 (2023)

constrain the momentum dependence to the transfer momenta
q of the leading vertex elements in the respective channel
[see Egs. (3) and (6)]. To evaluate the leading instability we
subsequently perform an eigen decomposition of these mo-
mentum constrained physical susceptibilities (x 7,””***) as the
matrix of incoming vs outgoing partlcles/holes The eigen-
vector corresponding to the leading eigenvalue reflects the
order parameter of the transition. In the case of superconduct-
ing instabilities at ¢ = 0, we additionally solve a linearized
gap equation and obtain a Fermi surface projected order pa-
rameter as well as one in the full Brillouin zone (see, e.g.,
Refs. [26,47,51]). The order parameters serve as a starting
point for further analysis, e.g., competition of singlet and
triplet superconductivity, or charge-density-wave (CDW) vs
spin-density-wave (SDW) instabilities. Note that we are un-
able to determine the nature of transitions, i.e., first order
versus continuous, between these phases. While this has been
addressed in previous literature [52], it is beyond the scope of
this publication.

1. Particle-particle instabilities

We calculate the particle-particle susceptlblhty from the
effective interaction at the final scale F prOJected to the

P-channel:
g+k q+ kK
iy = er <M e @
—k Pl k'

The functions ¢y (k) are the basis functions used in the
truncated unity expansion (“formfactors”). As the channel
projected vertex is given in formfactor space, we insert unities
of the form §(k — k') = > fdk(p}i(k)(pf(k/) into Eq. (3) to
carry out the calculation. The particle-particle loops in Eq. (3)
and the following Eq. (4) are evaluated at the critical scale A..
In case the leading transfer momentum of x,, is at ¢ = 0 (as
expected for instabilities that are not pair-density waves [53]),
we additionally solve the following linearized gap equa-
tion for the superconducting order parameter A, (k):

A(K')
A
o 5
o k—>A<«—o -k = o,k o', —k .

“

As noted in Refs. [26,47,51], the eigenproblem presented in
Eq. (4) is non-Hermitian. So we resort to a singular value
decomposition and obtain left and right singular vectors [54]
corresponding to gap functions in the full Brillouin zone and
on the Fermi surface, respectively. We note that the TUFRG
method is in principle capable of dealing with g # O instabil-
ities in the particle-particle channel, i.e., pair-density waves.

As the next step in our analysis, we decompose the gap
function A (k) into its singlet (¥ (k)) and triplet (d (k)) com-
ponents:

Alk) = [y (k)L +d (k) - 61(i6y). o)

Since inversion symmetry is explicitly broken by the Rashba
SOC, a single solution A(k) may have nonvanishing sin-
glet and triplet components at the same time, i.e., display
singlet-triplet mixing. We quantify the degree of singlet-triplet
mixing by calculating the absolute weight of the singlet com-
ponent f Vk I (k)||%, which must lay between zero and one.
Note that we use the left singular vectors for this calculation,
as the weights would need to be renormalized when projecting
to the Fermi surface.

To obtain further information on the effective pairing inter-
action, i.e., whether the state is driven by a singlet, triplet, or
mixed instability, one must explicitly deconstruct the effective
pairing interaction ﬁ[F(4)]gl”2”3”4 into odd, even, and mixed
transformation behavior [55]. In the case of intraband pairing
this construction has been extensively discussed in Ref. [55],
however, we have both inter- and intraband pairing and there-
fore need to resort to the general case of calculating the total
singlet (and triplet) weight.

2. Particle-hole instabilities

For instabilities stemming from the crossed or direct
particle-hole channels (C/D), we instead calculate the

particle-hole susceptibility using the D-channel projection of
re:

g+k q+FK

XGagy = s k) < M k) 6

k D[] K

Again, we evaluate the particle-hole loops at the critical scale
A, and diagonalize to find the dominant subspace {q} and
the corresponding eigenvectors. The eigenvectors serve as an
estimate of the particle-hole gap structure, highlighting the use
of this analysis for the different channels. We point out that
performing the calculations in spin space—orbital-spin space
for general models—instead of band space is advantageous
due to the lack of gauge invariance of these four-point func-
tions.

Similar to the treatment of particle particle instabilities,
we transform the eigenvector m (with ¢ the momentum
transfer and f the formfactor mdex) into its charge/spin rep-
resentation using Pauli matrices

mqf = quDW;f]l + ngW;f 6. N
Focusing on the mean-field decoupling of the above magnetic
(mSDW ) and charge (mCDW ) instabilities we explicitly keep
the dependence on a genera{ transfer momentum ¢q. Thereby
we can distinguish between ferromagnetic and antiferromag-
netic instabilities including incommensurate ordering vectors.
The general mean-field Hamiltonian in the particle-hole chan-
nel then reads

Hiy =" [ortk) Coa)' -
k.f

5k+HC] (8

where & = (ck.1, k)"
The particle-hole instabilities found in this work have dom-
inant weight in the trivial formfactor ¢ (k) = 1. In this case,
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FIG. 2. Schematic phase diagram of the square lattice Rashba-
Hubbard model as a function of filling factor v and Rashba-SOC
«a for three different nearest-neighbor hopping strengths: ' = 0 (a),
t' = —0.15 (b), and ' = —0.3 (c). The results were obtained for the
weak-to-intermediate coupling regime U = 3. Superconducting (SC)
regions are colored in blue, spin density wave (SDW) instabilities in
grey, incommensurate SDWs (iSDW) in red, and Fermi liquid (FL)
behavior in white. The range of the filling is chosen to exclude wide
regions of FL behavior.

time reversal symmetry of the model demands that the scalar
(charge) and vector (spin) components must not mix (see
Appendix B), i.e., either mfy, or miyy, is zero. The non-
SU (2) nature of the system may thus only facilitate a possible
mixture of the different vectorial spin components. We note
that the lack of charge-spin mixing in Eq. (8) differs from
the particle-particle case, where the presence of a nontrivial
formfactor allows for singlet-triplet mixing.

II1. RESULTS

A. Phase diagram

We perform a parameter scan in the three-dimensional
parameter space spanned by next-nearest neighbor hopping
t' € {0.0, —0.15, —0.3}, Rashba-SOC strength 0 < « < 0.7,
and filling factor 0.2 < v < 0.8. We use the nearest-neighbor
hopping as energy unit (r = 1) and set the interaction strength
to U = 3. The wave vectors ¢ are discretized on a 32 x 32
mesh in the first Brillouin zone, with an additional refinement
of 21 x 21 points [47]. The formfactor expansion is truncated
after 21 formfactors, corresponding to fifth-nearest neighbors.

Figure 2 displays a schematic of the resulting phase dia-
gram, where we distinguish between superconducting (SC)
and commensurate/incommensurate density wave instabili-
ties (SDW/iSDW) as well as Fermi liquidlike (FL) behavior.
Occurrence of FL phases is defined as the absence of a diver-
gence during the integration. We observe an intricate interplay
between nesting and van Hove singularities for the density
wave instabilities which we will elaborate on in Sec. I1I B. For
the superconducting order we observe an increase of singlet-
triplet mixing with increasing Rashba coupling o, which is
discussed thoroughly in Sec. IIIC. We do not observe any
charge density waves for the considered parameters.

1M — ql|
0— 7/4

(@)t =0 (b) t' = —0.15_

®

0.7

SDW
C

0.45 0.50 0.55 0.4 0.5

v 14

FIG. 3. Phase diagram of the Rashba-Hubbard model as a func-
tion of filling v and SOC strength « att’ = 0 (a) and t' = —0.15 (b).
The critical scale A. roughly corresponds to a transition temperature
and is encoded as transparency of the data points. Superconducting
phases are encoded in blue, density wave instabilities are classified
according to the distance of the leading transfer momentum ¢q to
the M = (7, ) point of the Brillouin zone: commensurate instabil-
ities (]M — ¢q|| = 0) obtain a gray color and incommensurate ones
(|]M — q|| > 0) are increasingly red with greater distance to the M-
point. The position of the van Hove singularities is marked as thin
dotted line. Additionally, we annotate the specific points 1-6 for
which the Fermi surface is visualized in Fig. 4.

B. Particle-hole instabilities

Figure 3 presents a more detailed version of the phase
diagram (cf. Fig. 2) focused on (i)SDW order. It is therefore
restricted to the cases t’ = 0 (a) and t' = —0.15 (b). We here
not only encode the type of instability, but also the critical
scale A, which roughly corresponds to the critical tempera-
ture associated with the transition, as transparency. Moreover,
we continuously color the degree of incommensurability from
gray [commensurable, g = M = (rr, 7 )] to red (incommensu-
rable, ||g — M| = 7 /4).

Along the vertical line at half filling v = 0.5 in Fig. 3(a),
we observe that upon increasing «, the system first is suscep-
tible to commensurate SDW, thereafter to iSDW, and finally
again to commensurate SDW order. This effect is explained
by the competition between the position of the van Hove
singularities and nesting vectors [33]: At low «, marked with 1
in Fig. 3, the instability is dominated by perfect nesting of the
Fermi surface with respect to ¢ = M, as shown in the upper
left panel of Fig. 4 (panel 1). When increasing «, the Fermi
surface sheets split and the van Hove singularity no longer
resides at X. This increasingly breaks the ¢ = M nesting,
eventually becoming subleading to the new nesting vector be-
tween two van Hove singularities ¢ = M — (¢, €)T, see Fig. 4,
panel 2. Further increasing «, we arrive at a regime where the
van Hove singularity is far from the Fermi level, suppressing
its influence. Here the ordering vector is determined again by
the nesting, now in between the Fermi surfaces as shown in
panel 3. As the Fermi surfaces are split symmetrically around
the « = 0 diamond, the preferred ordering is again ¢ = M.
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FIG. 4. Nesting analysis of SDW instabilities for " = 0 (upper
row, panels 1-3) and ¢ = —0.15 (lower row, panels 4-6). The panels
correspond to the points in v, «, ¢’ space marked in Fig. 3. The upper
row shows the evolution of nesting for increasing « in the case
t' = 0 to explain the return of the commensurate SDW. Blue arrows
correspond to M-nesting and orange arrows to a ¢ # M-nesting. In
the lower row, we visualize the Fermi-surface and nesting vectors for
three selected points in the ' = —0.15 phase diagram.

Because this phase is heavily driven by nesting, small devia-
tions in filling v are sufficient to suppress it (see Appendix C).

Fort’ = —0.15 [cf. Fig. 3(b)] we obtain a different picture:
Here, when increasing o we have a transition from ¢ = M
to incommensurate ordering vectors. This is explained by the
observation that ¢ is the momentum vector between two van
Hove points on the inner sheet, while M connects only the
center of the arcs (see Fig. 4, panel 4). The higher density
of states at the singularities prevails. The ¢ = —0.15 SDW
phase diagram displays two further notable features: First,
the commensurate SDW with ¢ = M extends to lower fill-
ings, eventually becoming a thin line. On this line, the Fermi
surface deformation induced by « cancels the one due to ¢’
such that (almost) perfect nesting is recovered on the outer
Fermi surface sheets, leading to ¢ = M SDW order (see panel
5 of Fig. 4). Second, we observe iSDW order for points close
enough to the left van Hove singularity. Here, the instability
is driven by the divergent density of states with an ordering
vector connecting the outer and the inner Fermi surface sheets
(see panel 6 of Fig. 4). Due to the finite resolution in filling,
our points do not perfectly align with van Hove filling for each
a and we see the iSDW order on the left van Hove arm at
t" = —0.15 only for certain « in the FRG data (cf. Fig. 3).
Given the above explanation, we expect the feature to prevail
for all «, indicated accordingly in Fig. 2.

The distance to commensurate ¢ = M order serves as pri-
mary classification for iSDW phases in Fig. 3. As further
analysis, we determine the degeneracy of the maximal eigen-
value of the susceptibility. We find one-, two- and threefold
degenerate points, where threefold degeneracy is exclusive
to vanishing «. The two-fold degenerate points lead to an
easy-plane ordering where the magnetization rotates in the
xy plane. This property is obtained by transforming the or-
der parameter into real space via M;(r) = |ngW;i| cos (rq +
arg(ngW;i)). Since the eigenvalue is strongly peaked at g the

0.00 0.05 0.10 0.15 0.20 0.25 0.30
a

FIG. 5. Evolution of possible magnetization vectors in the g =
M phase at t = —0.15 [along the line towards point 5 in Fig. 3(b)].
We show the magnetization direction as an evolution of increasing
Rashba coupling «. From the initial threefold degeneracy (n = 3) at
o = 0 we observe an easy-plane SDW (in the xy plane, n = 2) which
turns into an easy-axis SDW (along the z axis, n = 1) for higher «.

contributions from other ordering vectors can be neglected.
An illustration of how the strength of each magnetization
component evolves is given in Fig. 5. Here, we vary « for
a path entirely within the ¢ = M ordered phase at ¢’ = —0.15
along the line towards point 5. We observe a transition from
a rotationally symmetric antiferromagnet (AFM) at « = 0 to
an easy-plane (xy) AFM at weak « to an easy-axis (z) AFM at
strong o.

C. Particle-particle instabilities

We now turn our attention to the analysis of the supercon-
ducting instabilities shown in Fig. 2. As discussed in Sec. II
we transform the superconducting gap function from spin
space to its singlet and triplet components. We show the
resulting relative singlet weight in Fig. 6. Additionally, we
determine the irreducible representation of the order param-
eter. Note that by construction both the singlet and triplet
components must transform in the same irreducible represen-
tation. We therefore can resort to solely analyzing the singlet
component, finding B1 (d,2_,>. wave) for all superconducting
instabilities. In the triplet channel, the spin itself transforms as
a pseudovector, meaning that instead of a B1 irreducible rep-
resentation in momentum space, we expect an E irreducible
representation.

Figure 6 reveals that the relative weight of the singlet
component, which serves as an indicator for the strength of
singlet-triplet mixing, almost linearly depends on the Rashba-
SOC strength, with slight saturation effects at high «. We
emphasize that at values as high as « = 0.7 we obtain more
than 50 percent triplet contribution in the superconducting
ground state, which can be of the p 4 ip type and, in prin-
ciple, give rise to helical topological superconductivity. At
the SU (2) symmetric points (¢ = 0) we observe the expected
Hubbard-model behavior of singlet d,>_,.-wave superconduc-
tivity. The Bl-representation is in our case equivalent to a
d,>_y» superconductor in the singlet, or an admixture between
p and f wave in the triplet component.
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FIG. 6. Relative weight of the singlet contribution to the su-
perconducting order parameter for ' = 0 (a), ' = —0.15 (b), and
t' = —0.3 (c). We observe a purely singlet order parameter at « = 0,
with an increase in mixing as we increase the Rashba coupling for
all values of #' under consideration. Note that the (i)SDW phases are
grayed out for visual clarity. We do not observe a strong dependence
of the singlet-triplet mixing on the filling v for any value of «.

IV. CONCLUSION

We firmly establish the truncated unity functional renor-
malization group as a method to study strongly correlated
few-orbital systems with spin-orbit coupling. We add a
Rashba-type spin-orbit interaction to the paradigmatic square
lattice Hubbard model and make two main observations.

First, our calculations reveal that the the FRG phase di-
agram is stable against small values of Rashba-SOC «. For
weakly spin-orbit coupled systems, the correlated phases only
experience slight changes: The AFM order gives way to
incommensurate SDWs for certain parameter sets, and super-
conducting instabilities acquire weak singlet-triplet mixing.

Second, we uncover a richer phenomenology for systems
with larger values of «. There, we find a delicate interplay
of ' and «, which leads to accidental nesting, resulting in
commensurate AFM phases. Moreover, we observe a compe-
tition between nesting- and van-Hove-driven (i) SDW order.
The superconducting instabilities develop singlet-triplet mix-
ing roughly proportional to «, showing no strong dependence
on filling v.
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used a sharp cutoff as well as constant self-energies, which are absent
here. It is nevertheless apparent that the results have the same fea-
tures, with slightly shifted transition fillings between phases. cAFM
(IAFM) corresponds to our SDW (iSDW) phase and dSC stands for
d-wave superconductivity.
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APPENDIX A: VALIDATION OF RESULTS

The code used to generate these results is one of three in
the recently published equivalence class of FRG codes [47].
We therefore refer the interested reader to that publication for
validation, the binary equivalence shown there is a stronger
indicator than what could be provided here. Nevertheless we
want to show agreement with previous calculations performed
on the square lattice Hubbard model in Ref. [37]. The calcu-
lations performed there align with the o = O results of our
phase diagrams in Fig. 3, as we demonstrate in Fig. 7. Our
data show good agreement with their results in critical scale,
the transition fillings are shifted slightly. Note however that
a global rescaling of the (arbitrary) critical scale was per-
formed to obtain this match. These minor differences are due
to chosen regulator schemes and self-energy treatment. They
omitted the particle-hole symmetric half of the #' = 0 case, we
choose to show that it is indeed symmetric.

APPENDIX B: MIXING OF SDW AND CDW

In this Appendix, we show that for particle-hole in-
stabilities with onsite formfactor (¢,(k) = 1), charge- and
spin-sectors of the density waves cannot mix. The onsite
formfactor implies that the order parameters in Eq. (8) are
independent of k. Since the Hamiltonian has to be Hermitian

125115-6



RASHBA SPIN-ORBIT COUPLING IN THE SQUARE- ...

PHYSICAL REVIEW B 107, 125115 (2023)

. (a) ' =0.0 (b) t/ =—-0.15 (c) ¥ =—
107+ 4 ] ]
] —— SC

102 1072 5
o ]
< 4
1073 5 1077 5
1074 T T T 1074

0.40 0.45 0.50 0.55

v

FIG. 8. We show linecuts through the plots of Figs. 3 and 6 with an increased resolution in the filling v. This serves to both confirm the
main features of the above calculation as well as establish the width of the nesting lines.

even in the symmetry broken phase, we obtain

HI;W = Z (E}qu 6"

q.k,v

=Yg 6

q.k,v

- Z Chtqg 9

q.k,v

Gy mg)T

= Hpw (B1)

ie., m,?)* =ml (for v =0, x, y, 7). Applying time reversal

T to the general density-wave Hamiltonian yields

—1 Ay = A * Ay o
THowT ' =3 (67 Cq )" (8" ml)" (67 2)
q.k,v
A *
=2 & @ @6 Ty ()
q.k,v
ST N A N - —q\*
=D Uig (6766 G (m)
q.k,v
- ZEkTJrq “67 -Gy, (B2)
q.k,v

with 79 = +1 (i.e., the charge component; 67(6°)*6" =
6% and Nxyz = —1 (i.e., the spin components; note that
67(6")"6¢Y = —¢6' for i = x,y,z). We split the Hamiltonian
into its charge and spin sectors,

Hpw = Hcpw + Hspw

E :ck+q & Mipw + § :ck+q G- mSDW) “Cps

which results in the following transformation behavior under

T:

THepwT ™' = +Hepw, (B4)

THspwT ' = —Hspw. (B5)

Thus, the subspaces of Hspw and Hcpw are orthogonal. If the
initial Hamiltonian (without symmetry breaking) is invariant
under 7 (as it is for the Rashba-Hubbard model), the SDW
and CDW phases belong to different irreducible representa-
tions of 7~ and therefore, a mixing is forbidden.

APPENDIX C: LINECUTS THROUGH PHASE DIAGRAMS

To obtain an improved understanding of the features at
points 3 and 5 of Fig. 3, we calculate slices through the
phase diagram intersecting the features. The resulting lines
can be seen in Fig. 8. We want to place special emphasis
on the lines for o = 0.6 (purple) and o = 0.7 (blue); see
panel (a) (#' =0) as well as the line for « = 0.3 (red) in
panel (b) (' = —0.15). Here we can distinguish between true
nesting of the former and the accidental nesting of the lat-
ter. While the magnetism in the high-a regime of t' =0 is
shown to be very narrow (in our spacing exactly one pa-
rameter point in width), the nesting for the aforementioned
t' = —0.15 case is instead created in a parameter region where
the effects on the Fermi surface cancel. This is indicated
by the width of the magnetic instability in the red line of
panel (b).
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