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Inspired by the observation of a robust d-wave superconducting phase driven by tuning the next-nearest-
neighbor (NNN) electron hopping in recent density matrix renormalization group (DMRG) studies of six-
and eight-leg t-J model, we systematically study the phase diagram of the two-leg t-J ladder with the NNN
couplings (including NNN hopping and spin interaction) in a large region of doping level, by means of the
DMRG calculations. Upon doping from half filling, we identify the Luther-Emery liquid (LEL) phase, which
can be distinguished as the pairing-dominant and charge density-dominant regime by comparing the Luttinger
parameter Kρ . With the growing NNN couplings, pairing correlations are enhanced and correspondingly Kρ

increases, driving the system from the density-dominant to the pairing-dominant regime. In the Tomonaga-
Luttinger liquid (TLL) phase in the larger doping region, we identify two TLL regimes with different features
of charge density correlation. At the quarter filling (1/2 doping level), we find that the strong dimer orders of
bond energy in the open system actually decay algebraically and thus do not indicate a spontaneous translational
symmetry breaking. Our results show that in the LEL phase of the two-leg ladder, the NNN couplings seem to
play the similar role as that on the wider t-J cylinder, and studies on this more accessible system can be helpful
toward understanding the emergence of the remarkable d-wave superconducting phase on the wider system.

DOI: 10.1103/PhysRevB.107.125114

I. INTRODUCTION

Understanding the emergence of the unconventional super-
conductivity (SC) is one of the major challenges in condensed
matter physics. Since the unconventional SC is usually real-
ized by doping the parent antiferromagnetic Mott insulators,
the doped Hubbard and t-J models are usually taken as the
canonical models for studying the SC in strongly correlated
systems [1–8]. Although the microscopic pairing mechanism
in doped Mott insulators remains elusive, it is believed that
slightly doping Mott insulators can lead to an unconventional
SC.

As a first step toward the two-dimensional (2D) doped
Mott insulators, the two-leg Hubbard [9–14] and t-J lad-
ders [15–23] have been studied extensively and have been
well understood by combining density matrix renormalization
group (DMRG) and bosonization calculations [21,24–26]. A
typical state in such systems is the Tomonaga-Luttinger liq-
uid (TLL) [27], which has gapless spin and charge sectors
as well as consequent algebraic correlation functions. More
interestingly, for small doping ratio the spin sector may be
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gapped but the charge sector remains gapless, leading to
the Luther-Emery liquid (LEL) [28–30] state with algebraic
pairing and charge density correlation functions. This LEL
state has the d-wave pairing symmetry and is considered as
a quasi-one-dimensional (1D) SC state [31], which therefore
has been taken as a basic model to construct and test effec-
tive theories to understand the emergent SC in the electronic
systems with repulsive interaction [32–34]. Since the ground
state of the two-leg ladder at half filling has a finite spin
gap and short-range spin correlation [23,35,36], the resonating
valence bond (RVB) theory provides a straightforward picture
to understand the pairing [2], in which the doped holes favor
to bind into pairs to minimize energy [37,38]. The phase
string theory [39–41], which was built upon a singular phase
string effect induced by the motion of holes in a doped Mott
insulator, has also been numerically tested to explain both the
pairing of two holes and the emergent LEL phase in two-leg
t-J models [16,42]. With growing system circumference, a
natural question is that whether the LEL state can develop to
the d-wave SC in two dimensions.

In recent years, by extensive numerical simulations on
the wider square-lattice Hubbard (large U ) and t-J models,
it has been found that near the optimal doping the d-wave
SC pairing correlations decay exponentially and a stripe
order emerges [43–51]. Very recently, DMRG calculations
found that in the slight doping regime of the t-J model, the
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next-nearest-neighbor (NNN) hopping t2 (t2/t1 > 0 and t1 is
the nearest-neighbor (NN) hopping) can suppress the stripe
order and lead to a robust d-wave SC phase [52–55]. While the
positive t2/t1 may increase the mobility of pairs [46,56–59],
theoretical understanding of the enhanced SC with tuning
hopping is not very clear. Considering it is more controllable
to develop theories on two-leg ladder, investigating the SC
with doping and tuning t2/t1 on two-leg ladder will be helpful
toward understanding of the role of the NNN hopping, which
however has not been studied systematically to the best of our
knowledge.

Specifically, previous studies on the two-leg t-J ladder
have been focused on the systems without NNN couplings.
For the isotropic t-J ladder at low doping level, the system
is in the LEL phase at small J1/t1, and with growing J1/t1
a phase separation occurs [21,22]. For small J1/t1 such as
J1/t1 = 1/3, the system is in charge gapped states at the
commensurate doping levels δ = 1/4 (3/8 filling) and δ =
1/2 (quarter filling) [21,22]. While the charge gapped state
at δ = 1/4 is a charge density wave (CDW) state breaking
translational symmetry [60], it was suggested to be a bond
order wave at δ = 1/2 [17,22]. With further growing doping
level, the system enters the TLL phase [15,19,61], but the
properties in the TLL phase have not been carefully studied.

In this paper, we carefully study the two-leg t-J ladder
with the NNN couplings (including NNN hopping and spin
interaction) t2, J2 [see Fig. 1(a)] from small to large dop-
ing regime, by means of DMRG calculations. We study the
t-J ladder with the doping level up to δ = 0.9 in the pres-
ence of the NNN couplings and our results are summarized
in Fig. 1(b). In the LEL phase upon doping, the pairing
correlations are also enhanced by the NNN couplings, con-
sistent with the previous findings on the wider systems [62].
Since the increased doping level suppresses pairing correla-
tions, we identify the pairing-dominant (LEL-I) and charge
density-dominant (LEL-II) regime by comparing the Lut-
tinger parameter Kρ . The CDW state at δ = 1/4 is driven to
the LEL by very small NNN couplings, which is consistent
with the tiny charge gap in the absence of the NNN couplings
[21]. In the TLL phase, we find that subleading peaks of
the density correlation structure factor change from the mo-
mentum (2kF , 0) in the so-dubbed TLL-I regime to (4kF , 0)
in the TLL-II regime, where kF is the Fermi momentum of
free electrons with the same filling. At the commensurate 1/2
doping, we find that the bond order wave proposed in previous
study [17] is actually not long-ranged and the ground state
does not break the translational symmetry. Our results show
that the enhanced SC by tuning the NNN hopping (t2/t1 > 0)
is a rather general conclusion in the square-lattice t-J model,
which suggests that developing theory for two-leg ladder can
be helpful for understanding the emergent d-wave SC on the
wider systems.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and the details of DMRG calculations.
In Sec. III, we study the LEL phase by tuning NNN couplings
and doping levels. We also analyze the transition from a fully
gaped CDW state to the LEL at 1/4 doping. In Sec. IV, we
discuss the properties of the TLL phase, and also point out
the absent long-ranged bond order at 1/2 doping. The last
section Sec. V is devoted to the summary and discussion.

FIG. 1. Schematic figure of the two-leg t-J ladder and the phase
diagram. (a) The two-leg t-J ladder with the nearest-neighbor and
next-nearest-neighbor hopping t1, t2 and spin interactions J1, J2. The
open boundary conditions are imposed along the ex direction. Lx and
Ly = 2 are the numbers of sites in the two directions. (b) Quantum
phase diagram of the model obtained on the Lx = 128 and Ly = 2
lattice in the range of 0 � J2/J1 � 0.05 and 0 < δ < 0.9. (t2/t1)2 =
J2/J1 is fixed with tuning parameter and t1/J1 = 3.0 is chosen in
this work. The small black points denote the parameters we have
calculated using DMRG. We identify a Luther-Emery liquid (LEL)
and a Tomonaga-Luttinger liquid (TLL) phase. The LEL phase is
denoted as two regimes, the LEL-I regime with dominant pairing
correlation and the LEL-II regime with dominant charge density
correlation. The TLL phase is also distinguished as two regimes,
which show quite different features of the structure factor of charge
density correlation. The fully gapped charge density wave (CDW) at
δ = 1/4 is represented by a black hollow circle and the C0S1 state
at δ = 1/2 is represented by a solid blue line. The phase boundary
between the LEL and TLL is denoted as a solid line, and the different
regimes in the same phase are separated by dashed line.

II. MODEL AND METHOD

The Hamiltonian of the t-J model is defined as

H = −
∑
{i j},σ

ti j (ĉ
†
i,σ ĉ j,σ + H.c.) +

∑
{i j}

Ji j

(
Ŝi · Ŝ j − 1

4
n̂in̂ j

)
,

(1)
where ĉ†

iσ and ĉiσ are, respectively, the creation and annihila-
tion operators for the electrons with spin σ (σ = ±1/2) on the
site i = (xi, yi ). Ŝi is the spin-1/2 operator and n̂i = ∑

σ ĉ†
iσ ĉiσ

is the electron number operator. The Hilbert space for each
site is constrained to no-double occupancy. We consider the
interactions between both NN and NNN sites, and denote
the corresponding hopping (spin interaction) as t1 (J1) and
t2 (J2). The length and width of the ladder are Lx and Ly

(≡ 2), giving the total site number N = Lx × Ly. We study
hole-doped case with doping ratio δ defined as δ = Nh/N ,
where Nh is the number of doped holes. Below we choose
J1 = 1.0 as the energy unit and set t1/J1 = 3. We study the
ground state of the system with doping level up to δ = 0.9 by
tuning J2/J1 up to 0.05, with t2/t1 correspondingly up to 0.22
under the constraint (t2/t1)2 = J2/J1 to make a connection to
the corresponding Hubbard model [63].
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We solve the ground state of the system by DMRG cal-
culations [64,65]. We use the open boundary conditions in
the x direction and choose Lx = 128 for most calculations
(and up to Lx = 256). We keep up to 1200 SU(2) multiplets
(equivalent to about 3600 U(1) states) in DMRG calculations
to ensure the truncation error smaller than 10−8 (see Ref. [52]
for the details of the SU(2) DMRG algorithm of the t-J
model). For longer systems with Lx up to 256, we keep bond
dimensions up to 3000 to ensure a full convergence.

To characterize many-electron states, we calculate four
types of correlation functions and analyze their structure fac-
tors. The spin-spin correlation function is defined as

F (r) = 1

Ly

Ly∑
y=1

〈
Ŝ(x0,y) · Ŝ(x0+r,y)

〉
, (2)

where Ŝ(x,y) is the spin operator at the site (x, y), and (x0, y) is
the reference site. The single-particle Green’s function reads

G(r) = 1

Ly

Ly∑
σ,y=1

〈
ĉ†

(x0,y),σ ĉ(x0+r,y),σ
〉
, (3)

and the charge-density correlation function is expressed as

D(r) = 1

Ly

Ly∑
y=1

〈
n̂(x0,y)n̂(x0+r,y)

〉 − 〈
n̂(x0,y)

〉〈
n̂(x0+r,y)

〉
. (4)

For characterizing superconductivity we calculate the singlet
pairing correlation function

�αβ (r) = 〈�̂†
α (x0, y)�̂β (x0 + r, y)〉, (5)

where �̂†
α (x, y) = (ĉ†

(x,y)↑ĉ†
(x,y)+eα↓ − ĉ†

(x,y)↓ĉ†
(x,y)+eα↑)/

√
2 is

the spin-singlet pair-field creation operator, and eα (α = x, y)
denotes the unit length along x or y direction. In most pa-
rameter region of our study, the different types of pairing
correlation functions have the similar power exponent except
in the TLL-I region with δ < 0.5, where the power exponent
of �xx(r) is slightly smaller than others (see Appendix A for
the comparison of the different pairing correlations). There-
fore, we mainly demonstrate �yy(r) in the main text, which
characterizes the pairing correlations between the vertical
bonds. To diminish the boundary effect, we study the correla-
tion functions by choosing the reference site with x0 ∼ Lx/4,
and the corresponding structure factors are obtained by taking
the Fourier transformation

Q(	k) = 1

N

∑
i, j

Q(	ri, 	r j )e
i	k·(	ri−	r j ), (6)

where Q(	ri, 	r j ) is the correlation function in real space.
In the following parts, we will fit the correlation func-

tions to estimate their power exponents. We will fit the data
points with relatively large magnitudes, which gives small
error range and thus we will not show the error bar in the
figure.

III. LUTHER-EMERY LIQUID AND CHARGE
DENSITY WAVE

First, we discuss the LEL and CDW at the lower doping
side. The LEL state has a finite spin gap but vanishing charge

gap, denoted as the C1S0 state, which means there is a gapless
mode in the charge (C) sector and no gapless mode in the
spin (S) sector [13]. Therefore, the LEL has an exponen-
tially decaying spin correlation function and a finite central
charge c = 1 corresponding to the gapless charge mode. In
the charge-2e sector, both the density and pairing corre-
lation functions exhibit the algebraic decaying behaviours.
Based on the bosonization theory for two-leg ladder systems
[16,27,60,66], pairing and density correlations in the LEL
phase follow

�(r) = A0

r1/(2Kρ )
+ A1

cos(2kF r)

r2Kρ+1/(2Kρ )
, (7)

D(r) = − Kρ

(πr)2 + B1
cos(2kF r)

r2Kρ
, (8)

where the parameters A0, A1 and B1 depend on model details.
Kρ is the Luttinger parameter that controls the decaying expo-
nents of correlation functions and kF is the Fermi momentum
related to the electron filling number. Usually, the pairing
correlation �(r) in Eq. (7) is dominated by the first term
r−Ksc ∼ r−1/(2Kρ ) and the density correlation D(r) in Eq. (8)
is dominated by the second term r−Kc ∼ r−2Kρ , giving the
characteristic feature of the LEL Ksc · Kc 
 1.

We start with the 1/4 doping case. Previous numerical
calculations and bosonization analysis have identified a fully
gapped CDW state with a four-fold degeneracy [17,22,60] and
very small spin and charge gaps [20,21]. This fully gapped
state can be also understood in the bosonization theory. At this
commensurate doping level the Umklapp and backscattering
processes are relevant, thus the sine-Gordon type Hamiltonian
density will be appended with a set of cosine-type terms which
describe the scattering processes between different Fermi
points in the bonding and anti-bonding bands [11,30,67–69],

H = vμ

2

[
Kμ
2

μ + 1

Kμ

(∂xφμ)2

]
+ Vμcos(β

√
8πφμ), (9)

where μ = ρ, σ represent, respectively, the charge and spin
degrees of freedom, with the Einstein notation assumed. vμ

are the renormalized Fermi velocities, φμ are the bosonic
fields describing spin and charge excitations, 
μ are the con-
jugate field operators for φμ, and Vμ stand for the interactions.
In the cosine-type terms, β is a commensurate factor related
to the specific filling case, and 2β represents the ground-state
degeneracy [70,71]. For δ = 1/4, we have β = 2 accounting
for the four-fold degeneracy. Next, we study the LEL and
CDW states in presence of the NNN couplings.

A. Correlation functions in the Luther-Emery liquid phase

We first study correlation functions both in real space and
momentum space (see Appendix B) to characterize the LEL.
We show the results for two doping ratios δ = 1/16 and 1/4
as representatives in Fig. 2. For the given doping ratio, pairing
correlations are enhanced by increasing J2/J1 and Ksc also de-
creases slightly. We have confirmed that the power exponents
of the pairing and density correlations satisfy Ksc · Kc 
 1.
However, if we fix J2/J1 and increase doping level, then
Ksc increases and Kc decreases, showing that doping will
suppress pairing correlation but enhance density correlation.
The quantitative discussion on the dependence of these power
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FIG. 2. Correlation functions in the LEL phase. Two commensurate doping ratios δ = 1/16 (Nh = 16) and δ = 1/4 (Nh = 64) are chosen as
representatives. Panels (a1)–(d1) are pairing correlation, density correlation, spin correlation, and single-particle Green’s function for δ = 1/16
with different J2/J1. The power exponents Ksc and Kc are extracted by fitting the strongest points of the pairing and density correlation functions.
Panels (a1) and (b1) are double-logarithmic scale. Panels (c1) and (d1) are semilogarithmic scale. Panels (a2)–(d2) are the similar figures for
δ = 1/4. The special point at J2/J1 = 0 and δ = 1/4 is a fully gapped charge density wave state. The insets in panels (a2) and (b2) are the
pairing and density correlation functions for J2/J1 = 0, δ = 1/4 with semilogarithmic scale. The fittings give the large correlation lengths
ξsc = 14.925 and ξc = 20.877, respectively.

exponents on J2/J1 and δ will be presented in Sec. III C.
Furthermore, we show spin correlations and single-particle
Green’s functions in Figs. 2(c1)–2(c2) and Figs. 2(d1)–2(d2),
respectively. Both correlations decay exponentially and faster
with the increase of J2/J1, which support the gapped nature
of the LEL and suggest the spin and single-particle excitation
gaps increase as J2/J1 increase.

In the LEL phase, correlation function show a modulation
in the decay (versus r) whose period is doping ratio depen-
dent. For the pairing and absolute value of spin correlation the
periods is λ = 1/δ, and for density correlation it is λ = 1/2δ

(after taking the absolute value). The spin correlations still
show the π -phase shift [43,46,57,72]. In Fig. 2, one finds that
the NNN couplings do not change the oscillation periods of
correlation functions in the LEL phase.

B. Charge density profile and central charge
in the Luther-Emery liquid phase

For the LEL state on the two-leg ladder with OBC, charge
density has the Friedel oscillation induced by the open bound-
aries [21]. We denote the total charge density in each rung
as n(x), where x labels the position of the rung. The charge
density distribution is described by

n(x) = n0 + Acdwcos

(
4π

λ
x + φ

)
, (10)

where Acdw = A0[x−Kc/2 + (Lx + 1 − x)−Kc/2] [52,73], in
which Kc characterizes the algebraic decay of the density

amplitude from the boundaries to the bulk, with Lx the length
of the ladder. We examine the charge density in the LEL phase
and show the results in Fig. 3(a), where the charge density
changes only slightly in the studied region of J2/J1, for a
fixed doing ratio of δ = 1/16, and the period of charge density
profile satisfies the LEL feature λ = 1/δ. We use Eq. (10) to
fit the density profiles and extract the power exponents Kc (cf.
Appendix C), which agree with those obtained from fitting the
algebraic decay of density correlations in Fig. 2(b1).

To further examine the nature of the LEL, we calcu-
late entanglement entropy and extract the central charge.
The entanglement entropies S(x) = −Tr[ρ̂xlnρ̂x] are shown
in Fig. 3(b), where ρ̂x is the reduced density matrix of the
subsystem with rung number x. The entropy data also have an
oscillation with a wavelength λ = 1/δ, the same as the charge
density oscillations. For a 1D critical system described by the
conformal field theory, it has been established [74,75] that on
an open boundary system with length Lx, the entanglement
entropy follows

S(x) = c

6
ln

[
4(Lx + 1)

π
sin

π (2x + 1)

2(Lx + 1)

∣∣∣∣sin
2π

λ

∣∣∣∣
]

+ A sin
[

2π
λ

(2x + 1)
]

4(Lx+1)
π

sin π (2x+1)
2(Lx+1)

∣∣sin 2π
λ

∣∣ + B, (11)

where A, B are model-dependent parameters, 2π/λ ap-
proaches the Fermi momentum kF in the thermodynamic
limit, and the second term describes the contribution from
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FIG. 3. Charge density profile and central charge in the LEL phase. The data at δ = 1/16 are demonstrated as an example. (a) Charge
density profile n(x) for each rung with the position x. (b) Entanglement entropy S(x) versus the subsystem length x. (c) The fitting of the central
charge from the entanglement entropy by Eq. (11). The obtained fitting parameters are c = 1.114, q = 0.207, A = −2.492, and B = 1.084.

the higher-order oscillation [76]. Taking the entropy data of
J2/J1 = 0.05 in Fig. 3(c) as an example, we use Eq. (11) to fit
the center charge. To avoid the boundary effect in the fitting, a
few data points near the boundaries are excluded in the fitting.
The entropy is fitted quite well by a central charge c = 1.114
consistent with a gapless charge mode. The entropies for the
other cases in Fig. 3(b) can be similarly fitted that also find the
central charge c ≈ 1.

C. Ksc-dominant and Kc-dominant regimes
in the Luther-Emery liquid phase

By comparing the correlation functions in Fig. 2, one can
find that the t2, J2 can enhance the pairing correlation but
the increased doping level suppresses it. Since Ksc · Kc 
 1
in the LEL, the different Ksc-dominant and Kc-dominant be-
haviors may exist with tuning parameters, distinguished by
the Luttinger parameter Kρ as Ksc = 1/(2Kρ ) and Kc = 2Kρ .
Kρ > 1/2 indicates Ksc dominant, otherwise it is Kc dominant.
From Eq. (8), one can obtain the Luttinger parameter from
density structure factor as

Kρ = π lim
k→0+

D(k)

k
= π lim

k→0+

1

k
1

N

∑
r

e−ik·rD(r), (12)

which indicates Kρ is proportional to the slope of D(k) at
k = (0, 0) and thus can be extracted [77–80]. In Fig. 4(a),
we show the calculated Kρ at δ = 1/4, J2/J1 = 0.05. The
density structure factors for different lattice sizes lay on top
of each other, from which the Luttinger parameter Kρ can be
extracted.

With this we obtain Kρ for various parameter points in
the LEL phase, as shown in Fig. 4(b) with doping level
starting from δ = 1/32. By comparing Kρ with 0.5 [21,24],
we determine the boundary between the Ksc-dominant and
Kc-dominant regimes in Fig. 1(b). Notice that the condition
Kρ < 0.5 is also satisfied in the TLL phase, which can be
distinguished from the Kc-dominant LEL by their different
central charges. In Fig. 4(b), Kρ at δ = 1/4, J2/J1 = 0 is not
shown since this parameter point corresponds to a CDW state
without a well-defined Luttinger parameter [21,27].

D. Phase transition from the charge density wave
to the Luther-Emery liquid at 1/4 doping

In the previous studies of the conventional t-J ladder with-
out t2, J2, a fully gapped CDW state with small gaps has been
found at the commensurate δ = 1/4 for the case of t1/J1 = 3
[17,21,22,60], which can be witnessed by the exponential
decay correlation functions with large correlation lengths, as
shown in the insets of Figs. 2(a2) and 2(b2). Below, we study
the phase transition from the CDW to the LEL with growing
J2/J1.

We first study the charge density profile. In the open-
boundary system, while there exists truly long-range charge
order in the CDW phase, it show algebraic quasi-long-range
order in the LEL phase [21]. One example for system length
Lx = 192 is shown in Fig. 5(a), from which we find that
while the charge density oscillation for J2/J1 = 0 has a robust
amplitude in the bulk, the amplitude for J2/J1 = 0.01 decays
from the boundary to the bulk. To show the difference more
clearly, we plot the upper density values versus their positions
in the double-logarithmic scale, as shown in Fig. 5(b). It is
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FIG. 4. Determination of the Luttinger parameter Kρ in the
LEL phase. (a) The structure factors of density correlation function
D(kx, ky = 0) at δ = 1/4 and J2/J1 = 0.05 with different system
sizes Lx = 64, 128, 192. Fitting the slope near the momentum point
(0,0) by Eq. (12) gives Kρ = 0.535. (b) The obtained Luttinger pa-
rameter Kρ in the LEL phase, at different doping levels and J2/J1.
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FIG. 5. Charge density profiles and entanglement entropies at 1/4 doping. (a) Charge density profile n(x) for J2/J1 = 0 and 0.01.
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clear that while the upper density values are flat in the truly
long-range CDW phase, they decay algebraically in the LEL
phase.

Since the CDW and LEL state have different numbers of
gapless modes, we can also locate the transition by comput-
ing the central charge c from the entanglement entropy. One
example is shown in Fig. 5(c) for J2/J1 = 0 and 0.01. We
fit the entropy using Eq. (11) and skip the data points near
both ends to avoid the boundary effect. The fittings give c ≈ 0
for J2/J1 = 0 and c ≈ 1.0 for J2/J1 = 0.01, which agree with
the CDW and LEL, respectively. One may understand this
transition from the bosonization theory. While both Vρ and
Vσ are relevant in this fully gapped CDW phase [21,29],
the Umklapp processes (Vρ) are no longer relevant but the
backscattering (Vσ ) processes still contribute in the LEL phase
[30,81]. This transition occurs between the charge-gapless and
gapped phase, which is described as a Kosterlitz-Thouless
(KT) transition by the sine-Gordon model [82,83]. In Ap-
pendix D, we demonstrate more results of the fitted central
charge and entanglement entropy to show this phase transi-
tion.

IV. TOMONAGA-LUTTINGER LIQUID AND C0S1
STATE AT THE QUARTER FILLING

With further increase of doping ratio, the bosonization
theory predicts that the backscattering (Vσ ) processes will
be suppressed gradually, which can lead to a transition from
the LEL to the TLL with spin gap closing [27,67]. There-
fore, correlation functions decay algebraically in the TLL
phase and can be obtained from the bosonization theory
[27,67,77,82]. For the two-leg ladder with t⊥ � t‖, the key
difference of correlation functions from those of the TLL
in one-dimensional chain is the Luttinger parameter, which
was suggested to change from Kρ to 2Kρ [15] and has been
confirmed [24,84,85].

Following the previous results of the TLL [15,77], we first
list the bosonization predictions of different correlation func-
tions here. The singlet pairing correlation function defined
in Eq. (5) has two important algebraic modes, following the
behavior

�(r) = C0

r1+1/(2Kρ )
+ C1

cos(2kF r)

r2Kρ+1/(2Kρ )
, (13)

where C0 and C1 depend on model details. For density corre-
lation function, there are three important terms given as

D(r) = − Kρ

(πr)2 + D1
cos(2kF r)

r1+2Kρ
ln− 3

2 (r) + D2
cos(4kF r)

r8Kρ
.

(14)
Meanwhile, the spin correlation function follows the behavior

F (r) = E0

(πr)2 + E1
cos(2kF r)

r1+2Kρ
ln

1
2 (r), (15)

and the single-particle Green’s function always shows a alge-
braic decay form G(r) ∼ r−1−α , where

α = 2
∑

μ

1

8

(
Kμ + 1

Kμ

− 2

)
, μ = ρ, σ. (16)

In presence of spin rotational SU(2) symmetry, Kσ = 1 [86].
At the commensurate quarter filling, the NN t-J model is a
C0S1 state. We will also reexamine this state in this section.

A. TLL-I regime

By checking correlation functions and fitting the central
charge, we identify the TLL-I regime for both δ < 0.5 and
δ > 0.5 [see Fig. 1(b)]. In Fig. 6, we show the results in the
momentum space at δ = 7/16 and δ = 5/8, below and above
the quarter filling. Since the correlation functions change
slightly with growing J2/J1 in our studied region, we only
discuss the results for J2/J1 = 0 and 0.05 as representatives,
which are also shown in real space in Appendix E.

We first determine the Fermi momentum kF . Since elec-
trons in one-dimensional systems are strongly correlated, the
electron density in momentum space has no discontinuity at
kF but shows a power-law behavior away from kF [87]

n(k) = n(kF ) + Asign(k ± kF )|k ± kF |α, (17)

where the parameter α can be obtained from Eq. (16). In
two-leg ladders, the Fermi momentum strictly meets the con-
straint of the Luttinger sum rule kF = kb

F + ka
F = (1 − δ)π ,

where b and a denote the bonding and anti-bonding bands
[10,17,88]. We show n(kx, ky = 0) in Figs. 6(a1) and 6(a2),
in which n(k) changes rapidly at kF . The values of kF seem
to be independent of J2/J1, in consistent with the relation
kF = (1 − δ)π .
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FIG. 6. Structure factors in the TLL-I regime. Two representative doping ratios δ = 7/16 and δ = 5/8 with J2/J1 = 0, 0.05 are selected
to demonstrate the results for δ < 0.5 and δ > 0.5, respectively. (a1)–(d1) are the electron density in momentum space, pairing correlation
structure factor, density correlation structure factor, and spin structure factor at δ = 7/16. Panels (a2)–(d2) are the same figures for δ = 5/8.
Some symbolic peaks and kinks are marked in the figures, which are related to the Fermi momentum kF .

In Figs. 6(b1) and 6(b2), we show the structure factor P(kx )
of the pairing correlation �yy(r). Since �yy(r) is along the x
direction, the Fourier transform P(kx ) has only one momen-
tum variable kx. For δ = 7/16 in the δ < 0.5 side, P(kx ) has
two sharp peaks at kx = 0 and 2kF , indicating that both the
uniform and 2kF mode in Eq. (13) contribute to the pairing
correlation function. For δ = 5/8 in the δ > 0.5 side, the peak
of P(kx ) at kx = 0 is weakened and slightly splits, which we
confirm for other parameter points in this region. Nonetheless,
the contribution of the 2kF mode is still significant, and we
have also confirmed that Ksc is close to the power exponent of
the 2kF mode, which is 2Kρ + 1/(2Kρ ).

In Figs. 6(c1) and 6(c2), we show the density structure fac-
tors D(kx, ky = 0), which possess one of the main features in
this TLL-I regime: besides the uniform component in Eq. (14),
the 2kF mode has a significant contribution to the density
correlation. Notice that the singular behaviors of the structure
factors near kx = 2kF can be consistent with the logarithmic
correction ln−3/2(r) in Eq. (14). However, in the spin structure
factors shown in Figs. 6(d1) and 6(d2), the singular behaviors
near kx = 2kF are much weaker than the expectation from
the ln1/2(r) correction, which indicates that the logarithmic
correction in the second term of Eq. (15) may not properly
describe the spin correlation in this TLL-I regime.

B. The C0S1 state at the quarter filling

At the commensurate doping δ = 1/2 with J2/J1 = 0, pre-
vious numerical and analytic studies have identified a C0S1
state [13,17,22]. Under the OBC, the charge density is uni-
form but the NN horizontal bond energies show strong dimer

oscillations, which was interpreted as a signal of a bond order
wave [17].

With growing J2/J1 at δ = 1/2, we first investigate the spin
correlation as shown in Fig. 7(a). We find that spin correla-
tions follow the algebraic decay for different J2/J1, and the
power exponents are all close to 1, consistent with gapless
spin excitations. The structure factors shown in the inset have
a peak at k = (π, 0) and characterize the antiferromagnetic

FIG. 7. Spin correlation function and central charge in the C0S1
state at 1/2 doping. (a) Spin correlation functions in the double-
logarithmic scale for J2/J1 = 0, 0.05. The power exponent Ks =
1.055 is extracted by fitting the data of J2/J1 = 0. The inset shows
the corresponding spin structure factors for the ky = 0 component.
(b) Fitting the central charge for J2/J1 = 0.05 by Eq. (11). The ob-
tained fitting parameters are c = 1.136, q = 1.572, A = −6.519, and
B = 0.895. In the fitting, some data points near the boundaries have
been omitted to avoid boundary effects. For other J2/J1 at δ = 1/2,
the central charge is also close to 1.
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FIG. 8. Vanished dimer order of the C0S1 state at the 1/2 doping level. (a)–(c) are the nearest-neighbor vertical and horizontal density
correlation, single-particle correlation, and spin correlation, respectively. (d)–(f) Double-logarithmic plots of the corresponding dimer order
parameters on different system sizes. The insets show the dimer order parameters in the middle of the ladder (x = Lx/2) versus the system
length 1/

√
Lx .

spin correlation along the chain direction. Furthermore, we
check the central charge. in Fig. 7(b), where the fitting of
the entanglement entropy at J2/J1 = 0.05, leads to c ≈ 1 and
indicates that up to J2/J1 = 0.05, the system is still in the
C0S1 state.

In the previous DMRG study of the t-J ladder at the quarter
filling, the NN horizontal bond energies have strong dimer
oscillations, implying a possible bond order wave that spon-
taneously breaks translational symmetry and with twofold
degenerate ground states [17]. Here, we reexamine this possi-
ble order by simulating a much longer system with length Lx

up to 256. In Figs. 8(a)–8(c), we show 〈n̂in̂ j〉,
∑

σ 〈ĉ†
i,σ ĉ j,σ +

H.c.〉 and 〈Ŝi · Ŝ j〉 for all the NN horizontal and vertical bonds
at J2/J1 = 0. Similar to the previous results [17], the vertical
bond energies are uniform in the bulk, but the horizontal bond
energies show strong oscillations. To determine whether the
translational symmetry is broken or not, one need to investi-
gate the bond energy oscillations in the thermodynamic limit.
Following Ref. [17], we define the dimer order parameters as

�D(x) = 〈n̂xn̂x+1〉 − 〈n̂x+1n̂x+2〉,
�G(x) =

∑
σ

〈ĉ†
x,σ ĉx+1,σ + H.c.〉 −

∑
σ

〈ĉ†
x+1,σ ĉx+2,σ + H.c.〉,

�F (x) = 〈Ŝx · Ŝx+1〉 − 〈Ŝx+1 · Ŝx+2〉, (18)

where x denotes the site number in one chain. For a state
with intrinsic translational symmetry breaking, these dimer

order parameters will be finite in the thermodynamic limit;
otherwise, they will decay and vanish.

In Figs. 8(d)–8(f), we plot these dimer order parameters
versus site number x in double-logarithmic scale, for system
lengths Lx = 128, 196, 256. These dimer order parameters
all exhibit algebraic decay from the edge to the bulk, with
the power exponents near 1/2. As shown in the insets, the
bond order parameters at the middle of cylinder follow the
linear decay to zero with 1/

√
Lx. The same results apply for

other couplings in this C0S1 state. Therefore, we find that
the bond order is not long-ranged and thus does not indicate
a translational symmetry breaking. This charge gapped state
with preserved translational symmetry is consistent with the
prediction of the Lieb-Schultz-Mattis (LSM) theorem, which
claims that for a ladder system with an integer number of
electrons in a unit cell, it is not necessary to break the trans-
lational symmetry to open the charge gap [89–91]. At the
quarter filling, the electron number in each rung (unit cell)
is 1, satisfying the condition of the LSM theorem.

C. TLL-II regime

With further increase of doping level, the system enters
into a TLL-II regime that has somewhat different properties
from the TLL-I regime. The main difference is the subleading
peak in the structure factor of density correlation function,
which locates at (2kF , 0) in the TLL-I regime but (4kF , 0)
in the TLL-II regime. In the single-chain model, this change
happens at Kρ = 1/3 [82,92], which can be understood by
comparing the power exponents of the 2kF mode (1 + Kρ) and
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FIG. 9. Characterization of the TLL-II regime. The results for δ = 7/8, J2/J1 = 0, 0.05 are presented as examples. (a) Doping level
dependence of the Luttinger parameter Kρ in the δ > 1/2 region. The dotted line represents Kρ = 1/3. (b) Electron density in the momentum
space with ky = 0. The electrons mainly occupy a narrow momentum range near the center of the Brillouin zone. The Fermi momentum kF

satisfies the relation kF = (1 − δ)π . (c) The ky = 0 component of density structure factors, which show a subleading kink at k = (4kF , 0).
(d) The pairing correlation structure factors with a singularity at k = (2kF , 0). Panels (e) and (f) are charge density profile and entanglement
entropy, respectively. Both quantities have a small oscillation with the period λ = 1/(1 − δ).

4kF mode (4Kρ) in the density correlation function

D(r) = − Kρ

(πr)2 + G1
cos(2kF r)

r1+Kρ
ln− 3

2 (r) + G2
cos(4kF r)

r4Kρ
,

(19)
where the condition 1 + Kρ = 4Kρ gives Kρ = 1/3 for the
shift of the subleading peak of density structure factor. For the
two-leg ladder, if one follows the density correlation function
described by Eq. (14), this change of subleading peak may
happen at Kρ = 1/6. Following Eq. (12), we first determine
the Luttinger parameters Kρ from the derivative of density
structure factor at the momentum (0, 0), and the results are
shown in Fig. 9(a). Kρ is almost independent of the NNN
couplings but decreases with doping ratio. Furthermore, we
calculate the Fermi momentum kF from the electron density
in momentum space n(k), as shown in Fig. 9(b), which also
follows the relation kF = (1 − δ)π . With the doping ratio
dependence of Kρ and kF , we can analyze the singularities of
density structure factor. In Fig. 9(c), we show an example of
density structure factor at δ = 7/8, which has the subleading
peak at (4kF , 0). Therefore, by tracking the singularities of
density structure factor at different doping levels, we find that
the shift of the subleading peak still happens near Kρ = 1/3
when δ ≈ 83% [see the dashed line in Fig. 9(a)]. This result
is different from the prediction from Eq. (14), which might
be understood from the electron occupation in the momentum
space. As shown in Fig. 9(b), the electrons occupy a narrow

region near the center of the Brillouin zone. In the perspective
of tight-binding model, the few electrons in large doping will
only fill one band with the lower energy, which is analog to a
single chain. For pairing correlation, we find that while Kρ

decreases with doping ratio, the peaks of pairing structure
factor in Fig. 9(d) also become weaker, showing the further
suppressed pairing correlations.

We also study the charge density profile and entanglement
entropy in the TLL-II regime as shown in Figs. 9(e) and
9(f). We find that the period of the charge density profile and
entropy is related with the doping ratio as λ = 1/(1 − δ). In
addition, we find that this relationship also holds in the TLL-I
regime if the doping level is commensurate (see Appendix F),
which indicates that this relationship should always be satis-
fied in this TLL phase for commensurate doping level. Since
there are two nonuniform modes 2kF and 4kF in the charge
sector, we may write the charge density as

n(x) = n0 + Acdwcos(2kF x + φ1) + Bcdwcos(4kF x + φ2). (20)

Thus, no matter which mode is dominant, the global period of
charge density profile should be compatible with the smaller
momentum 2kF , which is nothing but 1/(1 − δ).

V. SUMMARY AND DISCUSSION

By performing DMRG calculations, we study the quan-
tum phase diagram of the two-leg t-J ladder with the NNN
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hopping t2 and spin interaction J2, by tuning the doping
ratio δ and J2/J1 (t2, J2 > 0, (t2/t1)2 = J2/J1 and t1/J1 = 3
are fixed). In the LEL phase at the lower doping side, the
growing NNN couplings can enhance the pairing correlations,
which is consistent with the observations in the wider t-J and
Hubbard models [52–55,62]. With tuning doping level and
NNN couplings, the LEL phase can be distinguished as the
pairing dominant (Kρ > 1/2) and charge density dominant
(Kρ < 1/2) regimes. At the doping level δ = 1/4, the CDW
state undergoes a transition to the LEL phase with closing the
charge gap at very small NNN couplings.

With further increased doping level, the system enters to
the TLL phase, in which the properties are almost invariant
with tuning the NNN couplings. Interestingly, we find that the
TLL phase can be distinguished as two regimes, the TLL-I at
the lower doping side and TLL-II at the larger doping side,
which are separated at δ ≈ 0.83 with Kρ 
 1/3. The main
difference between the two regimes is the subleading peak of
the density correlation structure factor, which locates at the
momentum (2kF , 0) in the TLL-I regime and (4kF , 0) in the
TLL-II regime.

At δ = 1/2, the system is in a C0S1 state. With the open
boundaries in this state, charge density is uniform but the hor-
izontal bond energies have a strong dimer oscillation, which
was interpreted previously as a long-range bond order wave
order that breaks the translational symmetry. We reexamine
this state on larger system size and find that the dimer or-

ders decay algebraically from the boundary to the bulk, with
the power exponent 1/2. Therefore, these dimer orders are
not long-ranged and will vanish in the thermodynamic limit,
which do not indicate a spontaneous translational symmetry
breaking.

In the absence of the NNN couplings for the two-leg t-J
model, the LEL phase quickly emerges upon doping, and with
growing doping level it changes from the pairing-dominant
regime (Kρ>1/2) to the density-dominant regime (Kρ<1/2).
Compared with the DMRG results on the wider t-J cylinders,
it seems that the antiferromagnetic spin correlation increases
with growing circumference at the lower doping regime and
the larger doping side becomes the stripe phase on the wider
system. The density-dominant LEL regime in this two-leg
system shows the enhanced density correlation with doping,
which may be related to the stripe order phase on the wider
systems.

Interestingly, tuning the NNN couplings t2/t1 > 0 can
also enhance the pairing correlations in the two-leg ladder,
which agrees with the observation on the wider systems.
In particular, the density-dominant LEL-II can be tuned to
pairing-dominant LEL-I with the growing NNN couplings,
resembling the evolution from the stripe phase to the d-wave
SC with growing t2/t1 on the wider systems. This comparison
may imply that the growing t2/t1 > 0 plays the similar role on
both the two-leg and the wider systems. The previous study
on 2-leg t-J ladder has provided a qualitative understanding
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FIG. 10. Pairing correlation functions in the different regions. For simplicity, J2/J1 = 0.01 is fixed and five different doping ratios are
chosen to represent the five regimes in the phase diagram. Various kinds of pairing correlation functions along x and y direction: vertical-vertical
correlation �yy, horizontal-horizontal correlation �xx and vertical-horizontal correlation �xy. The dx2−y2 -wave symmetry can be identified in
(a) LEL-I regime and (b) LEL-II regime. Panels (c) and (d) show the pairing correlations for the doping level before and after 0.5 in the TLL-I
regime, respectively. Panel (e) represents the pairing correlations in the TLL-II regime.
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FIG. 11. Structure factors in the LEL phase. Panels (a1)–(d1) are the single-electron occupation probability, pairing structure factor, density
structure factor, and spin structure factor with different J2/J1 for δ = 1/16. Panels (a2)–(d2) represent the same types structure factors for
δ = 1/4. Some symbolic peaks and kinks are marked in the figures, which are determined by the doping level. The inset in panel (b2) is the
derivative of P(kx ) for J2/J1 = 0 at δ = 1/4.

that the coherent propagation of hole pair can be enhanced
by a constructive interference between t1 and t2, in the case
of a positive t2/t1 [58,59]. Developing the microscopic the-
ory about the enhanced pairing correlation with tuning hole
dynamics on two-leg ladder should also be helpful for under-
standing the recent DMRG results of the t-J model on the
wider size.

Another typical two-leg ladder is the so-called trestle lat-
tice, which is equivalent to the 1D chain with the NNN
hopping t2. For such a noninteracting system at half filling,
tuning t2/t1 can change the Fermi points from two to four,
which have different responses to the Hubbard interaction
[93,94]. For a small Hubbard U , pairing correlation is the
dominant (Kρ > 1/2) in the parameter region with four Fermi
points, and Kρ increases with growing t2/t1 > 0 for both half-

filling and doping, which can be well understood from the
change of Fermi velocities in the Hartree-Fock approximation
[95]. For a large U , although the ground state is drastically
affected by interaction in the parameter region with four Fermi
points, Kρ in general also increases with t2/t1 in this region
[95,96]. Notice that the studied t-J ladder in the absence
of interaction also has four Fermi points for small t2/t1 and
low doping level, which may share the similar origin of the
enhanced pairing correlation by tuning the NNN hopping.
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APPENDIX A: COMPARISON OF DIFFERENT
PAIRING CORRELATIONS

We have checked the pairing correlation functions between
different bonds. In Fig. 10, we select five parameter points to

represent the five regimes in the phase diagram. In Figs. 10(a)
and 10(b), we show that while the vertical-vertical correlations
�yy and horizontal-horizontal correlations �xx are positive,
the vertical-horizontal correlations �yx are negative, which
confirm the dx2−y2 -wave pairing symmetry in the LEL phase.
One can also find that although �yy has the strongest magni-
tude, the different pairing correlations have the similar power
exponents, namely Kyy

sc ≈ Kyx
sc ≈ Kxx

sc .
In the TLL phase, the d-wave pairing symmetry is absent.

For δ < 0.5 in the TLL-I regime [Fig. 10(c)], the power
exponents of the different pairing correlations have slight
differences. In the other regimes [Figs. 10(d) and 10(e)], they
are still consistent. Therefore, in the main text we demonstrate
the results of �yy as the representative.

APPENDIX B: STRUCTURE FACTORS IN THE LEL PHASE

The structure factors in the LEL phase are shown in Fig. 11.
The electron densities in the momentum space n(k) are shown
in Figs. 11(a1) and 11(a2). The structure factors of pairing
correlation P(kx ) in Figs. 11(b1) and 11(b2), using the Fourier
transformation of �yy, show a strong singular peak at kx = 0,
which is consistent with enhanced pairing correlation. Be-
sides, P(kx ) also has a small kink at kx = 2δπ that reflects
the period of pairing correlation λ = 1/δ. To show the kink
clearly, we demonstrate the derivative of P(kx ) for J2/J1 = 0,
δ = 1/4 in the inset of Fig. 11(b2). The structure factor of
density correlation D(k) in the LEL phase also shows singular
peak at k = (2δπ, 0) [Figs. 11(c1) and 11(c2)]. The peak
value increases with growing doping level, indicating that
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doping will enhance density correlation. In Figs. 11(d1) and
11(d2), we show the spin structure factor. For small J2/J1 at
half filling, spin structure factor has a peak at k = (π, π ).
With doping, the peak splits and move away from k = (π, π ).

APPENDIX C: EXTRACTING THE EXPONENT Kc

BY FITTING CHARGE DENSITY PROFILE

In the open boundary system, due to the Friedel oscillation
of charge density, the power exponent Kc can also be obtained
by fitting the charge density profile using the formula,

n(x) = n0 + Acdwcos(2kF x + φ), (C1)

where Acdw = A0[x−Kc/2 + (Lx + 1 − x)−Kc/2], kF and φ are
fitting parameters. Here, we choose the systems with J2/J1 =
0.05 for demonstration (Fig. 12). We eliminate some data
points at the edges to avoid boundary effect. The fitted Kc in
Fig. 12 agree with the results we obtained by fitting the decay
of density correlation function.

APPENDIX D: THE EVOLUTION OF ENTANGLEMENT
ENTROPY AND CENTRAL CHARGE AT 1/4 DOPING

We fit the central charge at δ = 1/4 with growing t2/t1. As
shown in Fig. 13(a), the fitted central charge exhibits a change
from c ≈ 0 to c ≈ 1 near t2/t1 ∼ 0.003. Notice that the x axis
variant t2/t1 is labeled by the logarithmic scale. One can also
find that the entanglement entropy at the middle of ladder Smid

in Fig. 13(b) changes slightly with t2/t1 in the CDW phase
but decreases gradually in the LEL phase, consistent with the
transition observed from the change of central charge. This
transition happens at very small NNN couplings, which is
consistent with the tiny charge gap at t2/t1 = 0 [17,21].

APPENDIX E: CORRELATION FUNCTIONS
IN THE TLL-I REGIME

In this section we choose J2/J1 = 0.05 as the representa-
tive to show the power exponents of correlation functions in
the TLL-I regime with δ = 7/16 for δ < 0.5 and δ = 5/8 for
δ > 0.5 (Fig. 14).

Following Eq. (12), we first determine the Luttinger
parameters for δ = 7/16 and δ = 5/8 as Kρ ≈ 0.440 and
Kρ ≈ 0.404, respectively. For the pairing correlation func-
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FIG. 15. Charge density profile in the TLL phase. Two doping
ratios δ = 2/3 and δ = 7/8 are chosen as representatives to char-
acterize the TLL-I and TLL-II regime. (a1)–(c1) demonstrate the
results for δ = 2/3 with different lattice sizes, all of which have a
period of λ = 3. (a2)–(c2) are the similar figures for δ = 7/8 with a
period of λ = 8.

tions in Figs. 14(a1) and 14(a2), the power exponents are
fitted as Ksc ≈ 2.149 and Ksc ≈ 2.050. For δ = 5/8, the
power exponent Ksc is consistent with the second term in
Eq. (13), i.e., 2Kρ + 1/(2Kρ ). For density correlation func-
tions [Figs. 14(b1) and 14(b2)], the power exponents are all
about 2, indicating that the first term in Eq. (14) is the main
contribution. For spin correlation, we obtain the power expo-
nents Ks ≈ 2.070 and Ks ≈ 1.808 [Figs. 14(c1) and 14(c2)],
which are consistent with the first term (2) and the second
term (1 + 2Kρ) of Eq. (15), respectively.

APPENDIX F: CHARGE DENSITY PROFILE
IN THE TLL PHASE

We show the charge density profile for the TLL phase in
Fig. 15. Two doping ratios δ = 2/3 and δ = 7/8 are selected
to represent the TLL-I and TLL-II regime. In Figs. 15(a1)–
15(c1), we show the charge density distributions at different
lattice sizes which all match the doping level δ = 2/3. The
DMRG results show that the period of the CDW is λ = 3,
which strictly obeys the relation λ = 1/(1 − δ). Similar con-
clusion also can be drawn in the TLL-II regime as shown
in Figs. 15(a2)–15(c2) with the period λ = 8. Notice that if
the system length is not compatible with doping level, charge
density profile does not show a clear period.
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