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Noise suppression of transport through double quantum dots by feedback control

Jiahao Xu ,1 Shikuan Wang,2 Jiawei Wu ,1 Yiying Yan ,1 Jing Hu,1 Georg Engelhardt,3,4,5 and JunYan Luo1,*

1Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
2Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China

3Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4International Quantum Academy, Shenzhen 518048, China

5Guangdong Provincial Key Laboratory of Quantum Science and Engineering,
Southern University of Science and Technology, Shenzhen, 518055, China

(Received 4 November 2022; revised 3 February 2023; accepted 9 February 2023; published 7 March 2023)

A controllable low noise current lies at the heart of high-precision measurements in quantum transport and
metrology. While the previous research dealt with the suppression of noise in transport through a tunneling
junction or a single quantum dot (QD) device, the present work investigates noise inhibition of a double quantum
dot (DQD) transport system based on closed-loop feedback control. The unique advantage of a DQD device
is that bidirectional transport at low bias can be measured by a nearby quantum point contact. However, the
continuous monitoring of the DQD states inevitably leads to a measurement-induced dephasing. To appropriately
characterize its transport properties in the presence of feedback action, we here develop a numerical method
dubbed auxiliary density matrix approach, motivated by the hierarchical expansion of the moment-generating
function in the hierarchy equations of motion [J. Cerrillo et al., Phys. Rev. B 94, 214308 (2016)]. This generic
method has no restriction on the system structure and parameters and is able to evaluate the feedback current
cumulants to an arbitrary order. It is revealed that the feedback control of the tunnel coupling between the two
dots is the most effective to suppress the noise under various tunnel coupling configurations. The influence
of interdot Coulomb interaction, measurement-induced dephasing, and finite time delay on feedback is also
analyzed in detail.
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I. INTRODUCTION

Quantum fluctuations in nonequilibrium transport through
nanostructures are a fundamental physical phenomenon due
to the quantization of the electron charge [1–3]. In partic-
ular, the state-of-the-art real-time detection technology has
experimentally allowed a systematic characterization of tem-
poral correlations between individual electron transfers [4–9].
Noise suppression and enhancement both have been observed
in single-electron devices. Normally, the Pauli exclusion prin-
ciple inhibits the noise below the classical Poisson value
[10–14]. Yet, it is revealed that super-Poissonian noise can
appear, for instance, in the cotunneling regime [15–17] or
in the presence of a dynamical channel blockade mechanism
[18–23]. These investigations have demonstrated that noise
is a sensitive diagnostic tool to probe intriguing correlations
between carriers. However, it is also of great importance to
shed light on how to manipulate these correlations to achieve
a controllable low noise current, paving thus the way for high-
precision measurements in quantum transport and quantum
metrology.

Quantum feedback control is a promising candidate to
effectively impose additional correlations between charge
transfers. Yet, its application for noise suppression in quan-
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tum transport has only been proposed recently in a tunneling
junction or single QD on the level of single electrons [24–26].
Remarkably, strong suppression of charge fluctuations has
been achieved in experiment for transport through a single QD
based on a closed-loop feedback scheme, where the informa-
tion of real-time individual electron tunneling measured by a
nearby quantum point contact (QPC) is used to appropriately
adjust the tunneling rates between the single QD and the
electrodes [27].

In comparison with a single QD device, a “nonlocal”
DQD system manifests more pronounced and rich physics
and exhibits a number of unique effects [28,29], serving
thus not only as an ideal testbed to investigate fundamental
principles in quantum mechanics but also as a promising
candidate for quantum information processing [30–33]. It
has been demonstrated that the transport characteristics in a
DQD depends sensitively on a number of its unique internal
and coupling parameters, such as many-body effects [34–39],
quantum coherence [39–42], system-bath coupling [42–46],
detuning [47–51], and interdot tunnel coupling [52–55]. Es-
sentially, different from a single QD where only unidirectional
transport counting statistics can be measured under strongly
nonequilibrium conditions, a DQD device has the intriguing
advantage to count bidirectional single electron transfers in a
nearly equilibrium condition [56]. Yet, this relies on a QPC
detector which, on one hand, extracts the DQD information
in a continuous manner and, on the other hand, alters the
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FIG. 1. Schematics of closed-loop feedback control of transport
through a DQD tunnel coupled to the left and right electrodes. A
nearby QPC is electrostatically coupled to the two dots in an asym-
metrical way such that the jumps of the QPC current IQPC (top right)
reveal the bidirectional electron tunneling through the DQD. The
discrepancy between the measured and target currents through the
DQD is then used to feedback control the gate voltages VGL, VGR,
and VG�, which corresponds to an appropriate modification of the
tunnel couplings �L, �R, and �, to regulate the discrepancy of the
DQD current in the next time interval.

remaining uncertainty in the DQD system, leading inevitably
to a dephasing mechanism in the measured system. This
brings not only additional freedom but also poses great
challenges to feedback control of transport through a DQD
system. It is therefore appealing to describe feedback transport
characteristics with full accounting for these factors and inves-
tigate essentially how effective the feedback is to stabilize low
noise currents through DQD devices.

Due to the feedback action, the equation of motion for
the moment-generating function becomes a partial differential
equation, that can be solved only in special cases. Motivated
by the hierarchical expansion of the moment-generating func-
tion in the hierarchy equations of motion [57], our work
develops a numerical method dubbed “auxiliary density ma-
trix approach” that keeps track of the counting statistics in
the presence of feedback action. This generic method has no
restriction on the system structure and parameters. It maps
the first-oder partial differential equation to a set of coupled
ordinary differential equation, that can be conveniently nu-
merically integrated.

The system under study is schematically shown in Fig. 1,
where a nearby QPC is electrostatically coupled to the two
dots in an asymmetrical way such that the jumps of the QPC
current IQPC reveal the real-time information of the stochastic
electron tunneling through the DQD. The discrepancy be-
tween the measured and target currents through the DQD is
then used to feedback control the gate voltages VGL, VGR,
and VG�, which corresponds to an appropriate modification
of the tunnel couplings �L, �R, and � in such a way that the
tunneling process is adjusted to compensate the discrepancy
of the DQD current in the next time interval. Our investigation
demonstrates unambiguously that the feedback scheme works
in both high and low bias limits. In particular, it is revealed
that the feedback control of the tunnel coupling between the
two dots is the most effective to suppress the noise under
various feedback control parameters. Furthermore, we also

analyze how the measurement-induced dephasing, interdot
charging energy, and finite time delay influence the feedback
performance.

The rest of the paper is organized as follows. We start
with a description of the DQD transport system and its full
counting statistics (FCS) in Sec. II, which is then followed
in Sec. III by the introduction of the feedback scheme and
establishment of the auxiliary density matrix approach for
feedback transport properties. Section IV is devoted to a de-
tailed investigation on the effectiveness of feedback control
of transport through a DQD under various conditions. Finally,
we summarize the work in Sec. V.

II. MODEL SYSTEM AND FULL COUNTING STATISTICS

The DQD transport system is schematically shown in
Fig. 1, where the two dots, contacted in series, are tunnel
coupled to the left and right electrodes. The Hamiltonian of
the whole system reads [28,56,58–60]

H = HS + HB + HI, (1)

where HS denotes the Hamoltonian of the DQD. In the dot
state representation |0〉, |L〉, |R〉, |D〉, standing for no elec-
trons, one electron in the left dot, one in the right dot, and
one in each dot, respectively, the DQD Hamiltonian can be
expressed as

HS =
∑

�

E�d†
� d� + �(d†

LdR+d†
RdL) + Ud†

LdLd†
RdR, (2)

where d� (d†
� ) is the annihilation (creation) operator for an

electron in the left (� = L) or right (� = R) dot, and � is
the interdot tunnel coupling strength. EL/R is the single en-
ergy level in the left (� = L) or right (� = R) dot within
the bias window. One may parametrize the single levels by
their average energy Ē = (EL + ER)/2 and their difference
�E = EL − ER, such that EL/R = Ē ± 1

2�E . The interdot
Coulomb charging energy U is associated with the energy
cost for simultaneous occupation of one electron in each dot.
The intradot (on-site) Coulomb interactions are assumed to be
infinite such that the double occupation of each dot is ener-
getically not allowed. The electron spin label is suppressed
here and in the following, since only charge states play a
role. This depiction has been shown to be useful for modeling
charge-related properties in individual DQD devices [61,62].

The left and right electrodes are modeled as reservoirs of
noninteracting electrons

HB =
∑

�=L,R

∑
k

ε�kc†
�kc�k, (3)

where c�k (c†
�k ) is the annihilation (creation) operator for an

electron with momentum k in the left (� = L) or right (� = R)
electrode. The electrodes are assumed to be in local equi-
librium and characterized by the Fermi distribution f�(ω) =
{1 + e(ω−μ� )/kBT�}−1, where T� and μ� are respectively the tem-
perature and chemical potential in electrode �. This spinless
model could be motivated by a large magnetic field that leads
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to complete spin polarization in the leads, such that only one
spin would need to be considered, or alternatively by orbitals
where all tunneling processes are completely symmetric in
the electronic spin, such that it may be omitted from our
considerations.

The tunnel coupling between the DQD and the electrodes
is described by the Hamiltonian

HI =
∑

�=L,R

∑
k

(t�kc�kd†
� + H.c.), (4)

where t�k is the tunneling amplitude between the DQD
and electrode �. The corresponding tunnel coupling
strength is characterized by the intrinsic linewidth
��(ω) = 2π

∑
k |t�k|2δ(ω − ε�k ). In the usual wide-band

limit, it becomes energy independent ��(ω) = ��.
Throughout this work, we set e = h̄ = 1.

Electron tunneling through the DQD is measured by a
nearby QPC, which is modeled as a tunneling junction whose
conductance is susceptible to changes in the surrounding
electrostatic environment (the occupation of the DQD). The
asymmetrical electrostatic coupling between DQD and QPC
results in different QPC currents, i.e., IL

QPC (IR
QPC) when the

left (right) dot is occupied. It is due to this mechanism
that the QPC is able to continuously measure the quantum
state of the DQD and thus deduce electron tunneling through
the DQD in both forward and reverse directions. This however
gives rises to an additional measurement-induced dephasing
of the DQD system [63,64]

γd = 1
2

(√
IL
QPC −

√
IR
QPC

)2
. (5)

This is a striking difference in comparison with the charge
transport though single QD devices.

The stochastic nature of transport is characterized by the
probability distribution P(N, t ) = tr{ρ (N )(t )} for the number
N of electrons transferred through the DQD in the time
interval [0, t], where ρ (N )(t ) is the reduced density matrix
conditioned on the transfered electrons satisfying ρ(t ) =∑

N ρ (N )(t ) [65]. A powerful tool to characterize this proba-
bility distribution is the FCS [2,3], that encodes the statistical
information in terms of the cumulant generating function
(CGF) F (χ, t ) defined by

eF (χ,t ) =
∑

N

P(N, t )e−iNχ = tr{ρ(χ, t )}. (6)

We have here introduced the χ -dependent reduced density
matrix ρ(χ, t ) = ∑

N ρ (N )(t )eiNχ , where χ is the count-
ing field associated with the number of tunneled elec-
trons. Under the second-order Born-Markov approximation,
ρ(χ, t ) satisfies the following χ -dependent quantum master
equation [2,3]

ρ̇(χ, t ) = L(χ )ρ(χ, t ). (7a)

In the dot states representation of the DQD, the re-
duced density matrix can be expressed as a column vector
ρ ≡ (ρ00, ρLL, ρRR, ρDD, Re[ρLR], Im[ρLR])T, where ρaa ≡
〈a|ρ|a〉 denotes the probability of the DQD in the state
|a〉 (a = 0, L, R, D), ρLR ≡ 〈L|ρ|R〉 stands for the so-called
“quantum coherence.” The other nondiagonal elements be-
tween states of different electron numbers, such as ρ0L, ρRD,
etc., are dynamically decoupled and thus not included. In this
case, L(χ ) is explicitly given by

L(χ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∑
�=L,R

�+
� �−

L eiχ�−
R 0 0 0

�+
L −�−

L − �̃+
R 0 eiχ �̃−

R 0 2�

e−iχ�+
R 0 −�−

R − �̃+
L �̃−

L 0 −2�

0 e−iχ �̃+
R �̃+

L − ∑
�=L,R

�̃−
� 0 0

0 0 0 0 − 1
2

∑
�=L,R

(�−
� + �̃+

� ) − γd −�E

0 −� � 0 �E − 1
2

∑
�=L,R

(�−
� + �̃+

� ) − γd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7b)

where the tunneling rates are defined as �±
� = �� f (±)

� (Ē )
and �̃±

� = �� f (±)
� (Ē + U ), with the Fermi function f (+)

� (ω) =
f�(ω) and f (−)

� (ω) = 1 − f (+)
� (ω). Here, we are interested

in the regime � � kBT (� =
√

�E2 + 4�2 being the
eigenenergy separation), where the external coupling strongly
modifies the internal dynamics [44,58,62,65], the level sep-
aration is thus smeared by the temperature, and only the
excitation energies Ē and Ē + U enter the Fermi functions.
The tunnel coupling induced energy renormalization, or the
so-called Lamb shift due to system-bath coupling [43,44,66]
has been included in �E . The counting of electron tunneling
events in forward and reverse directions is implied by the sign
of the exponential in Eq. (7b).

We note that in the large bias limit a quantum master
equation can be derived without having to using the Born-
Markov approximation [67]. Furthermore, the nondiagonal
elements between states of different electron numbers become
dynamically decoupled, without having to invoking additional
assumptions, which largely extends the applicability of our
results.

In the stationary limit when the counting time t is much
longer than the time of tunneling through the system, the CGF
is simply given by [68]

F (χ ) = λ0(χ )t, (8)

where λ0(χ ) is the unique eigenvalue of L(χ ) that satis-
fies λ0(χ → 0) → 0. However, as for the present system, an
analytical solution is not available, one has to solve Eq. (7)
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FIG. 2. (a) Feedback-controlled probability distributions for the number N of tunneled electrons at different times t/�−1 =
30, 60, 90, 120, 150, and 180 under large bias using analytical (dashed curves) and numerical (circle) calculations. The results without
feedback are shown by the solid curve for comparison. (b) Real part Re[Ffb(χ, t )] and (c) imaginary part Im[Ffb(χ, t )] of the CGF under
feedback control using analytical (dashed curve) and numerical (circle) calculations at time t = 2�−1. The other plotting parameters are
�L = �R = 2�, �E = 0, and γd = 0. We use � = 1

2 (�L + �R ) as unit of energy, the stationary current as the target current, and homogeneous
feedback (gL = gR = g� = g).

numerically. At time t = 0, when the counting starts, one
has ρ (N )(t = 0) = ρstδN,0, thus it has to be solved with the
initial condition ρ(χ, t = 0) = ρst, where ρst is the station-
ary reduced density matrix obtained from the unconditional
quantum master equation. With the solution of Eq. (7), one
readily obtains F (χ, t ) = − ln{Trρ(χ, t )}, and all cumulants
can be obtained numerically. In particular, the probability
distribution for transferred electrons can be evaluated via

P(N, t ) =
∫ 2π

0

dχ

2π
e−iNχ eF (χ,t ). (9)

In Fig. 2, the solid curves show the numerical probability
distributions P(N, t ) for the number of tunneled electrons
through the DQD for a large bias voltage V = 50� at different
times t/�−1 = 30, 60, 90, 120, 150, and 180. The average
of the distribution, which corresponds to the average number
of tunneled electrons, moves constantly with increasing time.
Furthermore, the width of the probability distribution, which
characterizes the shot noise, grows with time. The spreading
of the distribution occurs even at equilibrium (bias V = 0), as
shown by the solid curves in Figs. 7(a)–7(d), where the net
current is zero but the width of the distribution still increases
with time. It is thus of essential importance to introduce a
closed-loop feedback control and use an appropriate approach
to investigate how to “freeze” the probability distribution in
order to obtain a stabilized low noise current.

III. FEEDBACK SCHEME AND NUMERICAL APPROACH

A. Feedback scheme

The basic principle of the closed-loop feedback control
scheme of transport through the DQD is schematically shown
in Fig. 1, where the number of tunneled electrons N detected
by the QPC is compared with the target number of electrons
Igt . The discrepancy is fed back into the DQD transport device
via modulating the gate voltages VGL, VGR, and VG�, which
amounts to a change of the tunneling rates through the corre-
sponding barriers in the DQD.

First, we introduce qN (t ) to describe the discrep-
ancy between the target and detected number of tunneled
electrons

qN (t ) = Igt − N, (10)

where Ig is the target current and N is the number of detected
charges. This discrepancy qN (t ) can be used to determine
whether the transport process need to be speed up or slowed
down. This is achieved by adjusting the voltage of VGL, VGR,
and VG� as shown in Fig. 1. It effectively corresponds to a
modulation of the tunneling rates, i.e., �L → ηL[qN (t )]�L,
�R → ηR[qN (t )]�R. Different from the feedback control of a
single QD where only a modulation of �L and �R is possible,
the DQD device offers the opportunity to feedback control the
interdot tunnel coupling via � → η�[qN (t )]�. Note, for more
complicated systems, it is also possible to introduce other
feedback parameters as long as they are controllable.

A possible feedback scheme is to use the exponential pro-
tocol [69] η�[qN (t )] = eg�·qN (t ) = exp{g�(Igt − N )}, where g�

is a dimensionless feedback parameter. It ensures the positiviy
of modulated tunneling rates. To be consitent with the exper-
iment [27], hereafter we consider weak feedback (g� � 1)
such that the exponential feedback reduces to a simple liner
feedback:

η�[qN (t )] = 1 + g�(Igt − N ), � ∈ {L, R,�}. (11)

In the following calculations, we always choose g� to be
small to guarantee the positivity of the modulated tunneling
rates.

Under feedback, the χ -dependent master equation in
Eq. (7) is transformed to

�̇(χ, t ) = L̃(χ, t )�(χ, t ), (12a)

where �(χ, t ) is the χ -dependent reduced density ma-
trix under closed-loop feedback control, and L̃(χ, t ), the
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counterpart of L(χ ) under feedback, is given by

L̃(χ, t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∑
�=L,R

η̃��
+
� η̃L�−

L eiχ η̃R�−
R 0 0 0

η̃L�+
L −η̃L�−

L − η̃R�̃+
R 0 eiχ η̃R�̃−

R 0 2η̃��

e−iχ η̃R�+
R 0 −η̃R�−

R − η̃L�̃+
L η̃L�̃−

L 0 −2η̃��

0 e−iχ η̃R�̃+
R η̃L�̃+

L − ∑
�=L,R

η̃��̃
−
� 0 0

0 0 0 0 −�d − γd −�E
0 −η̃�� η̃�� 0 �E −�d − γd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12b)

Here �d = 1
2

∑
�=L,R η̃�(�−

� + �̃+
� ) and

η̃� ≡ η̃�[qχ (t )] = 1 + g�(Igt − ∂iχ ) (13)

is the counterpart of Eq. (11) in χ space. By acting on the
density matrix, the partial derivative ∂iχ evaluates the number
of already tunneled electrons. Our formalism allows thus to
describe the number-based feedback action solely in terms of
the reduced density matrix.

Now the central task is to utilize Eq. (12) to find the
χ -dependent reduced density matrix under feedback �(χ, t )
such that one can obtain the CGF Ffb(χ, t ) = ln[tr{�(χ, t )}].
The cumulants under feedback can be obtained by taking
partial derivatives of Ffb(χ, t ) with respect to the counting
field. However, Eq. (12) cannot be as easily solved as Eq. (7),
which is an ordinary first-order differential equation in time.
As inferred from Eq. (13), Eq. (12) is a set of partial differen-
tial equations of both χ and t .

For very simply systems, such as a tunneling junc-
tion or a single QD system with symmetric tunnel cou-
plings (�L = �R) and homogeneous feedback (η̃L = η̃R =
η̃), L̃(χ, t ) reduces to L̃(χ, t ) → L(χ )η̃. In the stationary
limit, L(χ ) can be further replaced by its minimal eigen-
values in Eq. (8), and the feedback master Eq. (12) greatly
simplifies to

�̇(χ, t ) = λ0(χ )η̃[qχ (t )]�(χ, t ). (14)

It is only in this case that one may use the method of charac-
teristics to find an anlytical result for �(χ, t ) [24–26].

This is, however, not possible for a DQD transport device.
Due to the presence of level mismatch �E and measurement-
induced dephasing γd , L̃(χ, t ) in Eq. (12b) cannot be reduced
to L(χ )η̃ even for the special case �L = �R = � and η̃L =
η̃R = η̃� = η̃. Even if L̃(χ, t ) → L(χ )η̃ under very special
conditions, normally it is not possible to get the minimal
eigenvalue of L(χ ) in Eq. (7b) analytically. Furthermore,
even though the minimal eigenvalue is obtained and one gets
an equation similar to Eq. (14), the complicated form of
λ0(χ ) may not allow an analytical solution of �(χ, t ). It is
therefore necessary to use an appropriate approach for evalu-
ating the transport characteristics under closed-loop feedback
control.

B. Auxiliary density matrix approach

Now we are in a position to introduce an auxiliary den-
sity matrix approach to account for the feedback-controlled
transport characteristics. To this end, we introduce the kth tier
auxiliary reduced density matrix

�[k](χ, t ) = ∂k
iχ�(χ, t ) (k � 0) (15)

and decompose L̃(χ, t ) in the two parts:

L̃(χ, t ) = α(χ, t ) + β(χ )∂iχ , (16)

where the partial derivative with respective to the counting
field is singled out on purpose. Thereby,

α(χ, t ) = L̃(χ, t )|η̃�→1+g�Igt , (17a)

β(χ )∂iχ = L̃(χ, t ) − α, (17b)

where α(χ, t ) depends on both χ and t , while β(χ ) only
depends on the counting filed χ . Taking partial derivatives
with respect to the counting field ∂iχ on Eq. (12) k times, we
obtain the k differential equations

�̇[0] = α�[0] + β�[1], (18a)

�̇[1] = (∂iχα)�[0] + (α + ∂iχβ)�[1] + β�[2], (18b)

· · · = · · · (18c)

�̇[k] = (
∂k

iχα
)
�[0] + (

k∂k−1
iχ α + ∂k

iχβ
)
�[1] + · · · + β�[k+1].

(18d)

It results in a set of hierarchically coupled differential
equations, where for an arbitrary k (k � 1), �[k] is cou-
pled to all the tiers from �[0] to �[k+1]. By introducing
a supervector μ = {�[0], �[1], · · · , �[k]}T, Eq. (18) can be
rewritten as

μ̇(χ, t ) = Z (χ, t )μ(χ, t ), (19a)
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where the supermatrix Z (χ, t ) is given by

Z (χ, t ) =

⎛
⎜⎜⎜⎜⎜⎝

α(χ, t ) β(χ ) 0 0 · · · 0 0
∂iχα(χ, t ) α(χ, t ) + ∂iχβ(χ ) β(χ ) 0 · · · 0 0
∂2

iχα(χ, t ) 2∂iχα(χ, t ) + ∂2
iχβ(χ ) α(χ, t ) + 2∂iχβ(χ ) β(χ ) · · · 0 0

...
...

...
...

. . .
...

...

∂k
iχα(χ, t ) k∂k−1

iχ α(χ, t ) + ∂k
iχβ(χ ) · · · · · · · · · α(χ, t ) + k∂iχβ(χ ) β(χ )

⎞
⎟⎟⎟⎟⎟⎠

.

(19b)

It should be noted that each element in Eq. (19b) is
itself a matrix in the Hilbert space of the reduced sys-
tem given by Eqs. (12b) and (17). At time t = 0 when
the counting starts, one has �(N )(t = 0) = ρstδN,0, such
that �[0](χ, t = 0) = �(χ, t = 0) = ρst and �[k](χ, t = 0) =
∂k

iχ�(χ, t = 0) = 0 for k � 1. Equation (19) thus should be
solved with the initial condition μ(t = 0) = {ρst, 0, · · · , 0}T,
where ρst = ρ(t → ∞) is the stationary reduced density ma-
trix.

We mention that auxiliary density matrices have been
used to evaluate the cumulants in mesoscopic transport de-
scribed by the hierarchy equation of motions, see, for instance,
Ref. [57]. There, the kth tier auxiliary density matrix is only
coupled to the lower tier density matrices. Therefore they
form a closed set of equations of motion. In the presence of
feedback control, however, the kth auxiliary density matrix
is not only coupled to the lower tier matrices, but also to a
higher (k + 1)th tier matrix. One thus has to solve Eq. (19)
up to a sufficient large tier M (M 
 k) in order to obtain the
accurate kth cumulant. In our practical numerical calculation,
the truncation is made in the following way: We solve Eq. (19)
up to the Mth tier provided that the difference of the kth
cumulants calculated up to the Mth and (M + 1)th tiers (δCk)
is negligibly small.

By numerically solving Eq. (19), one obtains the CGF
under feedback control Ffb(χ, t )

eFfb (χ,t ) = tr{�[0](χ, t )} = tr{�(χ, t )}. (20)

The corresponding probability distribution is simply obtained
via

P(N, t ) =
∫ 2π

0

dχ

2π
e−iNχ eFfb (χ,t ). (21)

In Figs. 2(b) and 2(c), we show, respectively, the real and
imaginary parts of the numerically obtained feedback CGF
Ffb(χ, t ) evaluated up to 100 tiers (M = 100) for the case of
�L = �R = 2�, U = 0, and bias V/� = 50, cf. the circles.

Due to its construction, the solution of Eq. (19) yields
directly the kth (k � 1) moment under feedback control

vk (t ) = tr{�[k](χ, t )}|χ→0 = ∂k
iχ tr{ρ(χ, t )}|χ→0

= ∂k
iχ eFfb (χ,t )|χ→0. (22)

Utilizing the relation between cumulants and moments [70],
one can readily calculate arbitrary cumulants. For instance,
the first cumulant is the same as the first moment

C1(t ) = v1(t ), (23)

and the second cumulant is given by

C2(t ) = v2(t ) − v2
1 (t ). (24)

Higher order cumulants can be obtained in a similar manner.

C. Delayed feedback

So far, we have considered instantaneous feedback, i.e., the
control operations are performed directly after the measure-
ment. Yet, realistically, time delay in the feedback control has
to be taken into account. Now we are in a position to discuss
the influence of a delayed feedback, which can be modeled

by introducing a delay function ξ (t ′) = 1
τ

e− t ′
τ to the tunnel-

ing rates. For simplicity, we assume homogeneous feedback
(gL = gR = g� = g) and the resonance condition (�E = 0).
The QME under delayed feedback then reads

ρ̇(χ, t ) = L(χ )
∫ t

0
dt ′ξ (t ′)[1 + g(Ig(t − t ′) − ∂iχ )]

× ρ(χ, t − t ′), (25)

where L(χ ) is given in Eq. (7b). In the long-time limit, it
reduces to

v̇0(χ, t ) = λ0(χ )
∫ t

0
dt ′ξ (t ′)[1 + g(Ig(t − t ′) − ∂iχ )]

× v0(χ, t − t ′), (26)

where v0(χ, t ) = tr[ρ(χ, t )] and λ0(χ ) is the minimal eigen-
value of L(χ ) in the absence of feedback. Although an explicit
expression of λ0(χ ) may not be obtained, it is always possi-
ble to write λ0(χ ) = 〈〈I〉〉χ + 1

2! 〈〈I2〉〉χ2 + · · · , where 〈〈I〉〉 and
〈〈I2〉〉 are, respectively, the stationary current and shot noise in
the absence of feedback.

Upon transformation into the Laplace space, ṽ0(χ, z) =∫ ∞
0 dte−ztv0(χ, t ), Eq. (26) becomes

zṽ0(χ, z) − 1 = λ0(χ )ξ̃ (z)(1 − gIg∂z − g∂iχ )ṽ0(χ, z), (27)

where we have used the initial condition v0(χ, t = 0) = 1,
and ξ̃ (z) = (1 + zτ )−1 is the delay function in the Laplace
domain. For χ = 0, λ0(χ = 0) = 0, the above equation yields
ṽ0(0, z) = 1/z. Taking the first partial derivative of Eq. (27)
with respective to iχ and let χ → 0, we obtain

∂iχ ṽ0(χ, z)|χ→0 = z + gIg

z + τ z2 + g〈〈I〉〉
〈〈I〉〉
z2

. (28)
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FIG. 3. Probability distributions for (a) γd = 0 and (b) γd = 5� at times t/�−1 = 120, 180, 240, 300, and 360. Each set of distributions
is given only one of the three feedback parameters (gL, gR, and g�) while the other two feedback parameters are zero. The corresponding second
cumulants versus time are shown in (c) and (d), respectively, where the results without feedback (gL = gR = g� = g = 0) are also shown by
the circles for comparison. The other plotting parameters are �L = 0.4�, �R = 1.6�, and � = 0.5�, �E = 0.5�, where � = 1

2 (�L + �R ) is
set as unit of energy. We use the stationary current as the target current. (Inset) Second cumulant C2(t ) obtained using various M to show the
convergence with increasing tier number.

Applying the inverse Laplace transformation, one finds the
first cumulant in the long-time limit becomes

CD1 = ∂iχv0(χ, t )|χ→0,t→∞ = Igt . (29)

It reveals that the probability distribution moves constantly
with the target current, which is not affected by the time delay
in feedback.

Analogously, taking the second partial derivative of
Eq. (27) with respective to iχ and letting χ → 0, we obtain
the second cumulant under delayed feedback in the long-time
limit

CD2 = ∂2
iχv0(χ, t )|χ→0,t→∞ − C2

D1(t → ∞)

= Ig

2g〈〈I〉〉 (F − 2Igτ ), (30)

where F = 〈〈I2〉〉
〈〈I〉〉 is the usual Fano factor in the absence of

feedback. It implies that the probability distribution can be
frozen with a slightly modified but constant width.

Equation (30) seemingly suggests that the second cumu-
lant can be negative for Ig〈〈I〉〉 < 0, i.e., when the stationary
current and the target current are not equally directed. While
mathematically correct, this result must be discarded on
physical grounds. Inspection of the equation of motion in
Eq. (25) shows that feedback cannot reverse the direction of
the current, but only amplify or deamplify it. Consequently,
a negative Ig and positive 〈〈I〉〉 will lead to negative transition
rates in the Liovillian for long times according to Eq. (11).
This will give rise to negative probabilities and, eventually,
to a second cumulant, that is formally negative. This is appar-
ently in contradiction to the weak feedback limit (g� � 1) that
guarrantees the positivity of the rates all the time. Likewise, a
positive Ig and a negative 〈〈I〉〉 will lead to diverging tunnel-
ing rates, that will be mathematically reflected in a negative
second cumulant.

Intriguingly, a finite time delay τ > 0 leads to a reduction
of the fluctuations. The improvement can be explained as
follows. Without time delay, the feedback action overshoots
when trying to reach the target current. A finite time delay
prevents this overshooting by slowing down the feedback

action. For large enough τ , the second cumulant can become
negative. In this case, the feedback action is so much delayed
such that it cannot compensate the fluctuations. Similar to the
case above, tunneling rates in the Louvillian will eventually
become negative for increasing fluctuations. In this case, the
solution Eq. (30) must be discarded on physical grounds.

IV. RESULTS AND DISCUSSION

A. Homogenous feedback

We are now in position to investigate feedback-controlled
transport through a DQD device for various parameters. First,
let us consider the special situation of �L = �R = 2�, reso-
nant levels �E = 0, without QPC induced dephasing (γd =
0), homogeneous feedback gL = gR = g� = g, and large bias
limit such that the Fermi functions can be approximated by
either 1 or 0. It is only in this very special case that a simple
minimal eigenvalue can be obtained λ0 = �(ei χ

4 − 1), such
that in the long-time limit, Eq. (12) reduces to

�̇(χ, t ) = λ0(χ ){1 + g(Igt − ∂iχ )}�(χ, t ). (31)

By using the method of characteristics, one arrives at the
following CGF under feedback

Ffb(χ, t ) =4

g
{Li2[(1 − e−i χ

4 )e−g �
4 t ] − Li2(1 − e−i χ

4 )}

+ iIgtχ + 4

g
ln[ei χ

4 (1 − e−g �
4 t ) + e−g �

4 t ], (32)

where Li2(x) is the second-order polylogarithm function de-
fined as Li2(x) = ∫ 0

x
ln(1−y)

y dy. All the cumulants can be
obtained by simply taking partial derivatives of Ffb(χ, t )
with respective to χ . For instance, the first cumulant yields
C1 = Igt , and the second cumulant reads C2 = 1

8g (1 − e− 1
2 g�t ).

Apparently, for finite feedback strength (g > 0), the second
cumulant does not increase in time but converges to a con-
stant. It implies that the charge probability distribution P(N, t )
does not spread out but freeze into a stationary distribution
with a fixed width C2 = 1

8g that moves constantly in time with
a mean value C1 = Igt .
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FIG. 4. (a) Second cumulant C2(t = 150�−1) vs gL for gR =
g� = 0; (b) C2(t = 150�−1) vs gR for gL = g� = 0; and (c) C2(t =
150�−1) vs g� for gL = gR = 0 under various tunnel couping con-
figurations and large bias. The other plotting parameters are �E =
0.5� and γd = 5�, where � = 1

2 (�L + �R ) is set as unit of energy.

The analytical results of the probability distribution P(N, t )
and CGF Ffb are plotted as dashed curves in Fig. 2, unam-
biguously demonstrating the striking agreement of numerical
(circles) and analytical (dashed curves) results. Although
these results are obtained under homogeneous feedback (gL =
gR = g�) and very special conditions which may not corre-
spond to real experimental parameters, it is still instructive
to show the validity of the auxiliary density matrix approach
under appropriate truncation.

B. Inhomogeneous feedback

Now we are in a position to consider the situation of in-
homogeneous feedback. In this case, the numerical method
is the sole option to investigate the effectiveness of feedback
under different parameter configurations. Let us first consider
the situation of a large bias voltage, i.e., V 
 U, kBT such
that current flows through the DQD unidirectionally.

Figures 3(a) and 3(b) show, respectively, the probability
distributions for γd = 0 and γd = 5�, with an arbitrary set
of tunnel couplings (�L = 0.4�, �R = 1.6�, and � = 0.5�).
Each panel depicts a set of probability distributions for differ-
ent times, at which only one of the three feedback parameters
(gL, gR, and g�) is finite, while the other two parameters
are zero. For a fixed dephasing rate, the probability distribu-
tions move almost at the same pace as time increases under
different feedback parameter configurations. However, finite

dephasing due to the measurement by the QPC leads to lo-
calization of the electron in the DQD and thus suppresses the
current. One thus observes that the probability distributions in
Fig. 3(b) for γd = 5� move slower than those for γd = 0 in
Fig. 3(a).

Consider now the influence of feedback on noise proper-
ties. First, we have to confirm the number of minimum tiers
M that has to be used in the numerical calculations. In the
inset of Fig. 3(b), we plotted C2(t ) for feedback parameter
gL = gR = 0 and g� = 0.5 for different numbers of tiers. It is
found that M = 20 is sufficient to obtain a stable C2(t ). In the
absence of feedback (gL = gR = g� = g = 0), the second-
order cumulant C2(t ) increases linearly with time, see the
circles in Fig. 3. The presence of finite dephasing leads to an
overall suppression of the shot noise. Strikingly, in the case
of feedback with gL=0, gR=0.05, and g� = 0, C2(t ) is even
slightly larger than without feedback. This implies that the
feedback control of �R is not effective to suppress the noise.
It is drastically different for gL=0.05, gR=0, and g� = 0. For
γd = 0, the noise is apparently reduced by feedback via gL, as
shown by the solid curve in Fig. 3(c). However, in presence of
finite dephasing, the feedback is inefficient and C2(t ) grows
almost linearly with time, cf. the solid curve in Fig. 3(d).
Finally, it is found that g� effectively freezes the probability
distribution, regardless of the dephasing rates, see the dashed
curves in Fig. 3(c) and 3(d).

For a detailed analysis, the second-order cumulant C2 at a
large time t = 150�−1 is displayed as a function of feedback
strength gL, gR, and g� in Figs. 4(a)–4(c), respectively, for
various tunnel couplings. Figure 4(a) shows that C2 can be
reduced by increasing gL only for the case �L � �R (cf. the
solid curve), whereas it even increases slightly with gL in the
opposite case �L 
 �R (see the dashed curve). Analogously,
feedback via gR is found to be effective in reducing noise only
for �R � �L, as shown by the dashed curve in Fig. 4(b). Re-
markably, g� is always effective for various tunnel coupling
asymmetries, as shown in Fig. 4(c). In particular, for �L = �R,
the adjustment of neither gL nor gR is effective. Our findings
thus reveal that g� is the only effective feedback parameter to
achieve the suppression of noise in this case.

Now we are in a position to investigate the effect of interdot
Coulomb charging energy (U ). For simplicity, we consider
the strong interdot Coulomb blockade regime (U → ∞), such
that double occupation with one electron in each dot is not
allowed. The Hilbert space is only spanned by the local dot
states |0〉, |L〉, and |R〉, such that L̃(χ, t ) in Eq. (12b) reduces
to a 5 × 5 matrix

L̃=

⎛
⎜⎜⎜⎜⎝

−η̃L�L 0 eiχ η̃R�R 0 0
η̃L�L 0 0 0 2η̃��

0 0 −η̃R�R 0 −2η̃��

0 0 0 − η̃R�R

2 −γd −�E
0 −η̃�� η̃�� �E − η̃R�R

2 −γd

⎞
⎟⎟⎟⎟⎠.

However, the reduction of the Hilbert space does not necessar-
ily simplify the calculation. Rather, in the present situation,
it is not possible to obtain an analytical minimal eigenvalue

λ0(χ ). Therefore no analytical solution is available and the
numerical method now is the only choice to investigate the
feedback control.
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FIG. 5. (a) Second cumulant C2(t = 150�−1) vs gL for gR =
g� = 0; (b) C2(t = 150�−1) vs gR for gL = g� = 0; and (c) C2(t =
150�−1) vs g� for gL = gR = 0 for various tunnel couping asymme-
try configurations in the limit of a large interdot Coulomb charging
energy (U → ∞). The other plotting parameters are the same as in
Fig. 4.

The second cumulant C2 at a large time (t = 150�−1) with
a strong interdot Coulomb charging energy (U → ∞) is plot-
ted as a function of gL, gR, and g� in Figs. 5(a), 5(b) and 5(c),
respectively, for various tunnel couplings. Analogous to those
in Fig. 4, C2 is plotted as a function of one of the three feed-
back parameters, while the other two feedback parameters are
zero. The results are qualitatively similar to those in Fig. 5(a),
with only the effectiveness of noise reduction quantitatively
weakened slightly. Again, the feedback parameter g� is the
most effective feedback parameter for various tunnel coupling
configurations.

It is worthwhile to mention that Eq. (19) allows to evaluate
the cumulant up to an arbitrary order as long as one takes suf-
ficiently large number of tiers. For example, in Fig. 6, we have
plotted C8(t ) for (a) γd = 0 and (b) γd = 3�, respectively,
with homogeneous feedback (gL = gR = g� = g). A general-
ization to inhomogeneous feedback is straightforward. In the

FIG. 6. C8(t ) for (a) γd = 0 and (b) γd = 3� under homogeneous
feedback control with different feedback strengths. The other plot-
ting parameters are �L = 0.4�, �R = 1.6�, � = 0.5�, kBT = 10�,
�E = 0.5�, and γd = 5�, where � = 1

2 (�L + �R ) is used as the unit
of energy.

FIG. 7. Probability distributions in equilibrium (V = 0) at times
(a) t/�−1 = 100, (b) 300, (c) 500, and (d) 700 without feedback
(solid curves) and with homogeneous feedback for gL = gR = g� =
g = 0.05 (dashed curves). The other plotting parameters are the same
as those in Fig. 6.

limit of γd = 0 and g = 0 (absence of feedback), C8(t ) un-
dergoes some damped oscillations before it increases linearly
with time, as shown by the crosses in Fig. 6(a). One observes
a suppression of C8(t ) in the presence of a small feedback
strength g = 0.01. For g = 0.02, C8(t ) is stabilized starting
roughly from t � 35�−1. The situation becomes drastically
different even for small dephasing rates, as shown in Fig. 6(b).
Without feedback, C8(t ) now is rapidly damped and then
decreases with time. In the presence of a moderate feedback
strength g = 0.02, C8(t ) is stabilized from t � 50�−1.

C. Feedback of bidirectional transport

In comparison with a single QD, a unique advantage of a
DQD transport system is that individual electrons tunneling
in forward and reverse directions can be investigated in real
time by using a QPC as a charge detector [56]. Measurement
of the FCS for single QD devices is thus restricted to strong
nonequilibrium conditions where transport is unidirectional
[6–8,71,72]. Nevertheless, for the present DQD transport sys-
tem, it is possible to detect bidirectional individual electron
tunneling events via a nearby QPC and thus perform feedback
control in the low bias regime.

Figure 7 shows the numerical probability distributions in
equilibrium (V = 0) at different times. In this case, elec-
trons tunnel in both forward and reverse directions with
equal probabilities. The net current is zero and the proba-
bility distributions are thus centered at N = 0. The width
of the probability distribution, however, spreads out as time
increases in the absence of feedback, see the solid curves
for g = 0. In the presence of finite feedback (g = 0.05), the
probability distribution is clearly frozen for t/�−1 > 500, cf.
the dashed curves. Our numerical results thus demonstrate that
the measurement based feedback is capable of suppressing the
noise of transport through a DQD even in equilibrium.

In Fig. 8(a), we have plotted the probability distributions
for a small positive bias (μL = −μR = 5�). In this case,
a small positive current flows through the DQD, regard-
less of the feedback strength, as shown in Fig. 8(c). We
observe that the probability distributions under different feed-
back strengths move to the right at the same pace as time
increases in Fig. 8(a). At a small time, however, there is
quite a large probability to observe electron flowing in the
reversed direction, see Fig. 8(a). In the opposite regime of
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FIG. 8. Probability distributions for (a) a positive low bias (μL = −μR = 5�) and (b) a negative low bias (μL = −μR = −5�) at times
t/�−1 = 50, 200, 350, 500, and 650; (c) the corresponding feedback currents I (t ); (d) second cumulant C2(t ) for various feedback strengths.
The other plotting parameters are the same as those in Fig. 6.

a small negative bias (μL = −μR = −5�), the probability
distributions are displayed in Fig. 8(b). In this case, there is
a negative current through the DQD, cf. Fig. 8(c). Therefore
the probability distributions move to the reversed direction
with time. Yet, one finds a finite probability for electrons
traveling in the forward direction at small times, cf. Fig. 8(b).
Essentially, the application of finite feedback is able to freeze
the probability distribution as time increases, see for instance
the dotted curves for g = 0.1. As the feedback strength gL =
gR = g� = g increases, the second cumulant rapidly stabi-
lizes, see Fig. 8(d). These findings confirm that our feedback
protocol works effectively in the regime of small bias where
both forward and reverse tunneling coexists.

Let us now consider the situation when the target current
Ig is different from the stationary current without feedback
〈〈I〉〉. In Figs. 9(a) and 9(b), we have plotted, respectively,
the feedback-controlled current I (t ) and the second cumulant

FIG. 9. (a) Feedback-controlled current I (t ) and (b) second cu-
mulant C2(t ) when the target current Ig is different from the stationary
current without feedback 〈〈I〉〉. We assume homogeneous feedback
(gL = gR = g� = g = 0.1). The results in the absence of feedback
(g = 0) are also shown by the solid curve for comparison. The other
plotting parameters are the same as those in Fig. 6.

C2(t ) for three different cases of target currents: a larger
target current than the stationary current (Ig = 1.25〈〈I〉〉), an
equal target current to the stationary current (Ig = 〈〈I〉〉), and
a smaller target current than the stationary current (Ig =
0.75〈〈I〉〉). For simplicity, we assume homogeneous feedback
(gL = gR = g� = g = 0.1). We clearly observe that in the
long time, the feedback-controlled current always reaches the
target current Ig, rather than the stationary current without
feedback 〈〈I〉〉. Furthermore, our protocol for suppressing the
noise still works even if Ig is different from 〈〈I〉〉. The presence
of a difference between Ig and 〈〈I〉〉 only slightly modifies C2(t )
quantitatively in the long-time limit.

V. CONCLUSION

We have investigated the noise suppression of a double
quantum dot transport system based on a closed-loop feed-
back control, where the information of the number of tunneled
electrons detected by a nearby QPC is fed back into the
device to stabilize the current. In order to characterize the
counting statistics in the presence of feedback action, we
developed an auxiliary density matrix approach motivated by
the hierarchical expansion of the moment-generating function
in the hierarchy equations of motion. This generic method
has no restriction on the system structure and parameters
and is able to evaluate the feedback current cumulants to
an arbitrary order. Based on this approach, we demonstrate
that the feedback scheme could effectively inhibit the noise
in both low and high bias limits. In particular, it is revealed
that the feedback control of the tunnel coupling between the
two dots is the most effective under various tunnel coupling
configurations. The presence of a strong interdot charging
energy only slightly weakens the effect of feedback. The
proposed feedback protocol for suppressing the noise even
works if the target current is different from the stationary
current. Finally, the influence of finite time delay has been
analyzed, which reveals that feedback with time delays shorter
than the time-scale of the inverse target current is still effective
and only slightly modifies the frozen probability distribution.
We anticipate that this work will facilitate low noise currents
though coupled quantum dot systems via feedback control
in near future experiments. We remark that by expanding
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the generalized Liouvillian in Eq. (16) to higher orders in
∂iχ , the auxiliary density matrix method developed here can
be even generalized to nonlinear feedback protocols, which
will be investigated in a future work. Moreover, our meth-
ods can be also applied to control the photonic counting
statistics of spontaneous [73–76] and stimulated [77] light
emission.
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