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IrF4: From tetrahedral compass model to topological semimetal

Chao Shang,1 Owen Ganter,1 Niclas Heinsdorf,2,3 and Stephen M. Winter1

1Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, USA
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

3Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1Z4

(Received 9 January 2023; accepted 14 February 2023; published 6 March 2023)

The intersection of topology, symmetry, and magnetism yields a rich structure of possible phases. In this
work, we study theoretically the consequences of magnetism on IrF4, which was recently identified as a possible
candidate topological nodal chain semimetal in the absence of magnetic order. We show that the spin-orbital
nature of the Ir moments gives rise to strongly anisotropic magnetic couplings resembling a tetrahedral compass
model on a diamond lattice. The predicted magnetic ground state preserves key symmetries protecting the nodal
lines, such that they persist into the ordered phase at the mean-field level. The consequences for other symmetry
reductions are also discussed.
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I. INTRODUCTION

In recent years, the study of materials with strong spin-
orbit coupling (SOC) has risen to prominence, particularly in
conjunction with recent developments in topological phases
of weakly interacting electrons [1], such as topological in-
sulators [2–4] and semimetals [5–10]. Particularly intriguing
cases occur when crystalline symmetries enrich or enforce
aspects of the band topology. For example, Ref. [11] recently
showed that specific space groups with mutually orthogonal
glide planes can support topologically protected nodal lines,
which are linked together to form chains at high-symmetry
points in the Brillouin zone. As a proof of concept, the au-
thors considered an idealized nearest neighbor hopping model
for IrF4. It was shown that this model indeed exhibits nodal
chain Fermi surfaces, along with associated “drumhead” sur-
face states [12]. Experimentally, little has been reported on
IrF4, although early studies [13] revealed a sizable magnetic
susceptibility consistent with antiferromagnetically coupled Ir
moments. The possible effects of magnetic order on the fate
of the nodal chain semimetal state have yet to be explored.
From previous works on magnetic interactions between heavy
d5 metals [14–18], it can be expected that the effective mag-
netic couplings between Ir moments are strongly anisotropic,
giving rise to potentially interesting magnetic properties.

In this context, it may be noted that various antiferro-
magnetic topological semimetals have been predicted and/or
discovered, such as the frustrated all-in-all-out pyrochlore iri-
date [19–23] A2Ir2O7 and stacked kagome antiferromagnets
[24–29] (e.g., Mn3Sn and Mn3Ge). Typically, Fermi surfaces
consist of isolated Weyl or Dirac points when both time-
reversal symmetry breaking and SOC are included [30,31]
since nodal lines are not protected in the absence of additional
symmetries [10,32–34]. In particular, in the absence of time-
reversal symmetry (TRS), nodal lines can be guaranteed to
be pinned to the Fermi level only in the presence of a chiral
(sublattice) symmetry Ĉ, with ĈHĈ−1 = −H. Such a sym-

metry is approximately realized only for specific magnetic
orders on bipartite lattices, under the condition of dominant
intersublattice hopping. These conditions are not satisfied
for the nonbipartite pyrochlore and kagome lattices relevant
to the above-mentioned antiferromagnetic Weyl and Dirac
semimetals. They are also violated for conventional collinear
two-sublattice Néel antiferromagnetic order on bipartite lat-
tices, where the symmetry-breaking antiferromagnetic term
can be shown to commute with Ĉ. For these reasons, antifer-
romagnetic nodal line semimetals (AFM-NLSMs) are notably
rare.

In general, the search for topological phases of matter and
surface modes (e.g., as they appear in paramagnetic IrF4)
relies on classification schemes that are based on crystalline
and nonspatial symmetries of a given material [35–42]. Sym-
metries that are present at only lower-order approximations
of an effective model are called quasisymmetries. A surface
mode is said to be protected by a quasisymmetry if the higher-
order perturbation is small compared to the gap in which
these states are located [43,44]. Typically, the discovery and
prediction of surface modes protected by quasisymmetries
are difficult since the (magnetic) space groups of the lower-
symmetry effective models alone give no indication of the
presence of topological phases. Instead, the system inherits
the surface modes and transport properties from the higher-
symmetry effective model as long as the symmetry breaking
is small. Strictly, these surface modes are not topologically
protected because the symmetry-breaking term gaps them
out weakly such that they can be removed by an adiabatic
transformation of the Hamiltonian. The crystal symmetries
that are responsible for the appearance of surface modes in
the paramagnetic IrF4 compound become quasisymmetries
in the antiferromagnetic state with small moments, whereas
the approximate chiral symmetry is a quasisymmetry for both
phases.

In this work, we show that antiferromagnetically or-
dered IrF4 showcases two distinct types of quasisymmetries
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(crystalline and nonspatial) and uncover their effect on the
vestigial surface modes that are passed down from the topo-
logical, paramagnetic parent compound. Further, we reveal a
possible route to an AFM-NLSM. The magnetic model for
IrF4 is shown to approximate a strongly anisotropic tetrahe-
dral compass model, with stripy magnetic order rather than
the conventional Néel state. When this magnetic pattern is
considered in conjunction with the nearest neighbor hopping
model of Ref. [11], we find an AFM-NLSM state survives at
the mean-field level due to the retention of an approximate
chiral symmetry. Thus, if IrF4 realizes an itinerant magnetic
state, it is a good candidate for an AFM-NLSM.

This paper is organized as follows. In Sec. II, we first derive
a model of the magnetic interactions between Ir moments and
determine the magnetic ground state to be stripy antiferro-
magnetic. In Sec. III, we then analyze the consequences of
TRS-breaking magnetic orders on the bulk bands and surface
states in an itinerant picture.

II. MAGNETISM

A. Methods

As discussed below, all calculations of magnetic couplings
were performed on the optimized structure of Ref. [45];
IrF4 crystallizes in the orthorhombic Fdd2 space group [46],
which features mutually orthogonal d-glide planes [Fig. 1(a)].
The Ir lattice is bipartite and has the same connectivity as the
diamond lattice, with Ir sites being linked by the four types of
symmetry-related bonds depicted in Fig. 1(b).

In order to estimate the magnetic interactions between Ir
sites, we utilize the exact diagonalization approach outlined
in Ref. [17]. We consider pairs of Ir sites described by the
total Hamiltonian:

H = HCFS + HSOC + HU + Hhop, (1)

including all five d orbitals at each site. Here, HCFS is the
local on-site crystal field splitting, HSOC describes the on-site
spin-orbit coupling, and Hhop gives the hopping between sites.
The Coulomb interactions are most generally written as

HU =
∑

i

∑
α,β,δ,γ

∑
σ,σ ′

Uαβγ δ c†
i,α,σ c†

i,β,σ ′ci,γ ,σ ′ci,δ,σ , (2)

where i labels the site; α, β, γ , and δ label different d
orbitals; and σ and σ ′ indicate different spin indices. We
assume spherically symmetric interactions [47], for which
the coefficients Uαβγ δ are all related to the three Slater
parameters F0, F2, and F4. Throughout, we assume the
approximate ratio [48] F4/F2 = 5/8 and parametrize the in-
teractions via Ut2g = F0 + 4

49 (F2 + F4) = 1.7 eV and Jt2g =
3

49 F2 + 20
441 F4 = 0.3 eV, which are compatible with estimates

from constrained random-phase approximation [49] as well as
previous calculations on iridates [17].

In order to first investigate the nonrelativistic part of
the single-particle Hamiltonian HCFS + Hhop (on-site crystal
field and intersite hopping, respectively), we first performed
scalar-relativistic density functional theory (DFT) calcula-
tions with FPLO [50] at the generalized gradient approximation
(GGA; Perdew-Burke-Ernzerhof functional [51]) level with
a 12 × 12 × 12 k mesh based on the structure reported in
Refs. [45,52]. Computed hoppings for the optimized structure

FIG. 1. (a) View of the Fdd2 unit cell of IrF4, showing d-glide
planes. (b) Nearest neighbor Ir-Ir bonds, emphasizing diamond lat-
tice connectivity. Different types of bonds are indicated.

of Ref. [45] are given in the Appendix. The crystal field
terms are discussed in Sec. II B. Finally, for the purpose
of computing the magnetic couplings, we parametrize the
full single-particle Hamiltonian HCFS + HSOC + Hhop (on-
site crystal field, spin-orbit coupling, and intersite hopping,
respectively) by repeating calculations with fully relativistic
DFT. The resulting Kohn-Sham eigenvectors were then pro-
jected onto Ir d-orbital Wannier functions [53].

To estimate the magnetic couplings, the combined Hamil-
tonian (1) was then diagonalized for two Ir sites, and the
low-energy eigenstates were projected onto pure j1/2 states
to derive the low-energy magnetic Hamiltonian. The validity
of this choice of projection basis is addressed in Sec. II B.
Results are presented in Sec. II C. As discussed in Ref. [17],
the projection step is required to establish an appropriate def-
inition of the low-energy spin states; the resulting magnetic
couplings are not particularly sensitive to choice of projection
basis, as long as the overlap between the projection basis and
exact low-energy space is finite. The computed couplings are
guaranteed to respect all symmetries and represent a non-
perturbative estimate that remains valid even away from the
large U/t limit. For this reason, we expect the local magnetic
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FIG. 2. (a) Distorted IrF6 octahedra with bond lengths indicated
and definition of local (x, y, z) coordinates. The local C2 axis is along
the x̂ + ŷ direction. (b) Energetic splitting of the d orbitals without
SOC. (c) Energy levels with SOC. Occupied states for d5 filling of
Ir(IV) are indicated.

Hamiltonian to accurately describe possible magnetic orders
even if the Ir electrons are relatively itinerant.

B. Crystal field distortions

In IrF4, each Ir site occupies a distorted octahedral coor-
dination environment, with local C2 symmetry axis along the
local cubic x + y direction defined in Fig. 2(a). The original
reported structure based on powder x-ray analysis [46] sug-
gested significant distortion of the local IrF6 octahedra, with
Ir-F bond lengths ranging from 1.89 to 2.08 Å. Optimization
of the structure using density functional theory at the GGA
level [45,52] yields somewhat reduced distortions, but the Ir-F
bonds still show significant anisotropy, ranging between 1.89
and 2.05 Å, as shown in Fig. 2(a). All subsequent calculations
were performed on the optimized structure of Ref. [45]. The
local distortion is reflected in the crystal field parameters,
computed at the scalar-relativistic level and summarized in
Table I.

In the absence of SOC, the t2g orbitals are split into a
nearly degenerate dxz, dyz pair and higher-lying dxy orbital
[Fig. 2(b)]. The splitting is of the order of 0.23 eV, which is
competitive with the spin-orbit coupling, described approxi-
mately by λL · S, with λ = 0.4 eV. As a result, when SOC is
included, the unpaired electron in the t2g manifold does not oc-
cupy a pure jeff = 1

2 state. If we diagonalize the local on-site
terms obtained from fully relativistic DFT calculations, the

TABLE I. Computed crystal field matrix elements with orbitals
defined according to the coordinates in Fig. 2(a).

dyz dxz dxy dz2 dx2-y2

dyz −0.302 −0.052 −0.030 −0.319 −0.248
dxz −0.052 −0.302 0.030 0.319 −0.248
dxy −0.030 0.030 −0.074 0.048 0
dz2 −0.319 −0.319 0.048 2.180 0
dx2-y2 −0.248 −0.248 0 0 2.832

FIG. 3. (a) Geometry of the Y bond with local coordinates in-
dicated for each Ir site, in accordance with Fig. 2(a). (b) Tetrahedral
vectors ê defining the idealized interactions along each nearest neigh-
bor bond.

low-energy doublet is approximately described by

|+〉 = α|xy,↑〉 + β(i|xz,↓〉 + |yz,↓〉), (3)

|−〉 = − α|xy,↓〉 + β(−i|xz,↑〉 + |yz,↑〉), (4)

with α ≈ 0.77 and β ≈ 0.45 reflecting larger weight in the
dxy orbitals. Nonetheless, the low-energy doublet retains large
overlap with a pure j1/2 state (for which α = β = 1/

√
3), with

|〈 j1/2,↑ |+〉| ≈ 0.96. Thus, in the following, we expect no
errors in the analysis of the magnetic couplings from project-
ing onto pure j1/2 states when employing the fully relativistic
single-particle terms.

C. Magnetic Hamiltonian

In the IrF4 structure, there are four distinct types of nearest
neighbor bonds, labeled X, X′, Y, and Y′ in Fig. 1(b). We
first focus on the Y bond depicted in Fig. 3(a). The computed
magnetic interactions are described by

HY-bond = S1 · JY
12 · S2, (5)

where the spins S1 and S2 correspond to Ir1 and Ir2 in
Fig. 3(a). The interaction tensor is

JY
12 =

⎛
⎝

−6.9 14.9 11.4
9.7 −5.7 17.4

14.2 9.0 −6.5

⎞
⎠ meV (6)

in terms of the global crystallographic (a, b, c) coordinates.
In order to interpret these couplings, it is convenient to write
J in terms of the bond Hamiltonian H12 = J12 S1 · S2 + D12 ·
(S1 × S2) + S1 · � · S2, where

J12 = (1/3)Tr
[
JY

12

] = −6.4 meV (7)

is the isotropic Heisenberg coupling,

DY
12 = (−4.2,−1.4,−2.6) meV (8)

parameterizes the antisymmetric Dzyaloshinskii-Moriya
(DM) interactions, and

�Y
12 = 1

2

[
JY

12 + (
JY

12

)T ] − J12 I3×3 (9)

=
⎛
⎝

−0.5 12.3 12.7
12.3 0.6 13.2
12.7 13.2 −0.1

⎞
⎠ meV (10)
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is the traceless symmetric pseudodipolar tensor. Interactions
for the remaining bonds may be found via symmetry. The Y′
bonds are related to the Y bonds via twofold rotation along
the c axis, such that

DY′
12 = (+4.2,+1.4,−2.6) meV, (11)

�Y′
12 =

⎛
⎝

−0.5 12.3 −12.7
12.3 0.6 −13.2

−12.7 −13.2 −0.1

⎞
⎠ meV. (12)

Similarly, the X bond is related to the Y bond by d glide
perpendicular to the a axis. This gives

DX
12 = (−4.2,+1.4,+2.6) meV, (13)

�X
12 =

⎛
⎝

−0.5 −12.3 −12.7
−12.3 0.6 13.2
−12.7 13.2 −0.1

⎞
⎠ meV, (14)

and subsequently,

DX′
12 = (+4.2,−1.4,+2.6) meV, (15)

�X′
12 =

⎛
⎝

−0.5 −12.3 12.7
−12.3 0.6 −13.2
12.7 −13.2 −0.1

⎞
⎠ meV. (16)

We therefore find that the magnetic interactions are strongly
anisotropic and bond dependent. If we approximate the small
diagonal elements of �12 to be zero and the off-diagonal
elements of �12 to be equal in magnitude, then the sym-
metric interactions (Heisenberg and pseudodipolar) can be
approximately summarized in terms of bond-dependent Ising
couplings:

Hsym =
∑

i j

J Si · S j + � (Si · êi j )(S j · êi j ), (17)

where J = −19.1 meV, � = +38.3 meV ≈ −2J , and the unit
vectors are

êi j (Y) = 1√
3

(1, 1, 1), (18)

êi j (Y
′) = 1√

3
(−1,−1, 1), (19)

êi j (X) = 1√
3

(1,−1,−1), (20)

êi j (X
′) = 1√

3
(−1, 1,−1). (21)

These vectors may be recognized as the tetrahedral vectors
depicted in Fig. 3(b). Therefore, IrF4 approximately realizes
a tetrahedral quantum compass model on a diamond lattice.
A similar model was recently proposed [54] for CuAl2O4, al-
though it was subsequently found that Jahn-Teller distortions
ruin the j1/2 ground state [55]. In the case of IrF4, the perfect
correspondence with the compass model is spoiled by the DM
interactions, which are significantly smaller in magnitude than
J and �, with |D| ≈ 5 meV. In the following, we show that the
DM interaction may be ignored in the first approximation and
focus on the compass model defined by Eq. (17).

FIG. 4. Layered zigzag ground state magnetic structure of Hsym

[Eq. (17)] corresponding to spins oriented along the ±ê(Y) direc-
tions. The black unit cell is the nonmagnetic Fdd2 unit cell. The
yellow unit cell is the magnetic P2s1 unit cell.

D. Magnetic order

In order to identify possible magnetic ordering patterns
for IrF4, we performed both Luttinger-Tisza [56] analysis
and classical Monte Carlo simulated annealing with Hsym

[Eq. (17)] as implemented in SPINW [57] for system sizes up
to 10 × 10 × 10 orthorhombic unit cells (8000 spins). There
are four degenerate ordering wave vectors, one of which is
depicted in Fig. 4. The pictured order is composed of collinear
spins oriented along the ±ê(Y) direction. Sites linked by the
Y bonds belong to different magnetic sublattices, as the or-
dered moment direction corresponds to the antiferromagnetic
Ising axis of the Y-bond interactions. The spins linked by
the remaining three bond types are ferromagnetically aligned,
leading to alternating ferromagnetic layers. It can easily be
seen that these magnetic orders minimize both the antifer-
romagnetic Ising interaction and ferromagnetic Heisenberg
coupling. The three other domains (with differing ordering
wave vectors) are similarly obtained: spins are oriented along
one of the ±ê axes, with spins linked by the corresponding X,
X′, or Y′ bonds belonging to different sublattices.

In order to check whether this magnetic order is stable
against the addition of the small estimated DM interaction, we
also performed Luttinger-Tisza analysis and simulated anneal-
ing minimization including the DM interaction. We found that
the ordering wave vector is unchanged and the lowest energy
structure remains essentially collinear with little change. This
result can be understood from the fact that the various orienta-
tions of the DM vectors compete with each other, so that there
is no canted or incommensurate structure that simultaneously
minimizes all DM interactions. In addition, canting of the
moments is generally disfavored by the strong Ising coupling
along the antiferromagnetic bonds. As a result, the magnetic
structure remains robust against such perturbations, and the
DM interactions may be neglected in the minimal model.

The obtained magnetic structure corresponds to the mag-
netic space group P2s1. Importantly, we find that the d-glide
symmetry [see Fig. 1(a)] of the paramagnetic Fdd2 group is
broken. The only retained symmetry is R̂ · ĝ2, where R̂ is time
reversal, ĝ is the d glide, and ĝ2 is simple translation along the
face diagonals ( 1

2 0 1
2 ) or (0 1

2
1
2 ). The consequences of this

symmetry reduction on the nodal chains are discussed in the
next section.
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FIG. 5. (a) Brillouin zone of IrF4 depicting a selection high-
symmetry TRIM points in the nonmagnetic cell (red) and magnetic
cell (blue). (b) Band structure of model equation (22) compared with
the ab initio band structure including nearest neighbor hoppings.

III. CONSEQUENCES OF MAGNETISM
ON BAND STRUCTURE

A. Symmetry analysis

It is first insightful to review the symmetries protecting the
band crossing points in the paramagnetic Fdd2 space group,
following Ref. [11]. The primitive cell contains the two Ir
sites depicted in Fig. 3, which are related to one another by
two nonsymmorphic d-glide operations ĝa and ĝb, in which
the glide planes are normal to the a and b axes [as depicted in
Fig. 1(a)]. These glides consist of a mirror operation combined
with a fractional translation 	d by half a primitive lattice vector.
In conjunction with time-reversal symmetry R̂ = iσyK, it is
well known [58–61] that such symmetries enforce band cross-
ings along any path in k space that retains glide symmetry and
connects time-reversal-invariant momentum (TRIM) points 	k0

and 	k1 whose difference satisfies (	k0 − 	k1) · 	d = nπ , where
n ∈ odd. The locations of some such TRIM points are depicted
in Fig. 5(a). The reason for the enforced crossing is that the
eigenvalues of ĝ are given by ±ei	k· 	d . At TRIM points where
	k · 	d = nπ with n ∈ even, the eigenvectors must fall into
Kramers degenerate pairs with glide eigenvalues (+1,+1) or

(−1,−1). At TRIM points where 	k · 	d = nπ with n ∈ odd,
the Kramers pairs instead have glide eigenvalues (+i,−i). As
a result, a symmetry-enforced crossing of bands with different
glide eigenvalues is required to occur at an intermediate k
point.

In principle, the enforced band crossings are not required to
occur at the Fermi energy. However, for IrF4, if one considers
only the |+〉, |−〉 bands with nearest neighbor hopping (which
is 3.6 times larger than further neighbor hopping), the model
has an additional chiral sublattice symmetry Ĉ that satisfies
ĈHhopĈ−1 = −Hhop. Following Ref. [11], Hhop may be writ-
ten as

Hhop =
∑
〈i j〉

c†
i [t1I2×2 + iT1(r̂i j × êZ ) · 	σ ]c j, (22)

where êZ is a unit vector along the c axis of the paramag-
netic Fdd2 cell. Ĉ corresponds to taking c → −c for one of
the crystallographic sublattices [e.g., Ir2 in Fig. 3(a)]. DFT
calculations in Ref. [11] provided estimates of t1 = 0.0548
and T1 = −0.0577 eV; these are compatible with our results
as well. The band structure of the paramagnetic model (22)
is compared in Fig. 5(b) to the results of including the full
nearest neighbor hoppings computed via DFT (see Sec. II A).
Symmetry-enforced crossings occur, for example, along the
� → X and � → Y paths.

The presence of the chiral symmetry Ĉ has additional con-
sequences for the Fermi surface, where band crossing points
are pinned. In the vicinity of a band crossing point 	k∗, one may
consider a Hamiltonian H2×2(	k∗ + 
	k), which is projected
onto the two crossing bands. The two eigenvectors must be
related by Ĉ, so we may choose a basis for which Ĉ = σx and
ĝ = ei	k· 	dσz. Thus,

H2×2 = ay(	k)σy + az(	k)σz. (23)

The absence of σx terms implies that the model does not
support isolated, topologically protected band crossing points
[61], leading instead to the nodal line Fermi surface depicted
in Fig. 6(a). In the absence of magnetic order, ay is required
to vanish within the glide-invariant planes, so that the nodal
lines are pinned to such planes, with linked nodal chains being
formed at their intersection. For any path encircling a single
nodal line, the vector (ay, az ) is required to wind an odd num-
ber of times around the origin. This chiral winding number
is well defined provided the chiral symmetry is maintained
and serves as a topological invariant for the nodal lines, which
results in the emergence of topological modes on the surface
of the material [11,32,33,36].

B. Mean-field consequences of magnetism

In the following, we consider the effects of symmetry-
breaking magnetic order on the electronic bands in a
mean-field approximation suitable to describe itinerant mag-
netism. In particular, we consider the effective single-particle
Hamiltonian given by

H1p = HMF + Hhop, (24)

where Hhop is given by Eq. (22) and the finite magnetic mo-
ments are induced by the mean-field Hamiltonian:

HMF = BZZ/Néel

∑
i

〈ŝi〉 · c†
i 	σci, (25)
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FIG. 6. Evolution of the nodal line Fermi surface as a function of staggered zigzag mean-field BZZ for the model in Eq. (24). In (a), dashed
lines indicate nodal lines folded into the magnetic Brillouin zone. In (b) and (c), dashed lines indicate sections of the Fermi surface that have
been translated to higher Brillouin zones for clarity of connectivity. The pictured fields correspond to staggered magnetization of 〈si〉 = 0.0,
0.11, 0.27, and 0.32 per site, respectively. The saturation value is normalized to 0.5 per site.

where 〈ŝi〉 is a unit vector in the ordered moment direction
at site i and c†

i = (c†
i,+ c†

i,−) creates a particle in the doublet
states |+〉 and |−〉 at site i according to Eqs. (3) and (4). Below
we consider two cases: (i) ordered moment directions are set
according to the predicted layered zigzag order depicted in
Fig. 4, and (ii) the ordered moments are oriented along the
±ê(Y) axes, but instead form a nearest neighbor Néel order
with equal magnetic and crystallographic sublattices (i.e., up
spins on Ir1 and down spins on Ir2). We indicate the former
with BZZ and the latter with BNéel. As discussed below, the
former retains chiral symmetry, while the latter breaks it.

It may be noted that such an approach may prove inappro-
priate if correlation strength is sufficiently large that IrF4 is a
Mott insulator in which magnetic moments are genuinely lo-
calized. However, in the absence of any experimental reports
of electrical conductivity, we consider the possible mean-field
effects of magnetic order in an itinerant picture. A similar
approach led to the prediction of a Weyl semimetal phase in
pyrochlore iridates [19,21]. It may be noted that some Ir4+

oxides, such as Sr2IrO4 and Na2IrO3, are spin-orbit-assisted
Mott insulators due to the suppression of the j1/2 bandwidth
by the particular bonding geometry [63–65]. By contrast,
this effect is apparently not applicable to materials such as
rutile [66] IrO2 and some pyrochlore iridates [67,68] such as
R2Ir2O7, which display a bonding geometry similar to IrF4

and are metallic conductors. In anticipation that IrF4 may be
an itinerant magnet, we therefore analyze the magnetic band
structure in the mean-field itinerant picture.

We first consider 〈ŝi〉 defined by the zigzag (ZZ) pattern
depicted in Fig. 4. For BZZ = 0, the unit cell is doubled, and
both time-reversal and glide symmetry are broken. However,
because the anisotropic compass magnetism leads to a mag-
netic order with a layered (zigzag) antiferromagnetic pattern, a
chiral symmetry is retained in the model (24) for any value of
BZZ. This corresponds to Ĉmag: Ĉ · T̂ (	rmag), where T̂ (	rmag) is a
translation between magnetic sublattices. Due to this effective
chiral symmetry, the nodal lines at zero energy remain stable
for finite BZZ. However, because the magnetic field separates
the bands that form nodal loops in energy and they are no
longer enforced by the nonsymmorphic glide symmetry, they
can be removed by contraction to zero circumference. Further,
the nodal chain is broken since the nodal lines at the Fermi

level are no longer pinned to high-symmetry planes and in-
stead are free to migrate around the Brillouin zone.

In Fig. 6(a), we show the BZZ = 0 Fermi lines folded into
the magnetic Brillouin zone. One can clearly see the nodal
chain structure. The model also features an accidental band
touching point indicated by dark yellow points. In Fig. 6(b),
we show the effects of small symmetry-breaking staggered
field BZZ = 0.04 eV. The nodal chains are initially decoupled,
forming a combination of a closed nodal ring and open nodal
lines, which extend across the edges of the Brillouin zone.
The accidental nodal point expands into a closed nodal ring.
Since the open lines encircle the Brillouin zone, they cannot
be directly contracted and thus must merge with each other
to form closed loops. This occurs through a series of mergers
at intermediate values of BZZ. One such point is depicted in
Fig. 6(c). Finally, for large values of the mean-field BZZ �
0.11 eV, the Fermi surface is composed of two isolated nodal
rings [Fig. 6(d)], which are contracted to zero circumference
and annihilate at BZZ ≈ 0.14 eV.

Given the retention of chiral symmetry with BZZ, it is ex-
pected that dispersionless topological drumhead surface states
persist at the mean-field level within the magnetically ordered
phase. In order to demonstrate this effect, we show in Fig. 7
the evolution of the band structure in the two-dimensional
(2D) Brillouin zone obtained for a slab geometry with sur-
faces perpendicular to the [100] direction of the magnetic unit
cell. Gapless drumhead surface states appear at 2D surface k
points that are projections of the interiors of the bulk nodal
loops onto the surface Brillouin zone. Interestingly, since the
chiral operator Ĉmag: Ĉ · T̂ (	rmag) involves translation, it may
be broken by surface terminations where an 	rmag parallel to
the surface does not exist. This is demonstrated for a surface
perpendicular to the [010] direction in Fig. 8(a). In this case,
the bulk spectrum is preserved and surface states persist.
However, they are not strictly protected and are no longer
pinned to zero energy. The surface modes become dispersive
and intersect the Fermi energy along arcs linking different
points on the surface projections of the bulk nodal lines. In
this sense, Ĉmag can be viewed as a quasisymmetry for such
surface termination; as long as the field-induced splitting is
small compared to the size of the gap the modes are located
in, the surface states survive.
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FIG. 7. (a)–(d) Evolution of band structure for zigzag mean-field BZZ in the slab geometry with surfaces perpendicular to the [100] direction
of the magnetic unit cell with magnitudes of BZZ = 0.00, 0.04, 0.10, and 0.12 eV. respectively. The locations of surface modes at the Fermi
energy are depicted as insets. Bands are colored according to their projection on the surface unit cells; red bands indicate surface states. The
slab calculations were performed using the TOPWAVE PYTHON package [62].

In order to contrast these results with a chiral-symmetry-
breaking magnetic order, we also consider the Néel ordering
pattern depicted in Fig. 8(d). For this case, all relevant point
group symmetries are broken, and no chiral symmetry re-
mains. As shown in Fig. 8(c), at finite BNéel, the bulk band
crossing points acquire a gap, so that nodal lines do not
persist even at finite energy. The Fermi surface expands into
electron and hole pockets of finite volume. Elsewhere, the
bulk acquires a gap except at four isolated Weyl points. The
fate of the drumhead surface states is to split and gap out es-
sentially everywhere except Fermi arcs linking the bulk Weyl
points along the path �- 1

2 kb. In this way, surface states that
descended from the drumhead modes survive for small BNéel

(the Weyl points merge and annihilate at BNéel ≈ 0.8 eV),
but the essential structure of the paramagnetic bands is not
preserved.

Finally, we also considered the explicit breaking of the
chiral symmetry in the bulk by including a second neigh-
bor hopping consistent with the symmetry of the lattice
t2

∑
〈〈i j〉〉 c†

i c j (instead of an antiferromagnetic mean field), as
shown in Fig. 8(b). For this purpose, we use t2 = −0.0153 eV,
which is consistent with the values in Ref. [11]. In this case,
both the bulk spectrum and edge states are strongly perturbed.
The main effect is to push the bulk band crossing points
away from the Fermi energy, leading to an expansion of the
nodal line Fermi surface into one of finite volume. Similar
to the case of chiral-symmetry-breaking surface termination,
the surface states that descended from the drumhead modes
are preserved but become dispersive. The modification of the
bulk spectrum allows the majority of such descendant surface
states to be pushed above the Fermi energy, except along arcs

FIG. 8. (a) Band structure and surface modes of the [010] cut with layered zigzag magnetic ordering and BZZ = 0.04 eV. (b) Band structure
and surface modes of the [100] cut with a next nearest neighbor hopping value of −0.0153 and BZZ = BNéel = 0. (c) Band structure and surface
modes of the [100] cut with Néel magnetic ordering and BNéel = 0.04. In the inset surface mode diagrams, dark blue indicates gapped points,
light blue indicates bulk gapless points, and red indicates gapless surface states within the two-dimensional Brillouin zone. Red circles indicate
Weyl points. (d) Néel magnetic structure. (e) and (f) Two-dimensional Brillouin zones with k points and k paths used in the band structure
diagrams labeled. The slab calculations where performed using the TOPWAVE PYTHON package [62].
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in the 2D Brillouin zone that are embedded within the gapless
modes of the bulk.

IV. CONCLUSIONS

In this work, we have shown IrF4 is a jeff = 1/2 mag-
net with strongly anisotropic and bond-dependent effective
magnetic couplings owing to the spin-orbital composition of
the local moments. The resulting magnetic interactions ap-
proximate a tetrahedral compass model on a diamond lattice,
which yields an unconventional layered zigzag antiferromag-
netic order. This order may be contrasted with conventional
two-sublattice Néel order, which would typically be found for
materials with bipartite lattices, dominant nearest neighbor
interactions, and weak spin-orbit coupling. While we antici-
pate that IrF4 may be a Mott insulator, we have shown that
the mean-field effects of layered zigzag order preserve many
of the essential topological aspects of the weakly interacting
paramagnetic band structure and retain dispersionless drum-
head surface states. This is because the zigzag order preserves
a chiral sublattice quasisymmetry of the paramagnetic phase.
By contrast, strong breaking of this sublattice symmetry leads
to alternate phenomenology of Weyl points and Fermi arc
surface states.
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TABLE II. Scalar-relativistic hopping parameters (in eV) for the
bond pictured in Fig. 3(a). Columns label orbitals on Ir1, and rows
label orbitals on Ir2. Coordinates refer to the local cubic coordinates
shown in Fig. 3(a).

dyz dxz dxy dz2 dx2-y2

dyz 0.151 −0.082 −0.029 −0.131 0.019
dxz 0.028 −0.032 −0.018 −0.045 −0.017
dxy −0.078 0.014 0.044 −0.300 0.005
dz2 −0.029 −0.126 0.009 0.179 0.012
dx2-y2 −0.084 −0.257 0.026 0.313 0.034

researchers including faculty, staff, students, and collabora-
tors [69]. N.H. acknowledges financial support from the Max
Planck Institute for Solid State Research in Stuttgart, Ger-
many.

APPENDIX: FULL HOPPING

In Table II, we provide the scalar-relativistic hopping pa-
rameters obtained from FPLO for the bond pictured in Fig. 3(a).
For the purpose of computing the magnetic couplings, we
employ hoppings from fully relativistic calculations, which
effectively includes spin-orbit coupling locally but does not
strongly modify the intersite hoppings. The magnetic cou-
plings depend most strongly on the hoppings between the
occupied t2g orbitals.
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