
PHYSICAL REVIEW B 107, 125106 (2023)

Disorder-induced anomalous Hall effect in type-I Weyl metals: Connection
between the Kubo-Streda formula in the spin and chiral basis

Jia-Xing Zhang,1 Zhi-Yuan Wang,1 and Wei Chen (��) 1,2,*

1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

(Received 14 April 2022; revised 8 January 2023; accepted 16 February 2023; published 2 March 2023)

We study the anomalous Hall effect (AHE) in tilted Weyl metals with weak Gaussian disorder under the Kubo-
Streda formalism in this work. To separate the three different contributions, namely, the intrinsic, side-jump, and
skew-scattering contributions, it is usually considered necessary to go to the eigenstate (chiral) basis of the
Kubo-Streda formula. However, it is more straightforward to compute the total Hall current in the spin basis.
For this reason, we develop a systematic and transparent scheme to separate the three different contributions in
the spin basis for relativistic systems by building a one-to-one correspondence between the Feynman diagrams
of the different mechanisms in the chiral basis and the products of the symmetric and antisymmetric parts
of the polarization operator in the spin basis. We obtained the three contributions of the AHE in tilted Weyl
metals by this scheme and found that the side-jump contribution exceeds both the intrinsic and skew-scattering
contributions for the low-energy effective Hamiltonian. We compared the anomalous Hall current obtained from
our scheme with the results from the semiclassical Boltzmann equation approach under the relaxation time
approximation and found that the results from the two approaches agree with each other in the leading order of
the tilting velocity.
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I. INTRODUCTION

The anomalous Hall effect (AHE) has attracted great in-
terest since the starting work by Karplus and Luttinger [1].
Although it was first discussed in ferromagnetic metals, the
AHE has been discovered in various systems in the follow-
ing decades, such as magnetic topological insulators [2–5],
moiré materials [6–11], and Dirac and Weyl metals [12–14].
All these systems include two ingredients: (i) some sort of
spin- or pseudospin-orbit interaction and (ii) time-reversal-
symmetry (TRS) breaking. The spin-orbit interaction results
in a transverse motion of the electrons perpendicular to the
electric field applied, and the time-reversal-symmetry break-
ing is necessary to avoid the cancellation of the transverse
flux in opposite directions [15,16]. The AHE in such sys-
tems can be divided into the intrinsic contribution, which is
the AHE obtained in the clean limit and is related to the
topology of the electronic band structure [17–19], and the
extrinsic contribution, which is due to impurity scatterings
[15,20–23]. The extrinsic Hall current can be further di-
vided into the side-jump and skew-scattering contributions,
according to whether the impurity scattering is symmetric or
asymmetric. In a ferromagnetic semiconductor, the AHE is
dominated by the intrinsic contribution and determined by
the Chern number of the filled bands [22]. In ferromagnetic
metals, however, the extrinsic contribution due to impurity
scatterings can be significant and even cancel out [21] or
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exceed the intrinsic contribution depending on the impurity
scattering rate and strength [22].

In this work we study the AHE in a type-I Weyl metal
with breaking time-reversal symmetry. For simplicity, we con-
sider the case with the minimum number of two Weyl nodes
[24]. The low-energy effective Hamiltonian of a typical type-I
Weyl metal with tilting has the simplest form of spin-orbit
interaction, Hχ = vχσ · k + uχ · k, with a linear dispersion
in each Weyl node. The anomalous Hall effect in an untilted
Weyl metal, i.e., u = 0, with dilute impurities was studied in
Ref. [13]. Different from two-dimensional (2D) ferromagnetic
metals, the anomalous Hall effect due to impurity scatterings
in the untilted Weyl metal vanishes only if the Fermi energy
is within the linear dispersion regime of the system. This
is because the low-energy Hamiltonian of the untilted Weyl
metals, Hχ = vχσ · k, has an emergent TRS at each single
Weyl node. For this reason, the AHE in such a system then
comes completely from the topological Chern-Simons term
and is proportional to the distance between the two Weyl
nodes [13,25,26].

The main focus of this work is then to study the impurity-
scattering-induced AHE in tilted Weyl metals with dilute
Gaussian disorder, which is nonvanishing since the tilting
breaks the TRS in a single Weyl node [14]. We obtain the
intrinsic and extrinsic contributions from the Kubo-Streda
formula in the spin basis [27]. However, it is usually consid-
ered hard to separate the side-jump and the skew-scattering
contributions in the spin basis, since a single Feynman dia-
gram in the spin basis contains both contributions [20]. To
separate the two types of extrinsic contributions, physicists
usually turn to the semiclassical Boltzmann equation (SBE)
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approach [15,20,28–31] since it is physically more transpar-
ent. The key ingredient resulting in the anomalous Hall current
is the band mixing by the current vertex and/or impurity
scatterings in the system [15,32,33]. From the SBE approach,
one can separate the symmetric and antisymmetric impurity
scatterings, which result in the side-jump and skew-scattering
contributions, respectively. Based on the SBE approach, Sinit-
syn et al. further figured out the rigorous Feynman diagrams
in the band eigenstate basis (also called the chiral basis) in the
Kubo-Streda formalism corresponding to the side-jump and
skew-scattering contributions [20].

Yet since the Hamiltonian of the anomalous Hall system is
usually written in the spin basis due to the spin-orbit interac-
tion, it is cumbersome to compute the diagrams corresponding
to the side-jump and skew-scattering contributions one by one
in the chiral basis. Instead, it is straightforward to compute
the total AHE in the spin basis. An efficient and transparent
method to separate the side-jump and skew-scattering contri-
butions in the spin basis is then valuable in practice.

In this work we show that by separating the different parts
of the polarization matrix I in the spin basis, namely, the
symmetric part Is, the intrinsic antisymmetric part Ia

int in the
clean limit, and the antisymmetric part Ia

im due to impurity
scatterings, and using these parts as building blocks, one
can build up a rigorous one-to-one correspondence between
the Feynman diagrams of the side-jump or skew-scattering
contribution in the chiral basis and the product of matrices
Is, Ia

int, Ia
im in the spin basis for Weyl and Dirac systems, as

shown in Fig. 4. From this correspondence, one can easily
separate the intrinsic, side-jump, and skew-scattering contri-
butions in the spin basis. By this scheme, we separated the
three contributions to the AHE in tilted Weyl metals and found
that the side-jump contribution exceeds both the intrinsic and
skew-scattering contributions in tilted Weyl metals.

For the isotropic 2D massive Dirac systems, Sinitysn et al.
show that the AHE due to the three mechanisms obtained
from the Kubo-Streda formula matches completely with the
results obtained from the SBE approach [20]. However, for
anisotropic systems, there is concern that the commonly used
SBE approach under the relaxation time approximation (RTA)
in Refs. [20,29] may not be reliable since the solution of the
SBE in these works assumes that the relaxation time defined
in the solution is independent of the direction of the incident
electrons [34,35]. This is true for isotropic systems but not for
anisotropic systems. It is then interesting to compare the AHE
obtained from the SBE approach and the result obtained from
the quantum Kubo-Streda formula for tilted Weyl metals,
whose Fermi surface is anisotropic. We found that the RTA
is still valid in the leading order of the tilting velocity u/v [see
Eq. (1) for definition] for tilted Weyl metals. As a result, the
AHEs obtained from the two approaches agree well with each
other in the leading order of the tilting velocity for all three
mechanisms and the deviation only comes from higher orders
of tilting velocity.

The structure of this paper is as follows. In Sec. II, we
compute the AHE of the tilted Weyl metals using the quantum
Kubo-Streda formula in the spin basis, and separate the intrin-
sic and extrinsic contributions. We also separate the different
parts Is, Ia

int, Ia
im of the polarization operator I in the spin

basis. In Sec. III A, we build up a one-to-one correspondence

between the Feynman diagrams in the chiral basis and the
matrices defined above in the spin basis for Weyl and Dirac
systems. In Sec. III B, we use this scheme to separate the
side-jump and skew-scattering contributions in the tilted Weyl
metals. In Sec. III C, we compare the three contributions to
the AHE we obtained from the Kubo-Streda formula with
the results obtained from the commonly used SBE approach.
In Sec. IV, we have a comparison of the three different ap-
proaches in studying the AHE, followed by a brief discussion
of the third- and fourth-order crossed diagrams. We have a
brief summary of this paper in Sec. V.

II. ANOMALOUS HALL CURRENT FROM THE
KUBO-STREDA FORMULA IN THE SPIN BASIS

We start with the effective low-energy Hamiltonian of a
type-I Weyl metal with breaking TRS,

H =
∑

χ

(χvσ · k + uχ · k), (1)

where χ = ±1 is the chirality of the two Weyl nodes, σ are the
Pauli matrices, and uχ is a tilting velocity with uχ < v; i.e.,
we only consider the type-I Weyl metals. The Hamiltonian
Hχ for each single valley results in two tilting linear bands
ε± = ±vk + uχ · k. Here we assume the tilting u+ = −u− =
u; i.e., the tilting is opposite for the two valleys. The tilting
term then breaks the TRS of a single Weyl node but not the
global TRS of the whole system, whereas the term χvσ · k
only breaks the global TRS, but not the TRS of a single valley.
We will see below that if the tilting term is the same for the
two valleys with χ = ±, the AHEs in the two valleys cancel
each other.

When the Weyl semimetal or metal is coupled to an elec-
tromagnetic (EM) field Aα = (A0, A), other than the coupling
of the low-energy effective Hamiltonian [Eq. (1)] to the EM
field by the Peierls substitution of the four-momentum pα →
pα + eAα , an extra topological Chern-Simons term describing
the chiral anomaly of the response of the Weyl semimetal or
metal to the EM field should be included in the action [25,26],

Sθ = − e2

8π2

∫
dtd3r∂μθεμναβAν∂αAβ, (2)

where εμναβ is a Levi-Cività antisymmetric tensor, θ = b · r,
and b is the separation between the two Weyl nodes in the
momentum space. Here we assume the energy difference be-
tween the two Weyl nodes is zero. The Chern-Simons term
results in an anomalous Hall effect with a transverse cur-
rent perpendicular to both b and the applied electric field,
j = e2

2π2 b × E [25,26]. This part turns out to be the only in-
trinsic contribution to the AHE of the untilted Weyl metal or
semimetal when the doping is not very high. Moreover, the
AHE in the untilted Weyl semimetal or metal is also insensi-
tive to the impurity scatterings [13]. For the tilted Weyl metal
or semimetal, the tilting does not affect the Chern- Simons
term since the tilting does not break the chiral symmetry.
However, the AHE for the low-energy effective Hamiltonian
[Eq. (1)] with tilting is no longer vanishing, and is very sen-
sitive to the impurity scatterings. The main purpose of this
work is then to study the AHE of the low-energy effective
Hamiltonian [Eq. (1)] for tilted Weyl metals.
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(a) (b)

FIG. 1. (a) The Feynman diagram of the response function 
I
αβ

under the noncrossing approximation (NCA) in the spin basis. The
thick solid lines are the Green’s function in the spin basis under
the Born approximation. (b) The square block is the renormalized
current vertex with the NCA.

The anomalous Hall current for the low-energy effective
Hamiltonian can be written as two parts, jH = jI

H + jII
H , by

the Kubo-Streda formalism, where jI
H is a contribution from

the Fermi surface and jII
H is a contribution from the Fermi

sea [20,27]. The latter is insensitive to impurity scatterings
[13,36] and its contribution in a clean tilted Weyl metal was
studied in Ref. [14]. The contribution jI

H from the Fermi
surface may, however, be significantly affected by impurity
scatterings. Its clean limit has been studied in Ref. [37]. In
this work we then focus on the AHE from the Fermi surface
of the tilted Weyl metals due to impurity scatterings, which
remains poorly studied in this system.

We consider dilute nonmagnetic impurities with poten-
tial V (r) = V0

∑
a δ(r − ra) and correlation 〈V (r)V (r′)〉 =

γ δ(r − r′), where γ = niV 2
0 with ni the impurity density. We

assume the mean free path of the electrons is much larger
than the Fermi wavelength, i.e., kF l � 1 in this work, and
we mainly focus on the contribution from the noncrossing
diagram in Fig. 1 when computing the AHE. It was shown
in Refs. [23,38] that the crossed diagrams become important
for near impurities with distance of the order of electron Fermi
wavelength. However, due to the intricacy of these diagrams,
we will study them in a separate paper.

We assume that the impurity potential is diagonal for both
the spin and valley index, so the two valleys decouple and one
can compute the AHE in each valley separately and add up
the contribution together at the end. In the following, we then
focus on the AHE in a single Weyl node.

The impurity-averaged retarded Green’s function (GF) in
a single valley (e.g., with χ = 1 without loss of generality)
under the first Born approximation is

GR(ε, k) = (ε − vσ · k − u · k − R)−1, (3)

where the self-energy R due to impurity scatterings is
R = − i

2τ
[1 + ∑

i �i(u)σi] with 1/τ = πγ g(εF ), g(εF ) =∫
d3k

(2π )3 δ(u · k + vk − εF ) = ε2
F v

2π2(v2−u2 )2 being the density of
states at the Fermi energy εF > 0 and

�i(u) = 1

g(εF )

∫
d3k

(2π )3

vki

εF − u · k
δ(u · k + vk − εF ), (4)

where i = x, y, z. At u = 0, �(u) = 0 since the integrand in
Eq. (4) is odd, whereas at finite tilting the Fermi surface is
asymmetric in the momentum space and �i = −ui/v. Here
|�| describes the difference of the scattering rates of the spin
species parallel or antiparallel to the tilting u. This is obvious
when one chooses the direction of u in the z direction so
that only �z = −u/v is nonvanishing. The difference of the
impurity scattering rates of the two spin species turns out to

play a key role in the impurity-scattering-induced AHE as we
will show below.

We consider a uniform electric field E = −∂t A applied
to the system. In the linear response regime jI

α = 
I
αβAβ ,

where Aα = (0, A), and the leading-order contribution of the
response function 
I

αβ from the Fermi surface at small fre-
quency under the noncrossing approximation (NCA) can be
expressed by the Kubo-Streda formula as [13,27]


I
αβ (ω, q) = e2ω

∫
dε

2π i

dk
(2π )3

∂εnF (ε)

×Tr[�̂αGR(ε + ω, k + q) ĵβGA(ε, k)], (5)

where ĵα = uασ0 + χvσα , α = 0, x, y, z, is the bare current
vertex for Hamiltonian (1) (we define u0 = 0), GR/A is the
retarded (R) or advanced (A) Green’s function under the first
Born approximation, and �̂α is the renormalized current ver-
tex due to impurity scatterings as shown in Fig. 1(b). Note that
the linear response function 
I

αβ also contains the GRGR and
GAGA terms [20], but these terms are smaller in a factor of
1/kF l than the GRGA term in the limit kF l � 1 so we neglect
it in Eq. (5).

The renormalized current vertex �̂α satisfies the recursion
equation

�̂α (ω, q) = ĵα +
∫

d3k

(2π )3
γ GA(0, k)�̂αGR(ω, k + q). (6)

The above equation can be solved by expressing the cur-
rent vertex in the Pauli matrix basis as ĵα = Jαβσβ , α, β =
0, x, y, z, and the renormalized current vertex as �̂α = �αβσβ ,
where the summation over the repeated index is implied as
usual. For Hamiltonians with the coefficients Jαβ and �αβ

independent of the momentum, such as the Weyl and Dirac
systems, the coefficients of the renormalized current vertex
can be solved, with the relationship Tr[σασβ] = 2δαβ , as
�αβ = Jαγ Dγ β , and D = (1 − γI )−1 is the 4 × 4 diffusion
matrix with the polarization operator I defined as

Iαβ = 1

2

∫
dk

(2π )3
Tr[σαGR(ε + ω, k + q)σβGA(ε, k)], (7)

and α, β = 0, x, y, z. Note that for the Hamiltonians with non-
relativistic kinetic energy term k2/2m, such as 2D Rashba
ferromagnets [23], Jαβ is dependent on the momentum and
the solution of renormalized current vertex is not so simple.
We focus on the case with Jαβ independent of the momentum
in this work, such as the relativistic systems, and our study in
this work is applicable only for such systems.

The 4 × 4 response function matrix 
I(ω, q) with vertex
correction can then be expressed as the following matrix prod-
uct:


̃I(ω, q) = JDIJ T , (8)

where 
̃I ≡ − π i
ωe2 


I, and J is the 4 × 4 matrix with elements
Jαβ , i.e., the coefficients of the bare current vertex in the Pauli
matrix basis as defined above. The superscript T means the
transposition of the corresponding matrix. The energy ε in I
is bounded to the Fermi energy εF due to the factor ∂εnF (ε) in
Eq. (5).
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We are interested in the anomalous Hall conductivity in the
dc limit of the diffusive regime, i.e., ql � 1, ωτ � 1. How-
ever, under the first Born approximation, the matrix D−1 =
1 − γI in the exact dc limit ω = 0, q = 0 has determinant
zero and is not invertible. For the reason, we work at small
finite frequency ω (but keep q zero for simplicity) and take
the dc limit ω → 0 at the end of the calculation.

We separate the I matrix to the symmetric and antisym-
metric part as I (ω, q → 0) = Is(ω) + Ia(ω). Here Is(ω)
and Ia(ω) in the diffusive limit ωτ � 1 can be obtained
by expanding the small frequency. In the linear order of the
frequency ω, the symmetric part Is(ω) and the antisymmetric
part Ia(ω) are, respectively,

γIs(ω) = 1

c0

⎛
⎜⎜⎝

c0 + u2

v
c1 + iωτb0 c1(ω)ux c1(ω)uy c1(ω)uz

c1(ω)ux c2(ω) + c3(ω)u2
x c3(ω)uxuy c3(ω)uxuz

c1(ω)uy c3(ω)uxuy c2(ω) + c3(ω)u2
y c3(ω)uyuz

c1(ω)uz c3(ω)uxuz c3(ω)uyuz c2(ω) + c3(ω)u2
z

⎞
⎟⎟⎠, (9)

and

γIa(ω) = γIa
int (ω) + γIa

im(ω), (10)

γIa
int,αβ (ω) = 1

c0εF τ
f (ω)εαβγ uγ , (11)

γIa
im,αβ (ω) = 1

c0εF τ
g(ω)εαβγ �γ . (12)

In the above expressions, uγ = (0, ux, uy, uz ) and �γ =
(0,�x,�y,�z ). The matrix Ia

int,αβ (ω) is the antisymmetric
part of I in the clean limit τ → ∞, and Ia

im,αβ is the anti-
symmetric part due to impurity scatterings. The parameters
ci(ω) = ci + iωτbi, i = 1, 2, 3, where ci is the value of ci(ω)
in the dc limit and bi is the coefficient of the linear-order fre-
quency term. The exact value of ci can be obtained by directly
computing the I matrix in the dc limit as in Appendix A,
whereas the coefficients bi can be obtained by expanding
I (ω, q → 0) to the linear order of ω. For the anomalous Hall
conductivity in the dc limit, it turns out that only the values
in the dc limit of ci(ω) matter at the end and the coefficients
bi do not enter the final results of the dc anomalous Hall
conductivity. The same is true for f (ω) and g(ω). For the
reason, we only give these parameters in the dc limit in the
following:

c0 = v4

(v2 − u2)2
, (13)

b0 = 1

4

[
3 + 5c0 − 3

u2

v2
c0 + 3a(u)

u2

v2

]
, (14)

c1(ω → 0) ≡ c1 = 1

4v

[
a(u) + u2 − 3v2

v2
c0

]
, (15)

c2(ω → 0) ≡ c2 = 1

8

[
3 + 2u2

v2 − u2
− v2 − u2

v2
a(u)

]
,

(16)

c3(ω → 0) ≡ c3 = 1

8u2

[
3a(u) − 1 + 4

u2

v2
c0 − u2

v2
a(u)

]
,

f (ω → 0) ≡ f (u) = 1

2v

[
v2

v2 − u2
− a(u)

]
, (17)

g(ω → 0) ≡ g(u) = −1

4

[
1 + a(u) + u2

v2
a(u)

]
, (18)

a(u) ≡ v2

u2

(
v

2u
ln

v + u

v − u
− 1

)
≈ 1

3
+ u2

5v2
+ O

(
u4

v4

)
.

(19)

In the above calculation, when the chirality χ changes sign
but u does not, both f (u) and � change sign. When u changes
sign but χ does not, f (u) does not change sign, but � does.
The parameter g(u) does not change sign when χ or u changes
sign. So the sign of the antisymmetric part Ia is determined by
the product of the sign of χ and uχ in each valley. In this work,
χ is opposite in the two valleys since the total chiral charge of
the two valleys has to be zero [24]. The tilting uχ then must
have opposite signs in the two valleys to get nonvanishing total
AHE as we will see below.

From the I matrix, we can obtain the diffusion matrix D
and the renormalized current vertex �̂ and finally get the Hall
current through Eq. (8). The main contributions to the AHE in
a tilted Weyl metal are presented as follows.

AHE without vertex correction. In this case, D = 1, the
response function


I(ω, q) = − ω

π i
e2J I (ω, q)J T . (20)

For tilted Weyl metals, Jαβ = vδαβ + uαδβ0. It is easy to
check that in the dc limit the tilting part uαδβ,0 in the bare
current vertex of the tilted Weyl metals has no contribu-
tion to the AHE in the linear response and 
I

αβ (ω, q) =
− ω

π i e
2v2Iαβ (ω, q) without vertex correction for the tilted

Weyl metals. The main effect of the tilting is then just to
produce an anisotropy in the Fermi surface.

For isotropic systems, the spatial block of the symmetric
part Is, i.e., Is

i j , i, j = x, y, z, is diagonal and the diag-
onal element corresponds to the longitudinal conductivity
that is proportional to τ [29]. For anisotropic systems, Is

i j ,
i, j = x, y, z, may contain off-diagonal elements, as is the
case for the tilted Weyl metals in Eq. (9). This off-diagonal
part corresponds to a normal Hall current due to anisotropy
[29]. The antisymmetric part Ia of the I matrix comes from
TRS breaking and corresponds to an anomalous Hall current.
This part is smaller than the symmetric part Is by a factor
of 1/εF τ , consistent with the fact that the anomalous Hall
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conductivity is usually smaller than the longitudinal conduc-
tivity by 1/εF τ [20].

The antisymmetric part Ia of I (ω, q) in the limit of ω →
0, q → 0 results in a dc anomalous Hall current as

jH = e2εF

2π2v
[ f (u)(u × E) + g(u)(� × E)], (21)

where f (u) and g(u) are given in Eqs. (17) and (18), and �i =
− ui

v
, i = 1, 2, 3.

Equation (21) above contains two terms. The first term,
which we denote as jint

H , corresponds to the clean and dc limit
of the antisymmetric tensor I, i.e., Ia

int (ω → 0) in Eq. (11),
and together with the contribution jII

H from the Fermi sea
constitutes the intrinsic contribution of the low-energy effec-
tive Hamiltonian. Note that the contribution corresponding to
Ia

int (ω → 0) vanishes in the Weyl metals without tilting, as
can be seen from Eq. (7) where the integration over k and −k
for the antisymmetric tensor Ia

αβ cancels out at ω, q → 0 for
this case.

The second term in Eq. (21) corresponds to Ia
im(ω → 0) in

Eq. (12). This contribution is due to an unbalanced impurity
scattering of the spin species parallel and antiparallel to the
tilting direction u. It is proportional to the difference of the
impurity scattering rate of the two spin species, but is indepen-
dent of the total impurity scattering rate 1/τ . This contribution
involves a second-order impurity scattering process |V0|2 and
constitutes part of the side-jump contribution as we will show
in more detail in the next section.

Vertex correction. We next consider the AHE in tilted Weyl
metals with vertex correction. Since the antisymmetric part
Ia is smaller than the symmetric part Is by a factor of 1/εF τ ,
we can expand the diffusion matrix D treating γIa as a small

parameter,

D = (1 − γIs − γIa)−1 =
∞∑

n=0

(D0γIa)nD0, (22)

where γIa ∼ 1/εF τ , and D0 ≡ (1 − γIs)−1 is a constant
symmetric matrix ∼τ 0 and satisfying D0 = 1 + D0γIs. The
matrix D0 gives the leading-order vertex correction of the
current operator.

For the vertex correction coming from the antisymmetric
part γIa in the D matrix, one only needs to keep the lowest
order of this contribution since γIa is smaller than γIs by
1/εF τ . For tilted Weyl metals, the response function 
̃I =
JDIJ T = v2DI. Upon expansion, we get the antisymmet-
ric part for tilted Weyl metals as


̃I
a/v

2 = [
D0 + D2

0 (γIa)2D0 + · · · ]Ia,

+[
D0(γIa)D0 + D3

0 (γIa)3D0 + · · · ]Is,

= D0Ia + D0(γIa)D0Is + · · · . (23)

The leading-order contribution contains two terms, i.e.,
D0Ia and D0(γIa)D0Is. Both of the terms are independent
of τ . The addition of the two terms is equal to D0IaD0 for
tilted Weyl metals, and JD0IaD0J T for general anomalous
Hall systems with J independent of the momentum.

To get the matrix D0, one needs to invert the matrix 1 −
γIs. However, in the dc limit ω = 0, q = 0, the matrix 1 −
γIs has determinant zero due to charge conservation [13] and
is not invertible. This can be verified by checking the deter-
minant Det[1 − γIs(ω → 0)] = − u2

v
c1

c4
0
(c0 − c2)2(c0 − c2 −

c3u2 + vc1), for which the factor c0 − c2 − c3u2 + vc1 equals
zero exactly. However, at finite frequency, the matrix 1 − γIs

becomes invertible. From Eq. (9), we get

D0(ω) = c0

[c0 − c2(ω)]μ(ω)

⎛
⎜⎜⎜⎝

c0 − c2(ω) − c3(ω)u2 c1(ω)ux c1(ω)uy c1(ω)uz

c1(ω)ux μ(ω) + λ(ω)u2
x λ(ω)uxuy λ(ω)uxuz

c1(ω)uy λ(ω)uxuy μ(ω) + λ(ω)u2
y λ(ω)uyuz

c1(ω)uz λ(ω)uxuz λ(ω)uyuz μ(ω) + λ(ω)u2
z

⎞
⎟⎟⎟⎠, (24)

where

μ(ω) =
[(

−u2

v
c1 − iωτb0

)
(c0 − c2(ω) − c3(ω)u2) − c2

1(ω)u2

]
/[c0 − c2(ω)], (25)

λ(ω) =
[

c2
1(ω) − c3(ω)

(
u2

v
c1 + iωτb0

)]
/[c0 − c2(ω)]. (26)

One can check that in the leading order of ωτ , the parameter μ(ω) ∝ iωτ , resulting in a diffusion pole at ω → 0 in the
diffusion matrix D0. It is interesting to get the renormalized current vertices from D0 for the tilted Weyl metals, which are

�0 = �0βσβ = vc0

[c0 − c2(ω)]μ(ω)
[(c0 − c2(ω) − c3(ω)u2)σ0 + c1(ω)u · σ], (27)

�i = �iβσβ = c0

c0 − c2(ω)

[
c0 − c2(ω) − c3(ω)u2 + vc1(ω)

μ(ω)
uiσ0 + vσi + c1(ω) + vλ(ω)

μ(ω)
ui(u · σ)

]
, i = 1, 2, 3. (28)

It is clear from Eq. (27) that the renormalized charge com-
ponent �0 has a diffusion pole at ω → 0 due to the charge
conservation. However, since both c0 − c2(ω) − c3(ω)u2 +

vc1(ω) and c1(ω) + vλ(ω) in Eq. (28) vanish at ω → 0 and
are proportional to iωτ in the leading order of the frequency,
the renormalized current vertices �i, i = 1, 2, 3, have no
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FIG. 2. The factor F (u) for the vertex correction as a function
of u/v.

diffusion pole. This is because the current operators ĵi, i =
1, 2, 3, do not commute with the Hamiltonian and are not
conserved.

From the D0 and Ia matrix, we get the leading-order con-
tribution of 
̃I

a(ω) for tilted Weyl metals as


̃I
a(ω) = v2D0(ω)Ia(ω)D0(ω)

=
[

c0

c0 − c2(ω)

]2

v2Ia(ω). (29)

Taking the limit ω → 0, we get the total dc anomalous Hall
current for tilted Weyl metals in a single valley as

jI
H = e2εF

2π2v
F (u)[ f (u)(u × E) + g(u)(� × E)], (30)

where F (u) = c2
0

(c0−c2 )2 with c0, c2 given in Eqs. (13) and (16),
and f (u) and g(u) given in Eqs. (17) and (18). At u = 0,

F (u) = c2
0

(c0−c2 )2 = 9/4, and at finite u, the value of F (u) is
plotted in Fig. 2.

From Eq. (23), the next leading-order vertex correction to
the Hall current is ∼D3

0 (γIa)2Ia + D4
0 (γIa)3Is ∼ (1/εF τ )2,

which is much smaller than the leading-order correction in
the case εF τ � 1. For this reason, we only need to keep the
leading-order contribution of the AHE which is of the order
of τ 0.

The total anomalous Hall current in Eq. (30) includes both
the intrinsic and extrinsic contributions. The intrinsic one cor-
responds to the first term of Eq. (21). The total contribution,
subtracting the intrinsic one, is then the extrinsic contribution
due to impurity scatterings, which includes the side-jump and
skew-scattering contributions. In the next section we show
how to separate these two contributions from the total Hall
current in Eq. (30).

III. SEPARATION OF THE INTRINSIC, SIDE-JUMP,
AND SKEW-SCATTERING CONTRIBUTIONS

IN THE SPIN BASIS

A. General formalism

The Hall current in Eq. (30) obtained from the Kubo-
Streda formula in the spin basis is rigorous but not physically

transparent. It took physicists a long time to understand the
microscopic mechanism of both the intrinsic and extrinsic
contributions of the AHE. With the efforts of the authors in
Refs. [15,20,28,31–33,39] and others, a semiclassical Boltz-
mann equation approach was built to explain the anomalous
Hall current. The key ingredient is the band mixing by the
current vertex and/or the impurity potential which induces
a transverse current perpendicular to the electric field. Based
on the semiclassical explanation of the three different mech-
anisms of the anomalous Hall currents, i.e., the intrinsic,
side-jump, and skew-scattering contributions, Sinitsyn et al.
figured out the Feynman diagrams corresponding to the three
different mechanisms in the band eigenstate basis (shown in
Fig. 4) [20]. The intrinsic contribution is due to the topological
structure of the electron band and exists even without impurity
scatterings. The side-jump contribution is due to the trans-
verse displacement of the electrons by impurity scatterings
[39]. This scattering is symmetric, whereas the skew scatter-
ing is due to asymmetric impurity scatterings.

Though it is physically more transparent to separate the
different contributions in the eigenstate or chiral basis, as done
in most previous works [16,20,40], the Hamiltonians of the
anomalous Hall systems are usually given in the spin basis
due to the spin-orbit interaction. For this reason, it is more
convenient to calculate the total anomalous Hall current in the
spin basis as we did in the last section. However, a transparent
method to separate the different extrinsic contributions in the
spin basis is lacking and considered to be a difficult task since
a single diagram in the spin basis contains contributions from
different mechanisms [16,20].

In this section, we show an efficient and transparent
scheme to separate the different contributions of the AHE
in the spin basis for Dirac and Weyl systems. By separating
the symmetric and antisymmetric part of the I matrix and D
matrix as we did in the last section and using these matrices
as building blocks, we build a one-to-one correspondence
between the Feynman diagrams of the different contributions
given in the chiral basis in Ref. [20] and the matrix products
of Ia

int, Ia
im, and D0 we obtained in the spin basis. The result

is shown in Fig. 4. For simplicity, we build up this correspon-
dence for tilted Weyl metals at first and it is easy to generalize
the result to other Weyl and Dirac systems.

For tilted Weyl metals, the tilting part euασ0 in the bare
current vertex has no contribution to the linear response. The
I matrix remains the same by replacing σα by ĵα/v. The
integrand of the I matrix in Eq. (7) can then be replaced
by Iαβ = Tr[ ĵαGR ĵβGA] for tilted Weyl metals. To get better
physical understanding, we use the latter notation to expand
Iαβ in this section. The result can be easily generalized to
other systems with different current vertices independent of
the momentum.

The integrand Iαβ is the same in the spin and chiral bases.
We expand it in the chiral basis as

Iαβ

= 〈+| ĵα
∑

s1

|s1〉〈s1|GR
∑

s2

|s2〉〈s2| ĵβ
∑

s3

|s3〉〈s3|GA|+〉

+〈−| ĵα
∑

s4

|s4〉〈s4|GR
∑

s5

|s5〉〈s5| ĵβ
∑

s6

|s6〉〈s6|GA|−〉,

(31)
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where s1,...,6 = ± represent the upper and lower eigenbands,
respectively. The Green’s function under the Born approxima-
tion can be written as

GR/A = GR/A
0 + GR/A

0 GR/A, (32)

where GR/A
0 is the bare GF without impurity scatterings, and

 is the self-energy due to impurity scatterings given in the
last section. In the eigenstate basis, GR/A

0 is diagonal, but
 contains both diagonal and off-diagonal elements; i.e., 

may cause band mixing. For this reason, GR/A in the Born
approximation also contains off-diagonal elements in the band
eigenstate basis. However, its off-diagonal elements are small
in 1/τ . For this reason, we only need to keep at most one band
off-diagonal element of GR or GA in each term in Eq. (31). The
leading-order terms are then

Iαβ = 〈+| ĵα|+〉〈+|GR|+〉〈+| ĵβ |+〉〈+|GA|+〉
+ 〈−| ĵα|−〉〈−|GR|−〉〈−| ĵβ |−〉〈−|GA|−〉
+ 〈+| ĵα|−〉〈−|GR|−〉〈−| ĵβ |+〉〈+|GA|+〉
+ 〈−| ĵα|+〉〈+|GR|+〉〈+| ĵβ |−〉〈−|GA|−〉
+ 〈+| ĵα|−〉〈−|GR|+〉〈+| ĵβ |+〉〈+|GA|+〉
+ 〈+| ĵα|+〉〈+|GR|−〉〈−| ĵβ |+〉〈+|GA|+〉
+ 〈+| ĵα|+〉〈+|GR|+〉〈+| ĵβ |−〉〈−|GA|+〉
+ 〈−| ĵα|+〉〈+|GR|+〉〈+| ĵβ |+〉〈+|GA|−〉
+ 〈−| ĵα|+〉〈+|GR|−〉〈−| ĵβ |−〉〈−|GA|−〉
+ 〈−| ĵα|−〉〈−|GR|+〉〈+| ĵβ |−〉〈−|GA|−〉
+ 〈+| ĵα|−〉〈−|GR|−〉〈−| ĵβ |−〉〈−|GA|+〉
+ 〈−| ĵα|−〉〈−|GR|−〉〈−| ĵβ |+〉〈+|GA|−〉. (33)

We separate these terms into three groups:
(i) The first two terms correspond to intraband processes,

and both current vertices are band diagonal without mixing the
two bands. As shown in Appendix B, these two terms are the
dominant symmetric part of the I matrix. We denote them as
Is. Among the two terms in Is, the first term with intraband
processes in the upper band dominates the contribution to
the integration, since the lower band is far below the Fermi
surface and the scattering processes by current vertex are
forbidden. For the reason, the symmetric part Is of the I
matrix corresponds to the diagram in Fig. 3(a) in the chiral
basis.

(ii) The next two terms involve only band-diagonal ele-
ments of GR and GA, but both current vertices mix the two
bands. For these two terms, we further separate the part in the
clean limit and the remaining part with disorder scattering by
Eq. (32). It is easy to show that the part in the clean limit is
dominant (see Appendix B). This part corresponds to Ia

int we
obtained in the spin basis since it is the only nonvanishing
antisymmetric term in the clean limit in the band eigenstate
basis. It then gives the intrinsic contribution to the AHE from
the Fermi surface and corresponds to the diagram in Fig. 3(c)
in the band basis.

(iii) The remaining eight terms in Iαβ are also anti-
symmetric in the leading order and are nonvanishing only

(a)

(c)

(d)

(b)

FIG. 3. Correspondence of the symmetric and antisymmetric
part of the I matrix in the spin basis to the Feynman diagrams
in the band eigenstate basis for tilted Weyl metals. The thin solid
lines represent the bare GF G0 in the eigenstate basis and the thick
solid lines represent the GF under the first Born approximation in
the eigenstate basis. The dashed lines represent impurity scatterings.
The diagram in (a) corresponds to the symmetric part Is of the I
matrix. The solid square in (b) represents the renormalized current
vertex in the chiral basis. It corresponds to the renormalization by
the symmetric part D0 of the diffusion matrix D in the spin basis.
The matrix D0 satisfies the recursion relationship D0 = 1 + D0γIs

and causes an intraband vertex correction of the current vertex. The
two diagrams in (c) represent the intrinsic antisymmetric part Ia

int of
the I matrix. The four diagrams in (d) represent the antisymmetric
part of the I matrix due to impurity scatterings Ia

im.

with impurity scatterings. The four terms with 〈−|GR/A|−〉
in the lower band have an extra smallness compared
to the other four terms and so are negligible. For the
remaining four terms, one can expand the band off-
diagonal Green’s function elements 〈±|GR/A|∓〉 by Eq. (32).
Since 〈±|GR/A

0 |∓〉 = 0, 〈±|GR/A|∓〉 = 〈±|GR/A
0 GR/A|∓〉 ≈

〈±|GR/A
0 GR/A

0 |∓〉, where the last replacement of GR/A by
GR/A

0 in this element does not affect the integration of Iαβ in
the leading order. The leading-order contribution of this part
then corresponds to the four diagrams in Fig. 3(d) and the
matrix Ia

im we obtained in the spin basis.
Note that for all the diagrams in Figs. 3(c) and 3(d),

replacing the thin line representing GR/A
0 by the thick line rep-

resenting GR/A does not change the leading-order contribution
of the AHE. For clarity of physics, we only keep the minimum
number of thick lines in the leading order in this paper. The
same applies to the diagrams in Fig. 4.

The symmetric part Is does not contribute to the Hall
current directly since it involves only intraband scattering.
However, it produces a band-diagonal vertex correction of the
current operator through the symmetric part of the diffusion
matrix, i.e., D0 that we defined in the last section. The renor-
malized band-diagonal current vertex is labeled as ϒ++ in the
band eigenstate basis in Ref. [20], and satisfies the recursion
relationship shown in Fig. 3(b).
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FIG. 4. The correspondence of the Feynman diagrams in the
eigenstate (chiral) basis for the intrinsic, side-jump, and skew-
scattering contributions to the matrix product of Is, D0, Ia

int , Ia
im

obtained in the spin basis for tilted Weyl metals.

The antisymmetric part of diffusion operator D is smaller
than the symmetric part by a factor 1/εF τ so the vertex
correction due to this part does not need a resummation to
infinite order. This part generates a transverse component of
the current vertex and one only needs to keep its lowest order
as we did in the last section.

The Feynman diagrams of the intrinsic, side-jump, and
skew-scattering contributions to the AHE in the leading order
of 1/εF τ in the band eigenstate basis are given in Ref. [20],
also shown in Fig. 4. With the correspondence in Fig. 3
between the diagrams in the band eigenstate basis and the
matrices in the spin basis, we can easily write down the
matrices for each diagram of the three different mechanisms
for tilted Weyl metals. The results are also presented in Fig. 4.
From this table, we can conveniently separate the intrinsic,
side-jump, and skew-scattering contribution in the spin basis
for tilted Weyl metals.

The intrinsic contribution corresponds to the I matrix in
the clean limit, i.e., Ia

int . The side-jump contribution involves

only second-order impurity scatterings, i.e., only one disorder
line. There are eight diagrams in the eigenstate (chiral) basis
for this type, as shown in Fig. 4 [41]. Their total contribution
to the AHE is then


̃s j = γD0IsIa
int + Ia

intγD0Is + D0Ia
im + Ia

imD0

2

= D0Ia + IaD0

2
− Ia

int

+ (D0 − 1)Ia
int + Ia

int (D0 − 1)

2
, (34)

where 
̃s j ≡ − π i
ωe2v2 


s j is the rescaled response function as
in the last section. One may wonder how to equate the matrix
γD0IsIa

int, i.e., (D0 − 1)Ia
int, with the corresponding diagrams

on the left in Fig. 4 since D0 − 1 only connects to upper
band legs whereas the vertices of Ia

int mix the upper and lower
bands. This is easy to understand by noting that (D0 − 1)Ia

int
is the leading-order contribution of (D − 1)Ia

int and the dis-
order line of (D − 1) includes all possible interband and
intraband scatterings by disorder. Among all the diagrams
corresponding to (D − 1)Ia

int, the leading-order contribution
only corresponds to the diagrams on the left of Fig. 4.

The second line of Eq. (34) equals the leading-order con-
tribution with only one vertex correction D0 in Eq. (23),
subtracting the intrinsic contribution Ia

int. Other than this
term, the side-jump contribution contains another term
(D0−1)Ia

int+Ia
int (D0−1)

2 , which comes from the second term in
Eq. (23). The remaining part of the second term in Eq. (23)
is the contribution from skew scattering as we show below.

The skew-scattering contribution corresponds to the six
diagrams in Fig. 4. Each diagram involves two disorder
lines, i.e., the fourth-order impurity scattering processes. We
can read the total contribution to the AHE from the skew-
scattering diagrams as


̃sk = γD0IsIa
intγD0Is + D0Ia

imγD0Is + γD0IsIa
imD0

2
,

= (D0 − 1)IaD0 + D0Ia(D0 − 1)

2

− (D0 − 1)Ia
int + Ia

int (D0 − 1)

2
. (35)

The first term of Eq. (48) corresponds to the antisymmetric
part of the term D0IaD0γIs in Eq. (23), which contains two
vertex corrections D0. However, the antisymmetric part of
D0IaD0γIs is not fully the skew-scattering contribution. It
contains part of the side-jump contribution as subtracted in
the last line.

It is easy to check that the addition of the intrinsic con-
tribution, the side-jump contribution in Eq. (34), and the
skew-scattering contribution in Eq. (48) is equal to the total
Hall response 
̃I

a = D0IaD0 for tilted Weyl metals obtained
in the spin basis in Eq. (23).

The above results can be easily generalized to other anoma-
lous Hall systems without nonrelativistic kinetic energy terms,
such as a 2D massive Dirac model [20]. For a general anoma-
lous Hall system with J independent of the momentum, one
only needs to multiply the matrix J and J T on the two
ends of the response function matrix, as well as the side-jump
contribution in Eq. (34) and skew-scattering contribution in
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Eq. (48). The total contribution to the Hall response is 
̃I
a =

JD0IaD0J T .

B. The vertex correction factor D0

We have a brief discussion of the vertex correction of the
current operator in Fig. 3(b) in this section. The renormalized
current vertex due to this vertex correction is related to the
bare current vertex by �αβσβ = JαγD0,γ βσβ in the spin basis
as we show in the last section. Here D0 is the symmetric part
of the diffusion matrix D in the dc limit.

As discussed in the last section, this vertex correction
corresponds to only the impurity scatterings within the upper
band in the ladder diagram Fig. 3(b) in the chiral basis. In
the chiral basis, the renormalized band-diagonal current vertex
ϒ++

α is obtained from the recursion equation as [20]

ϒ++
α (k) = j++

α (k) +
∫

d3k′

(2π )3
GA+|V ++

k′k |2GR+ϒ++
α (k′),

(36)
where j++

α (k) = 〈k,+| ĵα|k,+〉, GR/A+ = 〈k′,+|GR/A|
k′,+〉, V ++

k′k = 〈k′,+|V |k,+〉. For the case with isotropic
Fermi surface and isotropic scattering potential, the
scatterings only depend on the angle between k′ and k,
and the above equation can be solved exactly by the ansatz

ϒ++
α (k) = α̃ j++

α (k), (37)

where α̃ is a constant depending on the angle between k and
k′ but not the direction of k. For untilted Weyl metals, as well
as many other isotropic systems, such as graphene, or the 2D
massive Dirac model, the band-diagonal current vertex in the
chiral basis is j++

α ∼ kα for α = x, y, z. For such cases, α̃ can
be solved as α̃ = τ tr/τ+, where τ tr and τ+ are the transport
and ordinary scattering times of the upper band respectively
and can be expressed as

1/τ tr = 2π

∫
d3k′

(2π )3
|V ++

k′k |2(1 − cos(k′ · k))δ(εk − ε+
k′ ),

(38)

1/τ+ = 2π

∫
d3k′

(2π )3
|V ++

k′k |2δ(εk − ε+
k′ ). (39)

For these isotropic systems, the vertex correction obtained
from the above procedure in the chiral basis should be equiv-
alent to that obtained from D0 in the spin basis. Indeed, for
the spin-orbit-interacting systems with isotropic Fermi surface
and isotropic impurity scatterings, the matrix D0 is completely
diagonal if the Hamiltonian also has time-reversal symme-
try, e.g., graphene [42–44], a helical metal on the surface of
topological insulators [45], or a single node of untilted Weyl
metals [13]. And for the isotropic systems with breaking time-
reversal symmetry, such as the 2D massive Dirac model [20],
D0 is diagonal only for the spatial block with i, j = x, y, z.
For all these cases, the vertex correction factor D0 for the
current vertex ĵi, i = x, y, can be replaced by the diagonal
(i, i) element of D0, and we have checked that this element
is equal to α̃ obtained from Eqs. (37)–(39). The side-jump
and skew-scattering contributions in Eqs. (34) and (48) are
then greatly simplified for such systems, and one only needs to
compute the parameter α̃ and the antisymmetric part Ia

int and

Ia
im of the polarization operator to obtain the three different

anomalous Hall contributions.
However, for the systems with anisotropic Fermi surface,

such as tilted Weyl metals, the impurity scatterings depend
not only on the angle between k′ and k, but also the direction
of k. This can be seen by computing 1/τ tr for the tilted Weyl
metals in Eq. (C13) in Appendix C. It is easy to check that it
depends on the direction of k for finite tilting. In this case, the
integration equation (36) for the renormalized current vertex
is intricate and does not have the simple solution as Eq. (37).
On the other hand, the band-diagonal vertex correction matrix
D0 we obtained in the spin basis for tilted Weyl metals is
no longer diagonal in the spatial block since Is is not diag-
onal, indicating the complication of the vertex correction for
anisotropic systems.

For the untilted Weyl metals, from our calculation in the
last section, D0 is diagonal and D0(i, i) = 3/2 for i = x, y, z,
which is the same as α̃ = τ tr/τ+ for this system (1/τ tr =
niV 2

0 ε2
F /3πv3, 1/τ+ = niV 2

0 ε2
F /2πv3 for untilted Weyl met-

als). For the tilted Weyl metals, D0 contains both diagonal
and off-diagonal elements, and both play a role in the vertex
correction as we will see below.

C. Separation of the intrinsic, side-jump, and skew-scattering
contributions in the tilted Weyl metals

For the tilted Weyl metals, from the formalism in Sec. III A
and the matrices D0, Ia

int, Ia
im we obtained in Sec. II, we get the

response functions for the three different mechanisms from a
single valley as


̃int (ω) = Ia
int (ω), (40)


̃s j (ω) = 2c2(ω)

c0 − c2(ω)
Ia

int (ω) + c0

c0 − c2(ω)
Ia

im(ω), (41)


̃sk (ω) =
[

c2(ω)

c0 − c2(ω)

]2

Ia
int (ω) + c0c2(ω)

[c0 − c2(ω)]2
Ia

im(ω).

(42)

Taking the limit ω → 0, we get the response functions in
the dc limit as


̃int
αβ = εF

4πv4

[
v2

v2 − u2
− a(u)

]
εαβγ uγ , (43)


̃
s j
αβ = εF

8πv4

c0

(c0 − c2)

[
1 + a(u) + u2

v2
a(u)

+ 4
c2

c0

(
v2

v2 − u2
− a(u)

)]
εαβγ uγ , (44)


̃sk
αβ = εF

8πv4

c0c2

(c0 − c2)2

[
1 + a(u) + u2

v2
a(u)

+2
c2

c0

(
v2

v2 − u2
− a(u)

)]
εαβγ uγ . (45)

From above, we see that the final results of the response func-
tions only depend on the parameters c0, c2, and a(u) obtained
in the dc limit in Sec. II.

In the above calculation we noticed that though the tilting
u brings correction to both the diagonal and off-diagonal
elements of the D0 matrix compared to the untilted case, the
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FIG. 5. The Fermi surface contribution of the anomalous Hall
conductivity due to the three mechanisms, intrinsic, side jump, and
skew scattering, obtained from the Kubo-Streda formula as a func-
tion of u/v, when the electric field E is in the y direction and u is in
the z direction.

effects on the Hall currents due to the off-diagonal elements
of D0 were canceled by the effects from part of the diagonal
elements. The total effect of the matrix D0 on the Hall current
is equivalent to the factor c0/(c0 − c2) ≈ 3/2 − 9u2/10v2.
However, this factor is different from α̃ = τ tr/τ+ for tilted
Weyl metals, which is α̃ ≈ 3/2 − 3u/2v. This also indicates
that for tilted Weyl metals with anisotropic Fermi surface, the
simple solution α̃ = τ tr/τ+ for the vertex correction is no
longer accurate.

From the response function in Eqs. (43)–(45), we can
get the dc anomalous Hall conductivity σ i

αβ = e2v2

π

̃i

αβ , i =
int, s j, sk. The anomalous Hall currents from the three dif-
ferent mechanisms are all proportional to u × E and the total
anomalous Hall current from one valley is the same as ob-
tained in Eq. (30). In Fig. 5, we plot the anomalous Hall
conductivity due to the three different mechanisms from the
Fermi surface. We can see that in all regimes of u/v, the side-
jump contribution is the largest and the extrinsic contribution
is greater than the intrinsic contribution.

At small u/v, we can expand the results in Eqs. (43)–(45)
and get the leading-order Hall currents for the two valleys as

jint
H ≈ −1

3

e2εF

π2v2
u × E, (46)

js j
H ≈ −5

6

e2εF

π2v2
u × E, (47)

jsk
H ≈ −1

3

e2εF

π2v2
u × E. (48)

There is another contribution to the intrinsic anomalous
Hall current due to tilting from the Fermi sea. This contri-
bution was calculated in Ref. [14]. In the dc limit, this Hall
current is jint,II

H ≈ 1
6

e2εF
π2v2 u × E for the two valleys, which is

half of the intrinsic Hall current from the Fermi surface and
has opposite sign. The total intrinsic Hall current in the lead-
ing order of u/v due to tilting is then jint,tot

H ≈ − 1
6

e2εF
π2v2 u × E.

D. Comparison with the semiclassical Boltzmann
equation approach

The AHE in the tilted Weyl metals due to the three dif-
ferent mechanisms was calculated from the SBE approach in
Ref. [46]. However, in this work, the authors neglected the
anisotropy of the Fermi surface of the system when computing
the transverse coordinate shift, which results in an incorrect
side-jump velocity. For this reason, we redid the calculation
of the SBE approach for the AHE of tilted Weyl metals in
Appendix C.

Another issue of the SBE approach is that the commonly
used solution of the SBE approach under the relaxation-time
approximation in Refs. [20,29] may become unreliable for
anisotropic systems, as pointed out in Refs. [34,35]. The
reason is that the solution of the nonequilibrium distribution
function gk in the SBE approach assumes that the relaxation
times τ tr and τ⊥ do not depend on the direction of the mo-
mentum k (see Appendix C). This is true for isotropic systems
but not the case for anisotropic systems. Strictly speaking,
no scalar relaxation time can be attributed to a given k state
for anisotropic systems. The same problem comes up for
the solution of the anomalous distribution function ga

k due
to the coordinate shift. In Ref. [34] the authors studied the
anisotropic magnetoresistance (AMR) in 2D Rashba ferro-
magnets with anisotropic magnetic impurities. It was shown
that the exact result of the AMR in the anisotropic system
is significantly different from the result obtained from the
SBE under the commonly used relaxation time approxima-
tion. For this reason, it is interesting to check whether the
AHE from the commonly used SBE approach also deviates
significantly from the result obtained from the quantum Kubo-
Streda formula for tilted Weyl metals, whose Fermi surface is
anisotropic.

As shown in Appendix C, we get the AHE in the leading
order of u/v from the SBE approach under the relaxation
time approximation after correcting the side-jump velocity in
Ref. [46] as

jint
H ≈ −1

6

e2εF

π2v2
u × E, (49)

js j
H ≈ − 5e2εF

6π2v2
u × E, (50)

jsk
H ≈ − e2εF

3π2v2
u × E. (51)

The intrinsic anomalous Hall current from the SBE ap-
proach includes contribution from both the Fermi sea and the
Fermi surface [47]. This part is the same as the total intrinsic
anomalous Hall current we obtained from the quantum Kubo-
Streda formula in the last section. Moreover, the side-jump
and skew-scattering contributions we obtained from the SBE
approach also agree with the result from the quantum Kubo-
Streda formula in the leading order of u/v. The reason for this
full match between the two approaches is because the relax-
ation time for tilted Weyl metals defined in Eqs. (C13)–(C15)
is a constant independent of the momentum in the zeroth order
of tilting and depends on the momentum only at higher orders
of u/v. For this reason, the solution of the SBE under the
relaxation time approximation is still valid in the leading order
of u/v in tilted Weyl metals, and the AHEs obtained from the
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FIG. 6. The Feynman diagrams for the response function 
I
αβ

due to the third-order impurity scatterings. The thick solid lines are
the Green’s function in the spin basis under the Born approximation.

SBE and Kubo-Streda formula agree with each other in the
leading order of u/v.

IV. DISCUSSION

For some of the anisotropic systems, it is still possible to
solve the SBE exactly by introducing momentum-dependent
relaxation time, as shown in Ref. [34]. However, the difficulty
of solving the SBE in this way is greatly enhanced because
this approach involves solving two integral equations of the
distribution function and there is no general solution for dif-
ferent models. On the other hand, one encounters a similar
problem for anisotropic systems when solving the vertex
correction of the current operator from the recursion equa-
tion in the chiral basis, as shown in Sec. III B. For anisotropic
systems, the only convenient approach to get the rigorous
anomalous Hall current for Gaussian disordered systems is
then to apply the Kubo-Streda formula in the spin basis, since
one can solve the recursion equation for the vertex correction
in this basis exactly. Our scheme in this work to separate the
contributions from the three different mechanisms in the spin
basis of the Kubo-Streda formula is then especially important
for anisotropic systems.

Though we mainly focus on the Gaussian disorder in this
work, we also have a brief discussion of the skew-scattering
contribution due to third-order impurity scatterings because
this contribution is inversely proportional to the impurity den-
sity and may become significant when the impurity density is
very dilute. This contribution requires a third-order correlation

of the impurity potential and the corresponding Feynman dia-
grams are shown in Fig. 6. We computed this contribution to
the AHE in tilted Weyl metals from the Kubo-Streda formula,
as shown in Appendix D, and found that the result obtained
from the Kubo-Streda formula for this contribution is also the
same as the result obtained from the SBE under the relaxation
time approximation in the leading order of u/v.

There has also been an awareness for a long time that the
fourth-order crossed diagrams may give significant contribu-
tion to the AHE [20,28]. However, due to the intricacy of
the calculation of these diagrams, only recently Ado et al.
computed the contributions of these diagrams for 2D Rashba
ferromagnets and found that they become important for near
impurities with distance comparable to the Fermi wavelength
of the electrons [23]. We will present the study of these dia-
grams for tilted Weyl metals in a different paper.

V. SUMMARY

To sum up, we studied the anomalous Hall effect in disor-
dered type-I Weyl metals with finite tilting in the Kubo-Streda
formalism in the spin basis. We developed an efficient and
transparent scheme in this basis to separate the Hall current
from the three different mechanisms: intrinsic, side jump,
and skew scattering. This scheme is applicable for general
relativistic systems, such as Weyl and Dirac models, both
isotropic and anisotropic. We compared the anomalous Hall
current for tilted Weyl metals obtained in this way with the
results from the SBE approach and found that in the leading
order of the tilting velocity, the results from the two ap-
proaches agree well with each other. Our scheme is especially
important for studying the AHE in anisotropic systems since
both the SBE approach and the Kubo-Streda formula in the
chiral basis encounter difficulty in studying the AHE for such
systems.
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APPENDIX A: CALCULATION OF THE I MATRIX

In this Appendix, we show the calculation of the antisymmetric part of the polarization operator I. The calculation of the
symmetric part is similar. Since the final result of the dc anomalous Hall conductivity only depends on the parameters of the I
matrix in the dc limit, for simplicity we only show the calculation in the dc limit in this Appendix.

The polarization operator in the dc limit is

Iαβ (ω → 0, q → 0) = 1

2

∫
d3k

(2π )3
Tr[σαGR(ε + ω, k + q)σβGA(ε, k)]. (A1)

The Green’s function of the tilted Weyl metals under the first Born approximation is

GR/A(ω → 0, q → 0) = 1(
ε − u · k − vk ± i

2τ+
)(

ε − u · k + vk ± i
2τ−

)
[(

ε ± i

2τ
− u · k

)
σ 0 + vk · σ ∓ i

2τ
(� · σ)

]
, (A2)

where � = −u/v, τ is given in the main text, and 1/τ± = 1
τ

(1 ± k·�
k ).

The numerator of the integrand of Iαβ is

N = 1

2
Tr

{
σα

[(
ε + i

2τ
− u · k

)
σ0 + vk · σ − i

2τ
(� · σ )

]
σβ

[(
ε − i

2τ
− u · k

)
σ0 + vk · σ + i

2τ
(� · σ)

]}
. (A3)
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We separate its antisymmetric part into two parts:

(1) :
1

2
v Tr

[(
ε + i

2τ
− u · k

)
σασβ (k · σ ) +

(
ε − i

2τ
− u · k

)
σα (k · σ)σβ

]
, (A4)

(2) :
1

2

(
i

2τ

)
Tr

[(
ε + i

2τ
− u · k

)
σασβ (� · σ) −

(
ε − i

2τ
− u · k

)
σα (� · σ )σβ

]
. (A5)

Note that the term Tr[σα (k · σ )σβ (� · σ ) − σα (� · σ )σβ (k · σ)] also contains an antisymmetric part, but the integration over
this antisymmetric part vanishes. Since Tr(σασβσ γ ) = 2iεαβγ , parts (1) and (2) can be simplified as

(1) = 1

2
v × i

τ
kγ Tr(σασβσ γ ) = − 1

τ
εαβγ vkγ , (A6)

(2) =
(

i

2τ

)
(ε − u · k)�γ Tr(σασβσ γ ) = − 1

τ
(ε − u · k)εαβγ �γ . (A7)

The denominator of the integrand of I is

D = 1(
ε − u · k − vk + i

2τ+
)(

ε − u · k + vk + i
2τ−

) 1(
ε − u · k − vk − i

2τ+
)(

ε − u · k + vk − i
2τ−

)

= 1

(ε − u · k − vk)2 + (
1

2τ+
)2

1

(ε − u · k + vk)2 + (
1

2τ−
)2 . (A8)

For εF τ � 1, 1/τ− is negligible:

D ≈ 2πτ+δ(ε − u · k − vk) × 1

4v2k2
. (A9)

The total antisymmetric part of the I matrix is then

Ia =
∫

d3k

(2π )3

1

4v2k2
δ(ε − u · k − vk) × 2πτ+

(
− 1

τ

)
εαβγ [vkγ + (ε − u · k)�γ ]

= − 1

(2π )2
εαβγ

∫
d3k

1

4vk2
δ(ε − u · k − vk)

τ+

τ
(kγ + k�γ )

= − 1

(2π )2
εαβγ

∫
d3k

1

4vk2
δ(ε − u · k − vk)

1

1 + (k · �/k)
(kγ + k�γ ). (A10)

To do the above integration, we rotate the z axis to the direction of the vector u. Suppose u = u(sin α cos β · x̂ + sin α sin β ·
ŷ + cos α · ẑ) in the old coordinate. The rotation to the new coordinate is⎛

⎝x̂′
ŷ′
ẑ′

⎞
⎠ =

⎛
⎝cos α cos β cos α sin β − sin α

− sin β cos β 0
sin α cos β sin α sin β cos α

⎞
⎠

⎛
⎝x̂

ŷ
ẑ

⎞
⎠. (A11)

Now we have u = uẑ′. Suppose k = k (sin θ cos φ · x̂′ + sin θ sin φ · ŷ′ + cos θ · ẑ′), u · k = uk cos θ in the new coordinate.
In the old coordinate,

kx = k(cos α cos φ sin θ cos β − sin θ sin φ sin β + cos θ sin α cos β ),
ky = k(cos α cos φ sin θ sin β + sin θ sin φ cos β + cos θ sin α sin β ),
kz = k(− sin θ cos φ sin α + cos θ cos α).

(A12)

We then have
∫ 2π

0 dφ kγ = 2πk cos θ uγ

u , δ(ε − u · k − vk) = 1
u cos θ+v

δ(k − ε
u cos θ+v

).
The intrinsic part of Ia is obtained by setting τ → ∞ and � = 0. We then get

Ia
int = − lim

τ→∞

∫
d3k

(2π )3

1

4v2k2
δ(ε − u · k − vk) × 2π

τ+

τ
εαβγ vkγ

= −
∫

d3k

(2π )3

1

4v2k2
δ(ε − u · k − vk) × 2πεαβγ vkγ

= −εαβγ

2π

uγ

u

∫ ∞

0
k2dk

∫ π

0
sin θ dθk cos θ

1

u cos θ + v
δ

(
k − ε

u cos θ + v

)
1

4vk2

= εF

4v4π
εαβγ uγ

[
v2

v2 − u2
− a(u)

]
, (A13)

where a(u) = v3

2u3 ln v+u
v−u − v2

u2 = 1
3 + O(u2/v2).
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The remaining part of Ia is Ia
im, i.e.,

Ia
im = Ia − Ia

int = −
∫

d3k

(2π )3

1

4v2k2
δ(ε − u · k − vk) × 2πεαβγ

[(
τ+

τ
− 1

)
vkγ + τ+

τ
(ε − u · k)�γ

]

= − ε

8πv3
εαβγ �γ

[
1 + a(u) + u2

v2
a(u)

]
. (A14)

We can compute the symmetric part of the I matrix similarly. The resulting Is matrix is shown in the main text.

APPENDIX B: CONNECTION BETWEEN THE I MATRIX IN THE SPIN BASIS AND DIAGRAMS IN THE CHIRAL BASIS

In this Appendix, we show the correspondence between the symmetric and antisymmetric parts of the I matrix in the spin
basis and the Feynman diagrams in the chiral basis.

The integrand Iαβ of the I matrix in the band eigenstate basis is expanded as in Eq. (33) in the main text. We denote the
elements of the GF in the eigenstate basis under the Born approximation as 〈+|G|+〉 = G+, 〈−|G|−〉 = G−, 〈+|G|−〉 = G+−,
〈−|G|+〉 = G−+, and the same notation for ĵα .

The first two terms of Iαβ in Eq. (33) are

Is
αβ = j++

α GR+ j++
β GA+ + j−−

α GR− j−−
β GA−. (B1)

It is obvious that Is
αβ is symmetric under the exchange of α and β. Since GR+GA+ ≈ 2πτ+δ(ε − ε+) and GR−GA− ≈ 2πτ−δ(ε −

ε−), for Fermi energy ε > 0, GR−GA− ∼ 0. The dominant contribution of Is
αβ then only contains the first term with upper band

scattering. The symmetric matrix Is then corresponds to the diagram in Fig. 3(a).
The next two terms in Eq. (33) are I (2)

αβ = j+−
α GR− j−+

β GA+ + j−+
α GR+ j+−

β GA−. We show below that its dominant part is
antisymmetric. Since j+−

α = ( j−+
α )∗, GR−GA+ = (GR+GA−)∗, one can write

GR−GA+ = X + iY, GR+GA− = X − iY, j+−
α = Re j+−

α + iIm j+−
α , j−+

β = Re j−+
β + iIm j−+

β , (B2)

and

j+−
α GR− j−+

β GA+ + j−+
α GR+ j+−

β GA−

= (Re j+−
α + iIm j+−

α )(Re j−+
β + iIm j−+

β )(X + iY ) + (Re j+−
α − iIm j+−

α )(Re j−+
β − iIm j−+

β )(X − iY )

= 2X (Re j+−
α Re j−+

β − Im j+−
α Im j−+

β ) − 2Y (Im j+−
α Re j−+

β + Re j+−
α Im j−+

β ). (B3)

Since Re j−+
α = Re j+−

α , Im j−+
α = −Im j+−

α , the first term in Eq. (B3) is symmetric and the second term is antisymmetric.
However, since X = Re[GR+GA−] is smaller than GR+GA+ by a factor 1/εF τ , the symmetric part of this equation is negligible
compared to the symmetric part in Is. We then only need to keep the antisymmetric part −2Im[GR+GA−](Im j+−

α Re j−+
β +

Re j+−
α Im j−+

β ) of I (2)
αβ .

In I (2)
αβ , we can expand GR/A = GR/A

0 + GR/A
0 R/AGR/A. Since the self-energy  introduces an extra small parameter 1/τ

which cannot be compensated by another τ , the dominant contribution of I (2)
αβ is equal to the integration of j+−

α GR−
0 j−+

β GA+
0 +

j−+
α GR+

0 j+−
β GA−

0 . Since this is the only nonvanishing antisymmetric part in the clean limit, it is equal to Ia
int in the spin basis,

and corresponds to the two diagrams in the chiral basis in Fig. 3(c) in the main text.
Among the remaining eight terms in Iαβ , the four terms with GA− are smaller in 1/εF τ and so are neglected. The remaining

four terms contain G+− or G−+ and G+. One can expand G+− = G+−
0 + G+

0 G− ≈ G+−
0 + G+

0 G−
0 . It is easy to check that

the replacement in the last equation does not change the dominant contribution of the integration over Iαβ . Since G+−
0 = 0 in

the eigenstate basis, and the dominant contribution can have only one G− line [20], the dominant four terms with G+− or G−+
correspond to the four diagrams in Fig. 3(d).

The integrand of the four diagrams in Fig. 3(d) can be written as

I (3)
αβ = j++

α j−+
β GR+

0 RGR−
0 GA+ + j++

β j−+
α GA+

0 AGA−
0 GR+ + j++

α j+−
β GR+GA−

0 AGA+
0 + j++

β j+−
α GA+GR−

0 RGR+
0 . (B4)

Since GR+
0 RGR−

0 GA+ = (GA+
0 AGA−

0 GR+)∗, GR+GA−
0 AGA+

0 = (GA+GR−
0 RGR+

0 )∗, the symmetric part of I (3)
αβ is

I3s
αβ = ( j++

α j−+
β + j++

β j−+
α )Re

(
GR+

0 RGR−
0 GA+) + ( j++

α j+−
β + j++

β j+−
α )Re

(
GR+GA−

0 AGA+
0

)
, (B5)

and the antisymmetric part is

I3a
αβ = i( j++

α j−+
β − j++

β j−+
α )Im

(
GR+

0 RGR−
0 GA+) + i( j++

α j+−
β − j++

β j+−
α )Im

(
GR+GA−

0 AGA+
0

)
. (B6)

However, the symmetric part I3s
αβ is smaller than the symmetric part Is

αβ by a factor 1/εF τ . So we only need to keep the

antisymmetric part of I (3)
αβ , which is equal to Ia

im obtained in the spin basis since this antisymmetric part is nonvanishing only with
impurity scattering.
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APPENDIX C: THE INTRINSIC, SIDE-JUMP, AND
SKEW-SCATTERING CONTRIBUTIONS FROM THE SBE

APPROACH UNDER THE RELAXATION TIME
APPROXIMATION

In this Appendix, we redo the calculation of the intrinsic,
side-jump, and skew-scattering contributions in tilted Weyl
metals from the SBE approach under the relaxation time ap-
proximation (RTA) in Ref. [46].

The Hamiltonian of the three-dimensional (3D) Weyl metal
in each valley in our main text is Hχ = χvF σ · k + uχ · k,
with χ = ±1 and u+ = −u−. As we show in the main text,
in this case the contributions to the AHE in the two valleys
add up instead of cancel out. In the following, we only need
to compute the different contributions to the AHE for a single
valley and double the result at the end for two valleys.

The two eigenstates of Hχ with χ = +1 are

∣∣u+
k 〉 =

(
cos(θ/2)

sin(θ/2)eiφ

)
,

∣∣u−
k 〉 =

(
sin(θ/2)

− cos(θ/2)eiφ

)
, (C1)

with cos θ = kz/k, tan φ = ky/kx.
Intrinsic contribution. The intrinsic Hall conductivity for a

single valley is

σ int
xy = e2

∫
k<kF

d3k

(2π )3
�+(k) = e2εF

12π2v2
u, (C2)

where the Berry curvature of the upper band is �+(k) = − k
2k3 .

The total intrinsic contribution from the two valleys doubles
and is σ int

xy = e2εF
6π2v2 u, consistent with the value in Ref. [46].

Side-jump contribution. There are two different mecha-
nisms for the side-jump contribution. One is directly due to
the transverse coordinate shift:

δrk,k′ =
〈
u+

k′

∣∣∣∣i ∂

∂k′ u
+
k

〉
−

〈
u+

k

∣∣∣∣i ∂

∂k
u+

k

〉

−
(

∂

∂k′ + ∂

∂k

)
arg(〈u+

k′ |u+
k 〉). (C3)

The other is due to the anomalous distribution function ga
k re-

sulting from the coordinate shift δrk,k′ . The two contributions
correspond to symmetric diagrams in the chiral basis and so
should have the same value [20]. Both contributions come
from the second-order symmetric impurity scattering ω

(2)
k,k′ . In

the following, we compute the two contributions respectively
from the SBE approach.

From Eqs. (C1) and (C3), we get

δrk,k′ = 1

4

k′ + k

k′2k2
(k′ × k) × 1

|〈u+
k′ |u+

k 〉|2 . (C4)

For systems with isotropic Fermi surface, k = k′, Eq. (C4)
reduces to δrk,k′ = �+(k)×(k′−k)

|〈u+
k′ |u+

k 〉|2 , where �+(k) = − k
2k3 is the

Berry curvature of the upper band of the tilted Weyl metals.
This is the form used in Ref. [46] to compute the side-jump
contribution in tilted Weyl metals. However, the anisotropy
of the Fermi surface plays an important role for tilted Weyl
metals and the coordinate shift we obtained in Eq. (C4) after
taking into account this anisotropy gives a different side-jump
velocity from the isotropic formula.

The side-jump velocity is

vs j
k =

∑
k′

ω
(2)
k,k′δrk,k′ , (C5)

where the second-order symmetric scattering rate ω
(2)
k,k′ =

2π |Vk,k′ |2δ(εk − εk′ ) with |Vk,k′ |2 = niV 2
0 |〈u+

k′ |u+
k 〉|2. The

side-jump velocity is then

vs j
k = −1

4

k
k2

× 2πniV
2

0

∑
k′

δ(εk − εk′ )
k + k′

k′2 k′. (C6)

For simplicity, we assume the tilting in the z direction, i.e.,
u = (0, 0, u). We then get

vs j
k = −1

4

k × ẑ

k2
× 2πniV

2
0

1

(2π )3

∫ ∞

0
dk′

∫ π

0
sin θ ′dθ ′

×
∫ 2π

0
dφ′δ(εk − εk′ )(k + k′)k′

z (C7)

≈ 5niV 2
0

12π

u

v2
(k × ẑ). (C8)

In the last line, we have only kept the leading order of u/v.
The above result does not depend on whether u is in the z
direction, so vs j

k ∼ k × u. Note that neglecting the anisotropy
of the Fermi surface of tilted Weyl metals at the calculation of

δrk,k′ will result in an incorrect result, vs j
k = 2niV 2

0 u
3πv2 (k × u).

We separate the nonequilibrium distribution function as
f (εk ) = f0(εk ) + gk + ga

k, where f0 is the equilibrium dis-
tribution, gk is the usual nonequilibrium distribution without
considering the coordinate shift, and ga

k is the anomalous part
due to coordinate shift. The nonequilibrium parts gk and ga

k
satisfy the following equations, respectively [20]:

eE · vk
∂ f0

∂ε+
k

= −
∑

k′
ωk,k′ (gk − gk ), (C9)

∑
k′

ωk,k′

(
ga

k − ga
k + −∂ f0

∂ε+
k

eE · δrk,k′

)
= 0, (C10)

where vk = ∂ε+
k

∂k .
Assuming the electric field E is in the xy plane, gk is then

solved by the ansatz solution [29]

gk =
(

− ∂ f0

∂ε+
k

)
eE · (Avk + Bvk × û), (C11)

where A and B are assumed to be constant independent of the
direction of k, and û is the unit vector in the direction of u.
The solution for gk under this assumption is then

gk =
(

− ∂ f0

∂ε+
k

)
eE · (vkτ

tr + (vk × û)τ trτ tr
⊥ /τ⊥), (C12)

where

1/τ tr =
∑

k′
ωk,k′

(
1 − vk · vk′

|vk|2
)

, (C13)

1/τ⊥ =
∑

k′
ωk,k′

vk′ · (vk × û)

|vk × û|2 , (C14)

1/τ tr
⊥ =

∑
k′

ωk,k′

(
1 − (vk′ × û) · (vk × û)

|vk × û|2
)

. (C15)
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It is easy to check that for tilted Weyl metals, τ tr , τ⊥, and
τ tr
⊥ depend on the direction of k, contradictory with the ansatz.

However, in the leading order of u/v, they reduce to the
constants in untilted Weyl metals, and 1/τ tr ≈ ∑

k′ ωk,k′[1 −
cos(k · k′)], 1/τ tr

⊥ = ∫
d3k′

(2π )3 ωk,k′ (1 − | v⊥
k′

v⊥
k
| cos(φ − φ′)), and

1/τ⊥ = ∫
d3k′

(2π )3 ωk,k′ | v⊥
k′

v⊥
k
| sin(φ − φ′), where v⊥

k = vk × û is a

vector perpendicular to both vk and û.
Assuming E is in the y direction, the anomalous Hall

conductivity in a single valley due to the coordinate shift
is [20]

σ s j,I
xy = e

∫
d3k

(2π )3
(gk/Ey)vs j

k,x, (C16)

where v
s j
k,x is the x component of the side-jump velocity vs j

k ,
and gk is solved in Eq. (C12).

For the symmetric second-order impurity scattering ω
(2)
k,k′ ,

1/τ tr ≈ 1/τ tr
⊥ ≈ ε2

F niV 2
0

3πv3 in the leading order of u/v, and
1/τ⊥ = 0, so the second term in Eq. (C12) has zero contribu-
tion to the side-jump contribution. From Eqs. (C8) and (C12),
we get the side-jump contribution in the leading order of u/v

due to transverse coordinate shift for a single valley under the
RTA as

σ s j,I
xy = 5e2εF

24π2v2
uz. (C17)

One can calculate σ
s j,I
yz in the same way and get the side-jump

current js j,I
H = 5e2εF

24π2v2 E × u.
The second part of the side-jump contribution comes from

the anomalous distribution function due to coordinate shift.
The anomalous distribution function solved from Eq. (C10)
under the RTA is

ga
k = 5niV 2

0 u

12πv2

∂ f0

∂ε+
k

[eE · (k × u)]τ tr
⊥ . (C18)

Here 1/τ tr
⊥ is defined in Eq. (C15) in the leading order of u/v.

The Hall conductivity in the leading order of u/v due to
the anomalous distribution for a single valley under the RTA
is then

σ s j,II
xy = e

∫
d3k

(2π )3

(
ga

k/Ey
)
vk,x = 5e2εF

24π2v2
uz, (C19)

which is equal to the contribution due to coordinate shift. The
Hall current due to this part is also js j,II

H = 5e2εF
24π2v2 E × u.

It was pointed out in Ref. [20] that the product of ga
k and

v
s j
k may give a finite contribution to the AHE in anisotropic

systems. However, it is easy to check that under the RTA, this
contribution to the Hall current is zero in the leading order
of u/v.

The total side-jump contribution under the RTA for two
valleys is then

js j
H = 5e2εF

6π2v2
E × u. (C20)

Skew-scattering contribution. The skew-scattering con-
tribution is due to the asymmetric fourth-order impurity
scatterings. Still assuming the electric field E in the y

direction, the Hall conductivity from the skew-scattering con-
tribution for a single valley is [20]

σ sk
xy = e

∑
k

(gk/Ey)vk,x, (C21)

where the solution of gk under RTA is still Eq. (C12)
but with the contribution of fourth-order scattering, ω

(4)
k,k′ =

− 2εF
3v4 (niV 2

0 )2u sin θ sin θ ′ sin(φ − φ′)δ(εk − εk′ ) taken into
account. The contribution of ω

(4)
k,k′ to 1/τ tr and 1/τ tr

⊥ is zero,

but 1/τ⊥ = − 1
9

ε3
F u

π2v7 (niV 2
0 )2 is nonzero for ωk,k′ = ω

(4)
k,k′ . The

skew-scattering contribution under RTA is then

σ sk
xy = −

∫
d3k

(2π )3

[(
∂ f0

∂ε+
k

)
eE · (vk × û)τ trτ tr

⊥ /τ⊥
]
vk,x/Ey,

(C22)
where the contribution to 1/τ tr and 1/τ tr

⊥ still comes from the
second-order impurity scatterings.

Putting all things together, we get the leading-order total
skew-scattering contribution under RTA for two valleys as

jsk
H = e2εF

3π2v2
E × u, (C23)

which is the same as the value obtained in Ref. [46].
The sign of the intrinsic contribution we obtained is oppo-

site to that of Ref. [46] since we use a different convention in
Eq. (C2). The signs of the three contributions we obtained are
then the same as the signs we obtained from the Kubo-Streda
formula.

APPENDIX D: THE SKEW-SCATTERING CONTRIBUTION
DUE TO THIRD-ORDER IMPURITY SCATTERINGS

We compute the anomalous Hall effect due to third-order
skew scatterings of impurities by the Kubo-Streda formula in
this Appendix. For simplicity, we only keep the leading order
of u/v in this section.

The diagrams corresponding to these processes are shown
in Fig. 6. We first consider the response function without the
vertex correction at the two ends. The corresponding response
function for the two diagrams is


bare
αβ = e2v2niV

3
1

iω

2π

∑
k1

∑
k2

∑
k3

{Tr[GA(ε, k1)σαGR(ε, k1)

× GR(ε, k3)GR(ε, k2)σβGA(ε, k2)]

+ Tr[GA(ε, k1)σαGR(ε, k1)GR(ε, k2)σβGA(ε, k2)

× GA(ε, k3)]}, (D1)

where the third-order distribution 〈V 3
i 〉 = V 3

1 for the impurity
potential. The energy in the Green’s function is bounded to
the Fermi energy, i.e., ε = εF .

The integrand of Eq. (D1) can be related to the integrand
of the polarization matrix as

GA(ε, k1)σαGR(ε, k1) = Iαμ(ε, k1)σμ,

GR(ε, k2)σβGA(ε, k2) = σνIνβ (ε, k2), (D2)

where Iαμ(ε, k) = 1
2 Tr[σαGR(ε, k)σμGA(ε, k)].
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Defining

fμν (ε, k3) = Tr[σμGR(ε, k3)σν] + Tr[σμσνGA(ε, k3)],
(D3)

the response function in Eq. (D1) then becomes


bare
αβ = e2v2niV

3
1

iω

2π

∑
k1

∑
k2

∑
k3

Iαμ(k1) fμν (k3)Iνβ (k2)

= iω

2π
e2v2niV

3
1 IαμFμνIνβ, (D4)

where I is the polarization matrix defined in the main text and
Fμν = ∑

k3
fμν (ε, k3).

The AHE corresponds to the antisymmetric part of 
αβ .
Since the antisymmetric part of I is smaller than its symmetric
part by 1/εF τ , yet the symmetric part and antisymmetric part
of F have the same order of magnitude in terms of 1/εF τ , we
only need to keep the symmetric part of I and the antisym-
metric part of F .

The leading-order antisymmetric part of fμν (ε, k3) is

f a
μν (ε, k3) = 2ivεμνγ k3γ

[
1(

ε − u · k3 − vk3 − i
2τ

)(
ε − u · k3 + vk3 − i

2τ

) − c.c.

]

≈ −4πvεμνγ k3γ

1

ε − u · k3 + vk3
δ(ε − u · k3 − vk3). (D5)

We assume u in the z direction, i.e., u = (0, 0, u) for simplicity in this Appendix. The integration over f a
μν (ε, k3) is then

nonzero only for γ = z in the above expression. We get

F12 =
∑

k3

f a
12(ε, k3) = − 4πv

(2π )3

∫ ∞

0
k2

3dk3

∫ π

0
sin θ3dθ3

∫ 2π

0
dφ3δ(ε − u · k3 − vk3)

k3z

ε − u · k3 + vk3
≈ ε2

F u

πv4
. (D6)

For E in the y direction, the leading-order response function corresponding to the AHE for the third-order impurity scatterings
is then


bare
xy = iω

2π
e2v2niV

3
1 I11F12I22 ≈ iω

2π

e2ε6
F τ 2u

36π3v8
niV

3
1 . (D7)

Adding the vertex correction from the ladder diagram at the two ends of the diagrams in Fig. 6, we get the full response
function at the leading order of u/v as


(3)
xy = 9

4

bare

xy = 9

4

iω

2π
e2v2niV

3
1 I11F12I22 = iω

2π

e2ε6
F τ 2u

16π3v8
niV

3
1 . (D8)

The corresponding Hall conductivity for two valleys is

σ (3)
xy = 2


(3)
xy

iω
= 1

4

e2ε2
F u

π2v2

V 3
1

niV 4
0

, (D9)

where we have used niV 2
0 = 2πv3

ε2
F τ

.
As a comparison, we next compute this contribution by the SBE approach under the RTA.
The Hall conductivity from the SBE approach is

σ (3)
xy = e

∑
k

(gk/Ey)(vk )x, (D10)

where gk is solved in Appendix C but with ωk,k′ now includes ω
(3)
k,k′ = − ε2u

2v4 niV 3
1 sin θ ′ sin θ sin(φ − φ′)δ(εk − εk′ ).

For σ (3)
xy , only gk = − ∂ f0

∂εk
eE · (vk × ẑ)(τ tr )2/τ⊥ has nonzero contribution for E in the y direction.

For ω
(3)
k,k′ ,

1

τ⊥ =
∑

k′
ω

(3)
k,k′

sin θ ′

sin θ
sin(φ − φ′) = − ε2u

2v4
niV

3
1

ε2

6π2v3
+ o(u2), (D11)

The leading-order contribution to 1/τ tr still comes from the second-order scattering and 1/τ tr = ε2niV 2
0

3πv3 . We then get the Hall
conductivity for two valleys due to the third-order scattering as

σ (3)
xy = 1

4

e2ε2
F u

π2v2

V 3
1

niV 4
0

. (D12)

This result is consistent with Eq. (D9) obtained from the Kubo-Streda formula as well as the result in Ref. [46].
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