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From edge to bulk: Cavity-induced displacement of topological nonlocal qubits
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We investigate the ability of selective cavity coupling to a topological chain for tailoring the connectivity of
Majorana fermions. We show how topological qubits (TQs), associated with nonlocal Majorana fermion pairing,
can be displaced from the edges to the bulk of a topological chain through selective access to light-matter
interaction with specific physical sites. In particular, we present a comprehensive density matrix renormalization
group study of ground-state features in different chain-cavity coupling geometries, and we validate analytical
insights in the strong-coupling regime. This type of Majorana fermion correlation generation process comes
with emergent cavity photon features. Moreover, by considering the time evolution after a sudden quench of the
cavity-matter coupling strength, we show that the development of high nontrivial matter (Majorana) correlations
leaves behind measurable nonclassical photon imprints in the cavity. Innovative ways to dynamically generate
TQ nonlocal correlations in topological chains of arbitrary length are thus provided, opening alternative routes
to controllable long-range entanglement in hybrid photonic solid-state systems.
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I. INTRODUCTION

The quantum matter realm, full of intriguing properties and
potential applications, relies heavily upon the generation and
control of highly nonclassical target states of matter. Recent
years have seen tremendous progress in manipulating both
natural [1] as well as synthetic [2–4] topological systems.
The possibility of managing nonlocal/extended states with
a high level of immunity to decoherence effects in topo-
logical systems is a key feature of paramount importance.
A first step towards that goal is to reach the full coherent
operation of nonlocal qubits from which topological quantum
information/computing should follow. Either the Kitaev chain
[5] or the transverse Ising model [6–8] provide adequate the-
oretical paradigms for supporting isolated Majorana fermions
(MFs) at their edges in the topological phase. Therefore, we
will refer to both as a Majorana chain (MC). The Kitaev model
is well adapted to describe a strong spin-orbit semiconducting
nanowire in proximity to a p-wave superconducting material
where an axial applied magnetic field can tune the system into
a topological phase. However, current superconducting qubit
technology is already a mature platform for experimentally
obtaining and manipulating Majorana fermions [7,9,10]. Cir-
cuit QED open boundary Ising-like realizations have amply
been considered [11–13], and more recently the localiza-
tion properties of the MZEMs and their robustness against
noise have been experimentally addressed [9]. Braiding of
non-Abelian anyons [14–16] in such systems would be the
ultimate goal of a large body of present-day active research in
condensed-matter/quantum-information physics.

A promising path for such a purpose is provided by ex-
ploiting the interplay between cavity and matter systems.

*fp.mendez10@uniandes.edu.co

Recently, results on braiding and quantum teleportation of
MFs have been shown in MC systems controlled by super-
conducting cavities [7]. The field of cavity quantum materials
with global light-matter coupled systems has shown that in
the so-called light-matter deep-strong coupling (DSC) regime,
new emerging properties appear in a wide range of condensed-
matter systems. The rich phenomena include the emergence
of superconducting states [17], manipulation of topologi-
cal matter through cavity-matter interactions [18], and many
other potential applications [19]. Regarding cavity interac-
tions with topological matter, it is possible to manipulate
systems featuring the so-called Majorana zero-energy modes
(MZEMs) embedded in a QED cavity [20–24]. Previously, a
MC completely and uniformly placed inside a cavity in the
weak-coupling regime was addressed [21]. It was found that
the Rényi entropy of the light-matter system can be directly
connected with photon observables, a direct consequence of
the fact that the quantum state of the cavity can be associated
with a Gaussian description. On the other hand, single qubit-
resonator systems have been predicted to provide fast and
high-fidelity qubit readout [25]. Moreover, they are already
used in superconducting quantum processors [7]. Further-
more, the embedding of single qubits in a cavity has been
widely studied [7,26,27] and shown to be useful for accessing
the properties of MZEM [22]. Thus, this plethora of exciting
results motivates the present research.

The main goal of this work is to assess the ability of
selective cavity QED setups to create MZEMs out of the
edges of a MC. Specifically, we show that, through strong
light-matter interactions, it is possible to either shift nonlocal
Majorana qubits from the edges of a topological chain or
create additional pairs of nonlocal MF qubits by selectively
embedding sections of the chain within a cavity. New fea-
tures arising from MC-cavity strongly coupled systems not
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only manifest in statics but also in dynamical aspects. We
investigate both the ground-state (GS) properties as well as the
time-evolved states under a postquench event with parameters
covering a wide region of chemical potentials and coupling
strengths, corroborating that emerging new bulk MF correla-
tions turn out to be susceptible to manipulation by selectively
coupling to a cavity. We show that such cavity-induced MF
correlation generation lies in an abrupt transition from an
empty state to a regime where the MC-cavity GS shares both
matter excitations and a cavity coherent photon state. This
transition leaves a characteristic light-matter bipartite entan-
glement that may be taken as one of its fingerprints. On the
other hand, postquench dynamical evolution shows transient
nonclassicality as measured by the photon Fano factor and the
development of quantum state orthogonality as quantified by
the Loschmidt echo. The site-selective MC-cavity coupling
procedure proves to be a remarkable tool for manipulating
topological matter states. We analytically predict the value
of the coupling strength for which the GS of the system
switches between those states a result that is further endorsed
by density matrix renormalization group (DMRG) numerical
calculations [28,29].

II. GENERAL FRAMEWORK

We consider a general radiation-matter framework consist-
ing of a MC interacting with a single quantum radiation mode
within a QED cavity. The Hamiltonian of the system reads
Ĥ = ĤMC + ĤC + ĤX. The L-site open boundary MC system
Hamiltonian can be written in terms of spinless fermions as
(h̄ = 1)

ĤMC = −μ

2

L∑
j=1

[2ĉ†
j ĉ j − 1̂]

−�

L−1∑
j=1

[ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j − ĉ j ĉ j+1 − ĉ†
j+1ĉ†

j ], (1)

where ĉ j (ĉ†
j ) is the annihilation (creation) operator of spinless

fermions at site j = 1, . . . , L with anticommutator {ĉ j, ĉ†
j′ } =

δ j, j′ , μ denotes the chemical potential, � is the hopping
amplitude between nearest-neighbor sites, and the nearest-
neighbor two-fermion pairing interaction is taken identical to
� for simplicity (we assume � � 0 without loss of gener-
ality). Within this homogeneous regime (which we will keep
throughout the paper), the MC features two phases: a topolog-
ical and a trivial phase. In the former phase, a MZEM emerges
whenever |μ| < 2� [5,30].

A remarkable fact of this 1D lattice model is the possibility
of expressing each physically (localized) real lattice fermion
(we call them local c-fermions) in terms of a pair of MFs, γ j,1

and γ j,2. Moreover, depending on the pairing scheme chosen
for these MFs, one can build new delocalized fermions [31].
In particular, in the deep topological phase at μ = 0, the MC
Hamiltonian becomes

ĤMC = i�
L−1∑
j=1

γ j,2γ j+1,1 = 2�

L−1∑
j=1

[
d̂†

j d̂ j − 1

2

]
, (2)

FIG. 1. Sketch of MC-cavity configurations at μ = 0. The
shaded gray spheres represent MC real lattice sites to which a pair
of MFs are allocated, depicted by blue (γ j,1) and red small spheres
(γ j,2). Solid bonds portray the connectivity of MFs. Dashed lines
represent bonds deteriorated by cavity-chain interaction. (a) The
MFs at neighboring sites form d-fermions. In contrast, unbounded
Majoranas at the ends encode free d-fermions, the so-called zero-
energy modes. (b) Edge geometry: the two ends of the open MC
are embedded in the same cavity. (c) Bulk geometry: two bulk sites
of the open MC are embedded in the cavity. In all cases displayed,
the cavity’s effect is the fading of nonlocal d-fermions in favor of
establishing local c-fermions.

where γ j,1 = ĉ†
j + ĉ j = i(d̂†

j−1 − d̂ j−1) and γ j,2 = i(ĉ†
j −

ĉ j ) = d̂†
j + d̂ j with j = 1, . . . , L − 1. Two important conse-

quences follow from Eq. (2): (i) the energy eigenstates of this
MC are composed of an integer number of fermionic quasi-
particles denoted by d̂†

j (d̂ j) instead of real fermions (we call
them nonlocal d-fermions). (ii) The Majorana fermion γ1,1 at
the left end and the Majorana fermion γL,2 at the right end
are missing in the diagonalized Hamiltonian. Physically, this
means that there are two isolated MFs, γ1,1 and γL,2, which
are localized at opposite ends with zero eigenenergy, the so-
called MZEM. From these uncoupled MFs it is still possible
to form a highly nonlocal d-fermion as d̂0 = 1

2 (iγ1,1 + γL,2).
The above discussion is schematically illustrated in Fig. 1(a).

The single-mode microcavity radiation Hamiltonian takes
the usual form ĤC = ωâ†â, where ω is the photon quantum
energy, and â† and â are the creation and annihilation photon
operators, respectively. Finally, ĤX corresponds to the MC-
microcavity coupling terms, which read ĤX = λ√

nCav
(â† +

â)
∑

j∈Cav ĉ†
j ĉ j , where λ is the coupling strength between

matter and radiation subsystems (without loss of generality
λ > 0), Cav is the set with the site indices interacting with the
cavity, and nCav := |Cav|. Linear coupling schemes have been
employed extensively in various studies [21,32–38]. However,
all of the previous investigations were concerned with a ho-
mogeneous regime where the cavity couples uniformly with
all sites in the MC. In the following, we examine the effects
of a selective cavity which directly couples only to nCav < L
sites of a chain partly trapped in it. On the experimental
side, the physical realization of superconducting microcavities
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affecting only selected elements of a MC has been amply
discussed in Refs. [11,22,39].

One of the main results we address extensively below is
that the effect of the cavity on the MC is the transformation of
nonlocal d-fermions into local c-fermions (horizontal bonds
versus vertical bonds in Fig. 1) redrawing in this way the MF
connectivity. We confirm this fact by computing both MC and
photon-linked features in strongly coupled MC-cavity sys-
tems, finding that the likelihood of freeing up bulk MFs along
a MC is allowed. If the edges of the open chain interact with
the same local cavity (a kind of folded chain in the form of a
ring), we will call the resulting configuration edge geometry,
while the term bulk geometry will indicate a cavity embedding
only bulk chain sites (see Fig. 1). On the one hand, for the
edge geometry, the annihilation of the nonlocal d-fermion
qubit in favor of a local c-fermion qubit inside the cavity
creates free MFs in the adjacent neighbor sites outside the
cavity (chain bulk). On the other hand, for the bulk geometry
case, an additional pair of free MFs does appear just outside
the cavity, corresponding to effectively cutting the original
chain in two shorter MC. This annihilation/creation process
of long-ranged bulk nonlocal qubits is a required feature to
perform braiding operations in T junctions [40].

MF correlations are captured by the two-point correlator
Q(i, j), defined as Q(i, j) ≡ 2|〈ĉiĉ

†
j + ĉ j ĉ

†
i 〉| = |〈γi,2γ j,1 −

γi,1γ j,2〉|. The two-point correlators, also known as string or-
der parameters, take values different from 0 in the topological
phase [41]. Furthermore, these correlations are maximal when
evaluated at the points corresponding to the defects that permit
the emergence of a topological order [42]. For an infinitely
long isolated MC, when calculated at the edges, Q(1, L) = 1
in the topological phase while Q(1, L) = 0 in the trivial phase
[43]. However, for finite-size chains, Q lies between those
values, being close to 1 when the MZEM are completely local-
ized at the boundaries. In particular, at μ = 0, an isolated MC
[see Fig. 1(a)] should reach maximum two-point correlation
for sites i and j corresponding to the same d-fermion qubit
and 0 otherwise, i.e., Q(i, j) = δ|i− j|,1 for nonzero energy
modes, and Q(1, L) = 1 for the MZEM d̂0-fermion. Conse-
quently, the two-point correlators are excellent indicators of
nonlocality, closely connected to the main topological features
of the system [44]. Thus, the main focus will be put on Q(i, j),
with indices i and j that are going to be varied across the
MC to determine the eventual creation of bulk free MFs or
equivalently new MZEMs.

III. GROUND-STATE RESULTS

We unveil the localization shifting signatures of nonlocal
MF-qubits in the whole GS for selective coupling of the MC to
a cavity, complementing paradigmatic global coupling results.

Let us start with the limit μ → 0 together with the mean-
field picture framework (see Appendix A). For an isolated MC
in this limit, MFs are paired to form nonlocal d-fermions [see
Fig. 1(a)]. However, as already mentioned, the main effect
of the cavity is to transform those nonlocal fermion modes
into local c-fermions involving sites j ∈ Cav. This process
has as its main consequence the decoupling of MFs that were
initially bounded nonlocally to sites embedded in the cavity.
Accordingly, at MC-cavity couplings large enough such that

FIG. 2. Edge geometry. Q(i, j) correlations showing the dis-
placement of the weights from the edges to the bulk as the coupling
increases. (a) MC edge-edge Q(1, L) correlation, and (b) correlation
for nearest neighbors sites of the edges, Q(2, L − 1). The parameters
of the simulated system are L = 20, nCav = 2 and ω/2� = 0.25.

this transformation is complete, we expect new free MFs to
appear at the neighboring MC sites outside the cavity. This be-
havior is confirmed by depicting Q-correlations for both edge
[see Figs. 2(a) and 2(b)] and bulk geometries [see Figs. 3(a)–
3(c)], as a function of the chain chemical potential μ. At
μ → 0, for edge geometry, Q(1, L) ≈ 1 while Q(2, L − 1) ≈
0 for weak enough MC-cavity coupling strength. However,
this behavior can be completely reversed at strong coupling,
i.e., Q(1, L) → 0 while Q(2, L − 1) → 1 [see Fig. 1(b)]. On
the other hand, for bulk geometry, Q(1, L) ≈ 1 for any cou-
pling strength. The latter emphasizes the robustness of the
zero-energy d-fermion mode, or qubit, formed by MFs at the
chain edges irrespective of the cavity presence. Interestingly,
the correlation between cavity-generated new bulk MZEM,
Q(L/2 − 1, L/2 + 2), grows from 0 for weak coupling to near
1 at strong coupling [see Fig. 1(c)].

Although a more complex behavior is expected at finite
chemical potentials, μ 
= 0, the essential physics remains un-
changed. The only difference is that the MF quantum state
broadens to spread over several lattice sites, instead of the
ideal pairing localization found at μ = 0. In the following,
we only present observable features for μ < 0 since, in this

FIG. 3. Bulk geometry. Q(i, j) correlations as a function of the
chemical potential displaying the emergence of an additional pair
of dominant correlations at bulk locations as the coupling increases.
(a) MC edge-edge Q(1, L) correlation. (b) Q(L/2 − 1, L/2 + 2) cor-
relation between the external first neighbors to the sites inserted into
the cavity. (c) Q(1, L/2 − 1) correlation multiplied by 3. (d) Energy
differences between the first (dashed line), second (solid line), and
third (dotted line) excited states with respect to the ground state.
Same parameters as in Fig. 2.
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region, significant differences between the isolated and cavity-
coupled MC cases are more evident. However, results for μ �
0 can be found in Appendix B and they complete the spectrum
for experimentally accessible μ parameters (cf. Refs. [7,9]).
All the static results presented below were obtained by DMRG
simulations.

For edge geometry, Fig. 2(a), Q(1, L) as a function of
μ shows a maximum shifting towards increasingly nega-
tive chemical potential values. At a certain strong-coupling
strength a spike is visible, an indicator of the transition be-
tween different GS, as will be discussed below. The results
shown in Figs. 2(a) and 2(b) demonstrate a rapid decreasing
of long-range MC correlations as μ/2� → −1, consistent
with approaching the border of the MC phase diagram indi-
cating the transition from the topological phase to the trivial
phase. As the coupling strength λ increases, the weights of
the MZEM in the correlation functions are shifted from the
edges to their nearest-neighbor sites, representing the effec-
tive downgrading of the nonlocal d-fermion inside the cavity,
which becomes transformed into local c-fermions. Conse-
quently, new free MFs emerge at the neighboring sites of the
cavity, confirming that it is possible to move around MF-based
nonlocal qubits, an effect that could be advantageous for im-
plementing cavity-enhanced braiding protocols.

Figure 3 shows bulk geometry correlations for μ � 0 and
different pairs of sites i and j. In the MC topological region,
close to the phase transition at μ/2� = −1, Q(1, L/2 − 1)
becomes the dominating correlation in the strong MC-cavity
regime [Q(L/2 + 2, L) = Q(1, L/2 − 1) due to spatial sym-
metry]. Therefore, two pairs of indices define two d-fermions
with a bulk MZEM. In contrast, for smaller values of |μ|, far
from the phase-transition point, the dominant correlation is
given by Q(1, L), as it should be for the isolated original MC
regardless of the presence of a bulk inserted cavity. However,
new correlations are arising. Specifically, Q(L/2 − 1, L/2 +
2) increases in agreement with the generation of new free MFs
in the bulk sites just outside the cavity. This behavior can be
interpreted as effectively separating the sections interacting
with the cavity from the rest of the system. When strongly
coupling the electromagnetic mode to a segment of bulk sites,
the original chain effectively transforms into two weakly inter-
acting MCs. Each MC will provide a pair of free MFs at their
edges [effective “edges in the bulk” as it is also supported by
a mean-field description (see Appendix C)].

Evidence for the establishment of a new MZEM in the bulk
geometry is presented in Fig. 3(d). For low coupling strengths,
the GS degenerates in the topological phase. In addition, the
mode is gapped from the second and third energy levels. As
the MC-cavity coupling is increased, the second and third
excited states become degenerated with the GS, representing
the progressive creation of additional free MFs.

Now, we address the main photon features and how
they correlate with d-fermion unpairing processes. First,
the cavity mean photon number for the edge geometry is
displayed in Fig. 4(a) providing evidence of the interplay
between the cavity photon occupation and the generation
of new free MFs. To realize that the cavity allows the
formation of c-fermions, it is fruitful to distinguish the
states that compete to dominate the GS physics. The nature
of the GSs becomes clear through Fig. 4(a). For a nega-

FIG. 4. Edge geometry. (a) Number of photons (np) in the cavity.
(b) MC-cavity von Neumann entropy (SVN). The dashed black line
represents the value of SVN = ln(2), which is the entanglement of
two states with equal probability. Inset: Energy gap from the ground
state to the first excited state of the light-matter interacting system.
The dashed red line represents the predicted point of the transition in
the strong-coupling limit (see the main text). Same parameters as in
Fig. 2.

tive enough chemical potential, the GS becomes separable
corresponding to a product between the GS of the isolated MC
and a vacuum state of the radiation field, |0MC〉 ⊗ |0ph〉, as will
be shown below. In contrast, for μ → 0, a large number of
photons can occupy the cavity. This distinction is more abrupt
as the value of the light-matter coupling strength gets large
enough.

The aforementioned change in the nature of the GS can
be simply understood in the DSC limit. By considering Ĥ0 =
ĤX + ĤC as the leading term in the Hamiltonian, the eigen-
states are given by

|φν,n〉 = D̂

(
− λν√

nCavω

)
|ν〉 ⊗ |n〉 (3)

with corresponding eigenenergies given by Eν,n = ωn − ν2λ2

nCavω
.

In the latter expressions, D̂(α) = exp[αâ† − α∗â] is the dis-
placement photon operator and |ν〉 is an element of the
basis set that diagonalizes the on-site fermion occupation
term

∑
j∈Cav ĉ†

j ĉ j , with ν ∈ {0, 1, . . . , nCav} the corresponding
eigenvalue. Obviously, the GS energy will be found when
n = 0 and a maximum filling of MC c-fermions embed-
ded into the cavity (ν = nCav) is reached. Remarkably, the
expected number of photons 〈φν,n|â†â|φν,n〉 = n + ν2λ2

nCavω2 is
proportional to ν2. This interplay between the cavity and c-
fermion occupation defines the main physical features of the
coupled MC-cavity system. This mutual behavior implies that
when the cavity is maximally displaced, the sites ∈ Cav act
as filled c-fermions. Next, we consider the isolated MC term
ĤMC as a perturbation. In the limit μ/2�  −1, and in first
order in perturbation theory, ĤMC will make corrections to the
unperturbed GS energy of the form (see Appendix D)

EDSC = EMC − nCavμ − nCavλ
2

ω
(4)

with EMC the GS energy of the isolated MC. Therefore, the
GS will be associated with a cavity photon displacement and
filled c-fermions when EDSC < EMC. On the contrary, the GS
corresponds to a separable state product of no fermion exci-
tations in the MC and a vacuum state for the cavity. Thus,
the transition between both sectors of GSs occurs at μc =
−λ2/ω, which matches fairly well with the spike in Q(1, L)
for λ/2� = 0.5 in Fig. 2(a), the onset of photon excitations,
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and the von Neumann entropy peak in Figs. 4(a) and 4(b),
respectively. Hence, we propose these findings for detecting
the transformation from nonlocal d-fermion to local c-fermion
through cavity observables. The latter adds to the methods for
characterizing topological phases with cavity measurements
[21,45].

Further support of our description of the transition is
provided by the inset in Fig. 4(b), which shows that an
anticrossing of energy levels occur at the transition points
when EMC and EDSC approach the same value. This anti-
crossing endorses us with a transition signature, namely the
von Neumann entropy (SVN), which is shown in Fig. 4(b).
At the transition, SVN is near ln(2), which is a typical value
for a diagonal reduced density matrix for a mixed cavity
state in which only two pure states with equal probability
have the dominant weights. From previous explanations given
above, it is clear that the reduced density matrix is approx-
imately describing a pair of orthogonal cavity states with 0
and (νλ)2/(nCavω

2) photons. Additionally, note that the GS
in the topological phase still degenerates regardless of the
interaction with the cavity. The degeneracy proves the ability
of the light-matter GS to encode qubit states from the occupa-
tion of the d-fermions sitting at the new effective MC edges.
Similar features appear for the bulk geometry regarding the
SVN (see Appendix B) and anticrossing. This system is then
another example in which light-matter entanglement signals
GS transitions [21,46]. However, the main difference between
edge and bulk cavity physics is the creation of a new free d-
fermion for the latter. We emphasize that, although the results
displayed here are for a given L and nCav = 2, the mechanism
presented is robust to the chain length and the number of
sites embedded in the cavity (see Appendix B). Furthermore,
our results are robust against inhomogeneities in the cavity
coupling for different sites.

IV. TIME-DEPENDENT RESULTS

The local and nonlocal properties of MF-based qubits just
described manifest themselves in the system’s dynamics, too.
We proceed by focusing on the cavity-induced dynamical
aspects of the generation of isolated free bulk MFs by con-
sidering the experimentally relevant quenching process: at
time t = 0, a MC in its isolated GS is suddenly coupled
to a cavity in its vacuum state, i.e., |
(0)〉 = |0MC〉 ⊗ |0ph〉.
Here, we limit ourselves to the analysis of the simpler sud-
den switching-on case in order to extract valuable physical
information on the ultrafast growing up of new cavity-induced
fermion correlations and their main photon twin markers,
which could be experimentally accessible in current realiza-
tions of MC-cavity systems.

At μ = 0, only four MC states are affected by the cav-
ity: {|0MC〉, d̂†

0 d̂†
1 |0MC〉, d̂†

L−1d̂†
0 |0MC〉, d̂†

L−1d̂†
1 |0MC〉} for

edge geometry, while for a bulk geometry with Cav =
{ j, j + 1} the states are {|0MC〉, d̂†

j d̂†
j+1|0MC〉, d̂†

j−1d̂†
j+1|0MC〉,

d̂†
j−1d̂†

j |0MC〉}. Thus, time-dependent results are the same re-
gardless of the MC length L for each considered MC-cavity
geometry.

The time evolution of the relevant cavity-induced emerging
correlations previously discussed for edge and bulk geome-
tries as a function of time and MC-cavity coupling strength λ

FIG. 5. Left column: edge geometry. Right column: bulk ge-
ometry. (a), (b) Emerging bulk MF correlations Q(2, L − 1) and
Q(L/2 − 1, L/2 + 2); (c), (d) modified NF-Fano factor (see the main
text); and (e), (f) Loschmidt echo. All plots are a function of the
dimensionless time (ωt/2π ) and have light-matter coupling strength
(λ/2�). The cavity frequency is ω/2� = 0.25 and μ = 0.

is shown in Figs. 5(a) and 5(b), respectively. As expected, at
t = 0 both correlations vanish as the considered sites do not
hold free MFs. As time progresses the correlations increase,
reaching their maximum values near half a cavity period,
i.e., at ωt/2π ≈ 1/2. This correlation building-up effect is
significant for strong coupled MC-cavity systems. Moreover,
it is interesting to see the dynamical connection between MC-
correlations with nonclassical photon features through the
Fano factor, FF = (〈n̂2〉 − 〈n̂〉2)/〈n̂〉 (with FF < 1 for a non-
classical or sub-Poissonian photon state [47]). To highlight the
photon state nonclassicality, Figs. 5(c) and 5(d) display the
quantity NF = (1 − FF)�(1 − FF) as a function of time and
MC-cavity coupling strength [�(x) is the Heaviside function].
It is evident that reaching a maximum value for nontrivial
bulk matter correlations Q(2, L − 1) and Q(L/2 − 1, L/2 +
2) occurs simultaneously with the emergence of nonclassical
photon states in the cavity for both considered MC-cavity
geometries. NF nonclassical features not only develop ear-
lier for lower coupling strengths, but they also get higher
for the edge geometry case, indicating a stronger coupling
of edge Majorana fermions with the selective cavity photon
mode. This sub-Poissonian feature in the photon state is a
pure transient effect that does not appear in the GS properties
of the whole system previously discussed. Thus, light-matter
correlated transient behaviors could be exploited for designing
protocols aiming to optically generate and detect bulk MZEM
in a MC-cavity system.

On the other hand, and intimately linked with the FF be-
havior just described, the Loschmidt echo (LE), quantifying
the overlap of an evolved state with the initial state, defined
by L(t ) = −log10|〈
(0)|Û (t, 0)|
(0)〉|, where Û (t, 0) is the
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time evolution operator, is shown in Figs. 5(e) and 5(f).
For strong enough MC-cavity coupling, L(t ) reaches a high
plateau, coming with sparse peaks, indicating the whole sys-
tem attains a quasiorthogonality condition with respect to the
initial state for both considered MC-cavity geometries. Once
more, the development of high matter nontrivial correlations
coincides with the presence of orthogonality peaks in the LE
[48].

These time-dependent results should still remain valid for
MC chemical potentials μ ≈ 0 where the hopping to different
d-fermions nondirectly connected with the cavity would be
feasible.

V. CONCLUSIONS

In summary, we have found that strongly coupling
QED-light with quantum topological matter at select sites
and different geometries can efficiently generate MF-based
delocalized qubits. By selectively controlling the spatial dis-
tribution of the light-matter interaction, it is possible to create
setups where the connectivity of MFs can be tailored. The lat-
ter possibility arises since the on-site light-matter interaction
restricts the filling of the coupled chain sites to be proportional
to the photon occupation of the cavity mode. We have shown
that for an edge geometry, it is possible to displace isolated
MFs from the chain edges to inner bulk sites, and for the bulk
geometry, new free nonlocal d-fermions in bulk sites emerge.
In the DSC regime, the sites coupled directly to the cavity are
forced to saturate with one fermion per physical site as the
interaction strength increases. Thus, the affected sites become
effectively decoupled from the rest of the chain.

Our dynamical findings provide a way to generate nonlocal
correlations in MCs of arbitrary length starting from a trivial
empty state, allowing the creation of controllable long-range
entanglement in hybrid photonic solid-state systems. Thus,
these results offer QED-based paths to explore avenues for
future research on Majorana fermion braiding as well as on
distinguishing the nonlocal Majorana pairing from the topo-
logically trivial Andreev bound states.

In this manner, selective access to light-matter interaction
with specific physical sites has proven to be a remarkable
tool for manipulating topological matter. We highlight that
the setup proposed here is highly relevant for applications in
quantum superconducting circuits with modern technologies.
More broadly, our results are an example of how spatially
tailored light-matter interaction can produce a tight interde-
pendence between light and matter systems.
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APPENDIX A: MEAN-FIELD APPROACH

The procedure presented here is similar to that in Ref. [52],
and details have already been provided in Ref. [21]. The
subject of the mean-field approximation will be the interaction
part of the Hamiltonian ĤX. For this, the quantum fluctuations
of products of bosonic and fermionic operators are set to 0,
therefore

(â† + â − 〈â† + â〉)(ĉ†
j ĉ j − 〈ĉ†

j ĉ j〉) = 0. (A1)

Since we are only interested in the GS of the system, we can
study the properties of the expected value of the mean-field
Hamiltonian:

〈ĤMF〉 = 〈ĤK〉 + nCavωx2 + 2λxC, (A2)

where expectation values are calculated with the photon-
fermion GS. Here, we define

x = 〈â + â†〉
2
√

nCav
, C =

∑
j∈Cav

〈ĉ†
j ĉ j〉. (A3)

The only difference with the derivation in Ref. [21] comes
from the possibility of coupling only nCav sites instead of L.
To obtain the mean-field Hamiltonian, one finds that the GS
will be the product of the chain state with a coherent state
|√nCavx〉. Consequently, the photonic part of the Hamiltonian
will describe a displaced harmonic oscillator, with photon
number 〈â†â〉 ≡ 〈n̂〉 = nCavx2.

The minimization of the expected GS energy with respect
to x, ∂〈ĤMF〉/∂x = 0, yields

x = − λ

ω

C

nCav
, (A4)

which shows the interdependence of the cavity and chain
observables. Therefore, we can see that x is restricted as
x ∈ [− λ

ω
, 0].

The mean-field Hamiltonian for the chain subspace pro-
vides an understanding of the configuration of dominating
indices for Q(i, j). Let us assume that we know the value of x.
Therefore, the effective Hamiltonian of the chain has the form

ĤMF
MC = ĤMC + 2λx

∑
j∈Cav

ĉ†
j ĉ j . (A5)

From this expression, it is clear that the coupling with the
cavity modifies the chemical potential leading to the behavior
described in the main text (MT) for DSC.

This mean-field Hamiltonian allows us to resort to the
Bogoliubov solution of the MC model (details have already
been presented in [6]). After the diagonalization, the Hamil-
tonian for a single isolated MC adopts the simple form

ĤMF
MC =

L∑
k=1

εk

[
d̂†

k d̂k − 1

2

]
, (A6)

where the new fermion operators, or quasiparticle operators,
d̂k and d̂†

k in Eq. (A6), obeying {d̂k, d̂†
k′ } = δk,k′ , are connected
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FIG. 6. Observables for different chain lengths. First row: edge geometry with λ/2� = 0.5. Second row: bulk geometry with λ/2� = 0.67.
QNN denotes the correlations between the nearest neighbors of the cavity [i.e., Q(L/2 − 1, L/2 + 2)], and QSC are the correlations between the
edges of the subchains [Q(1, L/2 − 1)]. For all the plots displayed, nCav = 2 and ω/2� = 0.25.

with fermion site operators ĉ j through the Bogoliubov trans-
formation ĉ j = ∑L

k=1(Uk, j d̂k + Vk, j d̂
†
k ). For an L site MC, the

coefficients Uk, j and Vk, j are determined by the eigenvectors of
the Bogoliubov–de Gennes solution, which can be represented
by a 2L × 2L matrix [6]. The MC displays a spectrum with
positive and negative energies, ±εk with k = 1, . . . , L. With
the eigenvectors, Q(i, j) reads simply

Q(i, j) = 4

∣∣∣∣∣
L∑

k=1

Vk,iVk, j

∣∣∣∣∣, (A7)

where k represents the mode index and i, j are spatial site
indices.

APPENDIX B: ROBUSTNESS OF THE DESCRIPTION

In this Appendix, we compare our analytical description
with DMRG simulations to show that the analysis accurately
describes the physics of the system in a broad range of chain
sizes and cavity geometries. Additionally, we complete the
picture of the observables of interest.

First, in Fig. 6, we show no qualitative change in the results
by varying the system size. Quantitatively, the variations are
small and do not change the physical meaning of our obser-
vations. Regarding the variations for the bulk geometry, note
that the finite-size effects for short chains are more dramatic
than those presented in the MT. Still, the system has two pairs
of indices defining the dominating correlations indicating the
presence of the nonlocal qubits.

Next, Fig. 7 shows the behavior of the observables of
interest as a function of λ for the edge and bulk geome-
tries displaying all the features mentioned in the MT. Again,
for the bulk results, it is clear that the region of μ with
dominating Q(1, L) and Q(L/2 − 1, L/2 + 2) shrinks in the
topological phase in the DSC regime. However, the corre-
lations Q(1, L/2 − 1) and Q(L/2 + 2, L) dominate in this
region, and they complete the topological phase characteris-
tics expected for |μ/2�| < 1. From the entanglement results,

it is clearly seen that the light-matter entanglement in the edge
and bulk geometries displays a peak convergent to ln(2) for
sufficiently high values of λ, though higher values are required
to obtain the effect for the bulk geometry.

Finally, Fig. 8 displays results for different cavity config-
urations. Although changing the number of sites involved in
the interactions requires a higher value λ to recover the abrupt
transition, it is clear that we reconstruct the same quantitative
effect concerning the number of MZEMs and the localization
of free Majorana fermions. This response occurs for different
sizes and positions of the sites embedded in the cavity.

APPENDIX C: Q(i, j) FOR THE BULK GEOMETRY

In a Majorana chain, only MZEMs or nearly MZEMs are
expected to be localized. Usually, they appear at the ends of
a chain. The probability of finding a mode k at the spatial
site i is U 2

k,i + V 2
k,i. For nearly MZEMs, the weights U 2

k,i and
V 2

k,i are equivalent. Consequently, only nearly MZEMs lead
the behavior of Q(i, j) when i and j are chosen at the sites
with dominant correlations. As mentioned in the MT, at the
regime in which we obtain |ν = nCav〉, we identified those
indices as i, j ∈ {1, L/2 − 1, L/2 + 2, L}. Moreover, due to
the presence of the cavity, a new nearly MZEM emerges in
the topological phase. Consequently, the degenerated k modes
are the main weights of the correlations. Let us define a 4-
tuple Vk = (Vk,1,Vk,L/2−1,Vk,L/2+2,Vk,L ) and label the relevant
modes describing free (and nearly free) Majorana fermions
with k = 0 and 1. The value of the dominating Q(i, j) will be
dictated only by the elements of Vk . By numerical Bogoliubov
diagonalization of the mean-field Hamiltonian in Eq. (A5), it
can be observed that for values of 0.5 < μ/2� < 1,

V0 = (a,−a,−a, a), V1 = (a,−a, a,−a), (C1)

with a ∈ R and |a| < 1. Thus, for these states Q(1, L/2 − 2)
and its symmetric correlation Q(L/2 + 2, L) will go to 8a2.
Conversely, Q(1, L) and Q(L/2 − 2, L/2 + 2) will approach
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FIG. 7. Relevant observables as a function of μ and λ. First row: edge geometry. Right corner: criticality comparison with different
methodologies. The case np indicates that the curve is constructed from maxima in the first derivative of the number of photons for each λ.
In contrast, SVN shows the peaks in the von Neumann entropy. For high λ, all criteria converge. Second row: bulk geometry. QNN denotes the
correlations between the nearest neighbors of the cavity [i.e., Q(L/2 − 1, L/2 + 2)], and QSC are the correlations between the edges of the
subchains [Q(1, L/2 − 1)]. For all the results displayed, nCav = 2, ω/2� = 0.25, and L = 8.

0. For the case −1 < μ/2� < −0.5 we have

V0 = (a, a, a, a), V1 = (−a,−a, a, a), (C2)

which results in the same correlations as in the previous case.
On the other hand, when 0.5 � |μ/2�| the Vk’s acquire the
form

V0 = (a,−b, b,−a), V1 = (b,−a, a,−b), (C3)

with a, b ∈ R and 1 > |a| � |b|. From these results it follows
that Q(1, L) ≈ Q(L/2 − 2, L/2 + 2) ≈ 4a2 and Q(1, L/2 −
2) = Q(L/2 + 2, L) ≈ 0.

Figure 9 shows examples of the vectors V0 and V1 in the
discussed regimes.

APPENDIX D: FIRST-ORDER PERTURBATION THEORY

Here, we address how to arrive at the equation

EDSC = EMC − nCavμ − nCavλ
2

ω
(D1)

presented in the MT. It was discussed in the MT that
for the strong-coupling limit, the condition |ν = nCav〉 =
N[

⊗
j∈Cav |1〉 j] was required to minimize the energy of the

GS. Here, |1〉 j = ĉ†
j |0〉 j in the occupation basis and N[|ψ〉]

orders the string of creation operators contained in |ψ〉 to keep
track of the signs coming from anticommutation relations.
The latter leads to the zeroth-order energy EnCav,0 = − nCavλ

2

ω
.

Nevertheless, this restriction will not affect the sites outside
the cavity. Therefore, the rest of the problem consists of find-
ing the states of the sites i /∈ Cav that minimize 〈ψ0| ĤMC |ψ0〉.

FIG. 8. Observables for different cavity configurations. First row: edge geometry with λ/2� = 0.5. Second row: bulk geometry with
λ/2� = 0.67. QNN denotes the correlations between the nearest neighbors of the cavity, and QSC are the correlations between the edges of the
subchains. The legends with the information of i and j provide the relevant indices for a given Cav. For all the plots displayed, ω/2� = 0.25
and L = 16.
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FIG. 9. Elements of the vectors V0 and V1 normalized by the first
element of V0 for different values of μ in the topological phase. i ∈
{1, 2, 3, 4} is the index of the element of V0 or V1 For this example,
we used L = 16, nCav = 2, ω/2� = 0.25, and λ/2� = 0.67.

Correspondingly, the latter minimization implies minimum
EDSC.

We are interested in the physics governing the abrupt
change in the number of photons, which always occurs at
μ < 0. Therefore, let us consider μ

2�
 −1. In this limit, the

GS of the isolated chain is expected to be characterized by
|ψ0

MC〉 = N[
⊗L

i=1 |0〉i]. For this reason, the best suitable state

for the sites at the rest of the chain will be N[
⊗

i/∈Cav |0〉i] and
therefore

|ψ0〉 = N
[ ⊗

i/∈Cav

|0〉i

⊗
j∈Cav

|1〉 j

]
⊗ |−λ

√
nCav/ω〉. (D2)

By inspecting ĤMC it is easy to see that

〈ψ0| ĤMC |ψ0〉 = EMC − nCavμ, (D3)

with EMC = 〈ψ0
MC| ĤMC |ψ0

MC〉. Consequently, Eq. (D3) im-
mediately produces Eq. (D1). This approximation provides
good results even for regions in which −1 <

μ

2�
< 0. Fol-

lowing a similar procedure, an excellent approximation for
〈ψ0|ĤMC|ψ0〉 can be recovered for regimes μ

2�
� −1 and

| μ

2�
|  1. The energy corrections under these considerations

extend for finite values of μ (not shown). Note that the results
do not depend on the position of the sites in the cavity j;
they only rely on the size of the set Cav. In the right upper
corner of Fig. 7 it is shown that the transition predicted in
Eq. (D1) accurately describes the behavior for the edge and
bulk geometries.
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