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Real-time evolution of Anderson impurity models via tensor network influence functionals
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In this work, we present and analyze two tensor network-based influence functional approaches for simulating
the real-time dynamics of quantum impurity models such as the Anderson model. Via comparison with recent
numerically exact simulations, we show that such methods accurately capture the long-time nonequilibrium
quench dynamics. The two parameters that must be controlled in these tensor network influence functional
approaches are a time discretization (Trotter) error and a bond dimension (tensor network truncation) error. We
show that the actual numerical uncertainties are controlled by an intricate interplay of these two approximations,
which we demonstrate in different regimes. Our work opens the door to using these tensor network influence
functional methods as general impurity solvers.
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I. INTRODUCTION

The numerical simulation of quantum many-body systems
is, in principle, an exponentially difficult problem due to the
growth of Hilbert space dimension with system size. While the
advent of tensor network techniques has made the equilibrium
problem more tractable, the application of tensor network
methods to dynamics has been limited by the growth of entan-
glement during time evolution, which can cause exponentially
growing resource requirements to accurately describe the dy-
namics. Given the complex nature of this problem, developing
new numerical methods and furthering the understanding of
dynamical phenomena is best done within the context of sim-
ple, yet nontrivial models.

Quantum impurity models offer one such possibility, with
the additional benefit that they are of practical physical impor-
tance, having led to an understanding of phenomena ranging
from the Kondo effect in solids [1] to the survival of macro-
scopic quantum coherence effects in condensed phases [2,3].
In the past few decades, impurity models have gained ad-
ditional significance as a key component of computational
embedding frameworks such as dynamical mean-field the-
ory [4] and density matrix embedding theory [5,6]. Here, one
must compute the real-time dynamics of the impurity to obtain
an approximation to the local dynamics of the full problem
via a self-consistently refined effective bath. Thus the efficacy
of such embedding methods is constrained by the flexibility,
speed, and accuracy with which the dynamics of an impurity
coupled to a bath can be simulated.

Numerical approaches for solving impurity problems
must contend with issues around the treatment of a large
(infinite) number of bath degrees of freedom, while simulta-
neously needing to ameliorate the dynamical sign problem for

impurity dynamics. The issue of treating continuous baths
poses an impediment to methods such as diagonalization-
based techniques [7–10] and is partially solved by the
advent of tensor network approaches [11–16]. The treat-
ment of the sign problem saddles dynamical Monte Carlo
methods [17–23] with an exponentially scaling numerical
cost. Although this scaling can be tamed by inchworm dia-
grammatic expansions [24–27], these approaches still incur
statistical errors. Methods based on the Feynman-Vernon
influence functional (IF), such as iterative path integral meth-
ods [28–30] and the hierarchical equations of motion (HEOM)
approach [31,32], have been used with great success in spin-
boson-type problems, but are far less explored in problems
with fermionic baths such as the Anderson model. [33] Gen-
erally speaking, treating the problem of impurity dynamics
using the IF provides a natural formalism to consider con-
tinuous baths without invoking stochastic sampling which
introduces dynamical sign problems.

Of the above approaches, discretized path integral-based
IF methods, e.g., the quasi-adiabatic path integral method
(QUAPI) [28,29,34,35], are promising, as they reduce the
problem to one of managing Trotter errors and memory trun-
cation. However, models such as the Anderson model are
more complex than the spin-boson model, in part because
the system part of the system-bath coupling cannot be writ-
ten in a simple diagonal form. Early attempts to generalize
these approaches to the dynamics of Anderson-like models
provided a window to obtain exact nonequilibrium dynam-
ics in some parameter regimes, but suffered from memory
length issues that limited their range of applicability [36,37].
In the intervening years, significant progress has been made
marrying tensor network methods and IF methods, particu-
larly for spin-boson-like models. Specifically, one can view
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the Trotterized dynamics as a tensor network and employ
tensor contraction over the environment degrees of freedom
for a fixed propagation time, instead of contracting along
the temporal direction [38–44]. The resulting object can be
viewed as a matrix product state representation of the exact
discretized influence functional (MPS-IF), which exists on
a temporal lattice. Such an approach has been successfully
applied to harmonic baths [41,42,45–49] as well as finite baths
of bosons, fermions, or spins [41,50].

Recently, Abanin and co-workers have focused on the be-
havior of MPS-IF approaches for fermionic models, and have
usefully detailed how entanglement properties of the influence
functional temporally evolve [43,51,52]. In this paper, we
follow Abanin et al., considering the explicit nonequilibrium
dynamics of the Anderson impurity model directly in the
continuous fermionic bath limit. We use a more general and
flexible formulation of the system-bath coupling to allow for
the treatment of different bath densities of state. In addition,
we take advantage of the Gaussian nature of the bath to
construct the MPS-IF in two ways, either by leveraging the
Gaussian form of the IF when the bath is noninteracting or
by propagating it forward iteratively in a similar spirit to the
QUAPI method [29]. The two methods as presented here have
different asymptotic costs with similar errors in the dynam-
ics, which is suggestive of a hybrid scheme being useful for
simulations to long times. Using this approach, we present a
numerical solution of the Anderson impurity model including
a comparative analysis and optimization of the errors arising
from the required time discretization and bond dimension
truncation. We thus obtain approaches to the impurity problem
where the convergence is not determined by the standard bath
size and sign issues, and which can produce a description
of the true non-Markovian evolution of the impurity with
polynomially scaling numerical effort and error control.

This paper is organized as follows: In Sec. II, we briefly
outline the approach to real-time dynamics using discretized
influence functionals and we give two schemes for construct-
ing a matrix product state representation for the IF. In Sec. III,
we compare our approach for the nonequilibrium dynamics
of the Anderson model to recent exact calculations on the
model. This comparison points to some important specific
details of our approaches with respect to convergence, which
are then discussed in detail. In Sec. IV, we conclude and
discuss outstanding questions for future study. Details of the
derivations are contained in the Supplemental Material [53].

II. INFLUENCE FUNCTIONALS AND THEIR
REPRESENTATIONS

We consider the quench dynamics of the single impurity
Anderson model,

Ĥ =
∑
k,σ

Ek,σ ĉ†
k,σ

ĉk,σ +
∑
k,σ

(Vk,σ ĉ†
k,σ

d̂σ + H.c.)

+ Un̂↑n̂↓ +
∑

σ

εσ n̂σ . (1)

Here, εσ is the on-site energy for electrons with spin σ =
{↑,↓} residing on the impurity, U is the Coulomb repulsion
for two electrons that reside on the impurity, Ek,σ is the

conduction (bath) electron energy with momentum k, and
Vk,σ characterizes the strength of the coupling between the
impurity and bath electrons. For the remainder of this paper,
we will refer to the terms in the first and second lines of Eq. (1)
as Ĥ0 and Ĥ1, respectively; the bath-only terms within Ĥ0 will
also be denoted by ĤB.

The dynamics we consider starts from an initially nonequi-
librium state, in which the impurity is decoupled from the
bath, ρ̂full = ρ̂(0)ρ̂B [54]. The ensuing evolution of the impu-
rity is approximated by a second-order Trotter decomposition
as

ρ̂(N�t ) = TrB
[(

e−iL0
�t
2 e−iL1�t e−iL0

�t
2
)N {ρ̂(0)ρ̂B}],

where, for compactness, we have defined the superoperators
e−iL0/1 Â ≡ e−iĤ0/1 ÂeiĤ0/1 . The trace over the bath can be per-
formed in the basis of coherent states when the statistics of the
bath is Gaussian, e.g., ρ̂B ∝ exp(−βĤB) (see Supplemental
Material [53]). What remains then is the impurity dynamics
captured by trajectories over coherent states on the forward
(backward) contour, |ηn〉 (|η̄n〉). Each of these trajectories is
weighted by the influence functional IN containing properties
of the bath as well as the impurity-bath coupling, leading to
the representation of the Trotterized dynamics as

〈η∗
N |ρ̂(N�t )|η̄N 〉 =

∫ (∏
n

DηnDη̄n

)
IN [{ηn}, {η̄n}]

× 〈η∗
0|ρ̂(ti )|η̄0〉ei

∫
dτ Simp[η(τ ),η∗(τ )]. (2)

Since Ĥ0 is quadratic by construction, the influence functional
takes the general Gaussian form,

IN [η, η̄] = exp

⎡
⎢⎣

⎛
⎜⎝η̄1

η̄2
...

⎞
⎟⎠ · G · (

η1 η2 · · ·),
⎤
⎥⎦, (3)

where G is a matrix describing the temporal correlations in
the impurity’s trajectories. For the single-impurity case that
we consider here, the trajectory at time step N is specified
using four states. In particular, for each branch on the Keldysh
contour (forward and backward), we must keep track of the
impurity’s state before and after it is acted on by exp(±iĤ1�t )
at time N�t . Thus, the IF at the N th time step requires G to
be a 4N × 4N matrix. The explicit expressions of Eqs. (2) and
(3) are rather involved and are presented fully in [55].

To represent and compute quantities associated with
IN [η, η̄], we can treat the Grassmann variables ηn and η̄n as
fermionic operators [51,56]. This turns the IN [η, η̄] into a
generalized Gaussian state |IN 〉,

|IN 〉 ∝ exp

⎡
⎣1

2

∑
i, j

ĉ†
i Gi, j ĉ

†
j

⎤
⎦|01 . . . 04N 〉. (4)

Having constructed G, the brunt of the numerical effort
now lies in representing |IN 〉. This can be accomplished using
matrix product states (MPSs), which circumvents memory
resource requirements growing exponentially with N . More-
over, it has been recently demonstrated that for impurity
models of the type considered here, the maximum entan-
glement entropy in |IN 〉 typically saturates to an area-law
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behavior as N → ∞ [43,51]. This suggests that |IN 〉, and
therefore the impurity dynamics, can be efficiently simulated
using an MPS with low bond dimension, at least for some
classes of impurity models. The efficiency hinges crucially
on the approach used to construct an MPS approximation of
|IN 〉 (MPS-IF). We now outline two methods for doing so:
one which directly constructs each site tensor of the MPS-
IF to produce an optimal low-rank MPS approximation, and
another which reuses information from previous time steps.

A. Direct construction

A many-body MPS can be constructed from its site ten-
sors by considering the overlaps of Schmidt states for two
different bipartitions of |IN 〉 [57]. Here, one can leverage
the fact that |IN 〉 is a Bardeen-Cooper-Schrieffer (BCS)
state [51] and therefore can be transformed into a Hartree-
Fock state, for which an efficient method exists to construct
its MPS representation directly [58]. The transformation into a
Hartree-Fock state proceeds by finding the Bogoliubov quasi-
particles, which can be done by diagonalizing the matrix G in
Eq. (4) at a cost of O(N3) for the N th time step, and perform-
ing a particle-hole transformation. This allows for a direct
construction of the Schmidt decomposition of any bipartition
of |IN 〉 between sites (	, 	 + 1) as

|IN 〉 ∝
2N∏
i=1

[√
ν

[	]
i φ̂

[	]†
i,L +

√
1 − ν

[	]
i φ̂

[	]†
i,R

]∣∣0[	]
L

〉 ⊗ ∣∣0[	]
R

〉
. (5)

The {φ̂[	]†
i,L/R} is a set of orthonormal single-particle operators

acting on the left/right partition, and {ν[	]
i } are their associated

eigenvalues [59]. Note that the left and right Schmidt states are
guaranteed to be Hartree-Fock states. We can directly pick out
the D most relevant Schmidt states without needing to directly
construct them. While we can do so at the single-particle level
(i.e., approximating all but log2 D values ν

[	]
i with 0 or 1), we

will keep the D Schmidt states of highest weight.
Having picked out the relevant Schmidt states, the site

tensor A[	]σ	 at the 	th site is specified by the overlaps,

A[	]σ	

α	−1,α	
= (〈α	−1,L| ⊗ 〈σ	|)|α	,L〉, (6)

where α	,L labels the left Schmidt states of the bipartition at
the 	th bond. Via Wick’s theorem, the elements of the site
tensor are straightforwardly found from determinants of over-
laps of the single-particle states, e.g., 〈0[	]

L |φ̂[	−1]
i,L φ̂

[	]†
j,L |0[	]

L 〉.
Note that the matrix of overlaps only needs to be computed
once per site tensor, as the required determinants can be
formed from its submatrices. The cost of constructing all
O(N ) single-particle operators {φ̂[	]†

i,L/R} and the overlap matrix
is O(N3). Furthermore, the evaluation of determinants for

each site matrix can be sped up by the fact that certain orbitals
are always occupied in all the considered Schmidt states. The
determinant calculation can be broken up into the product of
the determinant of the occupied block with the determinant
of its Schur complement. In all, a single site tensor can be
constructed at a cost of O(N3 + D2N2 log2 D) [58], meaning
that the cost of constructing the full MPS-IF at time step
N is O(N4 + D2N3 log2 D). Note that the above procedure
constructs each tensor independently, which leads to trivial
parallelization, but the time may also be reduced if the trun-
cated tensors are constructed in the basis of preceding tensors.

B. Iterative construction

In addition to using the generalized Gaussian nature
of |IN 〉 to directly construct an MPS-IF, we can take
an approach in the same spirit as similar methods for
bosonic impurity problems, i.e., the time-evolving matrix
product operator (TEMPO) reformulation of the QUAPI
approach [45,46,49,50]. In TEMPO, the MPS-IF can be prop-
agated from the (N − 1)th to N th time step by contracting
it with a layer of matrix product operators (MPOs), which
contain information on how the impurity state at time step
N correlates with the impurity state at all previous times.
To work in the same spirit, let us start from Eq. (4) and
decompose the quadratic exponent into the form

|IN 〉 =
∏

j

exp[Gj−1, j ĉ
†
j−1ĉ†

j ] · · · exp[G1, j ĉ
†
1ĉ†

j ]|0〉

=
∏

j

exp

⎡
⎣

⎛
⎝ j−1∑

i=1

�Gi, j ĉ
†
i

⎞
⎠ĉ†

j

⎤
⎦|IN−1〉, (7)

where �G denotes the change in G between time steps N − 1
and N [53]. Let us examine one grouping of operators at fixed
j and define, for convenience, gi ≡ �Gi, j ≡ |gi|eiφi ,

exp

⎡
⎣

⎛
⎝ j−1∑

i=1

giĉ
†
i

⎞
⎠ĉ†

j

⎤
⎦ = 1 +

(
j−1∑
i=1

giĉ
†
i

)
ĉ†

j . (8)

This operator explicitly contains long-range couplings. While
there are more sophisticated ways to represent such an ob-
ject as an MPO [60], we will instead use a straightforward
approach of decomposing it as a sequence of nearest-
neighboring unitary transformations V̂i−1,i. These are defined
such that they transform a linear combination of two fermions
into a single effective fermion,

gi−1ĉ†
i−1 + giĉ

†
i = V̂i−1,i(e

iφi−1
√

|gi−1|2 + |gi|2 ĉ†
i )V̂ †

i−1,i,

from which one finds

V̂i−1,i = exp

[
i

(
φi − φi−1

2

)
(ĉ†

i ĉi − H.c.)

]
exp

[(
arctan

|gi−1|
|gi|

)
(ĉ†

i−1ĉi − H.c.)

]
. (9)

Combining these transformations gives a representation of
Eq. (8) for a single j. Constructing the MPS-IF at the N th
time step from the (N − 1)th time step requires the O(N )

applications of Eq. (8), each of which involves O(N ) two-site
gates. To keep the bond dimension manageable, truncations
via singular-value decompositions (SVDs) are performed after
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FIG. 1. Impurity populations p|ψ〉 ≡ 〈ψ |ρ̂|ψ〉 in the symmetric
Anderson model with U = 2.5π� and εσ = −1.25π�. The bath is
initially at temperature �β = 2 and the impurity is initially unoccu-
pied. Solid colored lines are results from [16], and black dashed lines
are results with D = 64 using the direct construction of the MPS-IF
with a time step of ��t = 0.05. Inset: Absolute deviations in the
populations.

each application of Eq. (8) for each j. In total, the cost of
the MPO-MPS applications and the SVD truncations makes
this method’s asymptotic cost O(D3N2), for an iterative step
(which must be performed N times for the evolution).

It is evident from this construction that the computational
requirements can be relaxed if one can neglect parts of G that
do not appreciably change between consecutive time steps
or if we impose a restriction on the memory length, e.g.,
set Gi, j = 0 for |i − j| > M. While the former case becomes
exact in the continuous-time limit, the latter case may be
admissible given that Gi, j is argued to decay algebraically
with |i − j|, as long as the initial bath state is not criti-
cal [51]. Such a memory truncation would reduce the number
of MPO-MPS applications from (4N − 1)2 to (4N )(2M −
3) − (M2 − M − 1). Similarly, the number of SVDs is re-
duced from (4N )(4N − 1)/2 to (4N )(M − 1) − M

2 (M − 1).
In all, the overall scaling for an iterative step would be reduced
to O(D3MN ).

III. RESULTS

We consider the dynamics of the single-impurity Ander-
son model for a hybridization function corresponding to the
density of states of the z → ∞ Bethe lattice,

�(ω) = �
√

W 2 − ω2/π, (10)

where W = 10� and ω ∈ [−W,W ]. The bath is initially equi-
librated at a temperature �β = 2 and is decoupled from an
unoccupied impurity ρ̂(0) = |0〉〈0|. For U = −2εσ = 2.5π�,
we compare our results, generated using the direct and itera-
tive constructions without memory length truncations, to those
of the MPS time-dependent variational principle calculations
of Kohn and Santoro [16].

In Fig. 1, we show the quench dynamics of the populations,
p|ψ〉 ≡ 〈ψ |ρ̂|ψ〉, from the directly constructed MPS-IF with
a maximum bond dimension D = 64. The time step used
is ��t = 0.05. As seen in the inset, the absolute difference

between our results and those of Kohn and Santoro is of the
order of 10−3 over the time range �t ∈ [0, 5]. The deviations
are generally larger than violations of the trace condition,
Tr ρ̂(t ) = 1 [61]. Similar magnitudes of error are present from
the iteratively constructed MPS-IF, which we show in [55].
Notably, the dynamics from both construction methods do
not perfectly coincide due to the use of SVDs to compress
the iteratively constructed MPS-IF. For larger bond dimen-
sions, this problem is exacerbated by the fact that the Schmidt
values of |IN 〉 can fall below the precision of 64-bit floating
point numbers so that the accuracy of the associated Schmidt
vectors found by SVD cannot be guaranteed. This, however,
poses no issue for the direct construction method, for which
the Schmidt values are found from products of the

√
νi and√

1 − νi in Eq. (5).
The above considerations suggest that truncation error in

the MPS construction must be carefully examined at the bond
dimensions we use and must be considered in addition to
Trotter error. We thus undertake a closer examination of these
errors below.

A. Convergence analysis in the noninteracting limit

We begin our discussion by considering the dynamics
for the case U = 0, εσ �= 0 since this admits exact numeri-
cal solutions [62]. In Fig. 2, we show the deviation of the
double occupancy 〈n̂↑n̂↓〉, as computed by the direct and
iterative methods, from the exact values over a range of on-
site energies εσ . The most striking feature in these plots is a
discontinuous rate of growth in the error δ〈n̂↑n̂↓〉 ≡ 〈n̂↑n̂↓〉 −
〈n̂↑n̂↓〉ref, most prominently exhibited in simulations using
MPS-IF with smaller bond dimensions and in the cases where
the direct construction approach is used; see Figs. 2(a)–2(c).
Specifically, this behavior appears in Fig. 2(b) at �t∗ ≈ 1.2.
In contrast, the nearly discontinuous behavior appears to be
smoothed over in the iterative construction [Figs. 2(d)–2(f))],
although the deviations in the double occupancy generally
follow the same trends as in the directly constructed cases.
We observe t∗ to increase modestly with increasing bond
dimension. For instance, at D = 256, �t∗ ≈ 1.6. Since the
deviations of the iteratively constructed method and direct
method are qualitatively similar, below we focus on the be-
havior of the direct method. The error incurred by the MPS
approximation can be isolated by examining the ε = 0 case,
where there is no Trotter error. These results are shown in
the insets of Figs. 2(b) and 2(e). It can be seen that the error
increases dramatically with propagation time, growing by five
decades over 20 time steps for D = 128 before saturating. The
error can be suppressed by increasing the bond dimension. We
generally see that doing so decreases the error algebraically
with D (Fig. 3). Note that this holds at both intermediate (�t ∼
1) and long (�t � 2) times for which the impurity dynamics
is close to its steady-state behavior [see bottom-most curve in
the inset of Fig. 2(c)].

At the same time, over the time range for which the
dynamics are converged with respect to the available bond
dimensions (�t � 0.6), the Trotter error scales as (�t )2 [55].
Thus, ensuring that the Trotter error is smaller than a tolerance
δ implies that �t ∝ δ1/2 and N ∝ δ−1/2. If the cost to reach a
truncation error δ also scales asymptotically as a power law in
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FIG. 2. Difference between the double occupancy computed from the MPS-IF with ��t = 0.05 and its exact value from the solution of a
differential equation [55]. The bath is defined by Eq. (10) in the U = 0 limit at temperature �β = 2, with an initially unoccupied impurity. The
MPS-IF is constructed (a)–(c) directly and (d)–(f) iteratively, and D = (a),(d) 64, (b),(e) 128, and (c),(f) 256. Inset of (a) and (e): The absolute
difference for ε = 0 across different bond dimensions. Inset of (c): The exact double occupancies used as reference in the main panels. The
red dashed line is the steady-state value for ε = 0.

1/δ, then the total cost to simulate the noninteracting impurity
dynamics with the MPS-IF to the specified error tolerance will
scale polynomially with 1/δ.

B. Convergence analysis in the interacting limit

Given that the influence functional is independent of the
details of the impurity Hamiltonian Ĥ1, vestiges of the ir-
regularities in the error from the noninteracting dynamics
should also appear for the interacting dynamics. This fact
is useful since it implies that by examining the noninter-
acting dynamics, we can anticipate points in time to focus

FIG. 3. Absolute deviations from the exact double occupancy
for U = 0, ε = 0 for various bond dimensions D at fixed times
approaching the steady state of the dynamics. The bath is initially
at temperature �β = 2 and the impurity is initially unoccupied. The
MPS-IF is constructed directly with a time step of ��t = 0.05.

convergence efforts for the interacting problem, e.g., close
to the t∗ identified in the previous section. However, the
information gleaned from the noninteracting dynamics does
not tell the full story. For example, Fig. 2 shows that the
double occupancy appears to be adequately converged with
respect to D around �t ≈ 0.7. Yet in the full problem with
U = −2εσ = 2.5π� as shown in Fig. 4, we see that the error
can behave rather differently as a function of both D and
�t . First, for D � 256, we see that the deviations are most
sensitive to the time-step size, though there are small residual
truncation errors independent of the Trotter error. We surmise
that the errors shown in Fig. 4(a) are mostly due to Trotter
error since δ〈n̂↑n̂↓〉 are identical for D = 256 and 512. At
the same time, the error for D = 64 is mostly unaffected by
decreasing �t , indicating that truncation errors are dominant.
We conclude that decreasing the time step size does not
necessarily decrease the overall error given by the MPS-IF
at fixed bond dimension. As noted in Ref. [51], the half-cut
von Neumann entanglement entropy of the MPS-IF vanishes
as �t → 0. However, this vanishing of the entanglement en-
tropy, which is due to the scaling of the Schmidt values with
�t [52,55], does not imply that the accuracy of the MPS-IF
approximation with fixed D improves as �t → 0. Our lack
of rigorous understanding of the overall error is highlighted
by the growth of deviations with decreasing �t for D = 128,
seen in Figs. 4(c)–4(e). We observe a similar error behavior
from the iterative construction, shown in the dashed lines in
Fig. 4(c).

Finally, we can make a similar comparison of the
intermediate- to long-time dynamics as in Fig. 3 for the full
U �= 0 problem. Restricting ourselves to the direct construc-
tion of the MPS-IF, we show in Fig. 5 the errors in the double
occupancy across bond dimensions, holding ��t = 0.05. As
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FIG. 4. Convergence of the double occupancy with respect to �t and D, using the data from [16] as the reference. The bath is initially at
temperature �β = 2, as before. Data joined by solid (dashed) lines are obtained by the direct (iterative) construction method.

in the noninteracting case, the errors at long times �t � 2
suggest a power-law decay with D with a similar exponent. In
contrast, errors at the intermediate time �t = 1 do not exhibit
such a decay, taking into account that the D = 128 dynamics
(Fig. 4) suffers from larger-than-expected errors. Similar to
Fig. 4(a), it is likely that the errors at �t = 1 for D �= 128
are dominated by Trotter errors. Achieving convergence with
respect to D and �t may require first decreasing �t by a factor
of ∼3; cf. Figs. 4(a) and 4(c). While these results are sugges-
tive of the long-time (�t � 2) dynamics being convergeable
with polynomial effort for a specified error tolerance, larger
bond dimensions will be required to reach this asymptotic
convergence regime at intermediate times.

IV. DISCUSSION

In this paper, we have presented two representations of
fermionic bath influence functionals with matrix product
states to simulate the real-time dynamics of the single-
impurity Anderson model. We have found that we can obtain
good agreement with other real-time propagation methods
with modest numerical effort. We have shown that both
construction approaches yield similar errors in the resulting
impurity dynamics. The two ways of constructing the IF
have costs that scale differently with the number of propa-
gation time steps, meaning that a hybrid approach may be a
good strategy for dealing with long-time propagation. Com-
putational costs of both methods as presented here can be
further attenuated by introducing additional approximations,

FIG. 5. Comparison of the double occupancy in the U �= 0
against results from Ref. [16], for various bond dimensions D.

which we did not consider here as these would complicate
the convergence analysis. We note that the MPS-IF can treat
arbitrary bath densities of state through the specification of
its hybridization function [55], and obtain systematically con-
vergeable simulations of non-Markovian dynamics. We stress
here that unlike other dynamics methods, once we have con-
structed and saved the MPS-IF, calculations with different
impurity Hamiltonians Ĥ1 and different initial impurity states
ρ̂(0) can be performed trivially. This allows for the treatment
of, e.g., time-dependent forms of Ĥ1 so that problems with
external driving can be treated with no additional cost. Fur-
thermore, viewing the IF as a “process tensor” of an open
quantum dynamics [63] means that we can easily extract
arbitrary multitime impurity correlation functions within the
same formalism.

We have also shown that the outstanding sources of error,
i.e., Trotter error and truncation error of the MPS-IF, can
likely be controlled with only polynomially growing resource
requirements, but the two errors do not necessarily go hand
in hand. In particular, our construction of the IF as a pro-
cess tensor allows us to isolate the MPS truncation error,
and gives us a guide to where convergence efforts should be
focused. As presented, our approach should be readily gen-
eralizable to other impurity problems, and with some effort
can be adapted as an impurity solver for dynamical mean-
field theory. These considerations, as well as modifications to
improve computational efficiency, will be taken up in future
work.

As it stands, we currently do not have a complete un-
derstanding of the major determinants of errors stemming
from truncating the MPS-IF. We anticipate that insights in
this direction will help make the direct construction of the
MPS-IF more efficient. Further explorations along these lines
are forthcoming.

Recently, we became aware of a similar work by Thoenniss
et al. [64].
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4n and the previous states.

[55] We note that the types of correlated initial conditions relevant
for the calculation of equilibrium correlation (Green’s) func-
tions can be straightforwardly generated from imaginary-time
evolutions within the same formalism [73].

[56] Z.-C. Gu, F. Verstraete, and X.-G. Wen, arXiv:1004.2563.

125103-7

https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1063/1.5012766
https://doi.org/10.1088/0953-8984/24/5/053201
https://doi.org/10.1103/PhysRevB.86.115111
https://doi.org/10.1103/PhysRevB.90.085102
https://doi.org/10.1103/PhysRevB.92.155126
https://doi.org/10.1103/PhysRevB.87.115115
https://doi.org/10.1103/PhysRevB.90.115124
https://doi.org/10.1103/PhysRevB.92.155132
https://doi.org/10.1103/PhysRevX.7.031013
http://arxiv.org/abs/arXiv:1906.09077
https://doi.org/10.1088/1742-5468/ac729b
https://doi.org/10.1103/PhysRevLett.100.176403
https://doi.org/10.1103/PhysRevB.84.075150
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.82.075109
https://doi.org/10.1103/PhysRevB.87.195108
https://doi.org/10.1103/PhysRevLett.112.146802
https://doi.org/10.1103/PhysRevB.89.115139
https://doi.org/10.1103/PhysRevLett.115.266802
https://doi.org/10.1103/PhysRevB.98.115152
https://doi.org/10.1090/mcom/3785
https://doi.org/10.1103/PhysRevB.105.165133
https://doi.org/10.1016/0009-2614(92)85654-S
https://doi.org/10.1063/1.469508
https://doi.org/10.1103/PhysRevB.106.165427
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1143/JPSJ.74.3131
https://doi.org/10.1063/1.4979197
https://doi.org/10.1021/acs.jctc.0c00039
https://doi.org/10.1103/PhysRevB.77.195316
https://doi.org/10.1103/PhysRevB.82.205323
https://doi.org/10.1103/PhysRevLett.102.240603
https://doi.org/10.1103/PhysRevA.91.032306
http://arxiv.org/abs/arXiv:1810.08050
https://doi.org/10.1063/5.0047260
http://arxiv.org/abs/arXiv:2106.12523
https://doi.org/10.1103/PhysRevB.104.035137
https://doi.org/10.1103/PhysRevB.106.115117
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1103/PhysRevLett.123.240602
https://doi.org/10.1063/5.0073234
https://doi.org/10.1103/PhysRevB.105.024309
https://doi.org/10.1103/PRXQuantum.3.010321
https://doi.org/10.1038/s41567-022-01544-9
http://arxiv.org/abs/arXiv:2205.04995
https://doi.org/10.1016/j.aop.2021.168677
http://link.aps.org/supplemental/10.1103/PhysRevB.107.125103
http://arxiv.org/abs/arXiv:1004.2563


NG, PARK, MILLIS, CHAN, AND REICHMAN PHYSICAL REVIEW B 107, 125103 (2023)

[57] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[58] G. Petrica, B.-X. Zheng, Garnet Kin-Lic Chan, and B. K. Clark,

Phys. Rev. B 103, 125161 (2021).
[59] I. Peschel, Braz. J. Phys. 42, 267 (2012).
[60] D. E. Parker, X. Cao, and M. P. Zaletel, Phys. Rev. B 102,

035147 (2020).
[61] Such violations are due solely to the approximation of |IN 〉 as

a finite bond dimension MPS, since the IF represents unitary
Trotterized dynamics.

[62] Unlike for other methods, the dynamics of the noninteracting
case are just as difficult to compute via the IF approach as they
are for U �= 0, since the presence or absence of U does not alter
the IF itself.

[63] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M.
Paternostro, and K. Modi, Phys. Rev. A 97, 012127 (2018).

[64] J. Thoenniss, M. Sonner, A. Lerose, and D. A. Abanin, An effi-
cient method for quantum impurity problems out of equilibrium
arXiv:2211.10272.

[65] M. Fishman, S. R. White, and E. M. Stoudenmire, SciPost Phys.
Codebases, 4 (2022).

[66] R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, Phys.
Rev. B 88, 235426 (2013).

[67] R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, Phys.
Rev. B 92, 085430 (2015).

[68] J. Jin, X. Zheng, and Y. Yan, J. Chem. Phys. 128, 234703
(2008).

[69] X. Zheng, J. Jin, S. Welack, M. Luo, and Y. Yan, J. Chem. Phys.
130, 164708 (2009).

[70] D. Hou, R. Wang, X. Zheng, N. H. Tong, J. H. Wei, and Y. J.
Yan, Phys. Rev. B 90, 045141 (2014).

[71] Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei,
J. Hu, and Y. J. Yan, Phys. Rev. Lett. 109, 266403
(2012).

[72] M. Cirio, P.-C. Kuo, Y.-N. Chen, F. Nori, and N. Lambert, Phys.
Rev. B 105, 035121 (2022).

[73] J. Shao and N. Makri, J. Chem. Phys. 116, 507 (2002).

125103-8

https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.103.125161
https://doi.org/10.1007/s13538-012-0074-1
https://doi.org/10.1103/PhysRevB.102.035147
https://doi.org/10.1103/PhysRevA.97.012127
http://arxiv.org/abs/arXiv:2211.10272
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1103/PhysRevB.88.235426
https://doi.org/10.1103/PhysRevB.92.085430
https://doi.org/10.1063/1.2938087
https://doi.org/10.1063/1.3123526
https://doi.org/10.1103/PhysRevB.90.045141
https://doi.org/10.1103/PhysRevLett.109.266403
https://doi.org/10.1103/PhysRevB.105.035121
https://doi.org/10.1063/1.1423936

