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Halevi’s extension of the Euler-Drude model for plasmonic systems
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The nonlocal response of plasmonic materials and nanostructures is often described within a hydrodynamic
approach, which is based on the Euler-Drude equation. In this paper, we reconsider this approach within an
extension proposed by Halevi [Phys. Rev. B 51, 7497 (1995)]. After discussing the impact of this extended
model on the propagation of longitudinal volume modes, we reevaluate within this framework the Mie scattering
coefficients for a cylinder and the corresponding plasmon-polariton resonances. Our analysis reveals a nonlocal,
collisional, and size-dependent damping term, which influences the resonances in the extinction spectrum. A
transfer of the Halevi model into the time domain allows to identify a contribution to the current, which
shares similarities with Cattaneo-kind diffusive-wavelike dynamics. After a comparison to other approaches
commonly used in the literature, we implement the Halevi model into the discontinuous-Galerkin time-domain
finite-element Maxwell solver and identify an oscillatory contribution to the current. Such an implementation of
the Halevi model in time domain is of particular importance for applications in nanoplasmonics where nanogap
structures and other nanoscale features have to be modeled efficiently and accurately.
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I. INTRODUCTION

Over the last decades, the preparation of complex metallic
nanostructures has experienced tremendous progress due to
advances in material quality and nanostructuring techniques.
Examples are dimers of spheres [1] and cylindrical wires
[2], mixed wire-sphere systems [3], and bowtie antennas.
The latter are connected [4] or unconnected [5], tip-to-tip
nanotriangles. All such dimers (and many more conceivable
structures) feature nanogaps that give rise to strong field en-
hancements. This characteristic can be exploited for numerous
applications, which include (but are certainly not limited to)
sensing via surface- and tip-enhanced Raman scattering and
surface-enhanced infrared absorption spectroscopy as well
as various wave-mixing processes. The performance of such
devices relies on the plasmonic properties of the conduc-
tion electrons at optical frequencies. These properties can be
tailored via the choice of material as well as via size and
geometry [6] of the system’s constituents as well as their
surface preparation [7,8].

The efficient modeling of plasmonic nanostructures on
both, the interpretative and predictive level requires appro-
priate material models. These can be distinguished by their
ability to capture the relevant physics of the systems over
the involved time- and lengthscales and by their propensity
for a performant numerical implementation. Owing to the
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dispersive nature of the plasmonic material response, the latter
aspect is particularly important for time-domain simulations
of the Maxwell equations. One particular semiclassical model,
which satisfies these requirements is often referred to as the
hydrodynamic [9–12] or hydrodynamic Drude model [13–15].
While its coarseness allows for a language of just a few
degrees of freedom, it nonetheless captures certain quantum
effects, which become relevant in the nanometer regime. Such
properties facilitate the treatment of scattering phenomena in
structures with features ranging from the nanoscale to the
macroscopic size. This allows for a multiscale aspect, which
is accompanied by a moderate usage of computational re-
sources. An illustrative phenomenon, which is well described
by the original hydrodynamic model is the size-dependent
shift of plasmonic resonances for small metallic particles
[16–19].

All these attractive features of the hydrodynamic model
have inspired several extensions with the aim of giving a
more accurate description of the physics without substantially
increasing the complexity. This endeavour is motivated by the
possibility of describing new phenomena, which should be
detectable in (and relevant for) experiments. For instance, in
the so-called generalized nonlocal optical response (GNOR)
model [18,19], the standard hydrodynamic current is supple-
mented by a current that follows Fick’s first diffusion law,
relating the diffusive current to the gradient of the (charge)
density. Through the addition of this diffusive dynamics,
the GNOR model is able to qualitatively describe, next to
the shift, the size-dependent broadening of the plasmonic

2469-9950/2023/107(11)/115425(20) 115425-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6225-5269
https://orcid.org/0000-0001-9100-344X
https://orcid.org/0000-0001-7936-6264
https://orcid.org/0000-0001-7993-4698
https://orcid.org/0000-0003-0076-8522
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.115425&domain=pdf&date_stamp=2023-03-24
https://doi.org/10.1103/PhysRevB.51.7497
https://doi.org/10.1103/PhysRevB.107.115425


GINO WEGNER et al. PHYSICAL REVIEW B 107, 115425 (2023)

resonances. Another interesting extension of the hydrody-
namic model was proposed by Halevi [20] on the basis of the
Boltzmann-Mermin approach [21]. Within this approach it is
possible to account for the different values of the hydrody-
namic compressibility factor and the closely related speed of
sound, which have been derived in the literature.

In this paper, we will reconsider the plasmonic response of
metallic structures by direct application of Halevi’s extension
of the hydrodynamic model, which we refer to as the Halevi
model. As we go along, we also focus on various extensions
to the original hydrodynamic model and elaborate on the dif-
ficulties of a one-to-one identification with the GNOR model.
We address the electromagnetic response near the surface of a
finite scatterer that arises from the dynamics of (conduction)
electrons within the bulk prescribed by the Halevi as well as
the GNOR model. Specifically, we consider nanoscale wires
as prototypical structures. In fact, nanowires are rather popular
and convenient for experimental studies as they can be fabri-
cated with excellent quality via membrane- or template-based
synthesis with diameters down to about 5 nm [22]. Possible
nanoscale devices that utilize plasmonic nanowires include
waveguides [23,24], nanoantennas [6], and sensors [3]. Within
the hydrodynamic model and under orthogonal illumination,
analytical expressions for the electromagnetic fields in and
around infinitely-extended straight plasmonic nanowires exist
both in the quasistatic [25] and in the fully retarded [16] limit.
In particular, we aim at extending the work of Ref. [16] to the
Halevi model.

The paper is organized as follows. In Sec. II we briefly
review the basics of the hydrodynamic Drude model and
elaborate on the extension derived by Halevi. Further, we
place this description into the framework of the viscoelastic
model [26] in order to deepen the conceptual understanding
and provide a route for future extensions. In the subsequent
Sec. III, we adapt the theory developed in Ref. [16] to
the Halevi model, provide a corresponding justification, and
elaborate on the implications. In particular, we discuss the
Halevi model’s influence on mode propagation and derive
the frequencies of the localized surface-plasmon-polaritons
existing at the boundary of the wire. The latter reveal a
nonlocality-induced damping term, which can be connected
to an earlier phenomenological proposition for the reduction
of the mean-free-path and resonance broadening [27,28]. In
the subsequent Sec. IV we develop the time-domain formula-
tion of the Halevi model. We explicitly show that the Halevi
extension to the hydrodynamic model introduces a current
that is conceptually closely related to the Cattaneo current
[29], which models classical diffusion processes with finite
propagation velocity. Next, in Sec. V we briefly review the
GNOR-model and proceed to a detailed comparison with
the Halevi model, specifically regarding the respective diffu-
sive paradigms. We will show that, despite certain similarities,
there are marked differences between the two models, which
prohibit a one-to-one mapping. In Sec. VI we then proceed
to numerical simulations of the scattering setup of Sec. III
using the time-domain formulation of the Halevi model. We,
thereby, analyze the influence of the Halevi extension on the
propagation of the electric field and the mode profiles. Finally,
in Sec. VII we summarize our findings and provide an outlook
for future studies.

II. JUSTIFICATION OF THE HALEVI MODEL

It appears that Felix Bloch proposed and discussed the
first treatment of electron dynamics by means of a hydro-
dynamic model [20] (see also Refs. [19,30–32] for further
discussions). Back in 1933 such an approach provided an
analytically amenable means to estimate the stopping power
associated with the response of certain atoms [33]. Since
then, the model has been rederived and extended following
different paradigms. Usually the connection to conservation
equations is pointed out and their specific forms are related to
an equation of state. The latter may be deduced from (quan-
tum) statistics [31,34–36]. A special case is the derivation of
the equations of motion from an energy principle. Within such
an approach, the equation of state follows from the choice of
internal energy functional [17,30,33,37,38]. Another strategy
considers already existing, semiclassical models and tries to
asymptotically identify their response functions with those,
which are motivated by continuum theories [20,26,38,39]. In
the present paper, we follow the latter approach.

The continuum assumption lies at the heart of hydro-
dynamic models for describing the conduction electrons in
metals: A mesoscopic perspective is adapted where the elec-
trons form a charged fluid such that a given fluid element is
(i) much larger than the actual constituents of the fluid and
their mean separation and (ii) much smaller than the volume
occupied by the fluid [40]. The ionic background is treated
as a rigid, motionless continuum—the rigid jellium [41]—and
restores overall charge neutrality. The thus introduced electron
continuum may dynamically change shape and volume.

The associated dynamical quantities are the moments of
a distribution function that describes the microscopic elec-
tron dynamics. Quite generally, this distribution function
f (r, p, t ) represents the probability of finding at time t a
representative electron with its microscopic momentum p in
an infinitesimal volume element surrounding the position r.
This effective one-particle distribution function is obtained
from the distribution function of the full N-body-electron
system by integrating over the positions and microscopic mo-
menta of the remaining N − 1 particles. Due to the Coulomb
interaction between the electrons, as well as their interac-
tion with the ionic background, the dynamics of a m-particle
distribution contains terms that couple to the m + 1-particle
distribution where 0 < m < N . This coupled set of N −
1 equations is referred to as the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy [34,42]. Breaking this hierarchy
then facilitates the implementation of the above-mentioned
method of moments. Among the truncated descriptions of
one-particle distributions, a suitable equation of motion, from
which the hydrodynamic equations can be deduced is the
Boltzmann equation [43,44] with an electron-ion collision
integral. The latter is, nowadays, usually expressed following
Mermin’s recipe for a charge-conserving, single-relaxation-
time correction [21] and the electron Coulomb interaction is
treated by a mean-field approximation. Upon expanding the
distribution function of the Boltzmann-Mermin model into
the moments of the microscopic momentum another hierarchy
of evolution equations is obtained: Successive-order moments
become coupled and the individual equations of motion rep-
resent conservation laws. A closed set of equations of motion
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can be obtained through further approximations that relate a
given moment to lower-order moments only. Specifically, this
procedure is connected to additional approximations to the
chosen coupling term of the distribution functions.

The standard hydrodynamic model considers the first- and
second-order moments, charge- and momentum density, and
the corresponding equations of motion ensure charge con-
servation and momentum balance. In the resulting evolution
equations, the momentum density is often replaced by the
charge current density. The omission of higher-order mo-
ments and the corresponding equations of motions is tied
to the absence of heat conduction [35] and to a specific
form of the stress tensor—the momentum current density
tensor. The latter is given by a pressure that can solely be
expressed in terms of the charge density, which, e.g., may
be derived from the Thomas-Fermi theory of a degenerate
electron gas [33]. The aforementioned second hierarchy is
thereby terminated, producing a closed set of equations. This
description provides a starting point in the sense that it in-
corporates quantum-statistical effects in the kinetic energy
of the electronic many-body system. Eventually this leads to
a nonlocal response, while it excludes certain effects such
as the electrons’ exchange-correlation dynamics. In a first
approximation, however, this effect can be neglected at least
in three-dimensional systems with sufficiently high densities
of free electrons. This is motivated by the dominance of
the kinetic energy contribution in such systems [45]. Differ-
ent choices for the stress tensor are possible depending on
the desired level of accuracy and on the particular physical
system. In principle, more sophisticated models could be in-
troduced, leaving the coupling term of momentum and energy
density untouched. Then, a constitutive equation for the heat
conduction could be provided as it would otherwise couple
to even higher-order equations beyond the conservation of
energy [35].

In the hydrodynamic formulation, the equation of motion
of the charge density is dictated by the continuity equation

∂tρ(r, t ) + ∇ · J(r, t ) = 0. (1)

Due to absence of source and sink terms, the above
equation stipulates that charges are neither produced nor
annihilated. The conservation of the current density J (or,
equivalently, momentum conservation) is given by the lin-
earized Euler equation of classical fluid dynamics [40]

∂t J(r, t ) = ε0ω
2
pE(r, t ) − β2

TF∇ρ(r, t ), (2)

where we neglected the effects of magnetic fields [46]. For
an electron fluid, the Thomas-Fermi pressure, arising from
the Pauli exclusion principle, is responsible for the compress-
ibility factor giving rise to the velocity βTF = vF/

√
3 with

vF the Fermi velocity [34]. In fact, the parameter βTF may
be viewed as the speed of sound in the electron continuum
[47] and, accordingly, characterizes the propagation of density
or pressure waves [18], which may build up in the electron
continuum. The total current at position r is defined via the
center-of-mass motion of the local fluid element induced by
the total electric field E(r, t ). This field itself is in turn induced
by the motion of the electron density relative to the fixed
jellium background and any externally applied electric fields.

A first correction of Eq. (2) is the addition of the Drude
term −γ J to the right-hand side (r.h.s.), yielding the Euler-
Drude model. This additional term is actually part of the
first-order moment of the single-relaxation-time approxima-
tion, discussed above. It phenomenologically describes a
collection of dissipative processes that the charge carriers
experience within the material. A prominent example is the
hinderance in the electronic motion originating in collisions
with the ionic background due to impurities or defects in the
lattice or even due to the interaction with lattice vibrations
(phonons). Such processes are usually added, assuming that
one process does not effect the other (Matthiessen rule [44]).
Further, the appearance of their cumulative collision rate γ in
one of the conservation equations signifies that the associated
quantity is not conserved by the collisional processes. Accord-
ingly, this rate should only group processes, which conserve
the same quantities. In our case, the collisions conserve charge
by keeping Eq. (1) untouched but diminish electron momen-
tum [26]. As Bloch points out, the Thomas-Fermi model has
been applied to the static behavior of the electron continuum.
From Eq. (2) we, thus, expect a quasistatic description. But
such a treatment fails for typical metals at optical frequencies.
As a remedy, the very same equation may be used by re-
placing the low-frequency value βTF with the high-frequency
value βHF = √

3/5vF [9,17–20,31]. Naturally, the question
arises which characteristic velocity should be used, in general
[20,32]. A model within the continuum approach that inter-
polates between the two limits has been provided by Halevi
[20]. Specifically, Halevi considers the Euler-Drude model in
(r, ω) space and introduces a frequency-dependent velocity
βH(ω) yielding

−iωJ(r, ω) = ε0ω
2
pE(r, ω) − β2

H(ω)∇ρ(r, ω) − γ J(r, ω).
(3)

The longitudinal dielectric function with wavenumber k and
frequency ω is derived from Eq. (3) and the Fourier transform
of the continuity equation (1). A comparison between an ex-
pansion of this function and the one of the Boltzmann-Mermin
model up to second order in the parameter kvF/ω allowed
Halevi to obtain [20]

β2
H(ω) =

3
5ω + iγ

3

ω + iγ
v2

F = β2
HF − 4

15

iγ

ω + iγ
v2

F. (4)

The crossover regime is characterized by the Drude collision
rate γ . Indeed, Eq. (4) interpolates between the low-frequency
velocity β(ω � γ ) = βTF in the collision-dominated limit
and the high-frequency velocity β(ω � γ ) = βHF in the field-
dominated limit [20]. We refer to the system of equations (1)
and (2) in the respective limits as the low- and high-frequency
Euler-Drude model. For typical metals ωp lies in the vis-
ible or ultraviolet, such that γ 2 � ω2

p and, therefore, the
high-frequency value βHF is preferred at optical frequencies
ω ∼ ωp. For intermediate frequencies, βH exhibits dispersion,
which Halevi relates to a phase mismatch between pressure
and density fluctuations [20]. Notice that the approach fol-
lowed by Halevi avoids contributions that scale as the second
or higher powers of the Laplacian ∇2, or ∇(∇·), or other
combinations of vectorial differential operators. Further, the
Halevi approach guarantees local charge conservation due to
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Mermin’s relaxation time approximation [21]. Also in this
case, however, the model does not account for any exchange-
correlation effect since the high-frequency, collisionless limit
of the Boltzmann-Mermin model, i.e., the Vlasov model [31],
is not including them [39].

In order to deepen the physical understanding of the tran-
sition from βTF to βHF, we recall [39] that the Halevi model
may be viewed as the longitudinal projection of the viscoelas-
tic model derived in Ref. [26]. While Halevi’s viewpoint
focusses more on a formal correspondence to fluid dynam-
ics, the viscoelastic model emphasizes elastic contributions
in the high-frequency limit that are well known from the
properties of solids. Accordingly, next to the compressibility
of the electron continuum, which remains constant over the
frequency range h̄ω � EF, where EF is the Fermi energy
of the metal continuum, the high-frequency limit introduces
elastic shear. In contrast, the hydrodynamic limit of the vis-
coelastic model is determined via the same compressibility,
which is augmented with a kinematic viscosity for small but
finite frequency. The hydrodynamic bulk viscosity actually
vanishes. This is similar to a hypothesis made by G.G. Stokes
about the total pressure, which is assumed to be independent
of the temporal change of the fluid density during a uniform
dilatation [48]. The range of applicability of the viscoelastic
model is set by the constraints [26,41]

k � 2kF , ω � kvF , ω, γ � EF/h̄, (5)

where kF is the Fermi wave vector. Here, the first, third,
and fourth inequalities facilitate the interpretation of the un-
derlying dynamics in terms of the Boltzmann equation with
collisions, where the momentum relaxes according to Mer-
min’s recipe on the timescale ∼2π/γ . The second inequality
implies the transition to the viscoelastic paradigm confined by
the hydrodynamic and elastic limits [41]. The formal equiva-
lence of these limits stems from the momentum conservation
equation, which can be rephrased in terms of the current
density according to

− ω(ω + iγ )J(r, ω)

= −iωω2
pε0E(r, ω) + [

β̃2 − 4
3 iωη̃

]
× ∇[∇ · J(r, ω)] + iωη̃∇ × ∇ × J(r, ω). (6)

Here, in the high-frequency limit, the center-of-mass velocity
of an infinitesimal volume around a given position originates
from the temporal change of the displacement of an
infinitesimal charge element due to compression and/or
elastic shear [26].

When comparing this result with the longitudinal and
transverse response of the Boltzmann-Mermin model up to the
second order in the wavenumber, it turns out that the velocity
β̃ is just the Thomas-Fermi velocity. Further, the parameter
η̃(ω) provides an interpolation between the velocity of elastic
shear waves βsh and kinematic viscosity η(ω) according to

−iωη̃(ω) = β2
sh(ω) − iωη(ω). (7)

Here, the kinematic viscosity η and the elastic shear velocity
βsh are real quantities given by

β2
sh(ω) = ω2

ω2 + γ 2

v2
F

5
, η(ω) = γ 2

ω2 + γ 2

v2
F

5γ
. (8)

Notice that similar to compression, also the shear is con-
strained by Pauli’s exclusion principle as manifest by the
appearance of the Fermi velocity in βsh and η. Apart from
that, the material parameters are independent of position.
Thus, within the bulk, longitudinal (transverse) waves remain
longitudinal (transverse). However, analogous to the theory
of elasticity, at a material interface both polarisations mix
[49]. This represents a key property for plasmonic nanopar-
ticles, where the evanescent waves of surface plasmons can
thus couple to bulk plasmons. For instance, transverse po-
larized radiation impinging onto a cylinder may excite bulk
plasmons [16].

Considering that longitudinal quantities exhibit a vanishing
curl, we can deduce the connection between the viscoelastic
parameters and the Halevi velocity by combining Eq. (6) with
the continuity equation, see Eq. (16) of Ref. [39], to yield

β2
H(ω) = β2

TF − 4
3 iωη̃(ω). (9)

Accordingly, the fact that βH is a complex quantity stems from
the interpolation between the fluid- and solid-like response,
which, in turn, is encoded in the asymptotic expansion of
the Boltzmann-Mermin model. Conceptually, the additional
dispersion (as compared to the Bloch model) originates com-
pletely in viscoelasticity [39]. More precisely, within this
perspective, the low-frequency, collision-dominated limit is
viewed as the hydrodynamic regime and the high-frequency,
collisionless limit is identified with the elastic regime [26].
Since we have for typical metals that ωp � γ , the plasmonic
response of metallic structures has to be regarded as being
predominantly elastic. Therefore, and contrary to what is
sometimes stated in the literature, the velocity βHF is not
entirely the result of the compressibility within the Thomas-
Fermi model. Instead, βHF also features contributions from
elastic shear.

Furthermore, the elastic response at short time scales
(2π/ω � 2π/γ ) and the viscous response at long timescales
(2π/ω � 2π/γ ) are characteristic of highly viscous fluids
[31], such as glycerin or resin [50]. As proposed by Maxwell,
the deformation of such fluids due to periodic, external forces
induces internal shear stress, that is damped on a certain time
scale τ . As the period 2π/ω of the external forces progresses
from values much lower than τ to values much greater values
than τ , the response changes its characteristics from solid
like to (viscous-)liquid like [50]. In the plasmonic case τ

is roughly given by 2π/γ . Accordingly, it is the rate of
Drude collisions with the ionic background that determines
the extent of the solid-like response, affecting the contin-
uum’s tendency to restore its equilibrium shape. In the elastic
regime, the periodic deformation is so fast that collisions can-
not relax the internal stress within one period. Again, notice
that the magnitude of the shear is determined by the Fermi
velocity [Eqs. (7) and (8)], so that the internal stress is not
only given by collisions but also tied to the Pauli principle.

Interestingly, not only the longitudinal, but also the trans-
verse dielectric function derived from Eq. (6) is formally
equivalent to a hydrodynamic dielectric function with a char-
acteristic, squared transverse velocity β2

T(ω) = −iωη̃(ω). In
the elastic regime, we have βT ≈ βsh(ω � γ ) = vF/

√
5. We

emphasize this fact, since, for instance, the hydrodynamic
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FIG. 1. Sketch of the infinitely-extended cylindrical scatterer ex-
cited normally with a plane wave propagating along the x direction
and polarized normal to the rotational axis (ẑ). The electromagnetic
problem effectively reduces to two dimensions.

dielectric function has been applied for the longitudinal and
the transverse response of a metallic half-space in Ref. [51].
In the limit ω ∼ ωp � γ , the values βL = βHF and βT =
βsh(ω � γ ) have been used. Hence, the transverse and longi-
tudinal dielectric function turn out to be high-frequency limits
of the viscoelastic model—corrections towards intermediate
frequencies are, thus, at hand.

The hydrodynamic perspective on the time-dependent den-
sity functional theory was recently discussed in Ref. [45]
Therein, the emergence of viscous response is also mentioned.
After discussing the characteristics of the Halevi model from
the viewpoint of the continuum framework and its links to the
viscoelastic interpretation, in the next section, we investigate
the model’s impact on light-matter interaction within an ana-
lytical test case.

III. EXTENDED MIE THEORY FOR A NONLOCAL,
CYLINDRICAL SCATTERING PROBLEM

Analytical expressions for the quantities that describe
light-matter interaction at metallic nanostructures are often
tied to highly symmetric scatterers. An infinitely-long circu-
lar cylinder with radius a, homogeneous along its rotational
axis and placed within vacuum is an example for such an
archetypal scatterer [52]. It further represents a very good ap-
proximation to realistic cylinders with high aspect ratios [2].

Analytical formulas for the fields, given local and disper-
sive response within the metal, have been derived based on
Mie theory [52] and have later been extended by Ruppin
to allow for linear hydrodynamic response [16]. In Ruppin’s
work, the incident wave is injected perpendicular to the cylin-
drical axis and the electric field is polarized orthogonal to this
axis, thus leading to an effectively two-dimensional problem
(cf. Fig. 1). Specifically, as we have already mentioned in
Sec. II, this setup allows for the existence and the excitation
of bulk modes in the metal [16]. Following Ref. [53], Ruppin
demands the absence of an infinitesimally thick surface charge
density, which ultimately leads to a continuity of the radial
component of the electric field. This is tied to the absence
of the normal current right below the surface, similar to the
hard-wall boundary condition [17,19,38]. Since, however, the
tangential current may, in principle, be finite in this region,
this auxiliary boundary condition (ABC) is also known as slip
boundary condition [54]. Such a tangential surface current
must not be mistaken with an infinitesimally thick surface

current sheet, which would lead to a discontinuous, tangential
magnetic field at the surface. In addition to the previous con-
ditions, the continuity of the tangential electric field as well as
the tangential (and normal) magnetic flux field is enforced.

In Ruppin’s treatment, the transverse response is encoded
by the Drude dielectric function given by

εDrude(ω) = 1 − ω2
p

ω(ω + iγ )
, (10)

which gives for the wavenumber of the internal transverse
mode

k2
T = k2

0
εD(ω)

εBG
. (11)

Here, k0 = √
εBG ω/c is the wavenumber of the incident wave

with background dielectric function εBG. In the following,
we use vacuum as the background material and thus set
εBG = 1. The longitudinal response is given by the (high-
frequency) Euler-Drude dielectric function

εL(k, ω) = 1 − ω2
p

ω(ω + iγ ) − β2
HFk2

. (12)

The corresponding wavenumber kL of the internal longitudi-
nal mode derives from the implicit equation

εL(kL, ω) = 0. (13)

Completely analogous to standard Mie theory, the incident,
scattered, and internal transverse portions of the electric field
are expanded into solenoidal vector cylindrical harmonics.
However, in the internal region an irrotational vector cylin-
drical harmonic is added to account for longitudinal waves.
Solving for the above-described set of boundary conditions,
Ruppin derives the internal longitudinal and scattered field
expansions,

EL(r, ω) = i

k0

∞∑
n=−∞

inhnLn(kLr), (14)

ES(r, ω) = i

k0

∞∑
n=−∞

insnMn(k0r),

HS(r, ω) = 1

k0

∞∑
n=−∞

insnNn(k0r), (15)

where Ln, Mn, and Nn are the cylindrical vector wave func-
tions [49] and sn are the scattering coefficients

sn = − [cn + Dn(kTa)]Jn(k0a) − √
εT (ω)J ′

n(k0a)

[cn + Dn(kTa)]Hn(k0a) − √
εT (ω)H ′

n(k0a)
. (16)

Here, Jn(x) and Hn(x) are, respectively, the Bessel and outgo-
ing Hankel functions of order n, while Dn(x) = J ′

n(x)/Jn(x).
The nonlocal correction term cn is given by

cn = n2

kLa
[Dn(kLa)]−1 εT (ω) − 1

k0a
√

εT (ω)
(17)

and it vanishes in the limit β → 0, where the longitudinal
nonlocality is not resolved. The expansion coefficient of the
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FIG. 2. Illustration of the frequency dependence of the longitudinal wavenumber kL for the high-frequency Euler (γ = 0; black dashed
line) and Euler-Drude (green solid line), the Halevi model (red solid line) and GNOR model (blue solid line) for γ = 0.021 eV (silver). For
details on the latter model, see the discussion in Sec. V. The vertical dashed lines mark the damping rate and kink frequency (black) as well
as the volume plasma frequency for silver (grey). (a) Real part of the wavenumber with insets showing a new local maximum (left) and kink
(right). (b) Imaginary part of the wavenumber with an inset displaying how the Halevi and Euler-Drude model soften the transition at the
plasma frequency. (c) Kink frequency ω0 (blue line) as well as the frequency ωmax of the local maximum (orange line) and its amplitude
Amax = Re kL(ωmax) (green line) in the range 0.01 < γ/ωp <

√
4/5.

internal longitudinal field reads

hn = Jn(k0a) + snHn(k0a)

Jn(kLa)

ik0a√
εT (ω)

cn

n
, (18)

and is proportional to n. Within our definition c−n = cn for
n � 1, so that for the scattering coefficient s−n = sn for n � 1.
To prove this, the usual symmetries of the cylindrical Bessel
functions and their derivatives with respect to their order are
used [55].

Notice that the coefficient cn ∝ n2 identically vanishes for
the zeroth order such that the nonlocal and local s0 do not dif-
fer. Accordingly, we also have h0 = 0, further corroborating
the absence of longitudinal effects at this order. With vacuum
as the host material one has [52]

s0 ∝∼(k0a)4(
√

εT(ω) − 1), (19)

provided that optical frequencies and radii smaller than half
the plasma wavelength c/ωp (about 10 nm for common met-
als) are considered. Therefore, for a spatially local response,
given the aforementioned regime, |s0| ≈ 0. Therefore, we do
not expect a significant contribution of the zeroth scattering
coefficient. The poles of the s±n for n � 1 can be instead asso-
ciated with the nth-order multipole resonances of the system.
Significant contributions from the dipole (n = 1) as well as
the quadrupole (n = 2) are expected in the above-mentioned
regime, for which the nonlocal correction cannot be neglected.

From the discussion in Sec. II, we deduce that the Halevi
model does not introduce any higher-order spatial deriva-
tives as compared to the high-frequency Euler-Drude model.
Otherwise, additional boundary conditions would have to be
introduced. We can therefore directly use the wavenumbers
of the Halevi model in Eqs. (16) and (17). As Ruppin points
out, the longitudinal wavenumber describes the propagation
of the longitudinal modes. It is then relevant to determine its
features within the Halevi model and to highlight its differ-
ences with respect to that obtained with the high-frequency

Euler(-Drude) model. To do so, we start with the remark that
Eqs. (4), (12), and (13) directly lead to the square of the
wavenumber given by

k2
L = ω(ω + iγ ) − ω2

p

βH(ω)2
, (20)

where we substituted βHF �→ βH(ω), disguising some of the
wavenumber’s characteristics in the complex plane. The pas-
sivity of our system requires a non-negative imaginary part for
kL. By choosing the principal branch of the complex square
root, the real part must remain positive.

In Fig. 2, we depict the frequency dependence of the lon-
gitudinal wavenumber for different material models of silver
(see Table I for material parameters). From this, we can in-
fer several features, which distinguish the Halevi from the
Euler(-Drude) model. Specifically, below the volume plasma
frequency a kink occurs [cf. right inset of Fig. 2(a)]. The
associated kink frequency is derived as follows: To first order
in γ /ωp, the real part of the squared wavenumber changes

TABLE I. List of the material parameters for several metals.
The Fermi velocity for Au and Ag is determined from the plasma
frequency using the bare electron mass. The Drude rates of Cu, Al,
and Zn were calculated using γ = 2π/τ with the relaxation time τ

at 77 K taken from [44]. From these values, based on Eq. (24), the
ratio �1 of the nonlocal (| Im ω1 + γ /2|) to the local damping γ /2
as well as the nonlocal damping amplitude A1, according to Eq. (26),
are inferred for a = 1 nm.

ωp [eV] γ [eV] vF [106 m
s ] �1 A1[10−4]

Ag [57] 9.149 0.021 1.408 0.025 5.657
Au [57] 8.846 0.059 1.376 0.025 16.140
Zn [44] 10.143 [58] 0.172 1.508 0.024 41.357
Al [44] 15.363 [58] 0.064 1.989 0.021 10.082
Cu [44] 7.504 [58] 0.020 1.233 0.026 6.389
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sign at ωp—being negative for frequency values below ωp.
At the same time, the imaginary part changes sign at the real
frequency

ω0 = ωp

√
4

13
− 5

13

γ 2

ω2
p

, (21)

as long as 0 < γ <
√

4/5ωp ≈ 0.894ωp, where ω0 ≈
0.555ωp for typical metals [cf. Fig. 2(c)]. The real part of the
longitudinal wavenumber, given by

Re kL(ω) =

√√√√Re k2
L(ω) +

√[
Re k2

L(ω)
]2 + [

Im k2
L(ω)

]2

2
(22)

should exhibit a root at ω0. At lower frequencies, we ob-
serve a local maximum [see left inset of Fig. 2(a)]. Different
real parts in the different models should, in principle, lead
to spatial phase differences for a given frequency. Interest-
ingly, we observe in Fig. 2(c) that the frequency of this local
maximum initially increases with γ until a value of roughly
0.2ωp is reached. Beyond this value, the frequency of the local
maximum drops and vanishes at γ = √

4/5ωp along with the
corresponding amplitude. Regarding the imaginary part of the
longitudinal wavenumber, we notice from Fig. 2(b) that a peak
occurs at low frequencies. This is due to the small velocity of
the low-frequency density waves, which, in the Halevi model,
reaches the Thomas-Fermi value of βTF = vF/

√
3 < βHF. In-

creasing the ratio γ /ωp leads to a broadening of the peak
and for the plasma frequency of bulk silver, this peak extends
into the infrared frequency range. Following Ruppin, this is
tantamount to a faster decay of the longitudinal modes [16]
in this frequency range. Still looking at the silver curves, we
deduce from the inset of Fig. 2(b) that for ω > ωp the decay
is approximately given by the Drude damping due to the ionic
background.

Now that we have determined a number of bulk features
introduced by the Halevi model, we proceed to considering
the surface resonances of nonlocal cylinders. In particular, we
focus on the quasistatic approximation, i.e., where the inci-
dent wavelength and the skin depth are much larger than the
cylinder radius. In this case, the phase of the plane wave is ap-
proximately constant across the cylinder’s cross section [56].
Since we expect that the resonances are at typical wave-
lengths, i.e., of the order of 2πc/ωp (usually about hundred
nanometers), the quasistatic approximation is roughly valid
for radii below a few tens of nanometers. As derived in the
Appendix A the leading order contribution of the nonlocality
manifests itself in the dispersion relation according to

ωn ≈ ωsp − iγ

2
+ βHF

2

n

a

(
1 − 2i

9

γ

ωsp

)
, (23)

for n > 0. The first three terms on the r.h.s. recover the result
of the linearized Euler-Drude model regarding the nonlocal
blueshift.

The imaginary part of the surface resonance frequency for
the order n is given by

Im ωn = −γ

2

(
1 + 2

9

βHF

ωsp

n

a

)
. (24)

It is proportional to the collision rate and negative, which
conforms with our passivity requirement. In contrast to the
well-known result for the high-frequency Euler-Drude model,
the damping incorporates a nonlocal contribution. Such a
feature has already been observed within the dispersion re-
lation of the volume plasmon [20]. Therein this additional
damping channel is referred to as “collision-modified Landau
damping”. While the plasmonic frequencies lie deep within
the elastic regime, the damping term vanishes for γ /ωp = 0.
Hence, the viscous damping, also proposed in Refs. [59,60],
which contributes in the intermediate, viscoelastic regime, is
essential for this damping channel to be present.

At this point we wish to emphasize that the calculations in
the Appendix A are based on the limiting case vFn/ωpa � 1
so that the nonlocal damping contribution is small compared
to the Drude damping. In Table I, we provide the relevant
parameters for a number of metals that are used in plasmonics.
From this, we infer that the nonlocal damping of the dipole
for cylinder radius a = 1 nm only contributes with about a
percent of the local Drude damping, with Copper having the
largest value, so that the aforementioned assumption is well
justified.

Analyzing the dissipation for frequencies close to ωn,
Eq. (24) appears to suggest a description of the system in
terms of a Drude dielectric function, where the damping
should be amended by its nonlocal counterpart, which scales
as the inverse of the cylinder radius. Such an approach would
allow to avoid the intricacies that come along with the non-
local hydrodynamic description matched by a slip boundary
condition. Indeed, such an approach would yield the same ex-
pression for the imaginary part of the dispersion relation. Such
an identification, however, would blur the clear conceptual
distinction between bulk and surface dynamics established by
the bulk dielectric function and the set of surface boundary
conditions, respectively. Nevertheless, such an interpretation
via a size-dependent damping rate is reminiscent of a proposi-
tion made in Refs. [27,28]. In particular, a phenomenological
description of the measured extinction due to small spheri-
cal silver nanoparticles immersed in different host media is
presented. The reasoning there relies on the limited-mean-free
path effects [27,28], i.e., on the introduction of a damping
process due to the interaction of the conduction electrons with
the surface of the scatterer, which occurs on a lengthscale
much smaller than that typical for the bulk mean-free path
� ∼ vF/γ . In these works, the thus corrected damping rate was
formally written as

γ (a) = γ + A
vF

a
(25)

and utilized within a bulk Drude dielectric function. The value
of the corresponding linewidth parameter [61] A is then deter-
mined for different embedding scenarios by a fit to measured
extinction data, the difference in values being motivated by a
discussion of possible surface damping mechanisms. Within
the Halevi model and when we assume that the cylinder is
embedded in vacuum, we derive the linewidth parameter as

A = 2n

9

βHF

vF

γ

ωsp
. (26)
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FIG. 3. Illustration of the extinction efficiencies of an infinite circular silver cylinder situated in vacuum and excited by a plane wave
propagating in a plane perpendicular to the cylinder axis with polarization perpendicular to this axis. (a) Color-coded representation of the
extinction efficiency as a function of radius and frequency modelled using the Drude model. The red dotted vertical line represents the local,
electrostatic dipolar plasmon-polariton resonance localized at the surface of the cylinder. (b) Same as (a), but substituting the Drude with the
Halevi model. The color bar is that of (a). (c) Blow-up of the dipolar and quadrupolar plasmon-polariton resonance peaks present in (b). The
real part of Eq. (23) is plotted for the dipole (red dotted line) and quadrupole (green dotted line) terms. (d) Extinction efficiency for the Halevi
model in the region beyond the volume plasma frequency exhibiting a nonlocal sequence of volume plasma resonances being blueshifted
towards lower radii and overlapping with the dipole surface resonance at larger radii. (e) Radius dependence of the relative difference of
the Halevi and the Euler-Drude model for high frequencies for the widths (solid lines) and amplitudes (dashed lines) of the dipole (red) and
quadrupole (green) peak. These values have been obtained by a Lorentzian fit in the interval 0 < ω < ωp using the Levenberg-Marquardt
algorithm and only the sum element of the extinction efficiency belonging to the respective resonance. A cutoff at ω = ωp prevents additional
fitting errors due to the excitation of bulk plasmons.

We notice that its structure is not only determined by the
actual geometry and the choice of boundary condition but
also depends strongly on the actual bulk response. Within the
high-frequency Euler-Drude model equipped with the same
boundary condition, this effect would be completely absent.
While in Refs. [27,28], the phenomenological surface damp-
ing has been used to describe the dipole mode for spherical
scatterers only, our analysis implies that a similar structure
is to be expected for higher multipole resonances, at least
for cylinders as long as n � aωsp/βHF. For an account of
the impact of the Euler-Drude model on high-order localized
plasmon-polariton resonances sustained by spheres we refer
to Ref. [62]. There, e.g., the (shifted) positions of such res-
onances have been compared to those of a planar interface,
elucidating the role of the curvature. The interpretation was
further based on the actual charge distribution. A glance at
Table I reveals that the value of the parameter for the dipolar
resonance of silver nanowires as derived from the Halevi
model in conjunction with the slip boundary condition ranges
between 10−4 and 10−3. Owing to a larger value of γ /ωsp,
the corresponding linewidth parameter for zinc nanowires
assumes the greatest value. Experimentally, size-dependent
damping has been observed for a configuration different from
the one considered here, i.e., silver spheres in vacuum. For
this case, a value of AAg = 0.25 for the dipole resonance
has been determined [27]. Despite the qualitative similarities
with the previous considerations, additional investigations ad-
dressing this geometry are required in order to deepen the
understanding of this phenomenon. To complete our analysis
of the nonlocal damping term, we briefly mention that the
connection with the limited-mean-free path effects has been
discussed within the GNOR model in relation to the scatter-
ing properties of metallic spheres with the very same ABC
[15,18,63] (see also Refs. [64,65] for other approaches). In

Sec. V, we will provide a comparison of the Halevi and this
alternative model.

We conclude this section by stating that the additional
damping should lead to a broadening of the quasistatic reso-
nance peaks while, at the same time, decreasing the amplitude.
This should be visible in the extinction efficiency defined as
[16,62]

Qext = − 1

2k0a

∞∑
n=−∞

Re sn, (27)

where the sn are defined in Eqs. (16) and (17) with the
replacement βHF → βH(ω). In Fig. 3, we depict Qext as a
function of both, radius and frequency, for silver described
in terms of the Drude [Fig. 3(a)] and Halevi model [Fig. 3(b)].
The results for the high-frequency Euler-Drude model are not
shown because they are very similar to those of the Halevi
model. Thus, the nonlocal damping introduced above only
provides a small modification of the extinction efficiency.
We observe that all models display a strong dipole and a
weaker quadrupole resonance. The peak of the latter branches
off at about 6 nm. For smaller radii, this mode is hardly
discernible, since the right flank of the dipole mode is of
a much larger magnitude. The nonlocality introduces bulk
plasmons beyond the volume plasma frequency—a feature
that is absent in the Drude model [62] and is clearly visible
in Fig. 3(d). For smaller radii, the bulk and surface resonances
of the Halevi model are blueshifted with decreasing radius. In
order to investigate in more detail the dipolar and quadrupolar
resonances, we provide in Fig. 3(c) a corresponding blow-
up, where the real part of Eq. (23) is displayed with dotted
lines. The dipole follows this approximation quite well up to
radii of about 4 nm beyond which the approximation quickly
tends to the retarded quadrupole resonance. In fact, due to
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retardation the dipole resonance falls below the value ωp/
√

2
predicted within local, quasielectrostatic approximation [cf.
also Eq. (23)]. This turns out to be a shortcoming of the
quasistatic approximation, which relies on the smallness of
the parameter aωsp/c, an effect that would be pronounced
for a surrounding medium with nBG > 1, e.g., glass. For
larger radii, the concomitant retardation yields a redshift of
the modes, which is already visible for the Drude model. In
fact, in the nonretarded limit, the Drude model would yield
a complete degeneracy of all multipole resonances, such that
ωn ≈ ωsp, n � 1. The retardation-induced redshift has been
phenomenologically described for small metallic spheres by
employing a local material response within the framework of
a self-consistent approximation of Mie theory [56]. The real
part of the nonlocal and quasistatic dispersion relation, given
by Eq. (23), describes a size-dependent, overall blueshift to-
wards lower radii already present in the electrostatic limit. The
shift is larger for higher multipole resonances and therefore
it is more visible for the quadrupole resonance. While the
blueshift scales as the dimensionless parameter βHF/(ωspa)
the redshift due to retardation scales as ωspa/c leading to a
growing compensation as the radius increases. Employing the
material parameters of silver given in Table I, these different
scalings lead us to the following peculiarity concerning the
relative weight of the effects tied to both parameters: For
smaller radii a ≈ 1 nm, we find that βHF/(ωspa) ≈ 0.11 >

0.03 ≈ ωspa/c, such that the leading-order corrections due
to retardation fall short of the nonlocal correction present
in Eq. (23) by one order of magnitude. Accordingly, we do
not expect corrections due to retardation in this equation for
small radii. For larger radii a ≈ 10 nm, the relative weight
switches, since βHF/(ωspa) ≈ 0.01 < 0.33 ≈ ωspa/c. Inter-
estingly, however, according to Fig. 3(c) the overall blueshift
of the quadrupole roughly compensates the red shifting for
radii of about a ≈ 10 nm, which is not true for the dipole
resonance peak. Therefore, the net shift of a resonance appears
to sensitively depend on the resonance order. Finally, beyond
radii of 5.5 nm the right flank of the dipolar peak, which ex-
hibits a growing asymmetry towards larger radii, increasingly
overlaps with the region of bulk plasmons.

In order to quantify the effect of nonlocal damping, we fit
the peaks in both, the high-frequency Euler-Drude as well as
the Halevi model with Lorentzians. Afterwards, we deduce
both, the width and amplitude as functions of the cylinder
radius. The results are depicted in Fig. 3(e). The positive
difference in widths relative to the value of the Euler-Drude
model increases towards lower radii and the difference is al-
ways larger for the quadrupole mode. Both are expected from
Eq. (24). The increase in width is accompanied by a decrease
in amplitude, which, again, turns out to be more pronounced
for the quadrupole mode. Notice, again that for increasing
radii, retardation effects are pronounced. Nevertheless, the
relative difference decreases in this direction.

IV. TRANSLATION INTO THE TIME DOMAIN

In Sec. III our considerations have been carried out within
the frequency domain. Additional insight can be obtained
from time-domain considerations. For this purpose, we con-
sider Eqs. (3) and (4). After a few algebraic manipulations,

we find

(−iω + γ )J(r, ω) = ε0ω
2
pE(r, ω) − β2

HF∇ρ(r, ω)

+ 4v2
F

15

γ

γ − iω
∇ρ(r, ω). (28)

From our previous discussions, we recall that the Halevi
model introduces additional dispersion in the nonlocal gradi-
ent term of the high-frequency Euler-Drude equation, which
leads to the last term on the r.h.s. of Eq. (28). In order
to incorporate dispersive response into a time-domain nu-
merical framework, the technique of auxiliary differential
equation (ADE) is often applied [66]. In our specific case, we
equate the last term of Eq. (28) with a current JD multiplied by
the negative damping rate −γ . Performing an inverse Fourier
transform to the time-domain yields the ADE

∂t JD(r, t ) + γ JD(r, t ) = −4v2
F

15
∇ρ(r, t ), (29)

which, apart from the temporal-derivative term on the left-
hand side (l.h.s.), is reminiscent of Fick’s first law, describing
an ordinary diffusion current. Equation (28) can then be
rephrased in the time domain as

∂t J(r, t ) = ε0ω
2
pE(r, t ) − β2

HF∇ρ(r, t )

− γ [J(r, t ) + JD(r, t )]. (30)

In order to clarify the origin of the auxiliary current, we
consider the viscoelastic counterpart of Eq. (28). It can be
derived from Eq. (6) by applying the continuity equation as
well as the Gauß-Maxwell law and considering the longitudi-
nal current only. The identification with the Halevi velocity is
then mediated by Eq. (9), which can be recast into

β2
H(ω) = β2

HF + 4

3

[
−iωη̃(ω) − v2

F

5

]
. (31)

The squared velocity v2
F/5 = −iωη̃(ω)|ω�γ corresponds to

purely elastic waves and serves to restore the Thomas-Fermi
velocity in the hydrodynamic limit. A comparison of Eq. (31)
with the prefactors of the density-gradient terms in Eq. (28)
eventually allows for an identification of the additional dis-
persion with viscoelastic shear, encoded in η̃. As visible in
the second term on the r.h.s. of Eq. (6), η̃ enters there with a
numerical prefactor of 4/3. Multiplying the latter with v2

F/5,
the squared diffusive velocity v2

D = 4v2
F/15 in Eq. (29) is

recovered.
While the dynamics of J is coupled directly to that of JD

[see Eq. (30)], the dynamics of the current JD is indirectly
related to J via the longitudinal stress ∇ρ(r, t ) emerging in
Eq. (29). We can obtain insight into the modified dynamics,
introduced via the auxiliary current, by inspecting the induced
charge density. For this reason, we introduce the decomposi-
tion

ρ = ρ̃ + ρD. (32)

Using Eq. (32) in the continuity equation, we obtain ∇ · JD =
−∂tρD and rephrase Eq. (29) as

∂2
t ρD + γ ∂tρD − v2

DρD = v2
Dρ̃. (33)
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Interestingly, if the r.h.s. of Eq. (33) was zero the Catta-
neo equation would be obtained [29]. Indeed, back in 1948,
Cattaneo modified the ordinary diffusion current of a clas-
sical substance, given by Fick’s first law, by employing a
relaxation-time approach. This enforces a finite propagation
velocity of the classically diffusing quantity [29]. Quantities
that obey this type of equation perform a hybrid diffusive-
wavelike propagation [49,67]. Which propagation paradigm
dominates, depends on the relative temporal change of the
respective quantity [67] and in our case it can be assessed
through

fD =
∣∣∣∣∂tρD

γ ρD

∣∣∣∣. (34)

For fD � 1, the l.h.s. of Eq. (33) describes a wavelike trans-
port in the collision-less regime, while for fD � 1 one has
a diffusive transport in the collision-dominated regime. Ac-
cordingly, close to the collisionless regime, a small diffusive
contribution obstructs a purely wavelike motion [49]. Notice,
however, that differently from the Cattaneo equation our hy-
brid propagation is modulated by the dynamics of ρ̃ in the
r.h.s. of Eq. (33).

Actually, both types of propagation are also found for the
total induced charge. In order to facilitate the discussion, we
introduce the rate f similar to Eq. (34), but in terms of ρ.
Considering Eqs. (29) and (30) in conjunction with the Gauß-
Maxwell law and the continuity equation yields

−ω2
pρ = (

γ ∂t − β2
TF∇2

)
ρ (35)

in the hydrodynamic ( f , fD � 1) and

−ω2
pρ = (

∂2
t − β2

HF∇2
)
ρ (36)

in the elastic regime ( f , fD � 1). Accordingly, in these
regimes the conduction electrons exhibit diffusive and wave-
like transport, respectively, with a propagation velocity that
changes from βTF to βHF. This is linked to the insight that
the bare Euler-Drude model yields a Cattaneo-type differ-
ential equation for the totally induced charge. However, the
Cattaneo-type dynamics of the Euler-Drude model is modu-
lated by the Coulomb interaction, which introduces a restoring
force that keeps the electrons within the metal [see, for in-
stance, the l.h.s. of Eqs. (35) and (36) in the respective
asymptotic]. Incidentally, the restoring term originates in the
electric field that enters Eq. (28). Since screened dielectric
functions are constructed as those functions, which connect
the current not only to some external but also to the internal
field, we find that according to Halevi’s extension

εH(k, ω) = 1 − ω2
p

ω(ω + iγ ) − β2
HFk2 + γ v2

Dk2/(γ − iω)
.

(37)

The restoring term, proportional to ω2
p, only enters through

the numerator of the second term on the r.h.s. of Eq. (37).
In the hydrodynamic regime, the pole of this very term turns
purely diffusive, i.e., ω = −i(β2

TF/γ )k2, and becomes purely
wavelike in the elastic regime, i.e., ω2 = β2

HFk2.
Finally, it is opportune to remark that the quantum-

mechanical nature of the conduction electrons enters the
equations of motion solely via the characteristic velocities β,

which are all proportional to the Fermi velocity. Apart from
this, these equations are similar to those of classical material
dynamics. This can be understood by reformulating the fourth
condition of the viscoelastic model, [see Eq. (5)] to

� ∼ vF/γ � 1/kF ∼ λF. (38)

As a result, the (bulk) mean-free-path � is much larger than the
Fermi wavelength λF within the viscoelastic model. Hence,
a representative electron conducts a random walk in which
successive collisional events are independent of each other
and quantum interference effects are absent [41].

V. COMPARISON WITH THE GNOR MODEL

In the previous Sec. IV, we have shown that the Halevi
model coherently extends the low- and the high-frequency
Euler-Drude model via an additional current that shares some
similarities with a diffusive current according to Fick’s first
law but also a closer connection with the Cattaneo equa-
tion. An extension of the Euler-Drude model due to diffusive
dynamics is also a key element of the GNOR model [18].
Therefore, it is worthwhile to discuss similarities and differ-
ences of the GNOR and the Halevi model.

In Refs. [15,18,19,68] a generalized formal approach to
nonlocality within linear response theory was discussed.
Given a position r within the electron continuum, the influ-
ence of nonlocal processes is limited to a neighborhood with
an extent that is usually smaller than the length scale of vari-
ation of the electric field. Within the constitutive equations,
this allows for a Taylor expansion of the field of the electron
continuum where each term corresponds to a certain order of
nonlocality. For a homogeneous, isotropic medium with local
response described by the Drude model, the leading-order
nonlocal current density is then given by

−iωJ(r, ω) = ε0ω
2
pE(r, ω) − γ J(r, ω)

− ν2∇[ε0∇ · E(r, ω)]. (39)

The last term on the r.h.s. lumps together the effects of the
considered order of nonlocality that extends the local Drude
response. As remarked in Ref. [19], the nonlocality manifests
itself in the longitudinal current response. Since it has been
pointed out that surface-plasmon-polaritons are affected not
only by the longitudinal response [68], we add that the trans-
verse nonlocality of the viscoelastic model, Eq. (6), serves as
a plausible amendment.

Eventually, in order to construct the GNOR model, first
the center-of-mass current ρ0v is defined to fulfill the high-
frequency Euler-Drude model. The total current is then
defined by the sum of the latter and a diffusive current
[18,19,68], such that

J(r, ω) = ρ0v(r, ω) − D∇ρ(r, ω). (40)

Accordingly, the diffusion is basically introduced by hand,
following Fick’s first law [29,68], given a diffusion constant
D. In order to prohibit the buildup of charges, this constant has
to be positive. Within the definition of Eq. (40), it can then be
shown that the ν2 coefficient in Eq. (39) takes the form

ν2 = β2
HF + D(γ − iω). (41)
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In the GNOR model, this expression represents the counter-
part of Halevi’s interpolation formula defined in Eqs. (4) and
(31). Both models include the high-frequency Euler-Drude
model, which introduces a nonlocal process characterized by
the length scale �β = βHF/ω. Further, the GNOR and the
Halevi model, Eqs. (41) and (31), respectively, provide an
extension of βHF to complex-valued velocities. In the original
GNOR model, the diffusion constant is estimated via D ∼
v2

F/γ [18], yielding a diffusive length scale �D = √
D/ω ∼

vF/
√

γωp, which we have evaluated at the plasma frequency.
Therefore, for good conductors (γ /ωp � 1), this diffusive
scale is much larger than �β ∼ �D

√
γ /ωp. In contrast, within

the Halevi model �β is larger than the corresponding diffusive
length scale, which can be defined from Eq. (4), i.e., �Hal

D ∼√
γ /ωp(vF/ωp) ∼ �β

√
γ /ωp. The mismatch in the frequency

dependence of each extension to βHF has also been pointed
out in Ref. [60].

Within the GNOR model, the auxiliary differential equa-
tion for the additional current reads

γ JGNOR(r, ω) = [
ν2 − β2

HF

]∇ρ(r, ω), (42)

where we isolated the part proportional to βHF stemming from
the Euler-Drude model. Upon inserting Eq. (41) as well as
the continuity equation, where the total current now obeys
Eq. (40) per construction, we find

γ JGNOR(r, ω) = Dγ∇ρ(r, ω) − D∇[∇ · J(r, ω)]. (43)

The dynamics of the total current within the GNOR model is
then given by

−iωJ(r, ω) = ε0ω
2
pE(r, ω) − γ J(r, ω) − (

β2
HF + Dγ

)
× ∇ρ(r, ω) + D∇[∇ · J(r, ω)]. (44)

As a result, we see that the first term on the r.h.s. of Eq. (43)
adds to the density gradient term of the high-frequency Euler-
Drude equation. Beyond that the second term on the r.h.s.
of Eq. (43) formally reproduces the longitudinal shear con-
tribution of Eq. (6). The corresponding coefficient has to be
positive, which is consistent with D > 0. Let us now utilize
the frequency-dependent (real-valued) diffusion constant de-
duced in Ref. [19] by equating the imaginary parts of Eqs. (41)
and (4) given by

D = v2
D

γ

γ 2

ω2 + γ 2
. (45)

We see that the prefactor of the density gradient term of
Eq. (44) gives the characteristic velocity β2

HF in the high-
frequency regime and β2

HF + v2
D > β2

TF in the low-frequency
regime. This means that the characteristic speed predicted
by the GNOR model at low frequency is not in agreement
with the Thomas-Fermi theory. This results from the fact that
D(ω � γ ) ∼ γ /ω2 and D(ω � γ ) ∼ 1/γ , which is not the
case in the Halevi model. Beyond that, by equating the real
parts of Eqs. (41) and (4), we find the negative of the r.h.s. of
Eq. (45) if we assume a real-valued diffusion constant.

Another difference between the GNOR and the Halevi
model arises when we derive the counterpart of Eq. (40) for
the Halevi model. For this purpose, we consider Eq. (28) and

define the total current as

J(r, ω) = ρ0v(r, ω) + JH(r, ω). (46)

Trying to restore the high-frequency Drude-Euler equation for
ρ0v, we require the equivalence between JH(r, ω) and the
residual terms and obtain

JH(r, ω) = −v2
D

γ

γ 2

(ω + iγ )2
∇ρ(r, ω). (47)

As one should expect from our comments on the Cattaneo-like
dynamics involved in the Halevi approach, the dynamics of
this additional current follows a non-Fickian diffusion. The
difference originates in the way how local equilibrium is im-
plemented in the Mermin approach. To yield equivalence with
the Ansatz in Eq. (40), the diffusion constant does not only
have to be frequency dependent, but also complex valued.

The particular choice of diffusive paradigm also influences
the longitudinal wavenumber. Therefore, we added the re-
sults of the GNOR model to Figs. 2(a) and 2(b), using the

approximation D ≈ v2
F
γ

that has been suggested in Ref. [18].
First, the real part exhibits a low-frequency local maximum,
just as the Halevi model. However, there is no additional
kink root below the plasma frequency. Further, beyond the
plasma frequency the high-frequency Euler(-Drude)-model is
not followed as closely. Considering the imaginary part, the
amplitude of the low-frequency maximum is smaller than in
the high-frequency Euler-Drude model as well as the Halevi
model, owing to the larger velocity

√
β2

HF + Dγ > βHF, βTF.
This larger velocity is also tied to a larger blueshift for res-
onances that potentially occur within this frequency regime
in nano-objects when considering a hard-wall boundary con-
dition. A similar observation has been made in Ref. [63].
Further, for frequencies beyond the volume plasma frequency,
the GNOR model does not follow the high-frequency Euler-
Drude model as closely as does the Halevi model. Specifically,
the imaginary part increases in the GNOR-model instead of
decreasing in the Euler-Drude and the Halevi model.

We deduce that a direct identification of both diffusive
extensions of the high-frequency Euler-Drude model has to
be exercised with caution although these models share certain
qualitative similarities. Interestingly, JD, when added to the
shear-corrected pressure term (∝ β2

HF) yields a viscoelastic
single-relaxation-time approximation of the diffusion current
derived in Eq. (31) of Ref. [69]. In this reference, a total
current is derived, which is close to Eq. (40), provided a
real-valued diffusion constant. However, the derivation is con-
fined to a steady-state case. The diffusion is related to the
inhomogeneity of the Thomas-Fermi pressure and, therefore,
Dγ = v2

F/3, which provides the nonlocal correction to Ohm’s
law. This correction is required to demonstrate that within
a metal a vanishing total current does not yield a vanishing
electric field (as otherwise a complete screening of charges
would consequently appear [69]).

Recently, it has been reported that the GNOR model leaves
the scope of the (bulk) Boltzmann(-Mermin) model by in-
troducing high-frequency (optical) diffusion [15]. Further,
a microscopic justification of the diffusive extension inher-
ent in the GNOR model has been proposed by resorting
to surface response functions that employ the Feibelman d
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parameter [15,63,64]. Interestingly, the Halevi model pro-
vides an alternative unifying description of the size-dependent
frequency shift and broadening of plasmonic resonances in
nanometer-structured metals, which stays within the scope
of the Boltzmann-Mermin model. As a result, the Halevi
model is firmly rooted in bulk arguments before applying any
boundary conditions. However, owing to the different scaling
with the ratio γ /ωp (given a frequency-independent D), the
nonlocal damping of the Halevi model is smaller in amplitude
relative to the GNOR model.

Finally, notice that Ref. [63] only considers the Boltzmann
equation without the Mermin correction while the latter has
been mentioned in one of the original publications on the
GNOR model in Ref. [19]. Actually, in Ref. [43], the Mer-
min correction has been linked to an additional, diffusive
current. We stress this fact, since the Mermin-Ansatz for the
single-relaxation-time approximation introduces an additional
term, which prohibits the occurrence of a charge sink in the
continuity equation (see Refs. [8,21]).

VI. TEMPORAL EVOLUTION OF FIELDS
IN THE HALEVI MODEL

Equations (1), (29), and (30) together with the slip and
Maxwell’s boundary conditions determine the complete sys-
tem of equations for the description of plasmonic resonances
within the Halevi model.

In order to solve the Maxwell equations with this material
model for an arbitrary geometry of a scatterer, we implement
the time-domain version of the Halevi model via ADEs (see
Sec. IV) into our home-made discontinuous Galerkin time-
domain (DGTD) approach [66]. The latter is a finite-element
method that is specifically designed to solve equations in
conservation form and we have utilized the algorithm in
nodal form developed by Hesthaven and Warburton [70]. We
employ third-order Lagrange polynomials as basis functions
and confirm that fourth-order polynomials give, basically, the
same results. Further, within the DGTD approach a numerical
flux is introduced in order to couple adjacent elements. We
utilize a pure upwind flux for the Maxwell equations [66,70]
and employ for Eqs. (1) and (30) the Lax-Friedrichs flux [70].
Finally, we solve the ADE, Eq. (29), using a central flux. The
resulting DGTD spatial discretization yields a set of ordinary
differential equations of first order in time, which we solve
via a fourth-order Low-Storage Runge-Kutta method with 14
stages [71]. The Drude and Euler-Drude model have also
been implemented within DGTD and for details, we refer to
Refs. [66] and [72], respectively.

For our subsequent simulations, we consider a cylindrical
silver wire of radius 10 nm (see Table I for the material
parameters) immersed in vacuum. The wire is illuminated by
an electromagnetic plane wave with wave vector and electric
field normal to the cylinder axis, i.e., identical to the analytical
case of Sec. III (see also Fig. 1 for an illustration of the
setup). The exciting pulse is centered around ω0 = 7.4 eV
(which is roughly 0.8 times the plasma frequency) and has
a Gaussian envelope with a FWHM of 1.57 fs. This pulse is
injected into the system using the total-field/scattered-field
(TF/SF) technique [66]. Since the problem effectively reduces
to two dimensions, the TF/SF contour is chosen to be a square

with edge length 40 nm centered on the cylinder axis. The
pulse is launched from the left edge of the TF/SF contour
such that the maximum there occurs at t0 = 4.67 fs. The
scattered field box is bounded by the TF/SF contour and a
centered square of edge length 440 nm. To prevent unphysical
back reflexions, we surround the entire physical domain with
perfectly matched layers and apply Silver-Müller boundary
conditions at the outer boundary given by a centered square
with edge length 1.04 µm (see Fig. 8 for an illustrative mesh).
The corresponding mesh is generated using Gmsh [73]. In
order to adequately resolve the cylindrical material interface,
we utilize a minimal (maximal) insphere radius of 0.04 nm
(0.32 nm) for the finite elements near this interface—each
element being of triangular shape. For further details on the
convergence characteristics and computational resources we
refer to the Appendices B and C.

In Sec. II, we have elaborated on the Halevi model as an
extension of the high-frequency Euler-Drude model. Here,
we proceed to perform a direct comparison of the numeri-
cal results for the two approaches and focus on the relative
difference of the spatiotemporal electric field distributions
according to

�Ei(r, t ) = E linHd
i (r, t ) − EHal

i (r, t )

max(r,t ) E linHd
i (r, t )

, (48)

where i ∈ {x, y}, i.e., for the x and y component of the electric
field. We would like to recall that our excitation pulse propa-
gates along the x axis and is polarized along the y axis.

From Fig. 4, we infer that the x and y components exhibit
differences in amplitude, which at t ≈ 4.67 fs is most sig-
nificant at the surface. As the pulse progresses, the relative
differences assume the form of spatially confined oscilla-
tions close to the surface at t ≈ 6.34 fs. Around this time,
the left flank of the pulse leaves the cylinder. Around t ≈
13.68 fs, the oscillations have traveled about half the way to
the cylinder’s center and reach the center around t ≈ 20.68 fs.
Subsequently, the oscillations start to disperse across the en-
tire cross section of the cylinder and, ultimately, become
damped out. We provide the last time frame at t ≈ 46.03 fs
in order to make visible that the oscillatory pattern has dis-
tributed over the cylindrical cross section. Incidentally, the
relative difference at this time instance is reminiscent of the
mode picture of hydrodynamic bulk plasmons [72]. As such,
the oscillations corresponding to the y component posses,
e.g., a mirror symmetry with respect to the xz plane and are
mapped onto themselves by a rotation of 180 degree around
the cylinder axis. The oscillations within the x component,
however, are mapped onto themselves, e.g., by a 90 degree
rotation followed by mirroring at the yz plane. These symme-
tries are also present at the other time instances. Nonetheless,
the differences in the field distributions are rather weak.

In Sec. IV, we have shown that the dispersion of the
Halevi model [as compared to the high-frequency Euler-
Drude model, Eq. (28)] translates into an additional current
that follows Eq. (29). Accordingly, we expect that the differ-
ence in the electric field is tied to the spatiotemporal evolution
of this additional current. Consequently, in Fig. 5 we display
the x and y component of the additional current JD at the
same time instances where we depicted the field differences in

115425-12



HALEVI’S EXTENSION OF THE EULER-DRUDE MODEL … PHYSICAL REVIEW B 107, 115425 (2023)

10 0 10
x [nm]

10

5

0

5

10

y
[n

m
]

10 0 10
x [nm]

10 0 10
x [nm]

10 0 10
x [nm]

10 0 10
x [nm]

4

2

0

2

4
×10 4

10

5

0

5

10

y
[n

m
]

10 0 10
x [nm]

10 0 10
x [nm]

10 0 10
x [nm]

10 0 10
x [nm]

10 0 10
x [nm]

4

2

0

2

4
×10 4

FIG. 4. Illustration of the time evolution of the relative difference of Ey (upper row) and Ex (lower row) given by Eq. (48) between the
Halevi and high-frequency Euler-Drude model across the horizontal cross section of a cylindrical scatterer situated in vacuum. The cylinder
has a radius of 10 nm and is made of silver with material parameters according to Table I (see also Fig. 1 for the scattering setup). Spatially
confined field oscillations build up and propagate towards the center until they eventually spread across the entire disk. The vertical dashed
line in the upper row marks the line considered in Fig. 6.

Fig. 4. We observe that, at all time instances, both components
concentrate the maximal amplitude at the surface of the cylin-
der. However, a small contribution is given by the spatially
confined oscillations, which propagate in essentially the same
way as the relative difference in the field components, also
respecting the afore-discussed symmetry properties.

In order to determine how fast the oscillations in the rela-
tive field difference propagate into the scatterer, we consider
a cut through the cylinder center as indicated in Fig. 4.
Given the pulsed nature of our excitation, these oscillations
build up and assume the form of wave packets—due to

symmetry one in each half of the cut. In Fig. 6(a) we
provide an illustrative time frame. To highlight the spatial
confinement, we determine the interpolative (upper and lower)
envelope. Specifically, we sample the maxima and minima
and perform corresponding cubic spline fits [74]. This ap-
proach works well for positions away from the surface but
experiences some problems near the surface where the bound-
ary conditions obstruct the formation of well-developed wave
packets. From the global extrema of the upper and lower
envelopes of, e.g., the lower wave packet, we can deduce the
movement of the wave packets, which ultimately yields two

FIG. 5. Illustration of the time evolution of the current components JD,y (upper row) and JD,x (lower row) of the auxiliary current [Eq. (29)]
within the horizontal cross section of a silver cylinder (radius a = 10 nm, see Fig. 1 for the general scattering setup). Starting from the surface
region an oscillatory contribution propagates towards the cylinder’s center and finally extends across the entire cross section.
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FIG. 6. Snapshot of the relative difference of Ey given by Eq. (48) between the high-frequency Euler-Drude and the Halevi model at time
t ≈ 13.68 fs along a vertical through the cylinder, as outlined by the dashed line in Fig. 4. (a) Relative difference in Ey, displaying two wave
packets. (b) Onesided, spatial FFT of the signal of (a) as function of spatial frequency q (left part), as well as a spectrogram exhibiting the
short-time-Fourier-transform (STFT) of the signal in panel (a) using a Hamming window (right part). Both plots of (b) feature the same y axis.
The spatial frequency resolution of the spectrogram is chosen as roughly 1 nm−1 to bring out the positive chirp towards the center within the
two wave packets of panel (a). The sampling rate of roughly 1 nm−1 yields a Nyquist limit of qmax ≈ 5 nm−1. The color bar of the spectrogram
is truncated to yield a better contrast in the dominant spatial frequency range of roughly q ∈ [0.25, 1.5] nm−1—the upper bound being marked
by a horizontal dashed line. (c) Position yenv of the global maximum (blue dots) and global minimum (orange stars) of the left wave packet
[as exemplified in (a) for t ≈ 13.68 fs] as a function of time. A linear fit is provided yielding estimates for the upper envelope (ue) and lower
envelope (le) group velocity.

estimates of the corresponding group velocity. For instance,
we observe in Fig. 4(c) that the extrema lie close to each other
from about t ≈ 12.03 fs (at which time a nice wave packet has
build up) up to about t ≈ 23.05 fs where the two wave packets
have merged. From a linear regression, we obtain the veloci-
ties vue/c = 1.38 × 10−3 and vle/c = 1.39 × 10−3 (where c is
the vacuum speed of light) for the upper and lower envelope,
respectively. This is a rather interesting result, since these
velocities are considerably smaller than all velocity scales that
we have discussed so far. In fact, the values are closest to the
elastic shear velocity vF/

√
5.

Further, within the pulse the spatial frequency experiences
a chirp. Therefore, we provide in Fig. 4(b) the one-sided
Fourier transform of this signal. While this provides an
overview of the relevant frequency contributions it lacks
the desired spatial resolution. Therefore, we also provide in
Fig. 4(b) the corresponding spectrogram. Although the mini-
mal spatial resolution of the spectrogram corresponds to about
0.1 nm, the inverse scaling between spatial frequency and
spatial resolution forces us to fix the spatial resolution to
about 1 nm. Despite its coarseness, this resolution allows us
to elaborate on the positive spatial chirp (towards the cylinder
center) within each wave packet. Specifically, we find that the
highest available frequencies are tied to the region, where the
wave packets are located and, in this region, they increase
towards the center.

We conclude our survey by calculating the modal distri-
butions for the dipolar and quadrupolar resonance for both,
the Halevi and the high-frequency Euler-Drude model from
our time-domain simulations via an on-the-fly Fourier trans-
form. In Fig. 7 we depict the real part of the electric field
distributions at these resonances for the Halevi model and the
difference of these field distributions to the results of the high-
frequency Euler-Drude model. In addition, we normalize the
difference to the largest value obtained within the Euler-Drude
model at the respective frequency in order to bring out better
the deviations between the results. First, we observe that these

modal patterns within the Halevi model are compatible with
the symmetry classification of the Euler-Drude model [14].
Further, the (real-parts) of the field amplitudes in the Halevi
model are enhanced. Specifically, for the dipole resonance we
obtain an enhancement in the vicinity of the surface with a
fourfold rotation symmetry for the x and y component of the
electric field. For the quadrupolar resonance, the differences
inside the scatterer are more inhomogeneous. Overall, the
field enhancement is relatively small.

VII. CONCLUSIONS AND OUTLOOK

To summarize, we have analyzed the physical properties
of the Halevi model for plasmonic materials. In particular,
we have identified the Halevi model as an extension of the
Euler-Drude model and have established its relation to the vis-
coelastic model by way of spectral as well as spatiotemporal
investigations of different aspects of plasmonic light-matter
interaction. We have further applied the Halevi model to
Ruppin’s hydrodynamic approach of Mie theory for cylinders
and determined the quasistatic plasmon-polariton resonances.
Thereby we have revealed a damping term, which exhibits
formal similarities to the collision-modified Landau-damping
previously discussed by Halevi. In turn, this might lead to a
physical justification of an earlier phenomenological descrip-
tion of limited-mean-free path effects of dipole surface modes
and we have shown how this damping term also affects higher-
order plasmon resonances. For an experimental comparison,
the corresponding linewidth values and the induced changes
were calculated for cylindrical nanowires. The viscous shear-
extension within the Halevi model eventually has lead to
nonlocal surface damping. Further, the Halevi extension led
to an increase in the relative difference of the width of surface
dipolar and quadrupolar extinction peaks for cylinder radii in
the range of 1 to 10 nm, where, generally, the effect is larger
for the quadrupolar resonance.

115425-14



HALEVI’S EXTENSION OF THE EULER-DRUDE MODEL … PHYSICAL REVIEW B 107, 115425 (2023)

10 0 10
x [nm]

10

0

10

y
[n

m
]

1

0

1
×10 4

10 0 10
x [nm]

10

0

10
y

[n
m

]

1
0
1

×10 4

10 0 10
x [nm]

10

0

10

y
[n

m
]

2

0

2
×10 3

10 0 10
x [nm]

10

0

10

y
[n

m
]

2

0

2
×10 3

10 0 10
x [nm]

10

0

10

y
[n

m
]

1

0

1
×101

10 0 10
x [nm]

10

0

10

y
[n

m
]

1

0

1
×101

10 0 10
x [nm]

10

0

10

y
[n

m
]

2.5

0.0

2.5
×101×101

10 0 10
x [nm]

10

0

10

y
[n

m
]

2.5

0.0

2.5

FIG. 7. Illustration of the electric field distributions of dipolar (left panel) and quadrupolar (right panel) resonances within the Halevi model
(upper row) as well as their relative differences to the corresponding modal distributions for the high-frequency Euler-Drude model (lower row).
The difference has been normalized to the maximum value obtained with the Euler-Drude model at the respective frequency. Positive (negative)
values of the respective distribution are complemented by positive (negative) values in the relative difference. The maximum enhancement
reaches about a tenth of a permille at the dipole frequency and about two permille at the quadrupole frequency. The relative difference inside
the scatterer is more inhomogeneous for the quadrupolar mode.

To complement the spectral investigations, we have em-
ployed the ADE technique to adopt the Halevi model for
time-domain simulations. The additional dispersion of the
latter yields a modification of the diffusion current of Fick
type. We have shown that the propagation of the induced
charge, related to the current modifications, shares similarities
with a hybrid, diffusive-wavelike paradigm as described by
the Cattaneo equation. The origin of the current has further
been rooted to the viscoelastic shear.

We have completed our analytical analysis by compar-
ing the Halevi model to the GNOR model—the latter being
another extension of the Euler-Drude model that includes a
diffusive contribution to the current, however, without asymp-
totic comparison to a semiclassical model. The GNOR-model
features several differences to the Halevi model that include a
low-frequency, characteristic velocity exceeding the Thomas-
Fermi value and the deviation from the Euler-Drude model
for frequencies beyond the volume plasma frequency. Fur-
ther, we have shown that the GNOR-model is connected to
a difference in the scaling of the diffusive lengthscale at plas-
monic frequencies by an additional factor ωp/γ relative to the
Halevi model. For typical metals and assuming a frequency-
independent GNOR-diffusion constant this additional factor
takes on values ωp/γ ∼ 102..103. As a result, while in the
GNOR model the diffusive length exceeds the length scale
of combined compression and shear, the opposite case is
manifest in the Halevi model. Finally, we have shown that a
direct comparison between the GNOR and the Halevi model
at intermediate frequencies suggest that the GNOR-diffusion
constant is complex valued and frequency dependent.

Employing a time-domain formulation of the Halevi
model, we have numerically determined the spatiotemporal
evolution of the electric field’s distributions in and around
silver nanowires. We have found that under pulsed excitations,
the differences of the electric field components between the

Halevi and the Euler-Drude model take on the form of wave
packets. These buildup at the subsurface region, subsequently
propagate towards the cylinder center from where they spread
across the entire cross section of the cylinder and eventually
fade away. This behavior correlates with a concomitant oscil-
latory contribution of the diffusive current. Upon analyzing
the resulting wave packet envelopes, we have inferred an
estimate of the corresponding group velocity, which, in fact,
has turned out to be smaller than all natural scales of the
Halevi and viscoelastic model. Further, we have determined a
positive chirp of the wave packets spatial frequencies towards
the center of the cylinder. Performing an on-the-fly Fourier
transform of the temporal evolution of the field distribution
we have determined the mode distributions of the dipolar
and quadrupolar resonance. The Halevi model preserves the
respective symmetries of the Euler-Drude model and—at
least for monomers—the differences between both models are
rather small.

Based on our results a few comments regarding possible
future routes are in order. First of all, our results concern-
ing scatterers rely on the hard-wall boundary condition in
the form of the so-called slip boundary condition. On the
mesoscopic scale, this constraint could be lifted by introduc-
ing an infinitesimal charge sheet, e.g., via a variation of the
composite-surface model of Ref. [75]. On the one hand, this
would yield an approximate treatment of spill-out effects that
are presently not contained within our model. On the other
hand, this could phenomenologically account for “chemical
interface damping”, i.e., charge-transfer effects across the
surface of a plasmonic nanoparticle and its surrounding host
material [27]. This could be further compared to the theory
of Persson [61] that connects the latter to interactions with
resonance states of adsorbates that form at a metal surface.
All these suggestions further rely on a spatially constant
equilibrium charge density. Lifting this constraint yields, in
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particular, another account of spill-out effects [17]. It is also
interesting to investigate to which extent the inhomogeneous
equilibrium density can be associated with spatially inho-
mogeneous material parameters (e.g., the shear modulus). In
elastic theory, such a characteristic effect is associated with
a mixture of transverse and longitudinal waves. In such a
description, we expect the mixture to occur deeper within
the scatterer as compared to the hard-wall-boundary scenario
with constant equilibrium density. This should also have an
impact on the nonlocal bulk resonances. In addition, a de-
tailed discussion on the difference between slip- and no-slip
boundary conditions is highly desirable. The latter cannot
be enforced ad hoc, but has to be physically motivated with
regard to the specific surface characteristics of the scatterer
under consideration [54]. A potential justification could be
inferred by embedding the Halevi model into the viscoelastic
model, which, in turn, would provide a clear path to the in-
troduction of transverse nonlocality. Specifically, the absence
of a tangential surface current due to e.g. surface irregulari-
ties can affect the neighborhood of the surface due to shear,
thus providing a physical motivation of the no-slip model.
So far, the latter has been considered only for a half-space
of metal yielding a nonlocal correction to the well-known
s-polarized Fresnel formula [39]. Further, an application of
the full viscoelastic model to thin semiconductor films has
been performed in Ref. [60], albeit with the slip boundary
condition.

Finally, for the setup of a single nanowire considered in our
paper, the relative differences in the widths and amplitudes of
resonances between the Halevi and Euler-Drude model have
turned out to be small. However, this does not always have
to be the case. It is, therefore, very interesting to seek for
physical setups in which changes to the optical, dielectric bulk
properties (as encoded in the dielectric functions) are more
pronounced. For instance, in Ref. [28] it has been pointed
out that the extinction of colloidal metallic nanospheres is
very sensitive to the changes of bulk quantities. Further, it is
interesting to investigate dimer and related structures, i.e., to
consider the effect of the Halevi model on the electromagnetic
field distribution in nanogap systems. Recently, such systems
have witnessed significant attention due to the potential of
strongly modified light-matter interaction, for instance, with
regards to strong coupling of emitters as well as quantum
[76,77] and/or enhanced nonlinear optical effects. Finally,
more complex geometries offering additional geometric pa-
rameters will be highly relevant in order to tune the near-field
modifications brought about by the Halevi model. For com-
pleteness, we should like to note that the implementation
of the Halevi model for fully three-dimensional systems is
straightforward.
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APPENDIX A: QUASISTATIC CYLINDRICAL
PLASMON-POLARITON RESONANCES

In this Appendix, we calculate the plasmon-polariton
resonances localized at the surface of the cylinder within
the quasistatic approximation and the Halevi model [see
Eq. (23)].

In Sec. III, we have considered the scattering of a plane
wave that propagates in vacuum and is normally incident onto
an infinitely extended circular cylinder for the polarization
perpendicular to the cylinder axis. Via Ruppin’s extension of
the corresponding Mie solution (expansion into cylindrical
harmonics), we have obtained the expansion coefficients of
the scattered field in Eq. (16). The surface resonances can be
determined from the poles of expansion coefficients accord-
ing to

0 = [cn + Dn(kTa)]Hn(k0a) −
√

εT(ω)H ′
n(k0a). (A1)

From the definitions of the three wave numbers k0, kL, kT eval-
uated close to the surface plasma frequency ωsp, we deduce for
cylinders with radii smaller than half the plasma wavelength
c/ωp and larger than half the effective extent of nonlocality
βHF/ωp (about 10 nm and 0.01 nm, respectively, for common
metals) that

|k0a|, |kTa| � 1 and 1 � |kLa|. (A2)

Accordingly, we may utilize of Eq. (A1) the Bessel functions’
asymptotic representations (see Ref. [55]). We then find the
implicit dispersion relation

εT(ω) = −1 − in/kLa

1 + in/kLa
≈ −1 + 2in

kLa
, (A3)

where, in the last step, we have further assumed that n �
|kLa|. Using Eq. (10), we find that the local solution to first
order in γ /ωp assumes the form

ωloc = ωsp − iγ

2
+ O

(
γ 2

ω2
sp

)
. (A4)

Here, we have selected the solution with a positive real part.
The resulting dispersion relation resembles that of the local
surface plasmons at a planar interface between vacuum and
a half-space filled with metal. Consequently, for normally
incident and quasistatic electric fields polarized perpendicular
to the cylinder axis, the geometry does not alter the local
surface plasmons. This is a consequence of the quasistatic ap-
proximation. Otherwise, even the local solution would depend
on the pole order n and radius a.

Next, we seek a solution to Eq. (A3) that includes a nonlo-
cal correction to Eq. (A4) to leading order. Therefore, we use
the Ansatz

ωn = ωsp

(
1 − iγ

2ωsp
+ δn

)
with |δn| � 1. (A5)

Considering the Taylor expansion in δn of Eq. (10) around
ω = ωn, we find

εT(ωn) = εT(ω̃sp) + ε′
T(ω̃sp)ωspδn + O

(
δ2

n

)
, (A6)
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where we have introduced ω̃sp = ωsp − iγ /2. To make fur-
ther progress, we require the following Taylor expansions in
γ /ωsp,

εT(ω̃sp) = −1 + O
(

γ 2

ω2
sp

)
,

ε′
T(ω̃sp) = 4

ωsp
+ O

(
γ 2

ω2
sp

)
, (A7)

which yields

εT(ωn) ≈ −1 + 4δn. (A8)

Equating this result with the r.h.s. of Eq. (A3), we find for the
nonlocal correction the implicit relation

δn = in

2a

1

kL(ωn)
. (A9)

Keeping Eq. (20) in mind, we have to expand Eq. (4) in a
manner analogous to Eqs. (A6) and (A7) and eventually arrive
at

β2
H(ωn) ≈

[
1 − 4i

9

γ

ωsp

]
β2

HF. (A10)

Here, we have dropped the first-order term of the Taylor
expansion because this is proportional to (γ /ωsp)δn.

Upon inserting Eqs. (A8) and (A10) into Eq. (20) we
obtain

1

kL(ωn)
≈ − iβHF

ωsp

[
1 − 2i

9

γ

ωsp
+ δn

]
, (A11)

which, when inserted into Eq. (A9), gives

δn = nβHF

2ωspa

(
1 − 2i

9

γ

ωsp

)[
1 − nβHF

2ωspa

]−1

. (A12)

Indeed, since n � ωspa/βHF and γ � ωsp, we find |δn| � 1.
To first order in nβHF/ωspa, the second term inside the square
brackets can be neglected and this gives Eq. (23).

APPENDIX B: CONVERGENCE STUDY

We have assessed and ascertained the accuracy of our sim-
ulations performed in Sec. VI with reference to the extinction
efficiency. The numerical results are obtained by computing
the Poynting vector, which is integrated along the (inside and
outside of the) TF/SF contour and normalized by the incident
irradiance as well as twice the cylinder radius. The cylinder
(a = 10 nm) is centered in a square TF/SF contour of 40 nm
edge length. To prevent unphysical back reflections, we placed
a PML far away, resulting in a SF-region bounded by a 440 ×
440 nm outer square padded from the outside by a 300 − nm
thick PML. Thus, the Silver-Müller boundary condition is also
placed far away (see Fig. 8). Since (in the chosen frequency
range) the nonlocal effects are significant close to the surface
of the cylinder we have identified the surface discretization as
the most crucial parameter. In our convergence study, employ-
ing GMSH [73] as meshing software, we have constrained the
maximum edge length of the triangular finite elements in the
cylinder to about 1 nm and have constructed a sequence of

Perfectly Matched
Layer

Scattered-Field
region

 Silver-Müller 
boundary
condition

a

Total-Field/
Scattered-Field 

contour

Total-Field
region

FIG. 8. A representation of the meshed computational domain
(see Sec. VI) and a zoom into the TF region including the cylindrical
scatterer. Notice the progressive refinement of the mesh cells at the
boundary of the cylinder.

meshes with consecutively smaller edge lengths at the bound-
ary down to about 0.2 nm. Away from the cylinder boundary
the edge length slowly increases (see Fig. 8). In particular,
we employed five different meshes with optimal edge length
at the surface hsurf defined as {0.6; 0.5; 0.4; 0.3; 0.2} nm. This
led to minimal in-sphere radii of {0.12; 0.10; 0.08; 0.06; 0.04}
nm. Employing, e.g., the Halevi model, in each simulation,
the surface dipole and quadrupole frequency converged to the
analytical values of ω ≈ 0.684ωp and ω ≈ 0.708ωp. However,
there was a finite difference in the amplitude of the extinction
efficiency when comparing the simulations and Mie theory.
Hence, we have considered the frequency-dependent relative
difference

�Qrel(ω) =
∣∣QNum

ext (ω) − QMie
ext (ω)

∣∣
QMie

ext (ω)
, (B1)

where “Num” and “Mie” refer to the numerical and analyti-
cal efficiency, respectively. Applying this measure, averaged
over the relevant frequency interval of ω ∈ (0.6, 0.8)ωp, to
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FIG. 9. Convergence study for the time-domain simulation yield-
ing the evolution of the auxiliary current as depicted in Fig. 5. The
study is based on Eq. (B1) averaged over the relevant frequency range
of ω ∈ (0.6, 0.8)ωp. The analytical reference is obtained from the
Mie theory outlined in Sec. III.

each edge discretization, a converging trend can be observed
in Fig. 9. Further, evaluated at the quadrupolar resonance
frequency, Eq. (B1) amounted to relative deviations below
one percent for the coarser and around one permille for the
finest mesh. Similarly, applying the measure at the dipo-
lar frequency, the deviation was always well below one
permille.

Eventually, we opted for the finest simulation as depicted in
Fig. 8. Note that the actually resolved spatial distance is even
smaller than the in-sphere radius of 0.04 nm, being given by
the interspacing of nodes inside each triangle. This value is
smaller than the Thomas-Fermi length ∼vF/ωp ≈ 0.1 nm of

silver, which is the characteristic lengthscale for the metallic
nonlocal effects considered here. The maximum in-sphere
radius of the cylinder equals roughly 0.32 nm.

APPENDIX C: COMPUTATIONAL RESOURCES

In Sec. VI we have considered the temporal evolution of the
electric field inside a silver nanowire excited by a normally
incident plane wave with electric field polarized within the
horizontal plane. We have associated an oscillatory contribu-
tion prevalent within the field employing the Halevi model
but absent when enforcing the linear hydrodynamic material
model with the auxiliary current discussed in Sec. IV. For
the simulation of both models, we have employed the mesh
depicted in Fig. 8. When applying the DGTD method we used
the same time step for the temporal integration on all mesh
elements. Due to stability requirements, the finest triangle
then limits this global time step from above [66]. We opt
for a physical time step of dt ≈ 1.27 as. The total physi-
cal simulation time amounts to 127 fs, allowing to not only
study the above mentioned oscillation but also for a converged
extinction spectrum obtained from an on-the-fly Fourier trans-
form. The simulation of the Halevi model (yielding the current
evolution displayed in parts in Fig. 5) has been performed on a
desktop PC providing up to 32GB RAM using eight cores on
an INTEL XEON E-2288G CPU and took about 4 days and 7
hours. About 70 percent of the time was devoted to temporal
integration, leaving about 30 percent of the time for saving
data and performing the Fourier transformation. In essence,
these run times originate from the small time step that result
from the need to faithfully represent the curved geometry
via finite elements with sufficiently small edge length. Here,
curvilinear finite elements [78] would provide a much better
representation of the geometry, thereby considerably reducing
the required computational resources.
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