
PHYSICAL REVIEW B 107, 115423 (2023)
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In most cases, the formation of topological quantum states requires intrinsic crystalline symmetry to protect
either discrete or continuous degeneracies in real materials, which greatly hinders their realization in practice.
Patterned two-dimensional electron gas (2DEG), on the other hand, has become a very effective external means
to manipulate the symmetry to whatever we want. Here, taking nonsymmorphic symmetries as the focus of
attention, based on patterned 2DEG decoration, we reveal rich band-crossing features in two-dimensional
systems. It is demonstrated that in the presence of intrinsic spin-orbital coupling (SOC), wallpaper groups
p2mg, p2gg, and p4mg possess fourfold-degenerate Dirac nodal lines, and if Rashba SOC is further considered,
the fourfold-degenerate nodal lines disappear and hourglass Weyl fermions then emerge. Our results not only
afford an attractive route for designing robust nodal-line and hourglass Weyl semimetals in reality, but also pave
the way for designing ideal macroscale materials through rational extrinsic symmetry engineering.
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I. INTRODUCTION

During the past decades, beginning with the discovery
of topological insulators [1–5], topological materials have
become the subject of great interest and widespread enthu-
siasm in condensed matter physics, in which topological
semimetals are occupying an important position, including
Dirac [6–11], Weyl [6,12–17], and nodal-line semimetals
[7,18–25]. Distinct from Dirac and Weyl semimetals with
isolated band-crossing points, the crossings form either a
continuous line or a closed loop in momentum space near
the Fermi energy in nodal-line semimetals. Like the discrete
cousins, nodal-line semimetals are classified as Dirac and
Weyl ones depending on the degree of degeneracy. Since
the low-energy quasiparticles in nodal-line materials behave
differently from conventional Schrödinger-type fermions, sev-
eral novel properties have been proposed, such as chiral
anomaly [26] and nearly flat drumheadlike surface states
[27–29], which have opened an important route for achieving
high-temperature superconductivity [30,31], unique Landau
energy level [32,33], and anomaly in electromagnetic and
transport response [34–36].

However, all these topological materials described above
are based on intrinsic crystal symmetries, which are not
flexible enough once the material is determined, such as
specific crystal surface constraint, nonstable configuration.
While recently, instead of only relying on the intrinsic sym-
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metries, the possible use of external means to control the
symmetry of a system has yet to be explored [37–40], in
which patterned two-dimensional electron gas (2DEG) pro-
vides a very effective method, and has been widely studied
both in theory and experiment [40–47]. Experimentally, the
existing methods of implementing patterned 2DEGs can be
classified into two types, quantum well (QW) etching and
atom/molecule adsorption on a flat metal surface. The for-
mer is based on quantum wells where the external potential
is achieved by first defining arrays of disks using e-beam
nanolithography and then etching away the material outside
the disks by inductive coupled reactive ion shallow etching
[48,49]. In this method, the potential behaves as a weak
negative value [50] and is determined by the etching depth.
For the latter, external potential is introduced by absorbing
atoms/molecules on a flat metal surface viewed as a 2DEG
by the scanning tunneling microscopy tip [51,52], in which
the potential value is dependent on different atoms/molecules
absorbed (It is noted that the underlying 2DEG lattice may dif-
fer from the atom/molecule lattice [53]). Within this method,
the absorbed atoms/molecules normally apply a repulsive
potential to the metal surface states. A related experimental
technique for an atom/molecule lattice is the self-assembly,
where organic porous networks are used to confine the sur-
face electrons [54,55], however, lattices with nonsymmorphic
symmetry have not been reported yet. At last, there are an-
other two experimental techniques in realizing a patterned
2DEG: atomic force microscope (AFM) lithography and
lithographic top-down patterning. Taking advantage of AFM
lithography, nanoscale conducting regions can be created in
a LaAlO3/SrTiO3 heterostructure and erased using voltages
applied by a conducting AFM probe [40,56]. As for the
lithographic top-down patterning, it can be realized on a
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heterostructure consisting of a 2D electride encapsulated in
hexagonal boron nitride where the external potential is in-
troduced by etching a periodic pattern of holes through the
heterostructure by electron-beam lithography. Such a method
is very mature in fabricating graphene [57,58]. Therefore, dra-
matically, with this method one can design a system with all
symmetries required for desired topological states, completely
free from material constraints.

On the other hand, compared to symmorphic symmetries,
nonsymmorphic symmetries are playing a more crucial role
in generating stable crossings [59–61] since they offer an
extra crystalline symmetry to protect the degeneracy against
intrinsic spin-orbit coupling (SOC), which is inevitable in real
materials. Very recently, some nonsymmorphic symmetries
protected exotic band crossings have also been proposed, such
as hourglass dispersions [37,59,62,63], nodal chains [64,65],
and Möbius insulators [66,67]. Moreover, 2D Dirac nodal-line
semimetal phases have only been confirmed in very few real
systems in experiment, such as Cu2Si [68–70], and CuSe [71],
while they are not robust when taking SOC into account.
Therefore, there remains an intensive material search for ro-
bust Dirac nodal line at present.

Encouraged by the fact that various exotic topological
quantum states, such as hourglass fermions [37,72], Möbius
insulators [66,67], and fourfold-degenerate Dirac fermions
[73] have been well studied in all four nonsymmorphic wall-
paper groups p1g1, p2mg, p2gg, and p4mg [66,67,73–79], in
this work, combining patterned 2DEG model and nonsym-
morphic symmetries, we construct three systems belonging
to wallpaper groups p2mg, p2gg, and p4mg, respectively, and
discover a series of rich topological states, including Dirac
nodal line, Weyl nodal line, and hourglass Weyl fermion (as
listed in Table I). Among the four nonsymmorphic wallpaper
groups, group p1g1 can be largely thought as 1D system
which is thus ignored in this work. Our results not only af-
ford an attractive route for designing robust nodal line and
hourglass Weyl semimetals in reality, but also pave a way for
designing ideal macroscale materials through rational extrin-
sic symmetry.

The remainder of this article is organized as follows: Sec. II
sets the full 2DEG tight-binding model and corresponding
lattice configurations. Secs III and IV describe detailed
symmetry analysis, band calculation results, and k · p
approximation for the nontrivial band crossings in two
constructed systems. Sec V shows the effect of parameters

on bandwidth, and finally Sec. VI concludes our
work.

II. CONSTRUCTION OF MODELS AND LATTICES

In this section, we describe the full 2DEG model and our
constructed lattices. The method of patterned 2DEG model is
elucidated as follows: the Hamiltonian of the system is [80]

H (k) =
∑

G

h̄2

2m∗ |k + G|2a†
GaG +

∑
G,G′

V (G − G′)a†
G′aG,

(1)
where m∗ is the electron effective mass. For the lowest
conduction band in diamond-type or zinc-blende-type semi-
conductor quantum wells, m∗ varies between 0.02me and
0.17me (me is the free electron mass) [81]. Here we simply
consider m∗ = 0.02me and m∗ = 0.04me in our calculation.
G is the reciprocal lattice vector, and a† and a are creation
and annihilation operators, respectively. V (G) are the Fourier
components of the potential, and can be expressed as

V (G) =
∑

i

πdU0J1
(

1
2

∣∣G∣∣d)
A|G| exp (−iG · Xi ), (2)

where A is the area of the unit cell and Xi is the center of
the ith disk in unit cell. Here, the disks represent the external
potential wells introduced by QW etching or potential barriers
introduced by adatoms, respectively. J1(x) is the first-order
Bessel function. Therefore, the Hamiltonian in Eq. (1) can
further be expressed in the matrix form as⎡

⎢⎢⎢⎢⎣
h̄2|k+G1|2

2m∗ + V0 V1−2 . . . V1−n

V2−1
h̄2|k+G2|2

2m∗ + V0 . . . V2−n
...

...
. . .

...

Vn−1 Vn−2 . . .
h̄2|k+Gn|2

2m∗ + V0

⎤
⎥⎥⎥⎥⎦,

(3)
where Vi− j = V (Gi − G j ) and V0 is a constant.

Intrinsic SOC is incorporated via the gradient of the
muffin-tin potential:

HSO = eλ

h̄
σ · (p × E) = −λ

h̄
σ · (∇V × p), (4)

where σ is the Pauli matrix, p is momentum, λ is coupling
constant and E is in-plane electric field. Thus, HSO can also
be written into matrix form

HSO(k) = −iλσz ⊗

⎡
⎢⎢⎣

0 V1−2[G1−2 × (G2 + k)]z . . . V1−n[G1−n × (Gn + k)]z

V2−1[G2−1 × (G1 + k)]z 0 . . . V2−n[G2−n × (Gn + k)]z
...

...
. . .

...

Vn−1[Gn−1 × (G1 + k)]z Vn−2[Gn−2 × (G2 + k)]z . . . 0

⎤
⎥⎥⎦, (5)

where σz = σ · ẑ and Gi− j = Gi − G j . Clearly, the above matrix is diagonal, indicating that the spin-up and spin-down are
decoupled because HSO depends only on σz.

Moreover, for a realistic patterned 2DEG system without inversion symmetry, a Rashba SOC having the following form:

HRA = α

h̄
(pyσx − pxσy), (6)

where α is also a coupling constant, also would be introduced through an effective field in the system. But for systems where
the inversion symmetry is slightly broken and the out-of-plane potential is weak, such a SOC can be ignored, which allows us to
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FIG. 1. (a)–(c) Schematic lattice structures for muffin-tin potential using nonsymmorphic symmetries of wallpaper groups p2mg, p2gg and
p4mg with screw rotation C̃2x and glide mirror M̃x/M̃y indicated with red and/or blue dashed lines. The black rectangle (square) represents the
unit cell, Lx/Ly and L indicate the lattice parameters of the unit cell. The potential value is U0 > 0 inside the light cyan disks and zero outside.
(d) The BZ for Lattices1 and Lattice2 and (e) for Lattices3.

consider intrinsic SOC independently. The matrix form of HRA is given by

HRA(k) = ασx ⊗

⎡
⎢⎢⎣

(G1 + k)y 0 . . . 0
0 (G2 + k)y . . . 0
...

...
. . .

...

0 0 . . . (Gn + k)y

⎤
⎥⎥⎦ − ασy ⊗

⎡
⎢⎢⎣

(G1 + k)x 0 . . . 0
0 (G2 + k)x . . . 0
...

...
. . .

...

0 0 . . . (Gn + k)x

⎤
⎥⎥⎦. (7)

Note that Eq. (7) locates at the antidiagonal direction of the whole Hamiltonian of order 2n, while Eqs. (3) and (5) are at the
diagonal direction, since HRA is only the interaction between the same wave functions with inverse spin.

By taking all the above three terms into account, the total Hamiltonian is obtained:

Htotal(k) = H (k) + HSO(k) + HRA(k). (8)

As for the lattice, Figs. 1(a)–1(c) show the constructed
lattice structures (labeled as Lattice1, Lattice2, and Lattice3)
using muffin-tin potential in p2mg, p2gg and p4mg, respec-
tively, where the potential value is U0 > 0 ( here, a positive U0

value indicates a potential barrier and the values used in our
calculation are either typical of values or in the same order
of magnitude as those employed in confining 2DEGs [82])

inside the light cyan disks of diameter d and zero outside
(the centers of the disks in the unit cell for three lattices are
listed in Table II). The corresponding Brillouin zones (BZs)
are shown in Figs. 1(d)–1(e). Due to the band structure results
of Lattice2 and Lattice3 share very similar features, hence in
the following discussions, we will just focus on the results
for Lattice1 and Lattice2, and the results for Lattice3 are
presented in Appendices A and B.
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TABLE I. Degeneracy for different wallpaper groups with different types of SOC. Here AB means Dirac nodal line extending from A to
B and A → B means that the Weyl point lies between A and B, A and B are two different high symmetric k points in the irreducible Brillouin
zone (BZ).

wallpaper group Intrinsic SOC Intrinsic + Rashba SOC

p2mg 1 Dirac nodal line (XM) 2 hourglass Weyl fermions (� → X, Y → M)
p2gg 2 Dirac nodal lines (XM, YM) 2 hourglass Weyl fermions (� → X, � → Y)
p4mg 1 Dirac nodal line (XM) 1 hourglass Weyl fermion (� → X)

III. LATTICE1

Having constructed the patterned 2DEG model, the next
step for a desired study of topological state is to consider the
above lattice one by one. The workflow for analysis in regard
to Lattice1 is described in the subsequent sections, with three
different methods: symmetry analysis, numerical calculation,
and k · p approximation taken into account. A very similar
analysis for Lattice2 is then given in the next section.

A. λ �= 0, α = 0: a Dirac nodal line

1. Symmetry analysis

In this section, we give a detailed symmetry analysis on
possible nontrivial band crossings for Lattice1 when only in-
trinsic SOC is considered. We start with finding generators of
the space group, then the little groups of some high-symmetry
points/paths are determined to provide a detailed proof for
consequential degeneracy.

When intrinsic SOC is present, the lattice structure of
Lattice1 belongs to space group Pmma (No. 51) and there
are three generators: inversion P, twofold rotation C2z and
screw axis rotation {C2x| 1

2 00}. By combining these three oper-
ations, we can obtain another two symmetries Mx : (x, y, z) →
(−x + 1

2 , y, z) and M̃y : (x, y, z) → (x + 1
2 ,−y, z). Here the

tilde denotes a nonsymmorphic operation, which involves a
translation with fractional lattice parameters. In addition, no
magnetic order is concerned in our systems, so time reversal
symmetry T is preserved.

The X-M path is in the invariant subspace of Mz, so each
Bloch state |u〉 on the path can be chosen as an eigenstate of
Mz. We find that on X-M

M2
z = E = −1, (9)

where E denotes the 2π spin rotation and a 2π rotation on
spin-1/2 fermion gives a -1. Hence the eigenvalue of Mz along
this path is gz = ±i.

TABLE II. Center positions of the disks in Figs. 1(a)–1(c). The
positions here are fractional coordinates, and δ, δ1, δ2 ∈ (0, 1

2 ).

Wallpaper group A B C D

p2mg (0, 0) ( 1
2 , δ) \ \

p2gg (0, 0) ( 1
2 , δ1) (δ2,

1
2 ) ( 1

2 + δ2,
1
2 + δ1)

p4mg (0, 0) ( 1
2 , δ) (δ, 1

2 ) ( 1
2 + δ, 1

2 + δ)

We also note that each k point on X-M is invariant under
the combined antiunitary operation M̃yT . Since

(M̃yT )2 = eikx = −1 (10)

on X-M, therefore the bands along this path have a Kramer-
like double degeneracy. The commutation relation between
Mz and M̃y is

MzM̃y = EM̃yMz (11)

on X-M, i.e., anticommutation relation {Mz, M̃y} = 0. Hence,
for an eigenstate |u〉 with Mz eigenvalue gz, we have

Mz(M̃yT |u〉) = gz(M̃yT |u〉), (12)

showing that the two Kramers partners |u〉 and M̃yT |u〉 share
the same eigenvalue gz.

Additionally, X-M is also the invariant subspace of Mx. The
commutation relation between Mz and Mx is

MzMx = EMxMz, (13)

i.e., anticommutation relation {Mz, Mx} = 0 on X-M, thus we
have

Mz(Mx |u〉) = −gz(Mx |u〉). (14)

Indicate the existence of another degenerate eigen-
state Mx |u〉, which has the opposite eigenvalue
−gz. Thus, totally, four degenerate orthogonal states
{|u〉 , M̃yT |u〉 , Mx |u〉 , (M̃yT )Mx |u〉} form a degenerate
quartet for each k point on X-M, implying that there is a Dirac
nodal line along X-M when intrinsic SOC present, and it is
completely protected by nonsymmorphic symmetries.

It is important to note that the above symmetry analysis is
valid when only intrinsic SOC is present, in which inversion P
is preserved. The conclusion is no longer valid if Rashba SOC
also taken into account, as we discussed in Sec. III B 1.

2. Numerical result

We now perform band structure calculation in presence of
intrinsic SOC for Lattice1. As shown in Fig. 2(a), we can
observe several nontrivial band features: (i) Each band is at
least twofold-degenerate due to the presence of both time
reversal and inversion symmetry (with (PT )2 = −1). (ii) Two
groups of twofold degeneracy overlap at the M point which
makes M point fourfold-degenerate. Moreover, M is not the
only point with fourfold degeneracy. A visualized 3D band
structure [Fig. 2(b)] shows that each point along X-M path is
fourfold-degenerate as well, so the bands along X-M path ac-
tually form a fourfold-degenerate Dirac nodal line, consistent
with previous symmetry analysis. In addition, it is clear that
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FIG. 2. Calculated band structures for the lowest four bands in presence of intrinsic SOC and Rashba SOC for Lattice1. Band structure
along high-symmetry paths in (a) intrinsic SOC case and in (d) both intrinsic SOC and Rashba SOC case. The 3D plot in (b) shows a 1D
Dirac nodal line, indicated by red solid line, along BZ boundary in intrinsic SOC case and that in (e) shows two hourglass-type dispersions
and two Weyl nodal lines, indicated with cyan dashed lines and yellow solid lines, respectively, in both intrinsic SOC and Rashba SOC case.
(c) Illustration of the translation for P on Dirac nodal line X-M to P1 and P2. (f) Schematic figure shows the hourglass dispersion along path
�-X (Y-M), characterized by a hourglass cone with four degenerate points at boundary (blue dot) and one degenerate point at center (red
dot). The numbers in the bracket denote the eigenvalue gy at the degenerate point. In our calculation, U0 = 0.8 eV, Lx = 20 nm, Ly = 25 nm,
m∗ = 0.02me, d = 10 nm, λ = 3.2 × 10−18 m2, α = 3 × 10−10 eV m. The degenerate point energy at M in (a) and between Y-M in (d) is set
to zero, respectively.

the dispersion along X-M is quite flat for the parameters we
used.

3. k · p approximation

At last, we present analytical solution for the energy dis-
persion relation of the Dirac nodal line in Lattice1 using
degenerate perturbation theory. Specifically, we concentrate
on the states with wave vector q + P near arbitrary P
point on path X-M, i.e., q << P, where P = (π/Lx, ky), ky ∈
(−π/Ly, π/Ly) [see Fig. 2(c)]. The original wave function
ψk(r) can be approximately expressed as a linear combination
of two plane-wave states:

ψk(r) = 1√
2A

[c1ei(k+G1 )·r + c2ei(k+G2 )·r], (15)

where A is the area of unit cell and G1/G2 represents re-
ciprocal vector. Since we only concern the states near P
point, let us substitute k for q + P, then ψk(r) can further be
expressed as

ψq(r) = 1√
2A

[c1ei(q+P1 )·r + c2ei(q+P2 )·r]. (16)

The reason for choosing the basis (P1, P2) is that they are con-
nected by the minimum reciprocal vector G1/G2 with P, and
they have a same energy for pure 2DEG (E(k) = h̄2k2/2m∗).

Hence, we can express the eigenstate as a two-component col-
umn vector c = (c1, c2)T . Within this basis, the Hamiltonian
in Eq. (3) can be written into

H (q) =
[

h̄2

2m∗ (q + P1)2 + V0 V1−2

V2−1
h̄2

2m∗ (q + P2)2 + V0

]
. (17)

Here V0 = πd2U0
2A is a constant. Further using Eq. (2) and

Table II, we can obtain

V1−2 = V ∗
2−1 = πdU0J1

(
1
2

∣∣G1−2

∣∣d)
A|G1−2| (e−i·0 + e−i·π ) = 0,

(18)
then Hamiltonian Eq. (17) changes into

H (q) =
[

h̄2

2m∗ (q + P1)2 + V0 0
0 h̄2

2m∗ (q + P2)2 + V0

]
, (19)

and HSO equals zero. Clearly, the Hamiltonian is completely
determined by the diagonal terms h̄2

2m∗ (q + P1)2 + V0 and
h̄2

2m∗ (q + P2)2 + V0, so each crossing point on X-M is formed
by an intersection between two different bands, meeting the
condition of a Dirac state. In addition, the intrinsic SOC term
has no effect on the energy, that is to say, it is a truly robust
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Dirac nodal line. The dispersion relation of Eq. (19) is given

E (q) = h̄2

2m∗

{
q2 ± 2π

Lx
qx + 2

(
ky − 2π

Ly

)
qy

+ π2

L2
x

+
(

ky − 2π

Ly

)2}
+ πd2U0

2A
. (20)

Obviously, the band dispersion around X-M is indeed linear
and the group velocities remain constant.

B. λ �= 0, α �= 0: two hourglass Weyl points

1. Symmetry analysis

In this section, we then give a detailed symmetry analysis
on possible nontrivial band crossings when both intrinsic SOC
and Rashba SOC are considered.

Once Rashba SOC is also involved, inversion P is de-
stroyed and the original space group Pmma (No. 51) is
reduced to Pma2 (No. 28). Here corresponding generators are
the following two symmetries: Mx : (x, y, z) → (−x + 1

2 , y, z)
and M̃y : (x, y, z) → (x + 1

2 ,−y, z). In the following text, we
show that there are two twofold-degenerate Weyl nodal lines
and two hourglass Weyl points, both resulted from nonsym-
morphic symmetries.

Firstly, let us consider the high-symmetry path X-M
(π/Lx, ky, 0), where −π/Ly < ky � π/Ly. The path lies on
kx = π/Lx plane which is invariant under Mx, so each Bloch
state |u〉 there can be chosen as an eigenstate of Mx. Due to

M2
x = E = −1 (21)

on X-M, hence the eigenvalue gx of Mx must be ±i.
Note that each k point on X-M is also invariant under the

combined anti-unitary operation M̃yT . Since

(M̃yT )2 = eikx = −1 (22)

on X-M, thus the bands along X-M will have a Kramer-like
double degeneracy. Moreover, the commutation relation be-
tween Mx and M̃y is

MxM̃y = {E |100}M̃yMx = −eikx M̃yMx. (23)

And on X-M, kx = π/Lx, so we have commutation relation
[Mx, M̃y] = 0. One notes that for a state |u〉 with Mx eigen-
value gx, its Kramers partner M̃yT |u〉 satisfies

Mx(M̃yT |u〉) = −gx(M̃yT |u〉). (24)

This shows that |u〉 and M̃yT |u〉 have opposite eigenvalue gx.
Therefore, for each k point on X-M, there must be a twofold-
degenerate doublet {|u〉 , M̃yT |u〉}.

Next, we turn to the dispersion on path �-X: (kx, 0, 0).
Since �-X lies on ky = 0 plane, which is invariant under M̃y,
thus each Bloch state |u〉 there can be chosen as an eigenstate
of M̃y. Moreover, we have

M̃2
y = {E |100} = −eikx , (25)

hence its eigenvalue gy must be ±iei kx
2 . Additionally, � and

X are both at time reversal invariant momenta, which are
invariant under T . Specifically, gy = ±i at �, each Kramers
pair |u〉 and T |u〉 must have opposite eigenvalue gy. At the
same time, gy = ±1 at X(π/Lx, 0, 0), thus each Kramers pair

|u〉 and T |u〉 must have the same gy. Therefore, there must
be a partner-switching when going from � to X, leading to
an hourglass-type dispersion, as schematically illustrated in
Fig. 2(f). It has to mention that the crossing point of the
hourglass is a twofold-degenerate Weyl point, and is robust
due to it is formed by two orthogonal mirror branches. A
similar analysis also applies to the hourglass fermion on Y-M.

So far, our analysis uncovers the existence of twofold-
degenerate Weyl nodal line and hourglass fermions, which are
both protected by nonsymmorphic space group symmetries. In
following, we will show that above symmetry analysis is also
completely consistent with our numerical calculation results.

2. Numerical result

From symmetry perspective, the inversion symmetry P
would vanish and thus original space group changes, which
strongly affect the degeneracy and band crossings in the band
structure. The band structure for Lattice1 with the addition of
Rashba SOC is shown in Fig. 2(d) and several new features
can be observed: (i) Original Dirac nodal line along X-M
splits into two twofold-degenerate nodal lines (Weyl nodal
line). (ii) There emerge hourglass-type dispersions on �-X
and Y-M [see Fig. 2(e) for a 3D image], respectively. These
numerical results are also highly consistent with aforemen-
tioned symmetry analysis.

In this section, we have revealed some exotic band-
crossings protected by nonsymmorphic symmetries in Lat-
tice1 under patterned 2DEG frame. On one hand, when
intrinsic SOC considered alone, there exists a Dirac nodal
line. On the other hand, when Rashba SOC also added, there
emerge two Weyl nodal lines and two hourglass points, as
summarized in Table I. A very similar analysis for Lattice2
are given in the following section.

IV. LATTICE2

A. λ �= 0, α = 0: two Dirac nodal lines

1. Symmetry analysis

We first give a detailed symmetry analysis on possible
nontrivial band crossings for Lattice2 in intrinsic SOC case.

When intrinsic SOC present, the lattice structure of Lat-
tice2 belongs to space group Pbam (No. 55) and there are
three generators: inversion P, twofold rotation C2z and screw-
axis rotation {C2y| 1

2
1
2 0}. By combining these three operations,

we can obtain other two glide mirrors M̃x : (x, y, z) → (−x +
1
2 , y + 1

2 , z) and M̃y : (x, y, z) → (x + 1
2 ,−y + 1

2 , z). In addi-
tion, time reversal symmetry T is also preserved.

It is noted that path X-M is an invariant subspace of Mz,
M̃yT and M̃x. Similar to the analysis in Lattice1 case, one finds
that (M̃yT )2 = −1 on X-M, hence it requires a Kramer-like
double degeneracy for each k point on X-M. Moreover, since
Mz is anticommutative with M̃x, thus the degeneracy further
doubles into fourfold, leading to a Dirac nodal line on X-M
path in the end. Similar analysis also applies to the Dirac nodal
line on path Y-M.

2. Numerical result

Similar to previous discussion in Lattice1, we then perform
band structure calculation in the presence of intrinsic SOC for
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FIG. 3. Calculated band structures for the lowest four bands in presence of intrinsic SOC and Rashba SOC for Lattice2. Band structure
along high-symmetry paths in (a) intrinsic SOC case and in (d) both intrinsic SOC and Rashba SOC case. The 3D plot in (b) shows two 1D
Dirac nodal lines, indicated by a red solid line, along BZ boundary in intrinsic SOC case and that in (e) shows two hourglass-type dispersions
and four Weyl nodal lines, indicated with cyan dashed lines and yellow solid lines, respectively, in both intrinsic SOC and Rashba SOC case.
(c) Illustration of translation for P(T) on Dirac nodal line to P1(T1) and P2(T2). The orange and blue lines represent translations for points
on nodal line X-M and Y-M, respectively. (f) Schematic figure shows the hourglass dispersion along path �-X (�-Y), characterized by a
hourglass cone with four degenerate points at boundary (blue dot) and one degenerate point at center (red dot). The numbers in the bracket
denote the eigenvalue gy/gx at the degenerate point. In our calculation, U0 = 0.3 eV, Lx = 20 nm, Ly = 25 nm, m∗ = 0.02me, d = 10 nm,
λ = 7.2 × 10−18 m2, α = 3 × 10−10 eV m. The degenerate point energy at M in (a) and between �-X in (d) is set to zero, respectively.

Lattice2. As shown in Fig. 3(a), in this case, we observe de-
generate and almost flat bands (Dirac nodal lines, see Fig. 3(b)
for a more clear 3D plot) along BZ boundary X-M and Y-M,
respectively. Obviously, the band structure results also highly
agree with our symmetry analysis above.

3. k · p approximation

Herein we derive analytical solution for Lattice2
[Fig. 3(c)]. On one hand, according Eq. (20) in Sec. III A, we
can immediately write the dispersion relation for nodal line
M-X:

E (q) = h̄2

2m∗

{
q2 ± 2π

Lx
qx + 2

(
ky − 2π

Ly

)
qy + π2

L2
x

+
(

ky − 2π

Ly

)2}
+ V0, (26)

where V0 = πd2U0
2A . On the other hand, for nodal line M-Y,

we mainly concentrate on the states with wave vector q′ + T
near arbitrary T point on M-Y, i.e., |q′| 
 T, where T =
(kx, π/Ly, 0), kx ∈ (−π/Lx, π/Lx ). Analogy to Eq. (15), the
wave function ψk(r) then can be expanded into a similar form
as

ψk(r) = 1√
2A

[c′
1ei(k+G′

1 )·r + c′
2ei(k+G′

2 )·r]. (27)

Let us substitute k for q′ + T, thus ψk(r) can further be
expressed as

ψ ′
q(r) = 1√

2A
[c′

1ei(q′+T1 )·r + c′
2ei(q′+T2 )·r], (28)

in which the basis (T1, T2) also have a same energy for pure
2DEG and are connected by the minimum reciprocal vector
G′

1/G′
2 with T. Within this basis, the Hamiltonian in Eq. (3)

would be written into

H (q′) =
[

h̄2

2m∗ (q′ + T1)2 + V0 V1′−2′

V2′−1′ h̄2

2m∗ (q′ + T2)2 + V0

]
,

(29)
in which the antidiagonal term also can be obtained using
Eq. (2):

V1′−2′ = V ∗
2′−1′ = πdU0J1

(
1
2

∣∣G′
1−2

∣∣d)
A|G′

1−2|
{1 + e−i·2π ·δ1

+ e−i·π + e−i·2π ( 1
2 +δ1 )} = 0. (30)

Therefore Hamiltonian Eq. (29) changes into

H (q′) =
[

h̄2

2m∗ (q′ + T1)2 + V0 0
0 h̄2

2m∗ (q′ + T2)2 + V0

]
.

(31)
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By solving the eigenvalues of above matrix, we obtain the
analytical solution of energy dispersion for nodal line M-Y
very easily:

E (q′) = h̄2

2m∗

{
q′2 + 2

(
kx − 2π

Lx

)
q′

x ± 2π

Ly
q′

y

+
(

kx − 2π

Lx

)2

+ π2

L2
y

}
+ πd2U0

A
. (32)

Obviously, the analytical solution results also hold true for
the nodal line in Lattice3, but require replacing Lx/Ly with L
(see Appendix A).

B. λ �= 0, α �= 0: two hourglass Weyl points

1. Symmetry analysis

In this section, we give a detailed symmetry analysis on
possible nontrivial band crossings when both intrinsic SOC
and Rashba SOC are considered simultaneously for Lattice2.

Similarly, once Rashba SOC involved, original space group
Pbam (No. 55) is reduced to Pba2 (No. 32). Now the gen-
erators are two glide mirrors: M̃x : (x, y, z) → (−x + 1

2 , y +
1
2 , z) and M̃y : (x, y, z) → (x + 1

2 ,−y + 1
2 , z). In the follow-

ing text, we show that there are four twofold-degenerate Weyl
nodal lines and two hourglass Weyl points, also resulted from
nonsymmorphic symmetries.

Firstly, we concentrate on nontrivial topological states on
X-M and Y-M, which can be argued in a similar way as before:
briefly, path X-M is invariant under the anti-unitary symmetry
M̃yT , and it is important to note that (M̃yT )2 = −1 still holds
in presence of Rashba SOC. This guarantees a Kramer-like
double degeneracy on X-M. A similar analysis also can be
found on Y-M.

Secondly, the dispersion on �-X and �-Y can be under-
stood as following: Note that every k point on �-X is invariant
under M̃y, so each Bloch state |u〉 can be chosen as an eigen-
state of M̃y. Since

M̃2
y = {E |100} = −eikx , (33)

which is the same as Eq. (25), thus there certainly still exists
an hourglass fermion. As for �-Y, every k point on it is
invariant under M̃x. Since

M̃2
x = {E |010} = −eiky , (34)

thus its eigenvalue gx must be ±iei
ky
2 . Additionally, � and Y

are at time reversal invariant momenta, which are invariant
under T . At �, gx = ±i, each Kramers pair |u〉 and T |u〉
must have opposite eigenvalue gx. At the same time, at point
Y(0, π/Ly, 0), gx = ±1, each Kramers pair |u〉 and T |u〉
must have the same gx. Therefore, there must be another
partner-switching when going from � to Y, leading to an-
other hourglass-type dispersion, as schematically illustrated
in Fig. 3(f).

Finally we turn to k point M, which is invariant under the
symmetry M̃x, M̃y, and T . Remarkably, we note that for a state
|u〉 with M̃x eigenvalue gx at M, its Kramers partner T |u〉 must
have the same eigenvalue gx (because gx = ±1). Meanwhile,
we have

Mx(M̃y |u〉) = −gx(M̃y |u〉), (35)

FIG. 4. Bandwidth of the lowest four bands in Fig. 2 versus
U0 and d . (a) Bandwidth as a function of potential value U0 with
d = 10 nm. (b) Bandwidth as a function of diameter d with U0 =
0.8 eV. In our calculation, m∗ = 0.02me, Lx = Ly = 20 nm, λ =
3.2 × 10−18 m2.

showing the two orthogonal states |u〉 and M̃y |u〉 have oppo-
site gx. Therefore, the four states {u, T |u〉 , M̃y |u〉 , M̃yT |u〉}
are linearly independent and degenerate with the same energy,
that is to say, a 4D irreducible representation shows up, which
results in a fourfold-degenerate Dirac fermion at the M point.

2. Numerical result

The band structure in Rashba SOC case is shown in
Figs. 3(d)–3(e), and we can observe the following three fea-
tures: (i) The bands along X-M and Y-M split into two
doublets (corresponding to original Dirac nodal lines in ab-
sence of Rashba SOC); (ii) Two hourglass Weyl points appear
at �-X and �-Y, respectively; (iii) A 2D Dirac point appears
at M point, which is fourfold-degenerate and has linear dis-
persion. Obviously, these results also highly agree with above
symmetry analysis.

In this section, we have revealed some exotic band cross-
ings protected by nonsymmorphic symmetries in Lattice2
under patterned 2DEG frame. On one hand, when intrinsic
SOC considered alone, there exist two Dirac nodal lines. On
the other hand, when Rashba SOC also added, there emerge
four Weyl nodal lines and two hourglass points, as summa-
rized in Table I. A very similar analysis for Lattice3 are also
given in Appendix A.

V. PARAMETER EFFECT

In order to explore the effect of potential value U0 and di-
ameter d on bandwidth of the lowest bands that we concerned,
which can be directly detected by angle resolved photoe-
mission spectroscopy in experiment, we carry out relevant
calculations, and the results (taking Lattice1 for example) are
displayed in Fig. 4. Clearly, the bandwidth will reduce when
U0 or d increases, and it even almost depends antilinearly on
d . Figure 5 shows the band structures for Lattice1 with differ-
ent parameters (effective mass m∗, lattice constant L/(Lx, Ly )
and potential value U0), and we can observe the following
four features: (i) As U0 increased, linear dispersive energy
window is dramatically broadened; (ii) The group velocity at
Dirac point remains constant as U0 increased; (iii) As m∗ or
L increased, a significant reduction of the bandwidth can be
found; (iv) A smaller U0 leads to a bigger bandwidth.
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FIG. 5. Calculated band structures of the lowest bands for Lat-
tice1 with (a) m∗ = 0.02me, L = 20 nm. (b) m∗ = 0.02me, L =
40 nm. (c) m∗ = 0.04me, L = 20 nm. (d) m∗ = 0.04me, L = 40 nm.
In our calculation, d = 10 nm, λ = 3.2 × 10−18 m2, and the energy
of the crossing point at M is set to zero for clarity.

VI. DISCUSSION AND CONCLUSION

It is crucial that such nontrivial band crossings to be close
to the Fermi level for manifestation of interesting physics,
which can be achieved by doping or other mechanisms in
practice. For example, the charge density required to dope
the system to reach the nodal lines and hourglass Weyl points
energy is 3 ∼ 4 × 1011 cm−2, which is in the range of typical
value in 2DEG studies [82], and may be tuned by applying
a gate voltage or by light illumination [83]. Some particular
advantages of our system include: (i) The nodal lines have
quite small energy change in BZ; (ii) The patterned 2DEG
model is relatively easy to realize in experiment. Moreover,
the hourglass-type dispersion was previously confirmed in ex-

periment as surface states of 3D topological insulators KHgX
(X=As, Sb, Bi) [37]. The possibility of hourglass-type dis-
persion in 3D bulk systems was also studied in half-metal
Mg2VO4 [63] and models [62], whereas, the energy range
of hourglass-type dispersion in these examples is especially
small. In comparison, the energy window and splitting degree
of hourglass-type dispersion proposed here can be extremely
large by tuning relevant parameters.

What is more, we also consider the effect of an out-of-plane
magnetic field on the hourglass fermions in our system, which
can be realized by adding an Zeeman term on the original
Hamiltonian. As shown in Fig. 6, we find that the hourglass
Weyl points are gapped both in Lattice1 and Lattice2 (the
results for Lattice3 see Appendix A). We also note that the two
fold-degenerate nodal line on X-M or Y-M (only for Lattice2)
does not split, the reason is that M̃yT or M̃xT symmetry is still
preserved.

In conclusion, we have shown numerically and theoret-
ically that multiple types of band crossings appear when
an appropriate nanometer-scale period potential patterned
with nonsymmorphic symmetries is applied to a conventional
2DEG model. We find that in presence of intrinsic SOC, our
systems host 1D Dirac nodal lines. Further, with the introduc-
tion of Rashba SOC, then the original Dirac nodal lines split
and there appear hourglass fermions. Prominently, all the band
crossings are entirely determined by extrinsic nonsymmorphic
symmetries, therefore they are quite robust. Moreover, the
energy dispersion perpendicular to each nodal line is linear,
and both the group velocity and bandwidth can be easily
tuned by external parameters such as effective mass and lattice
constant. In addition, we expect that some exotic phenomena
would be discovered in our system, such as novel anisotropic
electrodynamics [84], large spin Hall conductivity [85,86],
giant magnetoresistance [87,88] and anisotropic transport of
electrons. Our system indeed has provide a promising plat-
form for investigating varieties of topological phases and
phase transitions. At present, crystal face controlling [37] and
surface alloy [38,39] are two methods to create wallpaper
groups, here in this work, patterned 2DEG provides an ad-
ditional method to engineer wallpaper groups. It is expected
that our system can be fabricated and the predictions proposed
here can also be readily verified in the near future.

FIG. 6. Band structures for Lattice1 and Lattice2 with a Zeeman term along the z direction. (a) U0 = 0.8 eV, Lx = 20 nm, Ly = 25 nm,
m∗ = 0.02me, d = 10 nm, λ = 3.2 × 10−18 m2, α = 3 × 10−10 eV m. The value of the Zeeman term energy is taken to be 2.9 × 10−3 eV.
(b) U0 = 0.3 eV, Lx = 20 nm, Ly = 25 nm, m∗ = 0.02me, d = 10 nm, λ = 7.2 × 10−18 m2, α = 3 × 10−10 eV m. The value of the Zeeman
term energy is taken to be 4.6 × 10−3 eV. The inset in (b) gives a magnified band structure along �-Y, showing a very small gap about 0.2 meV.
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APPENDIX A: LATTICE3

In Secs. III and IV, we have uncovered underlying nontriv-
ial band crossings for Lattice1 and Lattice2 both in intrinsic
SOC and Rashba SOC case. Here we present detailed analysis
for Lattice3 in both cases.

1. λ �= 0, α = 0: one Dirac nodal line

a. Symmetry analysis

First of all, when only intrinsic SOC considered, Lattice3
belongs to space group P4/mbm (No. 127), and there are three
generators: inversion P, fourfold rotation C4z, and screw-axis
rotation {C2x| 1

2
1
2 0}. By combining the above three opera-

tions, we can further get two glide mirrors M̃x : (x, y, z) →
(−x + 1

2 , y + 1
2 , z) and M̃y : (x, y, z) → (x + 1

2 ,−y + 1
2 , z).

Similarly, time reversal symmetry T is still preserved.
The X-M path is an invariant subspace of Mz, so each Bloch

state |u〉 on the path can be chosen as an eigenstate of Mz. One
finds that on X-M,

M2
z = E = −1, (A1)

hence the eigenvalues of Mz along this path are gz = ±i.
We note that each k point on X-M is also invariant under

the combined antiunitary operation M̃yT . Since

(M̃yT )2 = eikx = −1 (A2)

on X-M, thus the bands along it have a Kramer-like double
degeneracy. Moreover, the commutation relation between Mz

and M̃y on X-M is

MzM̃y = EM̃yMz, (A3)

i.e., anticommutation relation {Mz, M̃y} = 0. Hence, for an
eigenstate |u〉 with Mz eigenvalue gz, we have

Mz(M̃yT |u〉) = gz(M̃yT |u〉), (A4)

indicating the two Kramers partners |u〉 and M̃yT |u〉 share
same eigenvalue gz.

Additionally, X-M is also the invariant subspace of M̃x. The
commutation relation between Mz and M̃x is

MzM̃x = EM̃xMz, (A5)

namely, {Mz, M̃x} = 0 on X-M, thus again we have

Mz(M̃x |u〉) = −gz(M̃x |u〉). (A6)

In total, we get four degenerate orthogonal states:
{|u〉 , M̃yT |u〉 , M̃x |u〉 , (M̃yT )M̃x |u〉}, forming a Dirac nodal
line on X-M.

b. Numerical results

The band structures in presence of intrinsic SOC are shown
in Figs. 7(a)–7(b), and we can observe very similar band fea-
tures like Lattice2: (i) each band is at least twofold-degenerate
due to PT symmetry; (ii) the bands along X-M path form a
fourfold-degenerate Dirac nodal line, and the dispersion along
it is quite flat. Apparently, the band results validate above
symmetry analysis.

c. k · p approximation

Herein we derive the solution for Dirac nodal line on X-M
in Lattice3.

Let us consider the nodal lines in Lattice3 (Fig. 7). Ac-
cording to Eq. (20) in Sec. III, we can immediately write the
dispersion relation for nodal line M-X:

E (q) = h̄2

2m∗

{
q2 ± 2π

L
qx + 2

(
ky − 2π

L

)
qy + π2

L2

+
(

ky − 2π

L

)2}
+ V0, (A7)

where V0 = πd2U0
2A .

2. λ �= 0, α �= 0: one hourglass Weyl point

a. Symmetry analysis

When Rashba SOC involved, Lattice3 belongs to space
group P4bm (No. 100), in this case, there are two generators:
fourfold rotation C4z and glide mirror M̃y : (x, y, z) → (x +
1
2 ,−y + 1

2 , z). Combining these two operations, we can obtain
another glide mirror M̃x : (x, y, z) → (−x + 1

2 , y + 1
2 , z).

We first consider the topological states on X-M
(π/Lx, ky, 0), where −π/Ly < ky � π/Ly. The path is invari-
ant under M̃x, so each Bloch state |u〉 can be chosen as an
eigenstate of M̃x. We have

M̃2
x = {E |010} = −eiky (A8)

on X-M, hence the eigenvalue gx of M̃x must be ±ieiky/2.
Note that each k point on X-M is also invariant under the

combined antiunitary operation M̃yT . Since

(M̃yT )2 = eikx = −1 (A9)

on X-M, therefore the bands along this path will have a
Kramer-like double degeneracy. Moreover, the commutation
relation between M̃x and M̃y is

M̃xM̃y = {E |110}M̃yM̃x = eiky M̃yM̃x. (A10)

Therefore we find that for a state |u〉 with M̃x eigenvalue gx,
its Kramers partner M̃yT |u〉 would satisfy

M̃x(M̃yT |u〉) = −gx(M̃yT |u〉), (A11)

showing that |u〉 and M̃yT |u〉 have opposite eigenvalue.
Therefore, there must be a twofold-degenerate doublet
{|u〉 , M̃yT |u〉} for each k point on X-M.
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FIG. 7. Calculated band structures of the lowest four bands in presence of intrinsic SOC and Rashba SOC for Lattice3. Band structures
along high-symmetry paths in (a) intrinsic case and in (d) both intrinsic SOC and Rashba SOC case. The 3D plot in (b) shows a 1D Dirac
nodal line, indicated by a red solid line, along X-M in intrinsic SOC case and that in (e) shows an hourglass-type dispersion and two Weyl
nodal lines, indicated with cyan dashed lines and yellow solid lines, respectively, in both intrinsic SOC and Rashba SOC case. (c) Illustration
of the translation for P on Dirac nodal line X-M to P1 and P2. (f) A same hourglass dispersion as in previous two lattices. In our calculation,
U0 = 0.3 eV, L = 25 nm, m∗ = 0.02 me, d = 10 nm, λ = 7.2 × e−18 m2, α = 8 × e−10 eV m. The degenerate point energy at M in (a) and
between �-X in (d) is set to zero, respectively.

Next, we turn to the band dispersion on path �-X (kx, 0, 0).
Since the path lies on ky = 0 plane, which is invariant under
M̃y, so each Bloch state |u〉 on �-X can be chosen as an
eigenstate of M̃y. We have

M̃2
y = {E |100} = −eikx , (A12)

FIG. 8. Band structure with a Zeeman term along the z direction
for Lattice3. In our calculation, U0 = 0.3 eV, L = 23 nm, m∗ =
0.02me, d = 10 nm, λ = 7.2 × 10−18 m2, α = 8 × 10−10 eV m. The
value of the Zeeman term energy is taken to be 4.6 × 10−3 eV. The
inset gives a magnified band structure along �-X, showing a very
small gap about 0.4 meV.

hence, its eigenvalue gy must be ±ieikx/2. Additionally, � and
X are both time reversal invariant momenta, thus we can infer
that: At �, gy = ±i, each Kramers pair |u〉 and T |u〉 must have
opposite eigenvalue, and at X, gy = ±1, each Kramers pair
|u〉 and T |u〉 must have same eigenvalue. On the whole, there
must be a partner-switching when going from � to X, leading
to an hourglass-type dispersion, as schematically illustrated in
Fig. 7(f).

b. Numerical results

The band structures for Lattice3 in Rashba SOC case are
shown in Figs. 7(d)–7(e). Similar features can be observed: (i)
The Dirac nodal line along X-M is gapped and then splits into
two twofold-degenerate Weyl nodal lines; (ii) There emerges
an hourglass fermion between � and X, which validate our
symmetry analysis again.

APPENDIX B: BAND STRUCTURE WITH OUT-OF-PLANE
MAGNETIC FIELD

In the main text, we have discussed the band structures with
out-of-plane magnetic field for Lattice1 and Lattice2. Here,
the result for Lattice3 are shown in Fig. 8.
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