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We study spin configurations of classical magnetic impurities placed close to the edge of a two-dimensional
topological superconductor both analytically and numerically. First, we demonstrate that the spin of a single
magnetic impurity close to the edge of a topological superconductor tends to align along the edge. The strong
easy-axis spin anisotropy behind this effect originates from the interaction between the impurity and the
gapless helical Majorana edge states. We then compute the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
between two magnetic impurities placed close to the edge. We show that, in the limit of large interimpurity
distances, the RKKY interaction between the two impurities is mainly mediated by the Majorana edge states
and leads to a ferromagnetic alignment of both spins along the edge. This effect could be used to detect helical
Majorana edge states.
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I. INTRODUCTION

Two magnetic impurities placed on a host material can
effectively interact by coupling to the electron spin density
of the host. This so-called Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [1–3] is crucial in determining the mag-
netic ordering of the impurities and has recently come into
focus due to its key role in designing magnetic-impurity-based
ad hoc topological superconductors (TSCs) hosting Majorana
zero modes [4–43]. The exact form of the RKKY interaction
depends on the properties of the underlying host material
and has been extensively studied for various bulk systems
[44–71]. Generally, the RKKY interaction in metals decays as
a power law in the interimpurity distance with an oscillatory
prefactor, while it is exponentially suppressed in insulators
and superconductors.

More recently, it was realized that the presence of bound-
aries can lead to interesting modifications to the RKKY
interaction. Such boundary effects were studied, for exam-
ple, in topologically trivial s- and d-wave superconductors
[72,73]. Furthermore, since boundary effects are expected to
be particularly interesting in topological materials, several
works have studied magnetic impurities coupled to edge or
surface states of topological insulators (TIs) [74–87]. For
TSCs, on the other hand, only a few studies focusing on
quantum spins coupled to one-dimensional (1D) Majorana
edge states exist [88–90]. So far, these rely on effective 1D
models for the edge states without explicitly describing the
full 2D TSC and its boundary.

In this work, we extend and deepen the understanding of
RKKY effects in topological materials by studying classical
magnetic impurities close to the edge of a 2D p-wave TSC
with helical Majorana edge states, see Fig. 1. Here, we care-
fully model the full 2D system, allowing us to describe not
only the behavior close to the edge but also the crossover to
the bulk regime at distances from the edge larger than the edge

state localization length. Our main findings for impurities
close to the edge can be summarized as follows. First, we
find that the spin of a single magnetic impurity tends to align
along the edge due to a strong easy-axis anisotropy (EAA)
imposed by the symmetries of the TSC Hamiltonian. Second,
two magnetic impurities separated by large distances along the
edge interact mainly through the Majorana edge states. The
corresponding RKKY interaction is of the Ising type, decays
inversely proportional to the interimpurity distance, and re-
sults in a ferromagnetic alignment of the impurity spins along
the edge. All of these results are derived analytically using a
continuum model and independently verified by numerical ex-
act diagonalization of the corresponding tight-binding model.

The above features stand in stark contrast to what is
observed in a trivial superconductor without edge states,
where the RKKY coupling is exponentially suppressed with
the interimpurity distance even for impurities close to the
edge. Therefore, we believe that spectroscopy of magnetic
impurities [36,38,91–101] can serve as a powerful tool to
experimentally probe TSCs and systems with topological edge
states in general.

FIG. 1. A 2D p-wave TSC hosts helical Majorana edge states
shown in red and blue. Their wave functions |ψ |2 decay exponen-
tially into the bulk on the scale of the superconducting coherence
length ξ . Two magnetic impurities (red dots) with spins S1 and S2

(black arrows) are placed in the vicinity of the edge. Their separation
along the direction of the edge is denoted by �.
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II. MODEL

We consider a 2D helical p-wave superconductor [102]
described by the mean-field Hamiltonian

H(k) = k2 − k2
F

2m
τz + ατx(σxky − σykx ), (1)

written in the Nambu basis (ψk,↑, ψk,↓, ψ
†
−k,↓,−ψ

†
−k,↑),

where ψ
(†)
k,σ

is the electron annihilation (creation) operator
with spin σ ∈ {↑,↓} and in-plane momentum k = (kx, ky),
kF is the Fermi momentum, k2 = k2

x + k2
y , m is the effective

mass, σ (τ) is the vector of Pauli matrices acting on the
spin (particle-hole) degree of freedom, and α > 0 the TSC
coupling constant responsible for opening the superconduct-
ing gap [103]. We set h̄ = 1 throughout this work. The bulk
spectrum of H is fully gapped:

ε±(k) = ±
√(

k2 − k2
F

2m
+ mα2

)2

+ 	2, (2)

where 	 = α

√
k2

F − (mα)2 ≈ αkF is the bulk supercon-
ducting gap. Explicitly, we have ε±(k0) = ±	 for |k0| =√

k2
F − 2m2α2. We work in the regime where 	 � εF :=

k2
F /(2m), so kF � mα.

As the mean-field Hamiltonian given in Eq. (1) is rota-
tionally invariant, all edges are equivalent. In the following,
we focus on the straight edge at x = 0, such that the TSC
occupies the half-space x > 0. With the boundary at x = 0,
the system is still translationally invariant along the y axis, so
the momentum ky is a good quantum number. Moreover, H
commutes with σzτz, which allows for the following choice of
eigenstates:


η,ky,n(x, y) = eikyy
η,ky,n(x), (3)

where η = ±1 denotes the eigenvalue of σzτz [i.e.,
σzτz
η,ky,n(x) = η
η,ky,n(x)], ky is the momentum along the
y axis, and n labels all other quantum numbers in the system.
The boundary at x = 0 obliges all quantum states to satisfy
the boundary condition 
η,ky,n(x = 0) = 0.

The topologically nontrivial nature of the TSC is reflected
in the presence of Majorana edge states, see Fig. 1. Their wave
functions can be found analytically as


η,ky (x) =
√

2

ξ

(
k2

F − k2
y

) sin(κx)

κ
e− x

ξ

(
uη

−ηu−η

)
, (4)

where we have defined κ =
√

k2
F − (mα)2 − k2

y , uT
+ = (1, 0),

uT
− = (0, 1), and where the localization length ξ = 1/(mα) ≈

vF /	 defines the effective width of the edge states. The
above edge state wave functions are normalizable for all ky ∈
(−kF , kF ) since 1/ξ ± Im(κ ) > 0 for these values of ky. The
corresponding eigenenergies are given by εη,ky = −ηαky.

In the following, we place magnetic impurities in the vicin-
ity of the TSC edge. The impurity spins interact with the
itinerant electrons via the local exchange interaction

Himp = J
∑

i

σ · Si δ(r − ri ), (5)

where Si is the spin of the magnetic impurity placed at the
position ri = (xi, yi ) with xi > 0. The impurity spins are con-
sidered large, S = |Si| � 1, which allows us to treat them
as classical vectors. This regime is expected to be relevant,
e.g., for transition metal adatoms with spins S � 3/2 [36–38,
94–97,104–109], where quantum effects are expected to be
small and theoretical predictions based on classical spins have
reasonably explained experimental findings in the past. In
particular, the classical approximation allows us to neglect the
Kondo effect since the Kondo temperature becomes exponen-
tially small for S � 1. Additionally, the exchange coupling
constant J is assumed to be small compared to the electron
bandwidth, JSm � 1, so we can neglect the renormalization
of the superconducting order parameter [110–116] close to
the impurity. Appendix C shows that, in this regime, the local
density of states is changed only slightly in the vicinity of
an impurity placed close to the TSC edge. Furthermore, an
impurity close to the edge of the TSC does not lead to the
emergence of a Shiba bound state, see again Appendix C.

III. SINGLE MAGNETIC IMPURITY

First, we consider a single magnetic impurity placed at the
position r0. Since we work in the limit of weak exchange inter-
action, the impurity-induced correction to the total energy can
be obtained perturbatively. The first-order correction vanishes
in time-reversal invariant systems as there is no intrinsic mag-
netization in the system. The second-order correction comes
from the local magnetization induced by the impurity itself:

Eimp = J2

2

∫ ∞

−∞

dω

2π
Tr{[σ · S G(r0, r0, iω)]2}. (6)

Here, G(r, r′, iω) is the Matsubara Green function of the TSC
without impurities:

G(r, r′, iω) =
∑
η,ky,n


η,ky,n(x)
†
η,ky,n

(x′)eiky (y−y′ )

iω − εη,ky,n
, (7)

where εη,ky,n is the eigenenergy of the state 
η,ky,n(x)
[see Eq. (3)].

The Hamiltonian H given in Eq. (1) with our choice of
boundary conditions is time-reversal symmetric, particle-hole
symmetric, and invariant under inversion of the y axis. In
Appendix B, we show that these symmetries lead to the fol-
lowing matrix decomposition for G(r0, r0, iω) ≡ G(x0, iω):

G(x0, iω) = iA1(x0, iω) + A2(x0, iω)τz + iB(x0, iω)σyτy,

(8)

where A1(x, iω) and B(x, iω) [A2(x, iω)] are real-valued odd
[even] functions of ω. Evaluating the spin trace in Eq. (6)
using the matrix decomposition Eq. (8) (see again Appendix
B), we find that A1,2(x, iω) give fully isotropic contributions,
while B(x, iω) additionally results in an anisotropic term:

Eimp = −(2JSy)2
∫ ∞

−∞

dω

2π
B2(x0, iω) + C1, (9)

where C1 ∝ S2 is the isotropic contribution. From the matrix
decomposition Eq. (8), we further find that B(x0, iω) can be
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FIG. 2. (a) The negative impurity-induced contribution C1 − Eimp as a function of the polar angle θ for a single magnetic impurity at a
distance x0 = 0.2 ξ (red), x0 = 0.3 ξ (green), x0 = 0.4 ξ (orange), and x0 = 0.6 ξ (blue) from the edge. The dots represent numerical data
obtained via exact numerical diagonalization of a discretized 2D model (see Appendix A for details) and the solid line is a fit ∝ cos2 θ . We
find that the total energy is minimized if the impurity spin is aligned along the edge, i.e., for θ = 0 and θ = π . (b) Dependence of C2 on the
distance from the edge obtained via exact numerical diagonalization of a 2D system (blue circles) and via numerical evaluation of Eq. (10) in
a ribbon geometry (orange crosses). The two curves coincide very well and show that C2 decays exponentially with the distance from the edge
on the scale of the edge state localization length ξ . Furthermore, C2 exhibits oscillations with a period of π/kF . (c) While we focused on a
straight edge for simplicity, our results can easily be generalized to more complicated edge geometries. In this case, the impurity spin prefers
to align tangentially to the edge as is indicated by the black arrows. The parameters used in (a) and (b) are 	/εF = 0.28 and JSm = 0.1.

represented as follows:

B(x0, iω) = −ω

2

ε>0∑
η,ky,n



†
η,ky,n

(x0)σyτy
η,ky,n(x0)

ω2 + ε2
η,ky,n

, (10)

where the 
η,ky,n(x) enlist all eigenstates of H. The upper limit
ε > 0 indicates that only the quantum states with positive
energies εη,ky,n > 0 are taken into account. The contribution
of eigenstates with negative energies is already included in
Eq. (10) via the particle-hole symmetry.

From the above, we can already infer the most important
features of the single-impurity problem. First, from Eq. (9),
we see that the symmetries of the Hamiltonian allow for an
EAA term that is proportional to S2

y . Second, as B(x0, iω)
given in Eq. (10) is a real-valued function, this EAA term
is always negative and therefore tends to align the spin of a
single magnetic impurity along the edge of the TSC. Third,
it is important to mention that B(x0, iω) decays into the bulk,
i.e., B(x0 → +∞, iω) = 0. This is due to the invariance under
inversion of the x axis deep in the bulk, which forces B(x0, iω)
to vanish for x0 → +∞. As such, the EAA is only significant
close to the TSC edge at x0 � ξ .

We now proceed by studying a discretized version
of H+Himp via numerical exact diagonalization, see
Appendix A for details. The (classical) impurity spin is
parametrized as S = S (sin θ sin φ, cos θ, sin θ cos φ) with
θ ∈ [0, π ] and φ ∈ [0, 2π ) being the polar and azimuthal
angles with respect to the y axis, respectively. The ground state
energy of the system can be expressed as

Etot = E0 + Eimp, (11)

where E0 is the energy of the clean system (i.e., in the absence
of the magnetic impurity) and Eimp embodies the impurity-
induced contribution. We calculate these energies by exact
numerical diagonalization and display our results in Fig. 2.
In Fig. 2(a), we plot the part of Eimp that varies as a func-
tion of θ for different distances from the edge, while we
have verified that Eimp is independent of φ. We find that the

impurity-induced contribution takes the form

Eimp(θ ) = C1 + C2 cos2 θ, (12)

with an isotropic energy shift C1 and an anisotropic contri-
bution C2 depending on the orientation of the impurity spin.
Figure 2(b) displays C2 = Eimp(0) − Eimp(π/2) as a function
of the distance from the edge. We find that C2 is always
negative, meaning that the impurity spin is favored to align
along the edge (θ = 0 or θ = π ). Furthermore, C2 decays ex-
ponentially with the distance from the edge on a characteristic
length scale ξ and vanishes deep in the bulk of the system. All
of these features are fully consistent with the analytical result
presented in Eqs. (9) and (10).

To make an explicit connection to the analytical result,
we also evaluate Eq. (10) by plugging in the numerically
obtained energies and wave functions of a discretized semi-
infinite system with a finite width along the x direction and ky

as a good quantum number. By identifying Sy = S cos θ , the
value of C2 can readily be obtained from Eq. (9), see again
Fig. 2(b). This does indeed perfectly reproduce the result
obtained via full exact diagonalization of the finite 2D system.
The dependence of C2 on the exchange coupling constant J
is analyzed numerically in Appendix D, where we confirm
C2 ∝ J2 at J � 1/(mS) as expected from perturbation theory.
Contrary to that, in the strong coupling regime J � 1/(mS),
the dependence on J is no longer quadratic. The parameters
in Figs. 2(a) and 2(b) were chosen deep in the perturbative
regime in order to allow for a direct comparison between
the exact numerical and the perturbative analytical results.
However, we note that the magnitude of C2 can be increased
by about two orders of magnitude if J is chosen to be larger,
see again Appendix D.

Last but not least, we note that our findings can be gener-
alized to more complicated edge geometries. In this case, the
single-impurity EAA term takes a more general form such that
the energetically preferred configuration has the impurity spin
aligned tangentially to the edge, see Fig. 2(c).
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IV. RKKY INTERACTION

We now analyze the interaction between two magnetic
impurities through the exchange of a particle-hole pair:

ERKKY = J2
∫ ∞

−∞

dω

2π
Tr{σ · S1G(r1, r2, iω)

× σ · S2G(r2, r1, iω)}, (13)

where S1 and S2 are the spins of two magnetic impurities
located at r1 and r2, see Fig. 1. If the distance between the
impurities along the edge � := |y1 − y2| is much larger than ξ ,
the contribution of the bulk states is exponentially suppressed
and only the gapless Majorana edge states contribute to the
RKKY interaction. Evaluating Eq. (13) by taking into account
only the edge states [see Eq. (4)], we find after a straightfor-
ward calculation outlined in Appendix E:

ERKKY ≈ −(Jm)2	 F (r1, r2)Sy
1Sy

2, (14)

F (r1, r2) = 8

π

sin2(kF x1) sin2(kF x2)

kF �
e− 2

ξ
(x1+x2 )

, (15)

which is valid in the limit � � ξ . Thus, the RKKY interaction
is of Ising type and tends to align the impurity spins ferromag-
netically along the edge [117]. Since also the single-impurity
term favors to align each individual impurity spin along the
edge, the overall ground state will have both impurity spins
aligned ferromagnetically along the edge. In accordance with
our intuition for 1D systems, we find that ERKKY decays as
1/�. Furthermore, we note that ERKKY oscillates with x1,2 due
to the spatial profile of the edge state wave functions, while
there are no oscillations with � as a direct consequence of
particle-hole symmetry.

Again, we verify these results via exact diagonalization of a
discretized model. The total ground state energy of the system
now consists of three components: the energy of the clean
system E0, the impurity-induced contributions E (1)

imp and E (2)
imp

of the individual impurities, and the RKKY exchange energy
ERKKY. Thus, we can write

Etot = E0 + E (1)
imp + E (2)

imp + ERKKY. (16)

Again, the two impurity spins are parametrized as Si =
S (sin θi sin φi, cos θi, sin θi cos φi ) with θi ∈ [0, π ] and φi ∈
[0, 2π ) for i ∈ {1, 2}. In Fig. 3, ERKKY is calculated at a large
interimpurity distance � = 3 ξ in dependence on θ1 for differ-
ent fixed θ2. Our numerical results show that indeed ERKKY ∝
cos(θ1) with a prefactor that is well approximated by the ana-
lytical result given in Eqs. (14) and (15). We have checked that
the same dependence also holds for θ2 as expected by sym-
metry. Similarly, we have checked that the numerical curves
are antisymmetric around θ1,2 = π/2 in agreement with the
analytical result, which is why we restrict ourselves to θ2 ∈
[0, π/2] in Fig. 3. Next, we calculate the energy difference
between the antiferromagnetic (AFM) and the ferromagnetic
(FM) configuration for two impurities oriented along the
edge as a function of �. Figure 4 shows the results for several
different distances from the edge. As expected, the energy
difference is positive—indicating that the FM configuration
is energetically favorable over the AFM configuration—and
decays as 1/� with increasing interimpurity distances. In
addition to the numerical result, we also display the analytical

FIG. 3. ERKKY as a function of θ1 calculated numerically via
exact diagonalization (dots) for different fixed θ2 (see inset) and
comparison to the analytical Eq. (14) (solid lines). The separation
between the impurities is � = 3 ξ and both impurities are placed at
a distance x1 = x2 = 0.2 ξ from the edge. We see that, for a fixed
orientation of the second impurity spin, the first impurity spin is
favored to align along the edge. The total energy is minimized if both
impurity spins are aligned ferromagnetically along the edge. Here,
we have set 	/εF = 0.28, JSm = 0.1, and φ1 = φ2 = 0.

energy difference obtained from Eqs. (14) and (15), see Fig. 4.
Indeed, in the limit of large � � ξ , the analytical expression
approximates the numerical result very well. For small
impurity separations, however, we see additional oscillations

FIG. 4. Energy difference EAFM − EFM for two impurities ori-
ented along the edge as a function of � calculated numerically via
exact diagonalization (dots) and analytically via Eq. (14) (solid line).
The impurities are placed at a distance x1 = x2 = 0.2 ξ (blue), x1 =
x2 = 0.3 ξ (orange), or x1 = x2 = 0.6 ξ (green) from the edge. We
find that EAFM − EFM > 0, indicating that the FM configuration is
energetically favorable over the AFM configuration. Furthermore,
the energy difference decays as 1/� with increasing interimpurity
distances, while it vanishes exponentially as the impurities are moved
into the bulk. At small �, the exact numerical result shows additional
oscillations due to contributions from the bulk states, which were
neglected in the analytical treatment. The system parameters are the
same as in Fig. 3.
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in the energy difference that become more pronounced as x1,2

increase. These can be attributed to bulk contributions, which
were neglected in the analytical treatment. As the impurities
move away from the edge, the edge-state contribution to the
RKKY interaction becomes exponentially suppressed and
bulk contributions are no longer negligible. We also note that,
while the parameters in Figs. 3 and 4 were chosen such that we
stay deep in the perturbative regime JSm � 1, ERKKY can take
on significantly larger values if J is increased. Indeed, ERKKY

will grow approximately quadratically with J up to JSm � 1.
We have checked numerically that the asymptotic 1/� de-

cay of the RKKY interaction close to the edge also persists
in the presence of potential disorder as long as the bulk gap
remains open. Contrary to this, accidental edge states in topo-
logically trivial materials (caused by, e.g., local imperfections
of the edge) will not lead to such a stable 1/� decay nor to
the predicted spin anisotropies. Indeed, trivial boundary states
will generally be localized along certain parts of the boundary
instead of propagating all the way around it in a topologically
protected way. As such, they can only give an exponentially
decaying contribution to the RKKY interaction.

V. CONCLUSION

We have studied classical magnetic impurities at the edge
of a helical TSC both analytically and numerically. For an
isolated magnetic impurity, we have found that a strong easy-
axis anisotropy tends to align the impurity spin along the
edge. Furthermore, we have shown that the RKKY interaction
between two magnetic impurities placed close to the edge
results in a ferromagnetic alignment of both impurity spins
along the edge.

Our results indicate that spectroscopy of dilute magnetic
impurities can serve as a powerful tool to experimentally dis-
tinguish between topologically trivial and nontrivial materials
by probing the magnetic anisotropy induced by the helical
edge states. When observed together with additional signa-
tures of bulk superconductivity, these magnetic anisotropies
strongly indicate a helical TSC state. As a simple experimen-
tal check, one should be able to observe that the magnetic
anisotropies—together with the bulk gap and all other features
of the helical TSC state—disappear when the temperature is
raised above the critical temperature of the superconductor.
We also note that while we focused on a simple toy model for
a 2D p-wave TSC, our analysis can easily be adapted to more
elaborate models of helical TSCs [118–128].

ACKNOWLEDGMENTS

We would like to acknowledge fruitful discussions with F.
Ronetti and A. Mook. This work was supported by the Georg
H. Endress Foundation, the Swiss National Science Founda-
tion, and NCCR QSIT. This project received funding from
the European Union’s Horizon 2020 research and innovation
program (ERC Starting Grant, Grant Agreement No. 757725).

APPENDIX A: EXACT NUMERICAL DIAGONALIZATION

For our numerical calculations, we describe the TSC by
the following tight-binding Hamiltonian defined on a square

lattice:

H̄ =
∑
n,m

{
†
n,m(4t − μ)τz
n,m−[
†

n,m(tτz + i	0σyτx )
n+1,m

+
†
n,m(tτz − i	0σxτx )
n,m+1 + H.c.]}, (A1)

written in the Nambu basis 
n,m = (cn,m,↑, cn,m,↓, c†
n,m,↓,

−c†
n,m,↑)T , where c(†)

n,m,σ annihilates (creates) an electron with
spin σ ∈ {↑,↓} at the lattice site (n, m). The hopping am-
plitude, the p-wave superconducting pairing amplitude, and
the chemical potential are denoted t , 	0, and μ, respectively.
The Pauli matrices σ = (σx, σy, σz ) and τ = (τx, τy, τz ) act in
spin and particle-hole space, respectively. The Hamiltonian
H̄ describes a helical topological superconductor for 	0 = 0
and μ/t ∈ (0, 4) ∪ (4, 8) [102]. The continuum limit of this
Hamiltonian coincides with Eq. (1) of the main text upon
identifying μ = k2

F /(2m), t = 1/(2ma2), and 	0 = α/(2a),
where a denotes the lattice constant.

Next, magnetic impurities are placed at sites (ni, mi ) close
to the edge of the TSC. They are modeled by the Hamiltonian

H̄imp = J̄
∑

i


†
ni,mi

σ · si 
ni,mi , (A2)

where si = Si/S is a unit vector pointing along the direction
of the impurity spin at site i and the exchange coupling J̄ is
related to the continuum parameters as J̄ = JS/a2. We recall
from the main text that the direction of the classical impurity
spins is parametrized as si = (sin θi sin φi, cos θi, sin θi cos φi )
with θi ∈ [0, π ] and φi ∈ [0, 2π ) being the polar and az-
imuthal angles with respect to the y axis, respectively.

APPENDIX B: EASY-AXIS ANISOTROPY

In this Appendix, we derive Eq. (9) in the main text. The
Matsubara Green function G(r, r′, iω) for the Hamiltonian
Eq. (1) takes the following form:

G(r, r′, iω) =
∑
η,ky,n


η,ky,n(x)
†
η,ky,n

(x′)eiky (y−y′ )

iω − εη,ky,n
, (B1)

where εη,ky,n is the eigenenergy of the quantum state 
η,ky,n(x)
[see Eq. (3)] and we define r=(x, y), r′=(x′, y′) with x, x′>0.
The Green function depends only on the difference y − y′
due to the translational invariance along the y direction. The
block-diagonal symmetry of the Hamiltonian, [H, σzτz] = 0,
results in the corresponding block-diagonal structure of the
Green function:

[G(r, r′, iω), σzτz] = 0. (B2)

In order to derive Eq. (9), we need the Green function taken at
the same point r = r′ = r0 = (x0, y0), x0 > 0:

G(x0, iω) ≡ G(r0, r0, iω) =
∑
η,ky,n


η,ky,n(x0)
†
η,ky,n

(x0)

iω − εη,ky,n
.

(B3)

The new short-hand notation G(x0, iω) shows that
G(r0, r0, iω) depends only on x0 and not on y0. Using the
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symmetries of H, we will now find the matrix decomposition
of G(x0, iω), which results in the EAA in Eq. (9).

First, the Hamiltonian H is symmetric under the inversion
of the y axis:

σyH(−ky)σy = H(ky). (B4)

This symmetry results in the following constraint for the
Green function G(x0, iω):

[σy, G(x0, iω)] = 0. (B5)

Second, H is also time-reversal symmetric:

σyH∗(−ky)σy = H(ky). (B6)

Combined with the reflection symmetry Eq. (B4), this results
in the following constraint:

H∗(ky) = H(ky). (B7)

Here ∗ stands for the complex conjugation. Thus, the spinors

η,ky,n(x) can be chosen real-valued:


∗
η,ky,n(x) = 
η,ky,n(x). (B8)

This results in the following symmetry of the Green function:

G∗(x0,−iω) = G(x0, iω). (B9)

In fact the real-valuedness of the spinors, the reflection sym-
metry Eq. (B5), and the block-diagonal structure of the Green
function Eq. (B2) result in the following matrix decomposi-
tion of G(x0, iω):

G(x0, iω) = iA1(x0, iω) + A2(x0, iω)τz + iB(x0, iω)σyτy.

(B10)

Here, A1,2(x, iω) and B(x, iω) are complex functions such
that A∗

1(x,−iω) = −A1(x, iω), A∗
2(x,−iω) = A2(x, iω), and

B∗(x,−iω) = −B(x, iω). We note that the absence of a
σyτx term in G(x0, iω) is somewhat nontrivial here. It be-
comes clear from the matrix structure of the projectors

η,ky,n(x0)
†

η,ky,n
(x0), where 
η,ky,n(x0) is real-valued and

also an eigenvector of σzτz.
The last symmetry in play is the intrinsic particle-hole sym-

metry of the superconducting system. In combination with
time-reversal symmetry, this gives rise to the chiral symmetry

τyH(ky)τy = −H(ky), (B11)

G(x0, iω) = −τyG(x0,−iω)τy. (B12)

Together with Eq. (B9), Eq. (B12) obliges the functions
A1,2(x0, iω) and B(x0, iω) to be real-valued. Moreover,
A1(x0, iω) and B(x0, iω) are odd functions of ω, whereas
A2(x0, iω) is an even function of ω.

At this point the matrix decomposition of G(x0, iω),
see Eq. (B10), becomes especially handy. First of all, it
is clear that there is no local spin magnetization because
Tr{G(x0, iω)σ} = 0 in accordance with time-reversal
symmetry. As the first two terms in Eq. (B10) commute
with σ · S, i.e.,

[iA1(x0, iω) + A2(x0, iω)τz, σ · S] = 0, (B13)

we can significantly simplify the spin trace in Eq. (6):

Tr{[σ · S G(x0, iω)]2}
= −B2(x0, iω)Tr{(σ · Sσyτy)2}

+ 4S2
(
A2

2(x0, iω) − A2
1(x0, iω)

)
, (B14)

(σ · Sσyτy)2 = (Sy + iSxσz − iSzσx )2

= S2
y − S2

x − S2
z = 2S2

y − S2. (B15)

This directly leads us to Eq. (9).
Following the matrix decomposition Eq. (B10), we can

represent B(x0, iω) in the following form:

B(x0, iω) = − i

4
Tr{σyτyG(x0, iω)}. (B16)

We note that B(x0, iω) is an odd function of ω due to chiral
symmetry, see Eq. (B11). Thus, we can simplify Eq. (B16)
by taking the antisymmetric part of the Green function in
Eq. (B3), which results in the following representation:

B(x0, iω) = −ω

4

∑
η,ky,n



†
η,ky,n

(x0)σyτy
η,ky,n(x0)

ω2 + ε2
η,ky,n

. (B17)

From the chiral symmetry, it is also clear that the contribution
of the states with negative energies is the same as the con-
tribution coming from the positive energies, which results in
Eq. (10) in the main text.

APPENDIX C: LOCAL DENSITY OF STATES
IN THE VICINITY OF AN IMPURITY

To begin with, let us calculate the local density of states
for the unperturbed TSC. The retarded Green function of the
unperturbed system taken at r = r′ is the following:

G(0)
R (r, r, ω) =

∑
η,ky,n


η,ky,n(x)
†
η,ky,n

(x)

ω − εη,ky,n + i0+ , (C1)

where η = ±1 is the eigenvalue of σzτz, ky is the momentum
along y, x > 0 is the distance from the edge, and n corresponds
to all other quantum numbers in the system. The local density
of states is described by the following operator:

ρ (0)(r, r, ω) = − 1

π
Im

{
G(0)

R (r, r, ω)
}

=
∑
η,ky,n


η,ky,n(x)
†
η,ky,n

(x)δ(ω − εη,ky,n). (C2)

If |ω| < 	, then only the in-gap edge states contribute to the
local density of states. This allows us to consider only the
edge states without the bulk contribution. The edge state wave
function is given by Eq. (4):


η,ky (x) = φ(ky, x)χη, (C3)

where χη is the Majorana spinor and φ(ky, x) is the Majorana
wave function normalized to unity:

φ(ky, x) = 2

√
k2

F − k2
y

ξ

sin (κx)

κ
e− x

ξ . (C4)
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The spectrum of the edge states is εη,ky = −ηαky, see the
main text. With this, we find the edge state contribution to
the unperturbed local density of states:

ρ (0)
e (r, r, ω) =

∫ kF

−kF

dky

2π
φ2(ky, x)δ(ω − αky)P

= φ2
(

ω
α
, x

)
2πα

P ≈ 2m

π
e− 2x

ξ P sin2

(
x

α

√
	2 − ω2

)
,

(C5)

where P = (1 + σyτy)/2 is the projector onto the Majo-
rana edge mode subspace σyτy = +1. Here |ω| < 	 ≈ αkF

and we approximated the ratio (α2k2
F − ω2)/[α2k2

F − ω2 −
(mα2)2] ≈ 1 if 	2 − ω2 � (mα2)2.

The analyticity of G(0)
R (r, r, ω) in the upper half-plane

Im(ω) > 0 allows us to restore the edge state contribution to
the retarded Green function:

G(0)
R,e(r, r, ω)

= ime− 2x
ξ

(
exp

(
−

√
(ω + i0+)2 − 	2

2x

α

)
− 1

)
P . (C6)

Notice that this function is indeed analytic in the up-
per half-plane Im(ω) > 0, satisfies the boundary condition
G(0)

R,e(r, r, ω) = 0 at x = 0, and the imaginary part yields the
local density of states given by Eq. (C5). The bulk contribu-
tion, on the other hand, can be estimated by approximating
the bulk density of states by the value ρb(r, r, ω) ≈ m/π for
|ω| > 	 and zero otherwise:

Gb(r, r, ω) =
∫ ∞

−∞

ρb(r, r,�) d�

ω − � + i0+

≈ −2mω

π

∫ ∞

	

d�

�2 − (ω + i0+)2

= −m

π
ln

(
	 + ω + i0+

	 − ω − i0+

)
. (C7)

We are interested in the local density of states at small
frequencies |ω| � 	, where the edge contribution Eq. (C6)
dominates over the bulk state contribution. This corresponds
to the condition

|ω| � 	e− 2x
ξ . (C8)

Equation (C6) can be further simplified at |ω| � 	 by using√
(ω + i0+)2 − 	2 ≈ i	sgn(ω):

G(0)
R,e(r, r, ω) ≈ ime− 2x

ξ (e−2ikF x sgn(ω) − 1)P . (C9)

From Eq. (C5) we immediately see that there is no magne-
tization in the unperturbed system:

ρ(0)
s (r, r, ω) ≡ Tr{σρ (0)(r, r, ω)} = 0, (C10)

where the index s in ρ(0)
s (r, r, ω) stands for spin. The local

charge density of states ρ (0)
c (r, r, ω) at |ω| � 	 of the unper-

turbed system follows from Eq. (C9):

ρ (0)
c (r, r, ω) ≡ Tr{ρ (0)(r, r, ω)} = φ2

(
ω
α
, x

)
πα

≈ 4m

π
e− 2x

ξ sin2 (kF x). (C11)

Now, we calculate the local density of states in the vicin-
ity of a magnetic impurity. Adding the magnetic impurity at
r0 = (x0, y0) [see Eq. (5) in the main text] perturbs the elec-
tron Green function in the vicinity of the impurity:

G(r, r′, iω) = G(0)(r, r′, iω)

+ JG(0)(r, r0, iω)σ · SG(r0, r′, iω). (C12)

Here we use the Matsubara formalism. The retarded Green
function can be obtained with the help of the analytical con-
tinuation iω → ω + i0+. First, let us plug in r = r0 and solve
for G(r0, r′, iω):

G(r0, r′, iω) = (1 − JG(0)(r0, r0, iω)σ · S)−1G(0)(r0, r′, iω).

(C13)

Substituting this back into Eq. (C12) and performing the ana-
lytical continuation iω → ω + i0+, we find the exact retarded
Green function of the TSC with a single magnetic impurity:

GR(r, r′, ω) = G(0)
R (r, r′, ω) + JG(0)

R (r, r0, ω)σ · S

×(
1 − JG(0)

R (r0, r0, ω)σ · S
)−1

G(0)
R (r0, r′, ω).

(C14)

First, let us check that there are no poles induced by the
impurity at |ω| � 	. For this, we notice that G(0)

R,e(r0, r0, ω) ∝
P , see Eq. (C9). Then, we notice that Pσ · SP = SyσyP . This
is enough to simplify the following operator:

(1 − zPσ · S)−1 = 1 + 1 + zSyσy

1 − z2S2
y

zPσ · S, (C15)

where z is a complex number. There is a pole if z2S2
y = 1. In

our case z is the following number:

z = J

2
Tr

{
G(0)

R,e(r0, r0, ω)
}

= sgn(ω)2Jme− 2x0
ξ sin (kF x0)e−isgn(ω)kF x0 . (C16)

Notice that the unperturbed retarded Green function can be
conveniently written through z:

G(0)
R,e(r0, r0, ω) = z

J
P . (C17)

The pole condition can be represented as

(2JmSy)2e− 4x0
ξ sin2 (kF x0) = e2isgn(ω)kF x0 . (C18)

As before, |ω| � 	e− 2x0
ξ , see Eq. (C8). We see that the

left-hand side of Eq. (C18) is a positive real number. The
right-hand side is a positive real number only if kF x0 = πn,
n being an integer. However, sin(kF x0) = sin(πn) = 0, which
means that Eq. (C18) does not have any solutions. This con-
firms our numerical simulations, which did not identify any
bound states near the magnetic impurity. Notice that bound
states are also impossible at any |ω| < 	 because the bulk
contribution to G(0)

R (r0, r0, ω) is real-valued at any |ω| < 	,
while the edge contribution always contains an imaginary
part. However, this argument no longer applies in the bulk
where x0 � ξ as the edge contribution vanishes exponentially.
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FIG. 5. (a) Numerically calculated C2 as a function of the exchange coupling constant J for three different distances from the edge
x0 = 0.2 ξ (blue), x0 = 0.4 ξ (orange), and x0 = 0.6 ξ (green). (b) Dashed rectangle in (a) in the log-log scale. We see that the perturbation
theory, which predicts an approximately quadratic dependence C2 ∝ J2, is valid up to J � 1/(mS). The other parameters are the same as in
Fig. 2.

Equation (C14) becomes especially simple if we choose
r = r′ = r0:

GR(r0, r0, ω) = (
1 − JG(0)

R (r0, r0, ω)σ · S
)−1

G(0)
R (r0, r0, ω).

(C19)
Using Eq. (C15) and the representation given in Eq. (C17), we
can find the correction to the Green function:

δGR(r0, r0, ω) ≡ GR(r0, r0, ω) − G(0)
R (r0, r0, ω)

= 1 + zSyσy

1 − z2S2
y

z2

J
Pσ · SP . (C20)

Using that Pσ · SP = SyσyP , we obtain:

GR(r0, r0, ω) = z

J

1 + zSyσy

1 − z2S2
y

P . (C21)

The local charge density of states at |ω| � 	e− 2x0
ξ is then the

following:

ρc(r0, r0, ω) = (1 + L)ρ (0)
c (r0, r0, ω)

1 − 2L cos(2kF x0) + L2
with

L = [2JSyme−2x0/ξ sin(kF x0)]2, (C22)

where ρ (0)
c (r0, r0, ω) is the unperturbed density of states, see

Eq. (C11). In the perturbative regime JSm � 1, we have
L � 1. Thus, we see that the density of states is only slightly
altered at the impurity site and can be correctly accounted
for by perturbation theory. The spin density of states at the
impurity site is affected even less, see Eq. (C21). The same
logic can be applied for GR(r, r, ω) at other sites r = r0 in the
vicinity of the impurity. Therefore, we confirm that the per-
turbation theory yields correct qualitative results for magnetic
impurities placed at the edge of a topological superconductor
when JSm � 1.

It is worth noting that there is no pole in Eq. (C22)
even if L = 1. Indeed, in order to have a pole we re-
quire cos(2kF x0) = 1, i.e., sin(kF x0) = 0 and therefore L ∝
sin2(kF x0) = 0. If the impurity is placed at the maximum
of ρ (0)

c (r0, r0, ω), then sin2(kF x0) = 1 and cos(2kF x0) = −1.
The local charge density of states at the impurity position is

therefore scaled down by a factor ρc/ρ
(0)
c = 1/(L + 1), see

Eq. (C22). In general, the ratio ρc/ρ
(0)
c can be larger or smaller

than unity, depending on the impurity position.

APPENDIX D: DEPENDENCE ON THE EXCHANGE
COUPLING CONSTANT J

In order to set the limits on the perturbation theory, we
present numerical results for the coefficient C2 as a function
of the exchange coupling constant J for three distances from
the edge, see Fig. 5. As expected, we find that C2 ∝ J2 for
small J � 1/(mS). Contrary to that, we find a qualitatively
different behavior for large J � 1/(mS), where C2 decreases.
In this case, the perturbation theory fails together with the
mean-field approach to describe the TSC due to a strong local
renormalization of the superconducting order parameter close
to the magnetic impurity.

APPENDIX E: THE RKKY INTERACTION
CLOSE TO THE EDGE

Here we derive Eq. (14) from Eq. (13). As we consider the
limit � = |y1 − y2| � ξ , the contribution of the bulk states is
exponentially suppressed, so only the edge states can be taken
into account. Using the exact wave functions for the edge
states, see Eq. (4), we find the Green function asymptotics at
� � ξ :

G(r1, r2, iω) ≈
∑

η

∫ kF

−kF

dky

2π


η,ky (x1)
†
η,ky

(x2)eiky (y1−y2 )

iω + ηαky
.

(E1)

As the integral over ky converges on the scale ky ∼ 1/� �
mα � kF , we can safely neglect the ky dependence in the
spinors Eq. (4):


η,ky (x) ≈ φ(x)
1√
2

(
uη

−ηu−η

)
, (E2)

φ(x) = 2
√

mα sin(kF x)e− x
ξ . (E3)
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Here φ(x) is normalized by unity. Performing the summation
over η in Eq. (E1) and using the approximation Eq. (E2), we
find

G(r1, r2, iω) ≈ φ(x1)φ(x2)
∫ ∞

−∞

dky

2π

eiky (y1−y2 )

iω + αkyσzτz
P, (E4)

P = I + σyτy

2
. (E5)

Here we introduced the projector P onto the subspace σyτy =
1. We also extended the integration over ky to the infinite inter-
val due to its fast convergence on the scale of 1/�. Evaluating
the integral over ky in Eq. (E4), we find the asymptotics of the
Green function at � � ξ :

G(r1, r2, iω)

≈ iφ(x1)φ(x2)
σzτzsgn(y1 − y2) − sgn(ω)

2α
e− |ω(y1−y2 )|

α P,

(E6)

where sgn(z) returns the sign of a real variable z.
Finally, we substitute Eq. (E6) into Eq. (13) to find the

effective interaction between two spins near the edge of the
topological superconductor. In order to calculate correspond-
ing spin trace in Eq. (13), we use two simple facts:

[P, σzτz] = 0, (E7)

P (σ · S)P = σy + τy

2
Sy. (E8)

By surrounding (σ · S1) by the projector P we find that the
spin trace must be proportional to Sy

1. Doing the same for
(σ · S2), we conclude that ERKKY must be just proportional
to Sy

1Sy
2. In other words, we can just substitute σySy instead of

the (σ · S) terms in Eq. (13) to simplify the calculation. All in
all, we find the effective interaction between two spins near
the edge of a topological superconductor:

ERKKY ≈ − J2

α2
φ2(x1)φ2(x2)Sy

1Sy
2

∫ ∞

−∞

dω

2π
e− 2|ω�|

α

= − 8

π
(Jm)2Sy

1Sy
2 sin2(kF x1) sin2(kF x2)

× e− 2
ξ

(x1+x2 ) 	

kF �
, (E9)

where � � ξ . This coincides with Eq. (14).

APPENDIX F: RKKY INTERACTION
FOR SPIN- 1

2 IMPURITIES

In Ref. [90], the RKKY interaction between two spin-1/2
impurities placed at the edge of a 2D TSC was calculated
using an effective 1D description of the helical Majorana edge
states. It was found that an antiferromagnetic alignment of the
impurity spins is preferred. Here, we repeat the corresponding
calculations using the model of Ref. [90] and find that the
RKKY interaction is ferromagnetic in agreement with our
results presented in the main text.

The Majorana edge modes in Ref. [90] are treated within
the effective 1D model

H0(τ ) = 1

2

∑
ν

vν

∫
dx 
ν (x, τ )(−i∂x )
ν (x, τ ), (F1)

where the index ν ∈ {L, R} labels left- and right-moving
modes, vL = −v and vR = +v > 0 are the corresponding
velocities, and 
ν (x, τ ) = 
†

ν (x, τ ) are the Majorana field
operators satisfying the following anticommutation relation:

{
ν (x, τ ), 
ν ′ (x′, τ )} = δνν ′δ(x − x′). (F2)

The equation of motion for the Majorana field operators in
imaginary time is then the following:

∂
ν (x, τ )

∂τ
= [H0(τ ), 
ν (x, τ )] = ivν∂x
ν (x, τ ), (F3)

where we used the anticommutation relation Eq. (F2) to eval-
uate the commutator.

We define the imaginary time Majorana Green function as
follows:

Gνν ′ (x, τ ) = −〈T{
ν (x, τ )
ν ′ (0, 0)}〉
= −ϑ (τ )〈
ν (x, τ )
ν ′ (0, 0)〉

+ϑ (−τ )〈
ν ′ (0, 0)
ν (x, τ )〉, (F4)

where T is the time-ordering operator and ϑ (τ ) is the Heav-
iside step function. Using Eq. (F3), we find the differential
equation for Gνν ′ (x, τ ):

∂τ Gνν ′ (x, τ ) = −δ(τ )δ(x)δνν ′ + ivν∂xGνν ′ (x, τ ). (F5)

The Green function is especially simple in the frequency-
momentum representation:

Gνν ′ (k, iω) = δνν ′

iω − vνk
. (F6)

Taking the Fourier transform, we find the Green function in
the time-coordinate representation:

Gνν ′ (x, τ ) = − iT

2v

δνν ′

sinh
(
πT

(
x
vν

+ iτ
)) , (F7)

where T is the temperature. The antiperiodic condition is
satisfied:

Gνν ′ (x, τ + 1/T ) = −Gνν ′ (x, τ ). (F8)

As the Green function is diagonal with respect to the chiral
index, we introduce the chiral left and right components

GR(x, τ ) ≡ GRR(x, τ ), GL(x, τ ) ≡ GLL(x, τ ), (F9)

where Gνν ′ (x, τ ) is given by Eq. (F7). GR(x, τ ) in this
Appendix should not be confused with the retarded Green
function.

We use the effective exchange interaction defined in
Ref. [90]:

HJ (τ ) = J

(
s

(
−R

2
, τ

)
SI,1 + s

(
R

2
, τ

)
SI,2

)
, (F10)

where two spin impurities are located at x = ±R/2, R is
the distance between the impurities along the edge, J is the
effective exchange coupling, and SI,1, SI,2 are the projec-
tions of the impurity spins onto the so-called Ising direction,
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see Ref. [90]. In our case, the Ising direction is along the
edge. The Majorana spin density operator s(x, τ ) is defined as
follows:

s(x, τ ) = i
R(x, τ )
L(x, τ ). (F11)

The interaction contribution to the thermodynamic poten-
tial δ� is given by the following statistical average:

δ� = −T (〈S〉c − 1), (F12)

where the index c stands for the connected diagrams only and
S is the statistical S matrix:

S = T exp

(
−

∫ 1/T

0
HJ (τ ) dτ

)
, (F13)

where HJ (τ ) is given by Eq. (F10). The first-order correction
vanishes due to the zero net spin density in absence of the
magnetic impurities:

〈s(x, τ )〉 = 0. (F14)

The second-order correction yields the self-interaction terms
proportional to S2

I,1 and S2
I,2 as well as the RKKY term pro-

portional to SI,1SI,2 that we are interested in:

ERKKY

= −T J2SI,1SI,2

∫
dτ1dτ2

〈
T

{
s

(
−R

2
, τ1

)
s

(
R

2
, τ2

)}〉

= T J2SI,1SI,2

∫
dτ1dτ2 GR(−R, τ1 − τ2)GL(R, τ2 − τ1),

(F15)

where GR(x, τ ) and GL(x, τ ) are introduced in Eq. (F9). The
Wick theorem has been used to evaluate the statistical average
in Eq. (F15). The product of two Green functions in Eq. (F15)
is a periodic function on τ with the period 1/T . This allows
for the following simplification:

ERKKY = J2SI,1SI,2

∫ 1/T

0
dτ GR(−R, τ )GL(R,−τ ). (F16)

Substituting the Green functions Eq. (F7) into Eq. (F16), we
find

ERKKY = −J2T 2

2v2
SI,1SI,2

∫ 1/T

0

dτ

cosh
(
2πT R

v

) − cos (2πT τ )
.

(F17)

The integral over τ can be reduced to the following elementary
integral: ∫ 2π

0

dt

λ − cos t
= 2π√

λ2 − 1
, λ > 1. (F18)

This gives the final result, showing that the RKKY interaction
mediated by the helical Majorana edge modes is ferromag-
netic:

ERKKY = −J2SI,1SI,2

4πvR

2πT R/v

sinh (2πT R/v)
. (F19)

As such, we find that, for vanishing temperature T = 0, the
result for quantum impurities is qualitatively similar to the
result for classical impurities presented in Eq. (14).
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