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We study two-dimensional (2D) Dirac fermions in the presence of a periodic mass term alternating between
positive and negative values along one direction. This scenario could be realized for a graphene monolayer
or for the surface states of topological insulators. The low-energy physics is governed by chiral Jackiw-Rebbi
modes propagating along zero-mass lines, with the energy dispersion of the Bloch states given by an anisotropic
Dirac cone. By means of the transfer matrix approach, we obtain exact results for a piecewise constant mass
superlattice. On top of Bloch states, two different classes of boundary and/or interface modes can exist in a
finite-size geometry or in a nonuniform electrostatic potential, respectively. We compute the dispersion relation
for both types of boundary and interface modes, which originate either from states close to the superlattice
Brillouin zone (BZ) center or, via a Lifshitz transition, from states near the BZ boundary. In the presence of a
potential step, we predict that the interface modes, the Bloch wave functions, and the electrical conductance will
sensitively depend on the step position relative to the mass superlattice.

DOI: 10.1103/PhysRevB.107.115420

I. INTRODUCTION

It is well known that the band structure of solids can
be modified in a controllable way by means of superlattice
potentials. For instance, the use of electrostatic superlattice
potentials has been suggested as versatile and tunable tool
for creating emergent Dirac fermions with anisotropic disper-
sion in two-dimensional (2D) graphene monolayers [1–7] or
in few-layer black phosphorus devices [8]. Similarly, moiré
superlattice effects can induce a spectacular restructuring of
the band structure in twisted bilayer graphene [9], layered
van der Waals materials [10], and topological insulators (TIs)
[11], including the formation of topologically nontrivial and
nearly flat bands with strong correlation effects [12]. Apart
from the mostly considered case of electrostatic superlattices,
interesting modifications of the band structure have also been
predicted for magnetic superlattices and for periodic modula-
tions of the spin-orbit coupling; see, e.g., Refs. [13–16] for the
case of graphene monolayers.

In the present work, we focus on yet another superlattice
type which can be realized in 2D Dirac materials, e.g., in
graphene monolayers [17] or the surface states of TIs [18,19].
We study the effects of a one-dimensional (1D) mass super-
lattice M(x), which periodically alternates between regions of
positive and negative mass. (The mass term is assumed homo-
geneous along the y direction, with the 2D material in the xy
plane.) For the graphene case, such a mass profile could arise
from a sublattice-dependent potential due to substrate or strain
effects [17]. For TI surface states, it could (approximately) be
generated by the exchange field of an array of magnetic stripes
with alternating magnetization direction.

It is well known that a single mass kink binds a fermionic
zero mode by the Jackiw-Rebbi mechanism [20–22]. This
zero mode is unidirectional (“chiral”) and propagates with the

Fermi velocity vF either in the positive or negative y direction
while being exponentially localized near the mass kink along
the x direction. In general terms, a sign change of the mass
for 2D Dirac fermions corresponds to a transition between
two topological Chern insulators with a different Chern num-
ber [23]. By the bulk-boundary correspondence, zero-mass
lines at the interfaces then harbor chiral zero modes. For
the TI realization, experimental evidence for such chiral zero
modes has been reported in Refs. [24,25]. In Bernal-stacked
bilayer graphene devices, in the presence of either interlayer
bias voltage kinks, tilt boundaries, or in folded geometries,
one expects topological valley-momentum-locked zero-line
modes [26,27] that closely resemble the above chiral zero
mode [28,29]. We refer the reader to Ref. [30] for a recent
survey, including a summary of the experimental evidence
for zero-line modes in bilayer graphene. In particular, such
modes have been identified by scanning tunneling microscopy
(STM) [31]. Similar zero-line modes also appear in the helical
network description of minimally twisted bilayer graphene
[32]. More generally, depending on the symmetries of the
problem, 1D zero-line modes can also appear near line defects
such as dislocations [33,34].

For 2D Dirac fermions with a periodic mass M(x) al-
ternating between positive and negative values, chiral 1D
modes are located near the positions with M(x) = 0, with
adjacent modes having opposite propagation direction. While
low-energy transport remains efficient along the y direction,
the band structure flattens along the x direction. For large
mass amplitude (and assuming the same absolute value for
positive and negative mass regions), the residual overlap
between counterpropagating neighboring chiral modes gener-
ates a small velocity vx � vF along the x direction. In effect,
one then arrives at a highly anisotropic Dirac cone dispersion
at low energies [35,36]. We here show that the case of a
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piecewise constant periodic mass term is exactly solvable.
Our calculations confirm the existence of anisotropic Dirac
cones, yield analytical results for the ratio vx/vF, and provide
a useful starting point for future studies of interaction effects
and/or magnetic fields. We note that in Refs. [37,38], closely
related models have been studied. In particular, the authors of
Ref. [37] show that for smooth mass kinks, additional nonchi-
ral localized states analogous to Volkov-Pankratov states
[39,40] can exist. However, the anisotropy of the Dirac cone
dispersion has not been discussed in Ref. [37]. Moreover,
while Ref. [38] (see also Ref. [41]) contains a detailed discus-
sion of the electronic spectrum for a periodic mass problem,
their mass term alternates between zero and a finite value, in
contrast to the mass term considered below. As a consequence,
chiral zero modes and physical effects caused by these modes
are absent in Refs. [38,41]. Let us also mention that we here
study a coupled-wire model, see Refs. [42,43] for related but
different examples, where the 1D wires correspond to chiral
zero modes with alternating propagation direction [44].

A central result of our work is to point out the existence
of two types of boundary modes in the presence of a sample
boundary along the y direction. The modes are spatially con-
fined to the vicinity of the boundary but can propagate along
the boundary. Similarly, for an electrostatic potential step
along the x direction, we predict two types of interface modes.
The two different mode types emerge either near the center of
the superlattice Brillouin zone (BZ) or near the BZ boundary.
In the latter case, we observe that such modes appear only
if the mass amplitude exceeds a critical value. Under this
condition, the Fermi surface for the lowest band undergoes
a Lifshitz transition [45], opening up from a closed elliptic
contour into a pair of open (disconnected) arcs. Remarkably,
both types of boundary and/or interface modes can only exist
in the presence of the mass superlattice, and their spatial decay
length can exceed the lattice constant of the mass term.

The structure of this paper is as follows. In Sec. II, we
introduce the model and the assumptions behind it, and we
consider the cases of a single mass kink and of a mass barrier.
(Technical details have been relegated to the Appendix.) Next,
in Sec. III we use the transfer matrix approach to determine
the band structure and the Bloch states for a piecewise pe-
riodic mass term with alternating regions of mass ±M; see
Eq. (3.1) below. In this case, we find a gapless low-energy
anisotropic Dirac cone near the � point of the superlattice BZ.
However, if the positive and negative mass amplitudes differ,
a spectral gap will open, as shown in Sec. III C, where we
construct a systematic low-energy theory. Importantly, in the
presence of boundaries or in an inhomogeneous electrostatic
potential, the spectral condition also allows for evanescent
wave solutions. We discuss boundary modes in Sec. IV. In
Sec. V, we include an electrostatic potential step along the
x direction, which defines an np junction. We determine
the transmission probability for Bloch states and show that
the conductance across the step will sensitively depend on the
step position. This dependence is a direct consequence of the
fact that low-energy states have significant weight only near
the positions of mass (anti)kinks. In Sec. V C, we show that
interface modes of various types can exist and we compute
their energy dispersion. The paper concludes with an outlook
in Sec. VI.

II. MODEL

In this paper, we study noninteracting electrons described
by a 2D Dirac Hamiltonian with a single Dirac cone. This
model captures the essential physics of the spin-momentum
locked and protected surface states in 3D TI materials [18,19],
as well as the low-energy physics of 2D graphene monolayers
which is governed by states close to a single K point (“valley”)
[17]. For the latter case, the assumption of a single K point
requires the mass or potential terms considered below to be
actually smooth on the scale of the lattice spacing of graphene.
For an infinitely extended system in the xy plane, using units
with h̄ = 1 and Fermi velocity vF = 1 throughout, we study
the Hamiltonian

H = −iσx∂x − iσy∂y + M(x)σz + V (x)1, (2.1)

with the electrostatic potential V (x) and the mass term M(x).
Both terms are assumed homogeneous along the y direction.
As a consequence of this translation invariance, the wave
vector (or momentum) component ky is conserved. The Pauli
matrices σx,y,z and the 2 × 2 identity matrix 1 act in spin
space for TI surface states, and in the sublattice space of the
honeycomb lattice for the case of graphene.

For given momentum ky, the spinor eigenstates of Eq. (2.1)
can be written as

�(x, y) = eikyy ψ (x), ψ (x) =
(

u(x)
v(x)

)
, (2.2)

which results in the 1D Dirac equation(
M(x) + V (x) −i(∂x + ky)
−i(∂x − ky) −M(x) + V (x)

)(
u
v

)
= E

(
u
v

)
. (2.3)

In this work, we are interested in the case of a spatially
periodic mass term which alternates between positive and
negative values. As a simple and exactly solvable model,
we will consider the piecewise constant periodic mass term
discussed in Sec. III. For the TI case, such a mass term can
(approximately) be generated by the deposition of ferromag-
netic insulator stripes with alternating magnetization on a TI
surface, where the magnetic exchange contributions produce a
periodic mass term [36]. Similarly, for a graphene monolayer,
a suitably patterned substrate creates a sublattice-dependent
superlattice potential which in effect gives a periodic mass
term [17].

In the remainder of this section, to prepare the ground
for the periodic mass case in Sec. III, we will analyze three
simpler problems. In Sec. II A, we determine the general
solution of Eq. (2.3) for the homogeneous case. In Sec. II B,
we rederive the well-known low-energy spectrum for a mass
kink, M(x) = M sgn(x), which binds a 1D chiral zero mode
propagating along the y direction [18,20–22]. In Sec. II C, we
study a mass barrier composed of a mass kink and an antikink,
where one finds two counterpropagating chiral zero modes.
For ease of notation, we often keep the dependence on ky and
E implicit.

A. Homogeneous problem

Let us first specify the general (not normalized) eigenstates
of Eq. (2.3) for a region with constant potential, V (x) = V ,
and constant mass, M(x) = M. A uniform scalar potential
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can be included by shifting E → E − V , which we implicitly
assume below. For M(x) = M, the solution is given by

ψ (x) = WM (x)

(
a
b

)
, (2.4)

where a and b are arbitrary complex coefficients and we define
the matrix

WM (x) =
(

eκx e−κx

i ky−κ

M+E eκx i ky+κ

M+E e−κx

)
, (2.5)

with the definition

κ =
⎧⎨
⎩

√
M2 + k2

y − E2, E2 < k2
y + M2,

ik ≡ i
√

E2 − M2 − k2
y , E2 > k2

y + M2.
(2.6)

For low energies, E2 < k2
y + M2, we have evanescent waves

along the x direction, and the eigenstates are spatially local-
ized on the length scale κ−1 near boundaries or mass kinks.
For E2 > k2

y + M2, κ = ik is purely imaginary and we find
plane-wave solutions propagating along the x direction with
wave number kx = k. Useful expressions involving WM (x)
in Eq. (2.5) are summarized in the Appendix. In particular,
Eqs. (A3) and (A4) imply that the x component of the particle
current density is given by

jx = ψ†σxψ =

⎧⎪⎨
⎪⎩

4κIm(b∗a)
M+E , E2 < k2

y + M2,

2k(|a|2−|b|2 )
M+E , E2 > k2

y + M2.

(2.7)

B. Mass kink

We turn to the case of a single mass kink, M(x) = M sgn(x)
with M > 0; see Ref. [22]. We here discuss only the low-
energy case, E2 < k2

y + M2, where κ in Eq. (2.6) is real. From
Eq. (2.4), normalizable eigenstates then have the form

ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩

W−M (x)

(
aL

0

)
, for x < 0,

WM (x)

(
0
bR

)
, for x > 0,

(2.8)

where the coefficients aL and bR are determined by continuity
of ψ (x) at x = 0 and normalization. Using Eq. (A2), we define
the matrix

�M = W −1
M (0)W−M (0)

= 1

κ (E − M )

(
Eκ − kyM −(κ + ky)M

(−κ + ky)M Eκ + kyM

)
, (2.9)

such that the continuity condition takes the form(
0
bR

)
= �M

(
aL

0

)
. (2.10)

As a result, we get the relations 0 = (Eκ − kyM )aL and bR =
(−κ+ky )M
κ (E−M ) aL. For nontrivial solutions, we must have Eκ −

kyM = 0 from the first relation, which is solved by the dis-
persion relation E (ky) = ky of a 1D chiral mode. The second
relation then yields bR = aL for the spinor wave function,
where aL is finally determined by normalization. This chiral
mode propagates with velocity vF along the positive y direc-
tion and is localized near the mass kink at x = 0 in the x

direction. Similarly, for an antikink mass profile with M re-
placed by −M, one finds a 1D chiral mode propagating along
the negative y direction, with dispersion relation E (ky) = −ky.

C. Mass barrier

Next we consider a mass barrier of width 	 described by
[27]

M(x) =
{

M, for |x| < 	/2,

−M, for |x| > 	/2.
(2.11)

We search for low-energy solutions with E2 < k2
y + M2,

where normalizable eigenstates can be written as

ψ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W−M (x)

(
aL

0

)
, for x < −	/2,

WM (x)

(
a
b

)
, for |x| < 	/2,

W−M (x)

(
0
bR

)
, for x > 	/2,

(2.12)

with coefficients aL, a, b, and bR. Imposing continuity at x =
±	/2, one can eliminate a and b. We arrive at Eq. (2.10) but
with �M replaced by

�B = W −1
−M (	/2)WM (	/2)W −1

M (−	/2)W−M (−	/2); (2.13)

see Eq. (A5) for explicit matrix elements. The dispersion
relation follows from [�B]11 = 0, which reads explicitly

E2 = k2
y + M2e−2κ	. (2.14)

For barrier width 	 → ∞, we can neglect the exponential
term and obtain E±(ky) = ±ky, corresponding to a pair of
counterpropagating chiral zero modes localized at the barrier
edges. For large but finite barrier width with M	 � 1, the two
chiral zero modes hybridize. The level crossing at ky = 0 is
now replaced by an avoided crossing, where Eq. (2.14) yields
E±(ky = 0) � ±Me−	M . The low-energy dispersion then ac-
quires an exponentially small gap due to the avoided crossing,

E±(ky) � ±
√

k2
y + M2e−2M	.

III. PERIODIC MASS

In this section, we discuss the solution of the Dirac equa-
tion (2.3) for the piecewise constant periodic mass term
sketched in Fig. 1, which is given by

M(x) =
{+M, jd � x < ( j + 1

2 )d,

−M, ( j + 1
2 )d � x < ( j + 1)d,

(3.1)

where d is the lattice period and j ∈ Z labels the unit cell.
For simplicity, we here assumed that the regions of positive
and negative mass have the same spatial extent, 	 ≡ d/2,
and the same absolute value of the mass, |M(x)| = M. This
implies the symmetry M(x + 	) = −M(x). Our calculations
can easily be adapted to the general case, where we find that
the spectrum acquires a gap; see Sec. III C. For now, however,
let us focus on Eq. (3.1). In Sec. III A, we employ the transfer
matrix method to solve the spectral problem and, in partic-
ular, to derive the energy quantization condition. The band
structure and the corresponding Bloch states are described in
Sec. III B, while we postpone the discussion of evanescent
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FIG. 1. Piecewise constant periodic mass profile M(x) in
Eq. (3.1). A unit cell of length d is indicated by the red square. The
inset indicates the regions of positive (gray) and negative (yellow)
mass in the xy plane. 1D chiral zero modes are generated near
the (anti)kink positions by the Jackiw-Rebbi mechanism, with the
respective propagation direction indicated by arrows.

state solutions to Sec. IV. Finally, in Sec. III C, a systematic
low-energy theory is constructed by projecting the model to
the subspace spanned by the chiral zero modes.

A. Transfer matrix and spectral equation

We first consider the unit cell 0 < x < d , where ψ (d ) and
ψ (0) are connected by the transfer matrix T ,

ψ (d ) = T ψ (0). (3.2)

In this unit cell, Eq. (2.4) implies that the wave function has
the form

ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩

WM (x)

(
a1

b1

)
, for 0 < x < 	,

W−M (x)

(
a2

b2

)
, for 	 < x < d,

(3.3)

with W±M (x) in Eq. (2.5). The continuity of ψ (x) at x = 	 re-
lates the complex coefficients (a2, b2) and (a1, b1) according
to (

a2

b2

)
= W −1

−M (	)WM (	)

(
a1

b1

)
, (3.4)

with W −1
−M (	)WM (	) given in Eq. (A2). We can therefore ex-

press the transfer matrix as

T = W−M (d )W −1
−M (	)WM (	)W −1

M (0). (3.5)

The explicit form of the matrix elements of T is given by
Eq. (A7) in the Appendix. The matrix T is symmetric and
has det T = 1. Its eigenvalues can be written as λ± = e±iKd ,
where K can be interpreted as a quasimomentum along the x
direction. As discussed below, K can be either real-valued (for
Bloch waves) or complex-valued (for evanescent modes).

In what follows, instead of T , we find it more convenient
to use a modified transfer matrix � defined by

T = WM (0) �W −1
M (0). (3.6)

Using Eq. (3.5) and the relations ψ (0) = WM (0)
( a1

b1

)
and

ψ (d ) = W−M (d )
( a2

b2

)
, which follow from Eq. (3.3), we arrive

at1

� = W −1
M (0)W−M (d )W −1

−M (	)WM (	). (3.7)

The corresponding matrix elements are specified in Eq. (A6).
We again have det � = 1, and � has the same eigenvalues
λ± = e±iKd as T .

We next require that ψ (x) satisfy the Bloch periodicity
condition

ψ (x + d ) = eiKd ψ (x), (3.8)

with a quasimomentum K along the x direction. For Bloch
wave solutions, K must be real. We then take K from the first
BZ of the mass superlattice,

−π

d
< K � π

d
, (3.9)

where (K, ky) = (0, 0) is the “� point.” More generally, we
can impose Eq. (3.8) for complex values of K . We find three
possible types of solutions, where K is either real (Bloch
waves) or complex (evanescent waves), with K = ±iK or
K = ∓iK ± π/d . The inverse length scale K > 0 is deter-
mined below. Evanescent state solutions thus are obtained by
imposing either

ψ (x + d ) = e∓Kd ψ (x) (3.10)

or

ψ (x + d ) = −e±Kd ψ (x). (3.11)

In what follows, evanescent waves derived from Eqs. (3.10)
and (3.11) are denoted as “type-I” and “type-II” states, respec-
tively. While for the infinitely extended system evanescent
states are not normalizable and hence not admissible, they
emerge in the presence of boundaries or nonuniform poten-
tials; see Secs. IV and V C.

Setting x = 0 and using the transfer matrix, Eq. (3.8) is
next written as

WM (0) �W −1
M (0) ψ (0) = eiKdψ (0), (3.12)

which is equivalent to the condition

(
� − eiKd1

)(a1

b1

)
=

(
0
0

)
. (3.13)

Nontrivial solutions of Eq. (3.13) can only exist if

det
(
� − eiKd1

) = 0. (3.14)

The compatibility condition (3.14) is equivalent to the spectral
equation

f (ξ ) = cos(Kd ), (3.15)

1With the matrix D(x) = diag(eκx, e−κx ) and the matrix �M for
the single-kink problem in Eq. (2.9), we may express � as � =
�M D(	) �−1

M D(	). This establishes a relation between the single-
kink problem and the periodic problem.
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where we define f (ξ ) ≡ 1
2 Tr �(ξ ) with the dimensionless

variable

ξ = (
k2

y − E2
)
d2. (3.16)

Using Eq. (A6), one finds

f (ξ ) = (Md )2 + ξ cosh(
√

(Md )2 + ξ )

(Md )2 + ξ
. (3.17)

The spectral equation thus depends on the single dimension-
less parameter Md, and E and ky appear only through the
dimensionless variable ξ . Below, we mostly focus on the
low-energy regime, subject to the condition

|E | < M, (3.18)

such that ξ > −(Md )2. The function f (ξ ) is shown for sev-
eral values of Md in Fig. 2(a). Bloch states are possible for
−1 � f (ξ ) � 1 corresponding to ξc � ξ � 0, where ξc < 0
is defined by the condition f (ξc) = −1. Outside this window,
no real solutions for the quasimomentum K can be found.
However, Eq. (3.15) also allows for solutions with complex-
valued K . For f (ξ ) > 1, corresponding to ξ > 0 and therefore
|E | < |ky|, we obtain type-I evanescent states. On the other
hand, for ξ < ξc, we can have type-II evanescent states at
energies above a critical value, |E | > Ec with Ecd = √−ξc,
where we find the analytical estimate

Ecd ≈
{

3 − Md/2, Md ≈ 2,

2Mde−Md/2, Md � 1.
(3.19)

In the low-energy regime (3.18), solutions for ξc, and thus
type-II states, exist only for Md > 2. This is related to the
fact that if Md < 2, for any Fermi level |EF| < M, the Fermi
surface is a closed curve in the 2D BZ. If Md > 2, instead, the
Fermi surface evolves from a closed curve (for |EF| < Ec) into
a pair of disconnected arcs (for Ec < |EF| < M). The critical
point |EF| = Ec corresponds to a Lifshitz transition. Numeri-
cal results for Ec vs Md along with the estimates in Eq. (3.19)
are shown in the inset of Fig. 2(a). For large Md � 1, type-II
states are also realized at very low energies.

We discuss type-I and type-II states in more detail in
Sec. IV and focus on Bloch states with real K for the re-
mainder of this section. We note in passing that Eq. (3.15)
has also been specified in Ref. [37]. However, the solutions

E = ±
√

k2
y + M2 reported in Ref. [37] are spurious, and the

anisotropy of the emergent Dirac cone near the � point has
been missed; see Eq. (3.25) below. It is also worth mention-
ing that for ky = 0, Eq. (3.15) coincides with the spectral
equation for a generalized Kronig-Penney model of diatomic
crystals [46,47].

B. Band structure and Bloch states

We first study the solutions of the spectral condition (3.15)
for real quasimomenta K in the 1D BZ (3.9). The corre-
sponding Bloch bands form the band structure of the mass
superlattice. For computing the band structure and the group
velocities, it is convenient to introduce the auxiliary function


(E , K, ky ) = f
((

k2
y − E2)d2) − cos(Kd ), (3.20)

FIG. 2. Spectrum of the 2D Dirac Hamiltonian with the periodic
mass term (3.1). (a) The function f (ξ ) vs ξ , see Eq. (3.17), in the
regime ξ > −(Md )2, for Md = 0.7, 2, 3.5, and 5, corresponding
to the red, green, brown, and blue curves, respectively. According
to Eq. (3.15), Bloch states require | f (ξ )| � 1. For f (ξ ) > 1 [ f (ξ )
< −1], type-I [type-II] evanescent states are possible. Inset: Critical
energy Ec vs Md, where type-II states can only exist for |E | > Ec.
The solid curve gives numerically exact results. The red and blue dot-
ted curves give the analytical estimates (3.19) for Md ≈ 2 and Md �
1, respectively. (b) Low-energy band structure, E = ±En(K, ky ), for
Bloch states with n = 0 and Md = 5.

where Eq. (3.15) is equivalent to the condition 
(E , K, ky ) =
0. The band structure calculation amounts to finding the
implicit function E (K, ky ) defined by this condition. In lim-
iting cases, this can be done analytically (see below), but
in general one has to resort to numerics. In any case, one
finds a particle-hole symmetric spectrum, E = ±En(K, ky),
where n ∈ Z labels different bands with non-negative energy
En(K, ky). The group velocity (vx, vy) for a given eigenstate
follows with E = ±En(K, ky) from Eq. (3.20) as

vx = −∂K


∂E

, vy = −∂ky


∂E

. (3.21)
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The low-energy spectrum determined numerically is shown
in Fig. 2(b). To understand these results, we now examine
limiting cases where analytical progress is possible.

First, for Md → 0, Eq. (3.15) recovers the standard
isotropic massless Dirac cone with kx = K restricted to the
first BZ (3.9),

E = ±En(K, ky) = ±
√

(K + 2πn/d )2 + k2
y , (3.22)

which includes an isolated Dirac node at zero energy as
well as finite-energy crossing points for K = 0, because
En(0, ky) = E−n(0, ky), and for K = π

d , because En( π
d , ky) =

E−n−1( π
d , ky). The finite-energy crossings points are not iso-

lated but form lines when varying ky. We will show next that
a finite value of Md does not spoil the above nodal structures
at the center of the 1D BZ, but it does lift the degeneracies at
the BZ boundary where gaps open.

For finite Md, let us first consider the 1D BZ center K = 0.
We then find that Eq. (3.15) has the non-negative solutions

E0(0, ky) = |ky|, En 
=0(0, ky) =
√

k2
y +

(
2πn

d

)2

+ M2,

(3.23)
where each energy En 
=0(0, ky) is twofold degenerate due to
±n bands. However, this degeneracy is lifted for K 
= 0; see
Eq. (3.27) below. From Eq. (3.23), using E (c)

n ≡ En(0, 0) for
the �-point energy of the respective band, �-point crossings
occur at zero energy (n = 0) and at the finite energies ±E (c)

n 
=0
with

E (c)
n 
=0 =

√
M2 + (2πn/d )2. (3.24)

The zero-energy node is of special interest. By expanding
Eq. (3.15) for small energies and small momenta, one obtains
an anisotropic conical Dirac dispersion,

E = ±En=0(K, ky) � ±
√

v2
x,0K2 + v2

Fk2
y , (3.25)

with a renormalized velocity along the x direction,

vx,0

vF
= Md/2

sinh(Md/2)
. (3.26)

Numerical results for the full low-energy band structure
are shown in Fig. 2(b). Near the � point, they agree with
Eq. (3.25). Evidently, for Md → 0, Eqs. (3.25) and (3.26)
recover the isotropic Dirac cone in Eq. (3.22). For Md � 1,
however, vx,0/vF is exponentially small and the dispersion
becomes almost flat in the K direction. In this case, the in-
dividual mass kinks and antikinks in the periodic mass profile
(3.1), which are centered at x = jd/2 with integer j, bind 1D
chiral zero modes by means of the Jackiw-Rebbi mechanism,
see Sec. II. As we elaborate in Sec. III C, superpositions of
chiral zero modes generate the n = 0 band dispersion (3.25),
where the finite hybridization between the counterpropagat-
ing zero modes at neighboring mass kinks and antikinks is
responsible for the finite but exponentially small velocity
(3.26). While the anisotropic Dirac cone dispersion associated
with zero modes in periodic mass profiles has been discussed
before [36], the piecewise constant mass term (3.1) admits
an exact solution. We note that anisotropic Dirac cones can
alternatively be engineered by means of scalar superlattice

potentials [1,2,4,7,8] or by using periodic magnetic fields
[13–15].

Similarly, we may expand around the � point for the finite-
energy crossing points (3.24), where we obtain

En 
=0(K, ky) � E (c)
n + k2

y

2E (c)
n

+ sgn(n) vx,nK, (3.27)

with the velocities vx,n 
=0 = [2πn/(E (c)
n d )]2 along the x di-

rection. We observe that a finite ky does not lift the twofold
degeneracy at K = 0, and hence there is a nodal line.

Let us briefly compare the above results to the correspond-
ing uniform-mass case M(x) = M, where the band structure
is given by

E = ±E (u)
n (K, ky) = ±

√
M2 + (K + 2πn/d )2 + k2

y . (3.28)

Importantly, no zero-energy modes related to the anisotropic
Dirac cone (3.25) appear anymore in Eq. (3.28). Expanding
around the � point, where finite-energy crossings occur again
at E = ±E (c)

n 
=0 with E (c)
n in Eq. (3.24), we find the positive-

energy solutions

E (u)
0 (K, ky) � M + k2

y + K2

2M
, (3.29)

E (u)
n 
=0(K, ky) � E (c)

n + k2
y

2E (c)
n

+ sgn(n) ṽx,nK,

with ṽx,n = 2π |n|/(E (c)
n d ). The main difference between the

alternating and the uniform mass profile is that the n = 0
zero-mode band in Eq. (3.25) has shifted to finite energies
E (u)

0 (K, ky) � M. On the other hand, the n 
= 0 dispersion
relation (3.29) differs from Eq. (3.27) only with respect to the
velocity along the x direction, vx,n → ṽx,n.

Let us now turn to the Bloch eigenstates corresponding to
the above band structure. Keeping (E , ky) implicit, we begin
by expressing ψ (x) in terms of a spinor wave function uK (x)
with the periodicity of the mass superlattice,

ψ (x) = eiKxuK (x), uK (x + d ) = uK (x). (3.30)

In the unit cell 0 < x < d , we obtain uK (x) = e−iKxψ (x) from
ψ (x) as specified in Eq. (3.3). We then need to determine the
K-dependent coefficients (a1, b1) and (a2, b2) in Eq. (3.3).
To that end, we recall that (a2, b2) follows from (a1, b1)
by the continuity condition (3.4) imposed at x = d/2. Using
Eq. (3.13), we can express2 b1 in terms of a1,

b1(K ) = eiKd − �11

�12
a1, (3.31)

with the matrix elements of � in Eq. (A6). Finally, a1 is fixed
by the normalization condition∫ d

0
dx |uK (x)|2 = 1. (3.32)

2For K = 0, the matrix element �12 vanishes for the spectral
branches ±E0(0, ky ) = ky. Then Eq. (3.31) does not apply and we
have instead a1 = 0 with b1 determined by normalization.
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FIG. 3. Probability density P(x) vs x for selected eigenstates
of the periodic mass problem. (a) P(x) for Bloch states with band
index n = 0, taking Md = 5 and Ed = 0.7. Solid blue, dashed
blue, blue-red, dashed red, and solid red curves are for kyd =
0.7, 0.3, 0,−0.3, −0.7, respectively. (b) P(x) normalized to its value
at x = 2d , for type-II evanescent states with Md = 5 and Ed = 1.
Solid (dashed) green curves are for kyd = 0 (kyd = 0.3), while the
dotted gray lines show the corresponding graphs of eKx .

We thereby obtain the Bloch eigenstate �K,ky,n,±(x, y) =
ei(Kx+kyy)uK,ky,n,±(x) for the energy E = ±En(K, ky). We il-
lustrate the corresponding probability densities in Fig. 3(a).
For kyd = 0.7 (solid blue curve), the state is mainly localized
near the mass kinks at x = jd with integer j. For kyd = −0.7
(solid red curve), on the other hand, the state is localized
near the antikinks at x = ( j + 1/2)d . As |kyd| decreases, one
approaches the d/2-periodic probability density found for
ky = 0, where the eigenstate is an equal-weight superposition
of counterpropagating chiral Jackiw-Rebbi modes.

For E2 < k2
y + M2 (where κ is real), we now observe that

the particle current density (2.7) along the x direction is uni-
form and given by

jx = −4κ sin(Kd )

(M + E )�12
|a1|2, (3.33)

with a1 determined by Eq. (3.32). Note that jx is odd in K .
We note that for the scattering problem in Sec. V A, instead of
Eq. (3.32) it will be more convenient to adopt a normalization
where the wave function carries unit current. This is achieved

by setting

|a1|2 =
∣∣∣∣ (M + E )�12

−4κ sin(Kd )

∣∣∣∣, (3.34)

which determines a1, with |a1(−K )|2 = |a1(K )|2, up to an
irrelevant phase.

C. Effective low-energy theory

For Md � 1, the essential low-energy physics of the
staggered Dirac mass superlattice problem is captured by pro-
jecting the full Hamiltonian (2.1) onto the subspace spanned
by the 1D chiral zero modes centered at the (anti)kink posi-
tions x j = jd/2 (integer j) of the periodic mass term (3.1).
The resulting effective low-energy theory is also useful for
studying interacting variants of the model. We show below
that this projection reproduces the exact spectrum to exponen-
tial accuracy in the low-energy regime, |E | < M.

In the unit cell |x| < 	 obtained after shifting x → x − 	
2 ,

we start from the mass profile

M(x) =
{

(1 + γ )M, |x| < 	
2 ,

−(1 − γ )M, 	
2 < |x| < 	,

(3.35)

where M > 0. The full mass profile follows by periodic-
ity, M(x + jd ) = M(x), and is inversion symmetric, M(x) =
M(−x). We here allow for a dimensionless asymmetry pa-
rameter γ , resulting in different mass amplitudes in regions
of positive and negative mass. Note that Eq. (3.1) follows
(up to the above shift) from Eq. (3.35) for γ = 0, where we
also have M(x + 	) = −M(x). The latter property is lost for
γ 
= 0. For |γ | > 1, the mass term always has the same sign
and chiral zero modes are absent. Below we focus on the more
interesting case |γ | < 1.

The kink and antikink positions in M(x) define a 1D bi-
partite lattice in the x direction, where sublattice A (kinks)
comprises the sites at xA j = jd − 	

2 and sublattice B (an-
tikinks) refers to xB j = jd + 	

2 . We now introduce the mass
profile MK(x − xA) for a single kink centered at position
xA, and similarly M̄K(x − xB) for an antikink centered at xB,
where

MK(x) = Msgn(x) + γ M, M̄K(x) = MK(−x). (3.36)

Zero-energy fermion modes bound to a kink or an antikink at
x = 0 satisfy

[−iσx∂x + MK (x)σz]φ+(x) = 0,

[−iσx∂x + M̄K (x)σz]φ−(x) = 0, (3.37)

where the orthonormalized states φ±(x) are eigenstates of
σy and satisfy φ−(x) = σzφ+(−x). Defining M̃ = (1 − γ 2)M,
we find

φ±(x) =
√

M̃

2
e−F (±x)

(
1
±i

)
, F (x) = (|x| + γ x)M.

(3.38)

For constructing the low-energy theory for Md � 1, we
expand the electron field operator in terms of the zero
modes (3.38) for kink and antikinks centered at xA j and xB j ,
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respectively,

�̂(x, y) =
∑

j

[φ+(x − xA j ) ψ̂A j (y) + φ−(x − xB j ) ψ̂B j (y)]

(3.39)

with 1D chiral fermion field operators ψ̂α j (y) for each
sublattice α = A, B and each unit cell j ∈ Z of the 1D
bipartite lattice. With fermion operators cα jky , we have
ψ̂α j (y) = 1√

W

∑
ky

eikyy cα jky , using periodic boundary condi-

tions, ψ̂α j (y + W ) = ψ̂α j (y), such that ky = 2πm
W for integer

m and linear system size W .
Projecting the full Hamiltonian H , see Eq. (2.1) with

V (x) = 0 and M(x) in Eq. (3.35), onto the low-energy basis
(3.39), we obtain the effective low-energy Hamiltonian,

Heff =
∫

dxdy �̂†(x, y)H�̂(x, y) (3.40)

=
∑

αα′, j j′,ky

c†
α jky

Hαα′
j j′ (ky) cα′ j′ky

,

with the sublattice-diagonal matrix elements

HAA
j j′ (ky) = kyM̃

∫
dx e−F (x−xA j )−F (x−xA j′ ), (3.41)

HBB
j j′ (ky) = −kyM̃

∫
dx e−F (−x+xB j )−F (−x+xB j′ ).

Similarly, the off-diagonal components take the form

HAB
j j′ (ky) = HBA

j′ j (ky) =
∫

dx e−F (x−xA j )−F (−x+xB j′ )

× M̃[M(x) − M̄K(x − xB j′ )]. (3.42)

All matrix elements depend on the site indices j and j′ only
through their separation ( j − j′)d and decay exponentially
with this distance. In particular, Eq. (3.41) yields

HAA
j j′ (ky) = −HBB

j j′ (ky) = ky f| j− j′|, (3.43)

where the dimensionless numbers (l = 0, 1, 2, . . .)

fl =
(

cosh(γ lMd ) + sinh(γ lMd )

γ

)
e−lMd (3.44)

encode the overlap between zero-energy modes at distance ld
belonging to the same sublattice. Note that f0 = 1. The off-
diagonal matrix elements (3.42) do not depend on ky and can
similarly be expressed as

HAB
j j′ (ky) = Mgj− j′ , (3.45)

where the dimensionless numbers gm, with m ∈ Z and M(x)
in Eq. (3.35), are given by

gm = M̃d eγ (m− 1
2 )Md

∫
ds e−(|s|+|s−m+ 1

2 |)Md

×
(

M(s + 1
4 )

M
+ sgn(s) − γ

)
. (3.46)

Note that for γ = 0, we have gm = −g1−m. For Md � 1,
the numbers fl and gm decrease exponentially fast when in-
creasing l and |m|, respectively. The low-energy theory is
dominated by terms with fl=0 = 1 and gm=0,1, corresponding

FIG. 4. Illustration of the numbers gm in Eq. (3.46), which en-
code the overlap between counterpropagating chiral zero modes. The
sites A and B correspond to the 1D bipartite lattice of kink and
antikink positions, where rectangles indicate a unit cell.

to overlaps between at most adjacent sites of the 1D bipartite
lattice, as illustrated in Fig. 4. In particular, the couplings g−1

and g2 describe next-nearest-neighbor overlap integrals which
are exponentially small compared to the nearest-neighbor cou-
plings g0,1, and can be omitted. For m = 0, 1, the integral in
Eq. (3.46) can be evaluated to exponential accuracy,

g0 ≈ −(1 − γ 2)e−(1+γ ) Md
2 , g1 ≈ (1 − γ 2)e−(1−γ ) Md

2 .

(3.47)

Since the matrix elements Hαα′
j j′ (ky) only depend on the

separation ( j − j′)d , the low-energy Hamiltonian (3.40) is
diagonal in momentum space. Using the above chiral 1D
fermion operators cα jky , we define a momentum-space spinor
field CKky according to(

cA jky

cB jky

)
=

∫ π/d

−π/d

dK

2π
ei jKdCKky , CKky =

(
CAKky

CBKky

)
. (3.48)

For W → ∞, we then obtain

Heff =
∫

dKdky

(2π )2
C†

Kky
H̃(K, ky)CKky

, (3.49)

where the single-particle effective Hamiltonian,

H̃(K, ky) =
(

f̃ (K )ky g̃(K )M
g̃∗(K )M − f̃ (K )ky

)
, (3.50)

is expressed in terms of the Fourier series

f̃ (K ) = f0 + 2
∞∑

l=1

fl cos(lKd ) ≈ 1, (3.51)

g̃(K ) =
∑

m

gme−imKd ≈ g0 + g1e−iKd .

The approximate results in Eq. (3.51) are obtained by keeping
only the leading coefficients fl=0 = 1 and gm=0,1, and hold to
exponential accuracy for Md � 1. By diagonalizing H̃(K, ky)
with the approximations in Eq. (3.51), we obtain the eigenen-
ergies

E (K, ky) = ±
√

k2
y + M2

[
g2

0 + g2
1 + 2g0g1 cos(Kd )

]
. (3.52)

This expression accurately reproduces the n = 0 band ob-
tained from the exact spectral equation (3.15).

Close to the � point (Kd � 1), Eq. (3.50) reduces to

H̃(K, ky) = Mg1Kd τy + kyτz − (
� + 1

2 Mg1(Kd )2
)
τx,

(3.53)
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with the gap � = −(g0 + g1)M > 0 and Pauli matrices τa in
sublattice space for the 1D bipartite lattice. Equation (3.52)
then simplifies to the dispersion relation of anisotropic mas-
sive Dirac fermions,

E (K, ky) = ±
√

ṽ2
x K2 + v2

Fk2
y + �2, (3.54)

with

� = 2M̃ e−Md/2 sinh(γ Md/2),
ṽx

vF
= M̃d e−Md/2. (3.55)

For γ = 0, we have � = 0 and Eq. (3.54) reproduces
Eq. (3.25) since vx,0 = ṽx for Md � 1; see Eq. (3.26). How-
ever, for γ 
= 0, the anisotropic Dirac cone is gapped and has
the Chern number C = − 1

2 sgn(�) [28,30,48–50].
We mention in passing that in terms of fermionic sublattice

spinor fields, ψ̂ j (y) = ( ψ̂A j (y)
ψ̂B j (y)

)
, the low-energy Hamiltonian

(3.49) can also be written as

Heff =
∑

j

∫
dy{ψ̂†

j [−i∂yτz + Mg0τx] ψ̂ j

+ Mg1[ψ̂†
j τ+ψ̂ j+1 + H.c.]}, (3.56)

with the approximations in Eq. (3.47) and using τ+ = 1
2 (τx +

iτy). Such a representation can be useful in order to include,
for instance, Coulomb interaction effects.

The above projection scheme can be adapted to any pe-
riodic mass profile M(x) alternating between positive and
negative values. For a continuous mass profile, the zeros of
M(x) define the sites of the 1D bipartite lattice, and close
to these zeros, a single (anti)kink in Eq. (3.36) can be ap-
proximated by a linear function MK(x) = Mx/d [M̄K(x) =
−Mx/d]. In that case, the normalized zero-energy wave func-
tions in Eq. (3.38) are replaced by

φ±(x) = (4πM/d )−1/4 e− M
2d x2

(
1
±i

)
. (3.57)

The effective low-energy Hamiltonian is then still given by
Eq. (3.50), with f̃ (K ) and g̃(K ) now calculated with φ± in
Eq. (3.57). We conclude that the projection approach offers
a powerful route toward studying the low-energy theory of
Dirac fermions in a mass superlattice.

IV. BOUNDARY MODES

We now turn to evanescent wave solutions which are char-
acterized by a complex-valued quasimomentum K and can
arise in the presence of boundaries or nonuniform poten-
tials. Throughout this section, we focus on boundary-induced
evanescent states in a constant potential and set V (x) = 0. In
addition, we consider the low-energy regime (3.18), where κ

in Eq. (2.6) is real-valued and (Md )2 + ξ > 0 in Eq. (3.17).
The length scale κ−1 governs the decay (or growth) of the
wave function along the x direction in a region of constant
mass. For the piecewise constant mass term (3.1), the length
κ−1 thus represents a microscopic scale, which is only relevant
on scales below the period d and which becomes shorter
with increasing |ky|. As discussed below, the mass superlattice

FIG. 5. Quasimomentum K in Eq. (4.1) vs ky for Md = 4, taking
the + sign in Eq. (4.1). Red (blue) curves show the imaginary (real)
part of K . The solid curves are for Ed = 0.5 and the dashed curves
for Ed = 1.4.

generates another characteristic length scale, K−1, which gov-
erns the decrease (or increase) of evanescent waves on scales
larger than the superlattice period d and which, for small |ky|,
grows with increasing |ky|. In Sec. IV A, we summarize gen-
eral properties of evanescent states, followed by the explicit
calculation of boundary modes for a semi-infinite geometry in
Sec. IV B.

A. Evanescent states

The spectral condition (3.15) is formally solved by

Kd = ± arccos f (ξ ), (4.1)

with the function f (ξ ) in Eq. (3.17). Bloch wave solutions
with real K only exist for | f (ξ )| � 1. For f (ξ ) > 1, corre-
sponding to ξ > 0 and thus to |E | < |ky|, one instead finds a
purely imaginary solution, K = ±iK for the respective sign
in Eq. (4.1), with the convention K > 0. For 0 < ξ � 1, we
estimate

Kd � sinh(Md/2)

Md/2

√
ξ, (4.2)

in agreement with Eqs. (3.25) and (3.26). The resulting type-I
boundary modes, see Eq. (3.10), originate from states near
the superlattice BZ center and are directly connected to the
anisotropic Dirac cone dispersion (3.25). This case is illus-
trated for Ed = 0.5 (solid curves) in Fig. 5. For the wave
function (3.3) of type-I states, using Eqs. (3.13) and (A6), we
obtain

b1(K = ±iK)

a1
= e∓Kd − �11

�12
, (4.3)

resulting in a decay (increase) of ψK (x) with increasing x for
K = iK (K = −iK). We note that the particle current along
the x direction vanishes, jx = 0, because b1/a1 is real.

Next we turn to the case Ed = 1.4 (dashed curves in
Fig. 5), where the real part of K again vanishes for |E | < |ky|,
corresponding to type-I states. However, for small |ky| and
Md > 2, a region with f (ξ ) < −1 corresponding to ξ < ξc <

0 exists, cf. Fig. 2(a), where Eq. (4.1) yields a pair of type-II
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states with K = ∓iK ± π/d , see Eq. (3.11). For ξ � ξc, we
find

Kd �
√

f ′(ξc) (ξc − ξ ). (4.4)

From Eq. (4.4) and Fig. 5, we observe that the decay length
K−1 can exceed the lattice spacing d of the mass superlattice.
The wave function of type-II states also follows from Eq. (3.3)
but with

b1(K = ∓iK ± π/d )

a1
= −e±Kd − �11

�12
, (4.5)

again resulting in jx = 0. The corresponding spatial probabil-
ity density is illustrated in Fig. 3(b), where an overall decay on
the emergent (long) length scale K−1 is clearly visible. At the
same time, the microscopic length 	 = d/2 due to the mass
superlattice causes a periodic modulation of the spatial decay.

The emergence of type-II states can also be seen from the
results of Sec. III C. Near the boundary of the superlattice
BZ, by writing K = π

d + q with |q|d � 1, the low-energy
dispersion relation (3.52) takes the form

E

(
π

d
+ q, ky

)
≈ ±

√
−ṽ2

x q2 + k2
y + E2

c , (4.6)

with ṽx in Eq. (3.55) and Ec = 2M̃e− Md
2 cosh( γ Md

2 ). Equa-
tion (4.6) reveals a saddle point at the BZ boundary, which
is responsible for the Lifshitz transition discussed in Sec. II A.
For |E | < Ec, Bloch states with real q exist for any (small)
value of ky. However, for |E | > Ec, type-II states with imagi-
nary q emerge for k2

y < E2 − E2
c .

B. Boundary modes for semi-infinite geometry

It is instructive to study a specific example admitting
evanescent wave solutions. We here consider the Dirac mass
superlattice problem on the half-plane x < x0, with the bound-
ary line x = x0 located in a positive-mass region, say, 0 <

x0 < d
2 . We impose a boundary condition at x = x0 and y ∈ R,

B(α) �(x0, y) = ±�(x0, y), (4.7)

which ensures that the component of the current density nor-
mal to the boundary vanishes [51,52]. The matrix B depends
on a phenomenological boundary angle α,

B(α) = σy cos α + σz sin α. (4.8)

For definiteness, we choose the eigenvalue +1 in Eq. (4.7)
in what follows. (The solution for eigenvalue −1 follows by
replacing α → α + π .) The corresponding eigenstate of B(α)
is given by

|α〉 =
(

cos
(

α
2 − π

4

)
−i sin

(
α
2 − π

4

)
)

. (4.9)

We now consider parameter regions with | f (ξ )| > 1, where
Bloch waves are absent and K in Eq. (4.1) is complex-valued.

For the semi-infinite problem, normalizable states can be
obtained only from one of the two solutions in Eq. (4.1).
Denoting this solution by K = K0 and recalling our conven-
tion K > 0, we have K0 = −iK for type-I states with ξ > 0.
Similarly, we have K0 = −iK + π/d for type-II states with

FIG. 6. Dispersion relation EB(ky ) of type-I (blue) and type-II
(red) boundary modes in a semi-infinite geometry with x < x0. We
assume x0 = d/4 and Md = 3.1, where results obtained by numer-
ically solving Eq. (4.10) are shown for the boundary angles α =
π/3, π/2, and 2π/3, using solid, dashed, and dotted lines, respec-
tively. The shaded region corresponds to Bloch states.

ξ < ξc < 0. For x → −∞, the solution ψK0 (x) decreases ex-
ponentially and therefore describes a normalizable state. The
other solution ψ−K0 (x) grows exponentially for x → −∞ and
hence is not admissible.

The boundary condition (4.7) implies that the bound-
ary spinor ψK0 (x0) must be proportional to the state |α〉 in
Eq. (4.9). Using Eq. (3.13), we thereby arrive at the spectral
condition

(� − eiK0d1)W −1
M (x0)|α〉 = 0, (4.10)

which determines the dispersion relation of the boundary
modes E = EB(ky). We illustrate typical results in Fig. 6 for
different values of the boundary angle. For Md > 2, we ob-
serve both type-I boundary modes with |EB(ky)| < |ky| (blue
curves) and type-II boundary modes (red curves). In both
cases, the precise shape of the dispersion EB(ky) sensitively
depends on the angle α and on the boundary location x0

(not shown). Moreover, the dispersion is not symmetric in ky,
which implies that the boundary modes can carry unidirec-
tional currents. We therefore expect them to be observable in
transport experiments. In addition, they could be detected in
STM experiments.

V. POTENTIAL STEP AND INTERFACE MODES

In this section, we return to the extended problem (without
boundaries) for the Dirac Hamiltonian (2.1) with the periodic
mass term in Eq. (3.1). We now include an electrostatic poten-
tial step of moderate step size 2Vs at position x = xs,

V (x) = Vs sgn(x − xs), 0 < 2Vs < M. (5.1)

The potential (5.1) defines an np junction. For definiteness, we
assume 0 < xs < d

2 such that the step is located in a region of
positive mass.

Here we focus on the most interesting low-energy regime
with real-valued κ parameters in Eq. (2.6). Recalling that a
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uniform potential can be accounted for by shifting the energy
E , on the left side x < xs, κ = κL follows from Eq. (2.6)
with E → E + Vs. Similarly, κ = κR for x > xs is obtained by
replacing E → E − Vs. [Below we will also use ξL,R which
follows from Eq. (3.16) with the same substitutions.] In order
to have both κL and κR real for all values of ky, we require

|E | < M − Vs. (5.2)

Apart from evanescent states bound to the potential step, we
then have to take into account only the zero-mode band with
n = 0 corresponding to the emergent anisotropic Dirac cone
near the � point.

In Sec. V A, we consider scattering states and calculate the
corresponding transmission probability for the potential step
(5.1). The linear two-terminal conductance G is discussed in
Sec. V B, where we consider transport across the junction with
lead electrodes attached to the system at x → ±∞. Interest-
ingly, we find a pronounced dependence of G on the step
position xs. In Sec. V C, we then determine the dispersion
relation of interface modes, which are spatially localized near
the potential step in the x direction but propagate along the y
direction.

A. Scattering states and transmission probability

We here consider scattering states with energy

|E | < Vs. (5.3)

Since the emergent Dirac cones on the two sides of the junc-
tion are shifted by the potential in opposite directions, in this
energy window one finds a particle-like state on the left side
and a hole-like state on the right side of the np junction.
The associated group velocity is then parallel (antiparallel)
to the momentum K on the left (right) side. We note that
for 0 < 2Vs < M, Eq. (5.3) automatically implies Eq. (5.2).
For given E and ky, we have a pair of 1D Fermi momenta
±KL on the left side, and similarly ±KR on the right side.
The values of KL > 0 and KR > 0 follow from the spectral
equation (3.15). In particular, using the auxiliary function

(E , K, ky ) in Eq. (3.20), KL,R are the solutions of


(E + Vs, KL, ky) = 0, 
(E − Vs, KR, ky) = 0. (5.4)

We then use Eqs. (3.3) and (3.31) to determine the scattering
state by matching the wave function on the left side of the
junction to the wave function on the right side. Appending
energy arguments as indices on the matrix WM (x) in Eq. (2.5),
the full wave function for 0 < x < d

2 is written as

ψ (x < xs) = WE+Vs,M (x)

[(
a1

b1

)
KL

+ r

(
a1

b1

)
−KL

]
,

ψ (x > xs) = t WE−Vs,M (x)

(
a1

b1

)
−KR

, (5.5)

with complex-valued reflection (r) and transmission (t)
amplitudes. We normalize the incident, reflected, and trans-
mitted wave functions such that they carry unit current; see
Eq. (3.34). Notice that the wave function for x > xs describes
a hole propagating to the right and therefore involves the 1D
Fermi momentum −KR.

The transmission probability T is given by

T (E , ky) = |t |2 =
∣∣∣∣a1(KL )

a1(KR)

∣∣∣∣
2

|t ′|2, (5.6)

where the amplitude t ′ follows by setting all coefficients
a1(±KL,R) = 1 in Eq. (5.5). Continuity of ψ (x) at x = xs then
results in two coupled linear equations for r and t ′,

WE+Vs,M (xs)

[(
1
b1

)
KL

+ r

(
1
b1

)
−KL

]

= t ′ WE−Vs,M (xs)

(
1
b1

)
−KR

, (5.7)

where, using a1 = 1, Eq. (3.31) gives

b1(±KL ) = e±iKLd − �11(E + Vs)

�12(E + Vs)
, (5.8)

and analogously for b1(±KR). Note that the energy argument
of the � matrix elements (A6) has been made explicit. With
the auxiliary quantities(

A(K )
B(K )

)
= W −1

E+Vs,M
(xs)WE−Vs,M (xs)

(
1

b1(K )

)
, (5.9)

where we suppress the dependence on xs, reflection and trans-
mission amplitudes can be expressed as

r = − B(−KR) − b1(KL )A(−KR)

B(−KR) − b1(−KL )A(−KR)
,

t ′ = b1(KL ) − b1(−KL )

B(−KR) − b1(−KL )A(−KR)
. (5.10)

We thus obtain the reflection probability R = |r|2 and the
transmission probability T from Eq. (5.6). Of course, current
conservation yields T = 1 − R.

We illustrate typical results for the transmission proba-
bility in Fig. 7. Depending on the parameters, Bloch states,
and thus a finite transmission, can only be realized in a
window of ky values. For fixed step position, we indeed ob-
serve a strong dependence on ky, with the symmetry T (E =
0,−ky ) = T (E = 0, ky), cf. Fig. 7(a), where we also illustrate
the effect of changing the parameter Md. In particular, we see
that at fixed energy, for the case of larger mass in the main
panel of Fig. 7(a), there is a window around ky = 0 where
the transmission vanishes. This window shrinks as the mass
decreases, and eventually closes, as shown in the inset. Notice
that the window’s edges do not depend on the position of
the step. For fixed (E , ky), Fig. 7(b) reveals a pronounced
dependence of T on the step position xs, with the symmetry
T ( d

2 − xs, ky) = T (xs,−ky ). This effect is linked to the strong
x dependence of the wave functions. Indeed, as discussed in
Sec. III C, the low-energy states are built from chiral zero
modes which are localized along the x direction near x =
jd/2 (integer j). Depending on the sign of ky, we find high
transmission probability if xs is near one of these positions,
where the probability density has maxima; see Fig. 3(a). In the
next section, we study how this behavior affects the electrical
conductance.
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FIG. 7. Transmission probability T for the Dirac mass superlat-
tice in the presence of the potential step (5.1) with Vsd = 1.25. (a) T
vs ky for E = 0, Md = 5, and xs/d = 0.05, 0.1, 0.25 (red, green,
blue curves). Inset: Same parameters as in the main panel but for
Md = 3.7. (b) T vs step position xs for Md = 5 with kyd = 1.1
(solid lines) and kyd = −1.1 (dashed lines), using Ed = 0, 0.05, 0.1
(red, green, blue curves).

B. Conductance

Within a noninteracting theory, the transmission proba-
bility T (E , ky) directly determines the linear two-terminal
conductance G via the standard Landauer-Büttiker formula
[53]. At zero temperature, identifying E with the Fermi energy
EF, the conductance for a strip of large width W along the
y direction, with source and drain electrodes adiabatically
connected at x → ±∞, is given by

G = Nve2W

(2π )2h̄

∫
dky T (EF, ky), (5.11)

where Nv is a degeneracy factor. For instance, in a graphene
monolayer, we have Nv = 4 because of spin and valley de-
generacies. Note that at given energy, only states with ky

such that | f (ξL,R)| < 1 have finite transmission probability
and contribute to the conductance.

We illustrate the dependence of G on the potential step
position xs and on the step size Vs in Fig. 8. We observe that
G strongly depends on xs and, in the interval 0 < xs < d/2,
exhibits a broad minimum at xs = d/4 with the symmetry
G( d

2 − xs) = G(xs). The conductance will then be a periodic

FIG. 8. Conductance G for the Dirac mass superlattice with
Md = 5 at Fermi energy EF = 0 in the presence of the potential
step (5.1). We show G in units of Nve2W

(2π )2 h̄d
for a strip of width W and

degeneracy index Nv. Main panel: G vs step position xs for several
values of the potential step size, Vsd = 1.1, 1.25, 1.4, shown by red,
green, and blue curves, respectively. Inset: G vs Vs for xs = 0.05d
(blue) and xs = 0.25d (red curve).

function of xs with period d/2. Such conductance oscillations
are most pronounced for Md � 1 and small values of the
Fermi energy, where the relevant electronic states originate
from the chiral zero modes localized near the mass (anti)kinks
at x = jd/2. The xs dependence of G becomes weaker for
smaller values of M (results not shown). A pronounced spatial
dependence of G on the step position is therefore a hallmark
of the existence of zero modes which are well localized along
the x direction.

As a function of step size Vs, we observe that the conduc-
tance shows a broad peak; cf. inset of Fig. 8. This behavior
can be rationalized by noting that in this example we consider
EF = 0, where the density of states associated with the Dirac
cone, and hence also the conductance, vanishes for Vs → 0.
Moreover, upon increasing Vs, the phase space for transmis-
sion (the window of ky where the transmission amplitude is
finite) first increases, but eventually shrinks and, as a conse-
quence, the conductance decreases toward zero.

C. Interface states

We finally study states localized near the interface at x =
xs. These states are formed by a combination of either type-
I or type-II evanescent waves on opposite sides of the step,
matched at x = xs. In particular, solutions with type-II modes
on both sides (“type II-II” interface modes) require f (ξL ) <

−1 and f (ξR) < −1, and have quasimomenta

KL = −iKL + π

d
, KR = +iKR − π

d
, (5.12)

with KL,R > 0 given by Eq. (4.4) with the replacement E →
E ± Vs. The state ψKL (x) (for x < xs) then shows an expo-
nential decay for x → −∞ and, similarly, ψKR (x) (for x > xs)
decays for x → ∞. For type I-II interface states, composed of
type-I and type-II modes on opposite sides, we find that, for
E > 0, the type-II state is on the left and type-I on the right
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FIG. 9. Dispersion relation of interface states bound to a potential step with Vsd = 1.5 and several step positions xs for Md = 5, with
E in units of h̄vF/d . The green (red) bands correspond to Bloch states at x < xs (x > xs). The solid black curves refer to interface modes.
The interface modes in the central inner region are of type II-II, while all others are of type I-II. From left to right panel: xs = 0, xs = 0.1d ,
xs = 0.4d , and xs = 0.5d .

side, with

KL = −iKL + π

d
, KR = +iKR, (5.13)

while for E < 0, the opposite happens, with

KL = −iKL, KR = +iKR − π

d
. (5.14)

The wave function matching condition at x = xs now implies

WE+Vs,M (xs)

(
a1

b1

)
KL

= t ′ WE−Vs,M (xs)

(
a1

b1

)
KR

, (5.15)

with b1(K ) in Eq. (5.8). Using the auxiliary quantities in
Eq. (5.9), we arrive at the equation

(�(E + Vs) − eiKLd1)

(
A(KR)
B(KR)

)
= 0, (5.16)

which implicitly defines the dispersion relation E = EI (ky)
of the interface modes. As for the boundary case (4.10), the
two equations in Eq. (5.16) are nonlinear conditions for ky

and E which have to be solved simultaneously. Depending
on the parameter values, our numerical analysis shows that
such solutions indeed exist. Typical results for the dispersion
relation EI (ky) are shown in Fig. 9. We find interface modes
of type I-II or type II-II, where the latter modes can only exist
for Md > 2. For the parameters in Fig. 9, there are no type
I-I interface modes. In fact, the absence of type I-I modes
is a generic feature which can be rationalized by observing
that their dispersion should originate from one of the two
crossing points (ky = 0, E = ±Vs), but at the same time it
should satisfy the conditions k2

y > (EI ± Vs)2. Clearly, both
requirements are incompatible.

In analogy to the boundary modes in Sec. IV, we ex-
pect such interface modes to affect transport properties. In
addition, they should be observable by STM or tunneling
spectroscopy.

VI. CONCLUSIONS

Our analysis of 2D Dirac fermions in a piecewise constant
mass superlattice, where the mass term periodically changes
sign, shows a remarkable richness. We have shown that the
low-energy part of the spectrum is spanned by the chiral
zero modes tied to the zero-mass lines of the superlattice.

Apart from the resulting anisotropic Dirac cone dispersion,
we also predict nontrivial boundary modes as well as interface
modes near potential steps. Those modes exist in two differ-
ent types. Type-I modes require a momentum |ky| parallel
to the zero-mass lines which is larger than the energy |E |.
Instead, type-II modes emerge at small |ky| but exist only
for Md > 2, where M is the amplitude of the mass term
and d the superlattice period. Both types of evanescent states
could affect transport properties and should be observable by
STM techniques.

Although our results have been derived for a particular
exactly solvable model, we have also shown that in the regime
Md � 1, the low-energy physics is directly connected to
the chiral zero modes localized at the zero-mass lines, and
therefore is generic to all Dirac mass superlattices where the
mass alternates between positive and negative values, includ-
ing periodic arrays of topological junctions between Chern
insulators with different Chern numbers.

The low-energy theory put forward in this work points to
several interesting extensions. First, the inclusion of an orbital
magnetic field along the z direction allows one to study the
interplay of Landau level formation and quantum Hall physics
with the phenomena discussed above. Second, since we have
a model of coupled 1D chiral fermions, bosonization methods
[54] can be used to construct solvable nonperturbative theories
of this 2D system in the presence of electron-electron interac-
tions.

Zero-line modes similar to those discussed in our work
have also been reported in recent experiments performed on
magnetic topological insulators [55] which realize interfaces
between quantum anomalous Hall insulators [23] with differ-
ent Chern numbers. We expect that our results will also be
relevant in this platform. Theoretical predictions for layer-
dependent zero-line modes in antiferromagnetic topological
insulator multilayer structures based on MnBi2Te4 [56] sug-
gest that our theory can also be applied in that context. An
important caveat when comparing our results to experiments
concerns the idealized steplike mass term considered here.
While this simplification allowed us to obtain exact analytical
solutions, for smooth mass kinks, additional states local-
ized at the kinks can emerge at elevated energies, so-called
Volkov-Pankratov states [37,39,40]. However, such states are
nonchiral and are expected to cause distinct transport and
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spectroscopical features compared to the chiral states dis-
cussed in our work.

To conclude, we hope that the results put forward here will
inspire future experimental and theoretical work along these
lines.
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APPENDIX: MATRIX PROPERTIES

We here summarize useful algebraic relations involving the
matrix WM (x) in Eq. (2.5). We first note that its inverse is given
by

W −1
M (x) = 1

2κ

(
(ky + κ )e−κx i(M + E )e−κx

−(ky − κ )eκx −i(M + E )eκx

)
(A1)

with κ in Eq. (2.6). Second, we observe that the determinant of
WM (x) is x-independent, det WM (x) = 2iκ

M+E . Third, Eqs. (2.5)
and (A1) imply the relation

W −1
−M (x)WM (x) = 1

κ (E + M )

(
Eκ + Mky e−2κx(κ + ky)M

e2κx(κ − ky)M Eκ − Mky

)
. (A2)

Fourth, for real κ corresponding to E2 < k2
y + M2, we find

W †
M (x)WM (x) =

(
e2κx

[
1 + ( ky−κ

E+M

)2] 2E
E+M

2E
E+M e−2κx

[
1 + ( ky+κ

E+M

)2]
)

, (A3)

W †
M (x) σx WM (x) = − 2κ

E + M
σy, W †

M (x) σy WM (x) = 2

E + M

(
e2κx(ky − κ ) ky

ky e−2κx(ky + κ )

)
.

For κ = ik with real k > 0, we instead find

W †
M (x)WM (x) =

(
2E

E+M e−2ikx
[
1 − (−k+iky

E+M

)2]
e2ikx

[
1 − ( k+iky

E+M

)2] 2E
E+M

)
, (A4)

W †
M (x) σx WM (x) = 2k

E + M
σz, W †

M (x) σy WM (x) = 2

E + M

(
ky e−2ikx (ky + ik),

e2ikx (ky − ik) ky

)
.

Next, the matrix �B in Eq. (2.13) for the mass-barrier problem in Sec. II C is given by

�B = 1

κ2(E2 − M2)

(
(E2 − M2)(k2

y − E2 + M2e−2κ	) −2M(κ + ky)(Eκ + kyM ) sinh(κ	)
2M(κ − ky)(Eκ − kyM ) sinh(κ	) (E2 − M2)(k2

y − E2 + M2e2	κ )

)
. (A5)

Similarly, the modified transfer matrix � in Eq. (3.7) for the periodic mass profile (3.1) reads

� = 1

κ2(E2 − M2)

(
(E2 − M2)[M2 + (

k2
y − E2

)
eκd ] M(1 − e−κd )(κ + ky)(Eκ − Mky)

M(1 − eκd )(κ − ky)(Eκ + Mky) (E2 − M2)[M2 + (k2
y − E2)e−κd ]

)
. (A6)

For E2 < k2
y + M2 such that κ is real, the matrix elements of � are also real. For completeness, we also specify the elements of

the symmetric transfer matrix T :

T11 = M2 + (k2
y − E2) cosh(κd )

κ2
+ ME [cosh(κd ) − 1] + kyκ sinh(κd )

κ2
,

T12 = T21 = i
Eκ sinh(κd ) + Mky[cosh(κd ) − 1]

κ2
,

T22 = M2 + (k2
y − E2) cosh(κd )

κ2
− ME [cosh(κd ) − 1] + kyκ sinh(κd )

κ2
. (A7)
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