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Microwave detection of gliding Majorana zero modes in nanowires
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We study a topological superconducting nanowire that hosts gliding Majorana zero modes in the presence
of a microwave cavity field. We show that the cavity decay rate depends on both the parity encoded by the
Majorana zero modes and their motion, in the absence of any direct overlap of their wave functions. That is
because the extended bulk states that overlap with both Majorana states facilitate their momentum-resolved
microwave spectroscopy, with the gliding acting to modify the interference pattern via a momentum boost.
Moreover, we demonstrate that these nonlocal effects are robust against moderate disorder in the chemical
potential, and we confirm the numerical calculations with an analytical low-energy model. Our approach offers
an alternative to tunneling spectroscopy to probe nonlocal features associated with the Majorana zero modes in
nanowires.
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I. INTRODUCTION

Topological phases of matter in the context of condensed-
matter physics emerged as a prominent research field fol-
lowing theoretical predictions of topological insulators and
superconductors [1,2]. In particular, topological superconduc-
tivity is characterized by the emergence of the zero-energy
bound states that are equal superpositions of electrons and
holes—Majorana zero modes (MZMs) [3,4]. They obey non-
Abelian statistics and are stable against disorder, making them
potential building blocks for a topological quantum computer
[5,6].

MZMs were predicted to emerge in a number of solid-
state platforms including graphene-like systems [7–12] and
chains of magnetic adatoms [13–16], with the most experi-
mental efforts focused on semiconducting nanowires [17,18].
Over the last years, many experimental works have reported
the observation of zero-bias conductance peaks [19–24] that
were theoretically predicted to be a necessary signature of the
presence of MZMs. However, several theoretical works have
demonstrated that zero-bias conductance peaks in experimen-
tal platforms consisting of a proximitized nanowire coupled to
a quantum dot [23] could arise from the trivial Andreev bound
states formed in the quantum dot [25–28]. In view of the
controversy associated with zero-bias peak signatures of the
MZMs, alternative ways to probe MZMs are highly needed
at the moment. One of the approaches going beyond local
transport measurements is based on circuit quantum elec-
trodynamics [29,30]. It has been theoretically predicted that
MZMs in proximitized nanowires coupled to superconducting
resonator could be probed via measuring cavity transmis-
sion coefficient [31–39]. However, these previous works that
use quantum optics methods have mainly focused on static
MZMs, while their dynamics, which is crucial in view of using
them as topological qubits, remains largely unexplored.

Here we fill this gap and investigate the dynamics of
photons in a microwave cavity coupled to a topological super-
conducting nanowire in the ballistic regime that hosts gliding

MZMs. We demonstrate that both the ground-state parity
encoded by the MZMs and their gliding dynamics influence
the cavity field decay rate into the external lines that can
be accessed experimentally. We determine that these effects
originate from interference processes between the localized
MZMs and the extended bulk states that are being ignited
by the cavity, with the gliding acting to modify the inter-
ference pattern via a momentum boost in the bulk states.
This mechanism is similar to that in Refs. [40,41], where
the momentum-resolved tunneling spectroscopy of a finite
nanowire in the presence of a magnetic field (causing a
momentum boost) reveals information about the confining
potential landscape and the nature of excitations.

The paper is organized as follows. In Sec. II we introduce
the model and determine the general form of the elec-
tronic susceptibility. Then, in Sec. III, we use a tight-binding
approach to describe an experimentally relevant spin-orbit
coupled nanowire hosting MZMs, both when they are static
and when they are gliding. In Sec. IV we introduce a low-
energy model that captures analytically the main features
found in lattice numerics. Finally, we end in Sec. V with
conclusions.

II. MODEL AND MAIN RESULTS

The Hamiltonian describing a one-dimensional topological
superconductor in Fig. 1 is

Htot (t ) = 1

2

∫
dx �†(x)[Hel (t ) + He-p]�(x) + Hp, (1)

where Hel (t ) is the (time-dependent) Bogoliubov-de-Gennes
(BdG) Hamiltonian describing the nanowire electrons,
He-p is the electron-photon coupling, and Hp = ωca†a
describes the single-mode cavity photons with the fre-
quency ωc and the creation (annihilation) operator a† (a).
The electronic field operators can be written as �(x) =
[ψ↑(x), ψ↓(x), ψ†

↓(x),−ψ
†
↑(x)]T , so that the electron-photon-

coupling Hamiltonian reads He-p = g(x)τz(a† + a), with g(x)
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FIG. 1. Sketch of the topological superconducting nanowire-
cavity system. The nanowire hosts two MZMs (γL,R) in the
presence of an inhomogeneous and time-dependent chemical po-
tential μ(x, t ) ≡ μ(x − vt ). Both MZMs move with velocity v and
couple to the cavity field (in green). The photons transmitted outside
the cavity, bout, depend on both the fermionic parity P ≡ i〈γLγR〉
defined by the two MZMs and their velocity. As described in the text,
this reflects the interplay of the nonlocality of both the bulk states and
the cavity field.

being the position-dependent coupling strength and τz being
the Pauli matrix acting in the particle-hole subspace. Next,
we aim to unravel the effect of the electrons on the photonic
dynamics and, to keep the approach general, we do not make
reference to the explicit form of Hel (t ) in this section. The
equation of motion for the photonic operator up to second
order in the electron-photon coupling strength g(x):

ȧ(t ) ≈ −i[ωc + χel (t, ωc)]a(t ) − κ

2
a(t ) − √

κbin(t ), (2)

where κ is the decay rate of the cavity, bin(t ) is
the input signal that probes the cavity, and χel (t, ωc) =
(1/2π )

∫
dt ′ eiωct ′

χel (t, t ′), with [42]

χel (t, t ′) = −iθ (t − t ′)〈[Oel (t, t ′), Oel ]〉 (3)

being the (time-dependent) electronic susceptibility
associated with the operator Oel = ∑

σ

∫
dxg(x)ψ†

σ (x)ψσ (x)
that couples to the photons. Moreover, Oel (t, t ′) ≡
U †

el (t, t ′)OelUel (t, t ′), with Uel (t, t ′) = T exp[−(i/h̄)∫ t
t ′ dτHel (τ )] being the evolution operator of the electronic

system (T is the time-ordering operator). Finally, 〈· · · 〉
represents the expectation value with respect to the
out-of-equilibrium electronic density matrix ρ(t ′), whose
derivation can, in general, be a formidable task. However,
here we focus on adiabatic dynamics with respect to the
topological gap t , in which case we can assume the density
matrix remains unaffected by the motion [43].

We start by analyzing the case when Hel is time indepen-
dent such that the topological nanowire harbors two distant
MZMs, (e.g., due to an inhomogeneous chemical potential or
magnetic field). They are described by left (right) fermionic
operators γL(R) that satisfy the Majorana condition γ

†
L(R) =

γL(R) and encode a full fermionic state cM = (γL + iγR)/
√

2
[c†

M = (γL − iγR)/
√

2] that is pinned at zero-energy in the
absence of any interaction between the two end-modes. Its
occupation, nM = c†

McM , determines the parity of the ground
state defined as

P̂ = 1 − 2c†
McM = −2iγLγR, (4)

whose expectation value, P ≡ 〈P̂〉, can be used to describe
the fidelity of the topological memory encoded in this two-
dimensional subspace [3]. That is, P = ±1 in a state of given
parity, corresponding to a state with an even (+) or odd (−)
number of electrons in the system.

The electronic susceptibility can be written as χel (ω) =
χMM

el (ω) + χBB
el (ω) + χBM

el (ω) [33], being the sum of the con-
tribution involving the MZMs only, the bulk states only, and
the cross MZM-bulk states, respectively. Since photons me-
diate only parity-conserving processes, χMM

el (ω) = 0, and,
moreover, for ω < 2t , we can neglect also χBB

el (ω). That is,
in this frequency range, the susceptibility is dominated by the
cross term (dropping the BM superscript from here on), which
reads

χP
el (ω) ≈

∑
n∈bulk

|MnL|2 + |MnR|2 + 2PIm[M∗
nLMnR]

ω − εn + iη
,

(5)

where

Mnα =
∑

σ

∫
dx g(x)[u∗

ασ (x)unσ (x) − v∗
ασ (x)vnσ (x)],

are the matrix elements stemming from the local MZMs to
the bulk states, with u∗

ασ (x) = vασ (x) being the α = L and
R Majorana electron and hole wave functions, while unσ (x)
[vnσ (x)] are the electron (hole) weights of the bulk state with
energy εn. Furthermore, η is the quasiparticle linewidth as-
sumed, for simplicity, to be the same for all states. The above
expression holds for temperatures T � t , so that the occu-
pation of the bulk states pn ≈ 0, and in the limit of negligible
overlap between the MZMs εM ≈ 0 [for the full expression
see Appendix A]. Equation (5), and in particular its imaginary
part, ImχP

el (ω) (quantifying the absorption), represents one of
our central results. It shows that the electronic susceptibility
that affects the photons is sensitive to the parity encoded by
two nonoverlapping MZMs via the intensity of the matrix
elements with the extended bulk modes. For that to occur,
the cavity field must cover both MZMs; otherwise, the two
parities exhibit the same signal intensity.

Since these effects are rooted in the interference of the
MZMs with the extended bulk states, δχel (ω) = |χ+

el (ω) −
χ−

el (ω)| ∝ 1/L in the ballistic regime. This is in contrast to
the detection approach scrutinized in Ref. [33] which relied
on the overlap of the MZMs wave functions and resulted in a
scaling δχel (ω) ∼ e−L/ξ , with ξ = vF /t being the coherence
length of the topological superconducting nanowire and vF

being the Fermi velocity. We note that the power-law scaling
should persist as long as the average energy level spacing of
the bulk levels (δε) satisfies δε ≈ vF /L > η, which can be as-
sociated with a wire length of L∗ = vF /η. Beyond this length,
δχel (ω) ∼ e−L/L∗

, which can be interpreted as follows: a bulk
state injected at the left end has its amplitude reduced once
reaching the right end because of its finite lifetime, therefore
diminishing its common overlap with the two MZMs. Since
typically L∗ � ξ , there is a wide range of wire lengths for
which these interference effects manifest such that εM ≈ 0.

To unravel the dynamical effects, let us assume the two
MZMs are gliding rigidly, preserving the distance L be-
tween them. That can occur, for example, when the chemical
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FIG. 2. Imaginary part of the susceptibility χP
el (ω) for parity

P = ±1 as a function of the cavity frequency ωc scaled with the
topological gap t . (a) The cavity couples to Nc = 50 sites of the
nanowire and (b) the cavity couples to the nanowire over its entire
length Nc ≡ N = 100. The red (black) line corresponds to the even
(odd) parity of the MZM. The dashed vertical lines indicate the first
ten resonances. In panel (a) the intensity of the transitions is the same
for both parities, while in panel (b) the intensities differ substantially
for εM ≈ 0. The other parameters are fixed as N = 100, /th = 0.15,
VZ = 2.5, α/th = 0.4, μ = 0, and η/th = 10−3.

potential that imprints the topological landscape in the wire
obeys μ(x, t ) = μ(x − vt ), with v being the velocity of the
rigid motion. Then, it is instructive to switch to the moving
frame via a unitary transformation W (t ) = exp (ivpt ) which
results in the Hamiltonian H̃el (v) = Hel (0) − vp. When the
coupling to the cavity is constant over the length of the
nanowire, g(x) ≡ g, the transformation W (t ) does not affect
He-p, and the susceptibility acquires the same form as in
Eq. (5), but with the spectrum εn(v) and the matrix elements
Mnα now v dependent according to H̃el (v). To test these
claims quantitatively, in the following we focus on a spin-orbit
semiconducting nanowire (such as InAs and InSb) in prox-
imity of an s-wave superconductor (such as Al) and subject
to an external magnetic field. Such systems been recently
under intense scrutiny in the quest of MZMs engineered in
semiconducting nanostructures [19–24].

III. LATTICE MODEL

The minimal tight-binding Hamiltonian describing a one-
dimensional nanowire composed of N lattice sites reads [44]

Hel (t ) =
∑
σ,σ ′

N∑
j=1

c†
j,σ

{
[2th − μ j (t )]δσσ ′ + VZσ x

σσ ′
}
c j,σ ′

+
∑
σ,σ ′

N−1∑
j=1

c†
j+1,σ Tσσ ′c j,σ ′ +

N∑
j=1

c†
j,↑c†

j,↓ + H.c.,

(6)

where c†
jσ (c jσ ) is the creation (annihilation) operator acting

on electrons with spin σ located at site j, μ j (t ) is the position
and time-dependent chemical potential, and th = h̄2/(2ma2)
is the hopping amplitude, with m and a being the effective
mass and lattice constant, respectively. Here, VZ is the Zeeman
energy, Tσσ ′ = (iασ

y
σσ ′ − thδσσ ′ ) is the total hopping matrix

element, with α being the spin-orbit interaction (SOI) constant
and σx,y,z being the Pauli matrices acting in the spin space,
while  is the proximity-induced superconducting pairing
potential.
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FIG. 3. Ratio of the P = ±1 susceptibilities, rχ = Imχ−
el /Imχ+

el

(rχ = Imχ+
el /Imχ−

el ) for Imχ−
el < Imχ+

el (Imχ+
el < Imχ−

el ), as a func-
tion of the fraction of sites coupled to the cavity, Nc/N . The red,
green, and blue dots correspond to the first three absorption peaks.
All other parameters are the same as those in Fig. 2.

We first consider a finite-size nanowire subject to a
time-independent and homogeneous chemical potential μ,
such that the topological gap t ≡ B −

√
2 + μ2 > 0 and

MZMs emerge at the ends of the nanowire. In our numeri-
cal simulations we focus on the strong SOI regime, ESO =
mα2/(2h̄2) � VZ , , and μ, and a nanowire with N lat-
tice sites that result in vanishingly small zero mode splitting
(εM/t = 2.4 × 10−6). We evaluated the electronic suscepti-
bility for different ratios Nc/N , with Nc being the number of
nanowire sites coupled to the microwave photons. When the
photons interact with a fraction of the nanowire Nc/N � 1/2,
we find that there is no discernible difference in the cavity
response between the two parities P = ±1, or δχel (ω) = 0
[see Fig. 2(a)]. However, by increasing Nc towards N , the
two parities start exhibiting different intensity patterns, with
the largest deviations between the two occurring when the
cavity is coupled to the entire nanowire. This effect, which
stems from the last terms in Eq. (5), is depicted in Fig. 2(b),
where we plot the evolution of the imaginary part of the
susceptibility, ImχP

el , with the cavity frequency ωc. We note
that the same features are exhibited by the real part of the
susceptibility, which, however, are relegated to Appendix C.
To further illustrate the difference in the susceptibility for the
two parities, in Fig. 3 we show the ratio between the even- and
odd-parity susceptibilities, rχ = Imχ−

el /Imχ+
el , as a function

of Nc/N . Since rχ < 1 if more than half of the nanowire is
coupled to the cavity, tuning the inhomogeneous coupling
between the nanowire and the cavity allows one to probe the
nonlocality of the MZMs. In fact, such discrimination should
persist even for more pairs of nonoverlapping MZMs living
in the same topological material. Additionally, such a mech-
anism could be utilized to initialize the nanowire in a given
parity state without the requirement to fuse the two MZMs by
bringing them in close proximity to each other.

In order to test the robustness of the susceptibility, we
have analyzed whether disorder in the chemical potential
hampers the discrimination between the parities. Here, we
do not perform ensemble averaging, but instead use the
quenched spatial disorder originating from the fixed random
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FIG. 4. (a)–(c) Energy spectrum of the finite-length disordered nanowire Eq. (6) as a function of the Zeeman energy VZ/ (the value of
the standard deviation σμ is indicated directly in the plot). (d)–(f) Imaginary part of the electronic susceptibility ImχP

el (ωc ) as a function of the
cavity frequency ωc/t , with the topological gaps (d) t/ = 0.88, (e) t/ = 0.79, and (f) t/ = 0.36, for a fixed value of the Zeeman
energy VZ/ = 3 [indicated by the black dashed line in panels (a)–(c)] and disorder in the chemical potential with the standard deviation σμ.
The other parameters are the same as those in Fig. 2. All cases show different absorption peaks for the two parities.

configuration chosen from a Gaussian distribution, consistent
with the experiment being performed at very low temperatures
[45]. In Figs. 4(a)–4(c) we show the energy spectrum of
Eq. (6) as a function of the Zeeman energy for three different
strengths of on-site disorder in the chemical potential, with the
standard deviation σμ. We note that zero-energy MZMs are
present even for σμ > t , but with the modified bulk energy
levels [see Fig. 4(c)]. Fixing the value of the Zeeman energy
VZ/ = 3, we plot the imaginary part of the susceptibility
ImχP

el as a function of the cavity frequency ωc for different
disorder strengths in Figs. 4(d)–4(f). While all the matrix ele-
ments that enter in the susceptibility are affected, we see that
the two parities still exhibit significantly different intensity
patterns when the on-site fluctuations in μ are smaller than
the topological gap t [see Figs. 4(d) and 4(e)], while the
difference in amplitudes still persists even for large values of
disorder with σμ > t [see Fig. 4(f)]. Therefore, the suscep-
tibility remains a good quantity to harness for distinguishing
between the even and the odd parities even in the presence of
disorder. Our results are also consistent with previous works
that demonstrate that for moderate disorder (strength smaller
than t ) the MZMs are largely unaffected [46–49].

To investigate the MZM dynamics, we consider a nanowire
in a ring geometry that is subject to a chemical potential
μ( j, t ) that glides with the velocity v, such that a fraction
of the ring is in the topological phase, supporting MZMs
(t > 0), while the rest of the ring remains in the trivial phase
(t < 0). To account for the gliding in the moving frame, we
substitute th → theimav in the tunneling term in Eq. (6). The
resulting energy spectrum of the ring in the moving frame as
a function of v is depicted in the inset of Fig. 5(a). It shows
that the effective gap in the energy spectrum, t (v), decreases
with increasing the velocity v, with the system becoming gap-
less at a critical vc ≈ α [50]. Nevertheless, the MZMs remain

localized near zero energy up to vc. Next, we scrutinize the
evolution of the absorption peaks with the MZM dynamics.
In Fig. 5(a) we show the imaginary part of the susceptibility
as a function of the velocity v, exhibiting an oscillatory peak
structure, similar to the dependence on ωc in the static case.
Here, the gliding of the chemical potential affects the bulk
states’ wave-function oscillation pattern (for a given energy
ωc), modifying their overlap with the MZMs, whose wave
functions instead remain largely unaffected by v in the adi-
abatic limit. In Fig. 5(b) we show the frequency dependence
of ImχP

el (ωc) at finite v. Interestingly, as compared to the
static case, each resonance peak is now split into two. This
feature originates from an asymmetry between the left and
the right moving bulk states induced by the gliding motion
of μ( j, t ), absent at v = 0, and which alters their constructive
or destructive interference.

IV. LOW-ENERGY MODEL

We can capture the essentials of the interference pattern
with a low-energy continuous model describing the nanowire.
The second-quantized expression for the nanowire Hamilto-
nian in the continuum limit is

Hw(t ) = 1

2

∫
dx�†(x)HBdG(x, t )�(x), (7)

which it is written in terms of the Nambu spinors
�(x) = {ψ↑(x), ψ↓(x), ψ†

↓(x),−ψ
†
↑(x)}T and with the (time-

dependent) BdG Hamiltonian

HBdG =
(

p2

2m
− μ(x, t ) + αpσz

)
τz + Bσx + τx, (8)

where μ(x, t ) ≡ μ0 + δμ(x, t ) is the time- and the position-
dependent chemical potential that eventually induces the mo-
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FIG. 5. (a) Imaginary part of the susceptibility ImχP
el of the ring

as a function of the velocity v for ωc/ = 0.9. The red (black) line
describes the even (odd) Majorana parity. Inset: Energy spectrum of
the ring in the moving frame as a function of v, becoming gapless
at v ∼ α. (b) Imaginary part of the susceptibility ImχP

el of the ring
as a function of the cavity frequency normalized by the effective
gap ωc/t (v) for v = 0.05 [t (v) = 0.59]. The red (black) line
describes the even (odd) parity. The gray dashed lines indicate the
position of absorption peaks. For all curves we used VZ/ = 2.5,
Ntop = 100, Ntotal = 300, /th = 0.15, α/th = 0.4, μ/th = 1.5, and
η/th = 10−3.

tion of the MZMs. Let us define t (x, t ) =
√

2 + μ2(x, t ) −
B as the inhomogeneous topological gap, and μ(x, t ) = μ0 +
δμ(x, t ) such that t = 0 for δμ(x, t ) = 0 (determining the
positions of the MZMs). While describing the finite supercon-
ducting nanowire analytically is, in general, a difficult task,
in the limit of strong SOI, quantified by max[t (x, t )] �
mα2/μ0B, we can make progress following the expositions
of Refs. [50,51]. First, when the system is near the topological
phase transition the minimum gap occurs at p = 0 and we
can neglect the quadratic term in Eq. (8). Second, assuming
the topological region moves rigidly at finite velocity v, the
pairing parameter becomes δμ(x) → δμ(x − vt ), and we can
use a unitary transformation U (t ) = e−ipvt to gauge away the
time dependence. This results in the following Hamiltonian in
the moving frame:

H̃ l
BdG(x) = up�z + t (x, 0)�x − vp, (9)

with u = α
√

1 − (μ0/B)2, p = −ih̄∂/∂x, and t (x) ≈
μ0δμ(x)/B (the corresponding high-energy Hamiltonian
describes bulk states with energies larger than ε(p) > 2B
and are disregarded from here on [51]). The Pauli
matrices � = (�x, �y, �z ) act in the space spanned
by {(−a+,−a−,−a−, a+), (−a−,−a+, a+,−a−)}, with
a± = √

1 ± /B [51]. When the system is homogeneous,
i.e., t = const, the eigenenergies become

ε±(p) = −vp ±
√

(pu)2 + 2
t , (10)

which correspond to a tilted spectrum with a topological
gap t (v) = t (0)

√
1 − β2, where β = v/u. The system be-

comes gapless at v = u, consistent with our findings in the
previous section [see inset of Fig. 5(a)]. The capacitive cou-
pling of the electrons to the cavity effectively amounts to
changes in the chemical potential μ0 and thus acts in the
low-energy sector as Hl

e-p ≈ g(μ0/B)(a† + a)�x. In order to
obtain the electronic susceptibility in Eq. (5), we need to
determine the wave functions of both the MZMs and the
bulk states, respectively. For that, we utilize a scattering ap-
proach assuming the topological gap profile t (x) = t for

x ∈ (−∞, 0)U (L,∞), and t (x) = −t otherwise. Conse-
quently, in each region we can utilize linear combinations of
the homogeneous space solutions and then invoke continuity
of the wave functions at x = 0 and x = L. In a given region,
the states with a given energy ω read as follows:

ψ±(ω, x) = 1

N±
[1,Cβ (ω ∓

√
ω2 − 1)]T eik±x, (11)

where Cβ = sign(t )
√

(1 − β )/(1 + β ) is a contraction fac-
tor, k± = (βω ± √

ω2 − 1)/(u
√

1 − β2) are the two momenta
for a given energy ω (for in-gap states being complex),

and N± =
√

1 + C2
β (ω ∓ √

ω2 − 1)2 are normalization fac-
tors. All the energies above are expressed in terms of the
effective gap t (v). While the scattering problem can be
solved exactly for arbitrary v, the resulting expressions are
lengthy and uninspiring. Instead, by solving the boundary
conditions detailed in Appendix D, we can extract simple
analytical expressions valid in the limits β � 1 and εM = 0
(L � u/t ):

ImχP
el ≈

⎧⎨⎩a(k) cos (k−kv )L
2 + b(k) sin (k−kv )L

2 , P = 1,

a(k) sin (k−kv )L
2 − b(k) cos (k−kv )L

2 , P = −1,

(12)

a(k) = 16k3 sin(kL)

(1 + k2)2[k4 + 4(1 − k2) sin2(kL)]
,

b(k) = 16k2[sin(kL) − 2k cos (kL)]

(1 + k2)2[k4 + 4(1 − k2) sin2(kL)]
, (13)

where k = √
ω2 − 1/u, while kv = β

√
ω2 − 1/u is the mo-

mentum boost stemming from the gliding. We see that for
v = 0, Imχ

+(−)
el (ω) ∝ sin4(kL/2)[cos4(kL/2)], which shows

that when one parity intensity is maximum, the other parity
exhibits a vanishing absorption signal, in qualitative agree-
ment with the findings from the lattice model. In Fig. 6 we
show the results for the susceptibility obtained by solving the
full scattering model (from the boundary conditions), com-
pared against the approximate results in Eq. (12) extracted for
energies close to the band edge ω � t (v). We see very good
agreement between the two in the adiabatic limit β � 1. A
finite v breaks this perfect alternation of maxima by inducing
a momentum boost kv = β

√
ω2 − 1/u (kv = −β

√
ω2 − 1/u)

to the left (right) moving bulk states, affecting the interfer-
ence pattern, consistent again with the numerical findings. Put
differently, the extended bulk states facilitate a momentum-
resolved microwave spectroscopy of the localized MZMs with
the gliding acting to modify the resulting interference pattern
via a momentum boost kv [40,41].

V. CONCLUSIONS

To summarize, in this work we have shown that photons
in a microwave cavity coupled to a topological superconduct-
ing nanowire that harbors MZMs are affected by both the
parity of the ground state and the MZMs dynamics. These
effects originate from the interference between the localized
MZMs and the extended bulk states in the presence of long-
range photons and do not require any overlap of the MZMs
wave functions. Auspicious developments in using MZMs in
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FIG. 6. The imaginary part of the susceptibility evaluated from
the effective low-energy model. (a) Frequency dependence of the sus-
ceptibility for the two parities at v = 0. (b) Same as in panel (a) but
at v = 0.1. (c) v dependence for ω = 1.1t (0). (d) Dependence
on the size of the topological region L scaled with the coherence
length ξv = 1/t at v = 0.1. The full lines correspond to the exact
result from the analytic model, while the dashed lines pertain to
the approximate expressions in Eq. (12). In panels (a)–(c), we used
L = 40, with u = 1 in all plots.

nanowires for quantum computing are currently hampered by
the difficulty in distinguishing them from other trivial bound
states. Utilizing long-range photons to map out the nonlocal
structure of MZMs and their dynamics in semiconducting
nanowires could offer complementary avenues to the local
tunneling spectroscopy to elucidate this conundrum.

ACKNOWLEDGMENTS

This project was supported by the Foundation for Polish
Science through the International Research Agendas program
co-financed by the European Union within the Smart Growth
Operational Programme (MAB/2017/1), and by the National
Science Centre (Poland) OPUS 2021/41/B/ST3/04475 (MT).
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie Grant Agreement No. 892800 (OD).

APPENDIX A: INPUT-OUTPUT FRAMEWORK

The single-mode cavity couples capacitively to the elec-
tronic density:

He-p = Oel (a
† + a), (A1)

where

Oel =
∑

σ

∫
dx g(x)ψ†

σ (x)ψσ (x), (A2)

with g(x) being the coupling strength to the electron density
ψ†

σ (x)ψσ (x) at position x, and a (a†) being the photon anni-
hilation (creation) operator. The equation of motion for the
photonic operator reads [52]

ȧ(t ) = −iωca(t ) − iOel,H (t ) − κ

2
a(t ) − √

κbin(t ), (A3)

where κ is the decay rate of the cavity field into the external
transmission line, bin(t ) is the input field impinging on the
cavity, while Oel,H (t ) is evolved by the total Hamiltonian
(Heisenberg picture). The input and output fields (which are
eventually measured in an experiment) are related via

bout (t ) = bint (t ) + √
κa(t ). (A4)

Following Ref. [42], we can write for the total density ma-
trix ρ̇(t ) = L(t )ρ(t ) − i[Oel , ρ(t )](a† + a), with L(t ) being
the Liouvillean of the electronic system only (but including
intrinsic dissipation channels), while in the absence of the
cavity the density matrix obeys ρ̇0(t ) = L(t )ρ0(t ). Then, in
leading order in the coupling to the photons, we have

〈Oel (t )〉 = 〈Oel (t )〉0 +
∫

dt ′χel (t, t ′)[a(t ′) + a†(t ′)],

(A5)
χel (t, t ′) = −iTr{[Oel (t, t ′), Oel ]ρ0(t ′)}θ (t − t ′),

with the latter being the time-dependent electronic sus-
ceptibility measured by the cavity. Also, Oel (t, t ′) ≡
U †

el (t, t ′)OelUel (t, t ′), with Uel (t, t ′) being the propagator de-
scribing the unitary evolution of the system, while 〈· · · 〉0

means average with respect to ρ0(t ). In Eq. (A5), we can
write a(t ′) ≈ a(t )eiωc (t−t ′ ), which disregards higher-order cor-
rections in the coupling to the electrons. Finally, all this allows
us to write the following local in time equation for the evolu-
tion of the photonic field:

ȧ(t ) ≈ − iωca(t ) − i〈Oel (t )〉0 − ia(t )χel (t, ωc)

− κ

2
a(t ) − √

κbin(t ), (A6)

where we introduce the (time-dependent) susceptibility

χel (t, ωc) = −i
∫ ∞

−∞
dt ′eiωct ′

χel (t, t ′). (A7)

When the input field bin � 〈Oel (t )〉0, we can neglect the latter
in the equation of motion, resulting in the expression shown
in the paper.

In the main text, we are concerned with the dynamics
induced by the gliding chemical potential μ(x − vt ). The
unitary transformation W (t ) = exp (iv pt ) renders the Hamil-
tonian time independent:

H̃el (t ) = W†(t )Hel (t )W (t ) − iW†(t )Ẇ (t ) ≡ Hel (0) − vp,
(A8)

while the eigenstates in the laboratory frame and the moving
frame are related by |ψn(t )〉 = W (t )|ψ̃n(t )〉. The electronic
evolution operator is

Uel (t, t ′) = W†(t )e−iH̃el (t−t ′ )W (t ′), (A9)

and the susceptibility becomes

χel (t, t ′) = −iTr{[Oel (t, t ′), Oel (t ′)]ρ̃0(t ′)}θ (t − t ′),

where Oel (t, t ′) = eiH̃el (t−t ′ )Oel (t )e−iH̃el (t−t ′ ), with Oel (t ) =
W†(t )OelW (t ) and ρ̃0(t ) = W (t )ρ0(t )W†(t ). When the cav-
ity field is constant over the length of the nanowire (i.e.,
g(x) ≡ g), the displacement operator does not affect the cou-
pling Hamiltonian He-p. Therefore, the combined system
remains time independent in the moving frame. Assuming
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adiabatic motion, we can safely assume the dynamics does
not affect the density matrix, which is given by ρ̃0(t ) ≡ ρ̃0 =∑

n pn|ψ̃n〉〈ψ̃n|, with pn being the occupation of the BdG
levels, and which makes the susceptibility dependent only on
the time difference t − t ′. Consequently, χel (t, ωc) ≡ χel (ωc),
allowing one to determine the susceptibility analogously to
the time-independent case [33].

APPENDIX B: DERIVATION OF THE ELECTRONIC
SUSCEPTIBILITY

It is instructive to express the fermionic operators as
follows:

ψ†
σ (x) =

∑
n

[u∗
nσ (x)c†

n + vnσ (x)cn], (B1)

where unσ (x) [vnσ (x)] are the electron (hole) coherence fac-
tors for state n at position x and with spin σ , while cn (c†

n)
are the annihilation (creation) operators for the Bogoliubons
of energy εn that diagonalize the electronic Hamiltonian in
the moving frame, i.e., H̃el = ∑

n εn(c†
ncn − 1/2). Then, by

employing the equation of motion eiH̃el t cne−iH̃el t = cne−iεnt ,
we can insert the above fields in the definition of Oel to find

χel (ω) =
∑
n,m

∑
σ,τ

∫
dx dx′[u∗

nσ (x)umσ (x) − vmσ (x)v∗
nσ (x)]

× [u∗
mτ (x′)unτ (x′) − vnτ (x′)v∗

mτ (x′)]
pn − pm

ω + εn − εm + iη

+ 1

2
[u∗

nσ (x)v∗
mσ (x) − u∗

mσ (x)v∗
nσ (x)]

× [vnτ (x′)umτ (x′) − vmτ (x′)unτ (x′)]
1

ω + εn + εm + iη

− 1

2
[vnσ (x)umσ (x) − vmσ (x)unσ (x)]

× [u∗
nτ (x′)v∗

mτ (x′) − u∗
mτ (x′)v∗

nτ (x′)]
1 − pm − pn

ω − εn − εm + iη
,

where η is a small positive rate that encodes the lifetime of the
levels. In this work, we are interested in the imaginary part of
the susceptibility, and more specifically in energies ω < 2t .
That is, we only account for the contributions that involve the
bulk states and the MZMs:

χel (ω) ≈
∑

m

(∣∣Mo
mM

∣∣2 pM − pm

ω + εM − εm + iη

+ ∣∣Me
mM

∣∣ 1 − pm − pM

ω − εM − εm + iη

)
, (B2)

where

Me
mM =

∑
σ

∫
dx[u∗

Mσ (x)umσ (x) − v∗
Mσ (x)vmσ (x)],

Mo
mM =

∑
σ

∫
dx[vMσ (x)umσ (x) − uMσ (x)vmσ (x)] (B3)

are the intensities of the matrix elements describing the transi-
tions into the bulk for the odd and even parities, respectively.

Expressing the electron and hole weights of the MZM as

uMσ (x) = 1√
2

[
uσ

L (x) + iuσ
R (x)

]
,

v∗
Mσ (x) = 1√

2

[
uσ

L (x) − iuσ
R (x)

]
, (B4)

readily allows us to identify the left and the right Majorana
wave functions, which are separated in space and satisfy the
Majorana condition uL(R)σ (x) = v∗

L(R)σ (x). With that, we can
finally write∣∣Me,o

mM

∣∣2 = |MmL|2 + |MmR|2 ± 2Im[M∗
mLMmR],

where Mmα = ∑
σ

∫
dx[u∗

ασ (x)umσ (x) − v∗
ασ (x)vmσ (x)] are

the matrix elements stemming from the local Majorana α = L
and R states and the positive energy bulk modes. The imag-
inary part of the susceptibility, which is responsible for the
absorption peaks, reads

Imχ e,o
el (ω) = −π

∑
m

{|MmL|2 + |MmR|2

± 2Im[(MmL )∗MmR]}δ(ω − εm), (B5)

where we assumed the low-temperature regime compared to
the topological gap t (pm ≈ 0) and the negligible Majorana
overlap (εM ≈ 0). This shows that, while the resonance posi-
tions are the same for the two parities, their intensities differ,
but only if the cavity couples to both MZMs.

APPENDIX C: NUMERICAL APPROACH FOR THE
RASHBA NANOWIRE LATTICE MODEL

In this section, we provide details on the numerical evalua-
tion of the electronic susceptibility for the tight-binding model
given by Eq. (6) in the main text. To emulate the continuum
analog of the gliding chemical potential, μ(x, t ) = μ(x − vt ),
we perform the substitution

th → theimav/h̄ (C1)

in the tight-binding model in Eq. (6) in the moving frame.
We are interested in cases when h̄/(ma) ≈ vF � v, so that
we can write theimav/h̄ ≈ th(1 + imav/h̄). Therefore, the static
electronic Hamiltonian is supplemented with the term

Hv = −i
h̄v

2a

∑
j,σ

(c†
j+1σ c jσ − c†

jσ c j+1σ ). (C2)

Diagonalizing the full Hamiltonian, including the term above,
results in the spectrum presented in Fig. 5 in the main text that
exhibits a gap closing at v ≈ α. For the one-dimensional ring
with N sites, Eq. (6), the electronic susceptibility expressed in
the moving frame reads

χel (t − t ′) = −iθ (t − t ′)Tr{[n(t ), n(t ′)]ρ̃0(t ′)}, (C3)

where n = ∑N
j=1 c†

j c j and n(t ) is the electron density operator
in the interaction picture evolved with the total Hamiltonian,
including Hv above. The density matrix was chosen as ρ̃0 =
pM |0〉〈0| + (1 − pM )|1〉〈1|, with pM = 0 and 1, and |0, 1〉 be-
ing the occupation and the many-body state of parity P = −1
and 1, respectively (we further assumed zero temperature,
T = 0, so that all negative bulk levels are occupied).
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FIG. 7. (a) Real part of the total susceptibility ReχP
el (ωc ) as a

function of the cavity frequency ωc/t in the topological phase
(VZ/ = 2.5) for a finite-length nanowire homogeneously coupled
to a microwave cavity. The red (black) line corresponds to the even
(odd) parity of the MZMs. Pink (gray) dashed lines signal the bulk-
Majorana transitions for even (odd) parity corresponding only to
nonzero matrix elements. (b) Difference between the odd- and even-
parity susceptibilities Im(χ+

el − χ−
el ) of a nanowire with disorder in

the chemical potential (standard deviation σμ = 0.1) as a function
of ωc/t in the topological phase (VZ/ = 2.5). The black dashed
line corresponds to the mean value of the difference Im(χ+

el − χ−
el )

calculated for 12 disorder configurations. The pink area gives the
95% confidence interval for the population interval estimated for
the difference between the two parities. The other parameters are
fixed as N = 100, /th = 0.15, VZ = 2.5, α/th = 0.4, μ = 0, and
η/th = 10−3.

We can make a connection to the continuum model and
write Hv in terms of the instantaneous eigenstates of the
Hamiltonian Hel (0). That is, we can write

c jσ =
∑

n

[unσ ( j)cn + vnσ ( j)c†
n], (C4)

such that Hel (v = 0) = ∑
n εn(v = 0)(c†

ncn − 1/2) and

Hv = −i
h̄v

2

∑
j,σ

∑
n,m

[∂ ju
∗
nσ ( j)c†

n + ∂ jv
∗
nσ ( j)cn]

× [umσ ( j)cm + vmσ ( j)c†
m] − H.c. ≡ −i

h̄

2

∑
j

c† R†∂t Rc,

where c = (c1, c2, . . . , c†
1, c†

2, . . . ) and R(t ) is the matrix
whose columns are eigenvectors of Hel (0). Furthermore, we
have defined ∂ junσ ≡ [unσ ( j + 1) − unσ ( j)]/a [and similarly
for ∂ jvnσ ( j)], while the time derivative is to be understood as
∂t R ≡ v

∑
j ∂ jR.

In Fig. 7(a) we plot the real part of the susceptibility
ReχP

el (ωc) for a finite-length nanowire with N = 100 lattice
sites. We note that ReχP

el (ωc) exhibits different oscillation
patterns for the two parities, similarly to the imaginary part of
the susceptibility ImχP

el (ωc) described in the main text. This
contribution ReχP

el (ωc) alters the cavity resonance frequency.
To further demonstrate that the susceptibility remains a good
quantity to distinguish between two parities even in the pres-
ence of disorder, we evaluate the difference rχ ≡ 〈Im(χ+

el −
χ−

el )〉 for a disordered nanowire averaged over 12 disorder
realizations of the chemical potential. In Fig. 7(b) we show the
disorder-averaged rχ as a function of the cavity frequency ωc.
We note that the susceptibility for two parities has different
intensities when the on-site fluctuations in μ are smaller than
the topological gap t . Therefore, the susceptibility could be

FIG. 8. Imaginary part of the total susceptibility ImχP
el (ωc ) of

the superconducting ring as a function of the cavity frequency nor-
malized by the velocity-dependent topological gap ωc/t (v) for
(a) v = 0 [t (v)/t = 0.86] and (b) v = 0.025 [t (v)/t = 0.74].
The red (black) line corresponds to the even (odd) parity of the
MZMs. The pink (gray) dashed lines indicate the positions of the
peaks in ImχP

el (ωc ) for even (odd) parity. The other parameters
are fixed as VZ/ = 2.5, Ntop = 100, Ntotal = 300, /th = 0.15,
α/th = 0.4, μ/th = 1.5, and η/th = 10−3.

utilized to distinguish between the even and the odd parities
even when we average over various disorder realizations.

Additionally, in Fig. 8 we show ImχP
el (ωc) for a nanowire

in a ring geometry for two different values of the velocity v

compared to Fig. 5 in the main text. We find that the number
and the position of the peaks in ImχP

el (ωc) are modified for
finite values of v due to the modification of the nanowire bulk
wave functions.

APPENDIX D: ANALYTICAL MODEL IN THE STRONG
SOI REGIME

Here we provide more details on the derivation of the
susceptibility in the continuum model. The electronic fields
�l (x) = [ψl,u(x), ψl,d (x)] associated with the low-energy
BdG Hamiltonian

H̃ l
BdG(x) = up�z + t (x, 0)�x − vp (D1)

are

ψl,u(x) = −a+[ψ↑(x) + ψ
†
↑(x)] − a−[ψ↓(x) + ψ

†
↓(x)],

ψl,d (x) = −a−[ψ↑(x) − ψ
†
↑(x)] − a+[ψ↓(x) − ψ

†
↓(x)],

(D2)

and ψ
†
l,u(d )(x) = +(−)ψ†

l,u(d )(x). Therefore, the second-
quantized interaction Hamiltonian between the cavity and the
electronic density becomes

Hl
e-p ≈ 2gμ0

B

∫
dxψl,u(x)ψl,d (x)(a† + a). (D3)

We can express these fermionic fields in terms of the eigen-
Bogoliubons for a given chemical potential landscape:

ψl,u(x) =
∑

n

[Un(x)cn + U ∗
n (x)c†

n], (D4)

ψl,d (x) =
∑

n

[Vn(x)cn − V ∗
n (x)c†

n], (D5)

where Un(x) and Vn(x) are the electronic weights of the state n
associated with the eigen-Bogoliubons cn that diagonalize the
nanowire Hamiltonian, and which can in turn be written as

cn =
∫

dx[U ∗
n (x)ψl,u(x) + V ∗

n (x)ψl,d (x)]. (D6)
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For the MZM instead, we can write it as cM = (γL + iγR)/
√

2,
with γ

†
L,R = γL,R being the corresponding left and right Majo-

rana fermion operators, with the explicit expressions

γL =
∫

dx

[
[U ∗

M (x) + UM (x)]︸ ︷︷ ︸
UL (x)

ψl,u(x)

+ [V ∗
M (x) − VM (x)]︸ ︷︷ ︸

iVL (x)

ψl,d (x)

]
, (D7)

γR =
∫

dx

[
[U ∗

M (x) − UM (x)]/i︸ ︷︷ ︸
UR (x)

ψl,u(x)

+ [V ∗
M (x) + VM (x)]/i︸ ︷︷ ︸

iVR (x)

ψl,d (x)

]
. (D8)

To evaluate the susceptibility, we employ several approxima-
tions. First, we only retain the cross terms involving MZMs
and bulk states, and we neglect the purely bulk contribution,
focusing on frequencies ω < 2t . Moreover, we assume the
nanowire to be long enough such that the MZM splitting
εM ≈ 0. Then, the susceptibility takes the form in Eq. (B2),
with

Me
nM = −

(
2gμ0

B

)2 ∫
dx[U ∗

M (x)V ∗
n (x) − V ∗

M (x)U ∗
n (x)],

Mo
nM = −

(
2gμ0

B

)2 ∫
dx[UM (x)V ∗

n (x) + VM (x)U ∗
n (x)].

(D9)

To determine the electron and hole weights in the above
expressions, we consider the following topological landscape
(in the moving frame):

t (x) =
⎧⎨⎩ t , x ∈ (−∞, 0)U (L,∞),

−t , x ∈ [0, L],
(D10)

with L being the size of the middle part of the nanowire.
Therefore, in a given region the wave function pertaining to
the Hamiltonian in Eq. (D1) (traveling or evanescent) can be
written as

ψ±(E , x) =
(

U±(E )
V±(E )

)
eip±(E )x, (D11)

where

p±(E ) = βE ± √
E2 − 1

u
√

1 − β2
, (D12)

V±(E ) = sign(t )C(β )(E ∓
√

E2 − 1)U±(E ), (D13)

with β = v/u and C(β ) =
√

1−β

1+β
being a contraction factor.

Note that the effective gap is t (v) = |t |
√

1 − β2, and all
energies above are expressed in terms of t (v). However, the
boundaries will lead to mixing of these pristine states with
a given energy. In the following, we evaluate the degree of
mixing using a scattering approach, both for the in-gap states
as well as for the traveling modes.

1. In-gap Majorana modes

To find the spectrum and the wave functions of the in-gap
modes, we set |E | < t (v). Then

V±(E ) = sign(t )C(β )(E ∓ i
√

1 − E2)U±(E ). (D14)

with the two (complex) momenta at energy E being

p±(E ) = kv (E ) ± iκ (E ), (D15)

where kv (E ) = βE/(u
√

1 − β2) and κv (E ) = √
1 − E2/

(u
√

1 − β2). Consequently, the wave function (keeping only
the terms that do not diverge at ±∞) can be written as

ψM (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aM[1,C(β )(E + i

√
1 − E2)]T eip−x, x < 0,

bM[1,−C(β )(E + i
√

1 − E2)]T eip−x + cM[1,−C(β )(E − i
√

1 − E2)]T eip+x, x ∈ [0, L],

dM[1,C(β )(E − i
√

1 − E2)]T eip+(x−L), x > L,

(D16)

from where the in-gap spectrum can be found by imposing
the continuity of the wave function at x = 0 and x = L and
that the determinant formed by the coefficients vanishes. We
obtain

εM = e
−

√
1−ε2

M

u
√

1−β2
L
, (D17)

and

bM = iaMεM√
1 − ε2

M

, (D18)

cM = aM

(
1 − iεM√

1 − ε2
M

)
, (D19)

dM = aM
(
εM + i

√
1 − ε2

M

)
. (D20)

Finally, aM can be found from the normalization condition of
the in-gap states

∫ ∞
−∞ dx|ψM (x)|2 = 1, which gives

|aM | ≈ 1

2

√
C(β )

u
. (D21)
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2. Extended bulk states

In this case |E | > t (β ), and we have to account for both
the left (+) and the right (−) moving states,

V±(E ) = sign(t )C(β )(E ∓
√

E2 − 1)U±(E ) (D22)

and

p±(E ) = βE ± √
E2 − 1

u
√

1 − β2
, (D23)

while the normalization of the states gives

U±(E ) = [1 + C2(β )(2E2 − 1 ∓ 2E
√

E2 − 1)]−1/2. (D24)

The positive energy solutions for the states traveling from left to right read as follows:

�+(E , x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U+(E )[1,C(β )(E − √

E2 − 1)]T eip+x + a+
E [1,C(β )(E + √

E2 − 1)]T eip−x, x < 0,

b+
E [1,−C(β )(E − √

E2 − 1)]T eip+x + c+
E [1,−C(β )(E + √

E2 − 1)]T eip−x, x ∈ [0, L],

d+
E [1,C(β )(E − √

E2 − 1)]T eip+x, x > L,

(D25)

and similarly for the states impinging on the topological region from the left:

�−(E , x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a−

E [1,C(β )(E + √
E2 − 1)]T eip−x, x < 0,

b−
E [1,−C(β )(E − √

E2 − 1)]T eip+x + c−
E [1,−C(β )(E + √

E2 − 1)]T eip−x, x ∈ [0, L],

U−(E )[1,C(β )(E + √
E2 − 1)]T eip−x + d−

E [1,C(β )(E − √
E2 − 1)]T eip+x, x > L.

(D26)

By imposing the continuity of the wave functions at x =
0 and L, we can determine all the scattering coefficients
a±

E , b±
E , c±

E , and d±
E . Inserting the above wave functions in

Eq. (D9) allows us to calculate fully analytically the sus-
ceptibility and to extract the expressions showed in the main
text.
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[23] M. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Ma-
jorana bound state in a coupled quantum-dot hybrid-nanowire
system, Science 354, 1557 (2016).

[24] M. W. A. de Moor, J. D. S. Bommer, D. Xu, G. W.
Winkler, A. E. Antipov, A. Bargerbos, G. Wang, N. Van Loo,
R. L. M. Op het Veld, S. Gazibegovic et al., Electric field
tunable superconductor-semiconductor coupling in Majorana
nanowires, New J. Phys. 20, 103049 (2018).

[25] C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, An-
dreev bound states versus Majorana bound states in quantum
dot-nanowire-superconductor hybrid structures: Trivial versus
topological zero-bias conductance peaks, Phys. Rev. B 96,
075161 (2017).

[26] A. Ptok, A. Kobiałka, and T. Domański, Controlling the bound
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