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Theory of the in-plane photoelectric effect in quasi-one-dimensional electron systems

S. A. Mikhailov *

Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

(Received 21 October 2022; accepted 9 March 2023; published 17 March 2023)

The in-plane photoelectric (IPPE) effect is a recently discovered [Sci. Adv. 8, eabi8398 (2022)] quantum
phenomenon, which enables efficient detection of terahertz (THz) radiation in semiconductor structures with
a two-dimensional (2D) electron gas. Here, we develop a theory of the IPPE effect in quasi-one-dimensional
electron systems in which the width of the 2D conducting channel is so small that the transverse quantization
energy is larger than the thermal energy. We calculate the THz photoresponse of such a system as a function
of the THz frequency, control gate voltages, and geometrical parameters of the detector. We show that the
transverse quantization of the electron motion manifests itself in oscillating gate-voltage dependences of the
photocurrent, if the THz photon energy is less than the one-dimensional quantization energy. Results of the theory
are applicable to any semiconductor systems with 2D electron gases, including III–V structures, silicon-based
field effect transistors, and the novel 2D layered graphene-related materials.
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I. INTRODUCTION

The in-plane photoelectric (IPPE) effect has been recently
discovered at terahertz (THz) frequencies in a semiconductor
GaAs/AlxGa1−xAs heterostructure with a two-dimensional
(2D) electron gas [1]. The structure consisted in a narrow
(width W ) 2D channel, located at the interface between GaAs
and AlxGa1−xAs at a depth d under the surface, Fig. 1(a). The
channel was supplied by two, source and drain, contacts and
was covered by two, left and right, metallic gates which had
the shape of a bowtie antenna, Fig. 1(b). The gap between
the gates had the width b, which was much smaller than the
mean free path of 2D electrons lmfp, b � lmfp. If different gate
voltages UL and UR were applied to the left and right gates,
normally incident (along the z-axis) THz radiation generated
a direct photocurrent in the lateral (x) direction.

The physics of the IPPE effect has been explained in
Ref. [1]. If no voltages are applied to the left and right gates,
UL = UR = 0, the density of 2D electrons in the channel is
uniform, and the chemical potential μ0, i.e., the distance
between the global Fermi energy EF and the conduction-
band bottom energy V0, does not depend on the coordinate
x, Fig. 1(c). Irradiation of the structure with electromagnetic
waves would not lead to a photocurrent in the lateral direction
in this situation. Applying different voltages UL �= UR to the
left and right gates, Fig. 1(d), creates a potential step V (x) of
a height VR − VL for 2D electrons moving in the horizontal
direction from source to drain (or visa versa); here VL and
VR are the conduction-band bottom energies under the left
and right gates. The densities of 2D electrons under the gates
are now different, and the local chemical potential becomes a
function of the coordinate x, taking the values μL = μ0 − VL

and μR = μ0 − VR under the left and right gates, Fig. 1(d).
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Irradiation of the structure with normally incident THz waves
with frequency ω now leads to a photocurrent in the x direc-
tion: 2D electrons absorb quanta of THz radiation, focused
by the antenna in the gap between the gates and jump on
the potential step creating an electron flow from the region
of high to the region of low electron density, Fig. 1(e). This
in-plane PE effect has a number of significant advantages
over the conventional [2–5] PE effect. In particular, it can
be used at normal incidence of radiation, the height of the
potential step can be tuned by applying the gate voltages,
and the effect can be observed (and is maximal) at negative
values of the “work function” φ = VR − EF , Fig. 1(e), see
discussions in Refs. [1,6] for more details. The corresponding
device, which was called a photoelectric tunable-step (PETS)
detector [1], can be used for efficient detection of THz radi-
ation. A comprehensive analytical theory of the IPPE effect,
which quantitatively explained results of the experiment [1],
has been developed in Ref. [6].

As was shown in Ref. [6], in general, the photocurrent gen-
erated in the PETS detector depends on several energy scales:
(a) the chemical potentials μL and μR, (b) the photon energy
h̄ω, (c) the thermal energy T , and (d) the energy E⊥ related
to the quantization of the electron motion in the transverse (y)
direction. In Ref. [6], we assumed that the confining potential
in the y direction V⊥(y) has the form of a rectangular well
with infinitely high walls. The transverse quantization energy
[the bottoms of the quasi-one-dimensional (1D) subbands
E⊥,n(kx ) = E⊥,n + h̄2k2

x /2m] had, therefore, the form

E⊥,n = E⊥n2 = EW n2, n = 1, 2, . . . , (1)

where E⊥ = EW = h̄2π2/2mW 2 and m is the electron effec-
tive mass, see Eqs. (9) and (10) in Ref. [6].

Under typical experimental conditions, the chemical po-
tentials and the photon energy (at THz frequencies) are on
the tens of meV order. The thermal energy at T � 10 K
is, at least, one order of magnitude smaller (�1 meV). The
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FIG. 1. The geometry and the operation principle of the pho-
toelectric tunable-step detector based on the IPPE effect: (a) side,
and (b) top view of the device; (c) band structure in equilibrium at
UL = UR = 0; (d) different gate voltages UL �= UR create a potential
step (illustrated by the magenta rectangle) on the line x = 0 in the
lateral (x) direction; under THz irradiation electrons oscillate with a
large momentum p (red arrows) in the area under the gap between
the gates, absorb THz quanta and jump on the potential step; (e)
band structure and the THz photoexcitation process at the potential
step. The width of channel W is assumed to be so small in this
paper that the transverse quantization energy E⊥ exceeds the temper-
ature T , E⊥ � T (in Ref. [6] the opposite case E⊥ � T was studied).

energy EW was on the µeV scale in Ref. [1] (EW ≈ 5.6 µeV at
W ≈ 1 µm). Therefore, in the previous theoretical paper [6],

we have investigated the case EW � T � μ0 with T → 0 and
EW → 0, corresponding to the conditions of the experiment
[1].

Physically, the condition E⊥ � T � μ0 means that the
transverse quantization of the electron motion in the 2D
channel is not essential: the number N1D of occupied quasi-
one-dimensional subbands is substantially larger than 1, and
the distance between the energy bands is smaller than tem-
perature. In this paper, we analyze another limit T � E⊥,
which can be realized, for example, in the channels of width
W � 400 nm at temperatures T � 0.4 K. In this case tem-
perature is smaller than the intersubband distance, and the
system becomes (quasi)one dimensional. The conductance of
such narrow channels is quantized at low temperatures in units
e2/π h̄, Refs. [7,8]. One of the goals of this paper is to inves-
tigate, whether and how the one-dimensional quantization of
the electron spectrum in such narrow channels influences their
photoresponse.

Before starting to present our theory, one remark should be
made. Modeling the transverse confinement V⊥(y) in the form
of a rectangular well is reasonable for relatively wide channels
(W � 1 µm) used in Ref. [1]. In the narrower channels that
we are going to study in this paper, a parabolic confinement
V⊥(y) ∝ y2 model is more appropriate; this is seen, for ex-
ample, from results of the experiments [7,8]. In this paper,
we will, therefore, analyze the photoresponse of narrow 2D
channels with the transverse quantization energy,

E⊥,n = E⊥

(
n + 1

2

)
= h̄ω0

(
n + 1

2

)
, n = 0, 1, . . . , (2)

where E⊥ = h̄ω0 and ω0 is the harmonic-oscillator frequency
corresponding to the parabolic confinement V⊥(y) ∝ y2.

II. THEORY AND RESULTS

We will consider the system shown in Fig. 1 under THz
irradiation with frequency ω. Our goal will be to calculate
the photocurrent and the quantum efficiency of such a device,
assuming the transverse quantization spectrum in form (2).

A. Hamiltonian

As in Ref. [6] we describe the motion of electrons in the
narrow channel shown in Fig. 1(b) by the time-dependent
Schrödinger equation,

ih̄
∂�

∂t
= Ĥ0� + Ĥ1(x, t )�, (3)

where the unperturbed part of the Hamiltonian is

Ĥ0 = − h̄2

2m

∂2

∂x2
− h̄2

2m

∂2

∂y2
+ V0(x) + V⊥(y), (4)

V0(x) = VL + (VR − VL )�(x), (5)

and the perturbation Ĥ1 = V1(x, t ) has the form

V1(x, t ) = 1
2 e �	acsgn(x) cos ωt . (6)

Here, �	ac is the amplitude of the time-dependent potential
difference between the antenna wings, and �(x) is the Heavi-
side function; for further details see Ref. [6].
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B. Photocurrent

Using the method of Ref. [6], we solve problem (3) within
the first-order perturbation theory in V1. A general expression

for the photocurrent is similar to Eq. (57) in Ref. [6] with
that difference that the transverse quantization energy EW n2

is replaced by h̄ω0(n + 1/2),

I (1) = − e

π h̄

(
e �	ac

h̄ω

)2 ∞∑
n=0

∑
±

∫ ∞

−∞
dE F (E − μ0, T )[1 − F (E ± h̄ω − μ0, T )]

×
[

T⇒
±

(
E − h̄ω0(n + 1/2) − VL

VB
,

h̄ω

VB

)
− T⇔

±

(
E − h̄ω0(n + 1/2) − VL

VB
,

h̄ω

VB

)]
. (7)

Here, F (E , T ) is the Fermi distribution function,

F (E , T ) =
[

1 + exp

(
E

T

)]−1

, (8)

VB = VR − VL = μL − μR is the height of the potential step (it is assumed that VB = VR − VL > 0), and the functions T⇒
± (E,
)

and T⇔
± (E,
) are given by the formulas (see Ref. [6]),

T⇒
± (E,
) = �(E )�(E ± 
 − 1)

√
E
√
E ± 
 − 1

∣∣√E − 1 + √
E ± 


∣∣2

|√E + √
E − 1|2|√E ± 
 + √

E ± 
 − 1|2 , (9)

T⇔
± (E,
) = �(E − 1)�(E ± 
)

√
E − 1

√
E ± 
|√E + √

E ± 
 − 1|2
|√E + √

E − 1|2|√E ± 
 + √
E ± 
 − 1|2 . (10)

The former describes the probability that an electron moving
from left to right will absorb (the subscript +) or emit (the
subscript −) a THz photon at the potential step and will
continue to move in the same direction (to the right). The latter
has the same meaning for an electron, moving from right to
left. Both functions depend on the electron (E) and photon
(
) energy normalized to the potential step height VB.

In this paper, we investigate the case T � h̄ω0. Since tem-
perature T is the smallest energy parameter in the problem,
we can take the limit T → 0 in (7). Then, the emission contri-
bution vanishes, and the photocurrent can be presented after
some transformations, in the form

I (1) = −eω

π

(
e�	ac

h̄ω

)2

I
(

μL

h̄ω0
,

μR

h̄ω0
,

h̄ω

h̄ω0

)
, (11)

where in contrast to Ref. [6], the chemical potentials are
normalized not to h̄ω but to h̄ω0. The term eω/π = 2e f in
(11) has the dimension of current and equals 0.32 µA at the
frequency of 1 THz. The factor α = (e�	ac/h̄ω)2 is the per-
turbation theory parameter, determined by the ratio of the AC
potential difference between the antenna wings to the photon
energy. It should be smaller than 1 for the theory to be valid;
otherwise, higher orders of the perturbation theory have to be
taken into account. The dimensionless function,

I (ζL, ζR, Z )

= 1

Z

Nmax∑
n=0

∫ ζL−(n+1/2)

ζL−(n+1/2)−Z
dX

[
T⇒

+

(
X

ζL − ζR
,

Z

ζL − ζR

)

− T⇔
+

(
X

ζL − ζR
,

Z

ζL − ζR

)]
(12)

depends on dimensionless parameters ζL,R = μL,R/h̄ω0 and
Z = ω/ω0, i.e., on the left and right chemical potentials μL,

μR, and the photon energy h̄ω, normalized to h̄ω0. The integer
number Nmax in (12) is different for the ⇒ and ⇔ terms in the
integrand,

N⇒
max =

{
ζR + Z − 1/2�, if Z < (ζL − ζR)

ζL − 1/2�, if Z > (ζL − ζR) ,

N⇔
max = 
ζR − 1/2�; (13)


x� is the floor function.
The function I consists of a finite sum of one-dimensional

integrals and can be easily numerically calculated. Figure 2
shows three-dimensional plots of I as a function of ζL and
ζR for two different values of the parameter ω/ω0, 0.3 (left
panel) and 1.0 (right panel). One sees that at ω/ω0 � 1 (left
panel) the dependence I (ζL, ζR) has many resonances, which
appear due to the 1D quantization of the electron spectrum.
If ω/ω0 = 1 (right panel), the 1D quantization does not man-
ifest itself anymore in the function I (ζL, ζR), which is now
smooth. In Fig. 3, we analyze the behavior of I in more
detail. Figure 3(a) shows the function I in dependence on
the right normalized chemical potential ζR, in the interval
ζR � ζL = 5, and for several ω/ω0’s varying from 0.1 up
to 1.0. At ω/ω0 = 0.1, the curve I (ζR) has several sharp
peaks with maxima at μR ≈ h̄ω0(n + 1/2) and minima at
μR ≈ h̄ω0(n + 1/2) − h̄ω, where n is an integer. The width
of the resonances is, thus, determined by h̄ω; their shape
reminds the density of states in a one-dimensional electron
gas. When the frequency increases, the maxima of I corre-
sponding to different n start to overlap, and, at ω/ω0 = 1, the
function I acquires a structureless smooth form with a wide
maximum.

The physical reasons of such a behavior of the function I
are explained in Fig. 3(d). In the left part of this panel, we
show five quasi-1D energy subbands En(kx ) of electrons at
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FIG. 2. The function I, defined by Eq. (12), in dependence on the normalized left μL/h̄ω0 and right μR/h̄ω0 chemical potentials for
ω/ω0 = 0.3 (left panel) and ω/ω0 = 1.0 (right panel). The photocurrent oscillations in the left panel arise due to the sequential opening of
one-dimensional channels.

FIG. 3. (a)–(c) The function I, defined by Eq. (12), in dependence on ζR = μR/h̄ω0, for (a) ζR � ζL = 5, and (b,c) ζR � ζL = 5, at different
values of ω/ω0: (a,b) ω/ω0 � 1, and (c) ω/ω0 � 1. (d) Illustration of electron transitions for the case μL = 5h̄ω0 and ω/ω0 = 0.3 for the local
maximum (μL = 1.5h̄ω0) and local minimum (μL = 1.5h̄ω0 − h̄ω ≈ 1.2h̄ω0) of the photocurrent. The horizontal dashed line is the Fermi
level. The local minima and maxima of I are indicated by dashed arrows in (a) for ω/ω0 = 0.1 and ω/ω0 = 0.3.
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x < 0. They intersect the Fermi level EF (horizontal dashed
line) at the energy 5h̄ω0 corresponding to ζL = 5. The kx states
covered by a red rectangle correspond to electrons with ener-
gies from EF − h̄ω to EF , which run to the right and are able to
jump to the potential step after absorption of a photon (h̄ω =
0.3h̄ω0 on the figure). In the right part of the panel we show
the quasi-1D electron energy subbands En(kx ) at the potential
step at x > 0. Here, two cases are considered, with μR = (1 +
1/2)h̄ω0 = 1.5h̄ω0, which corresponds to the maximum of the
photocurrent and with μR = (1 + 1/2)h̄ω0 − h̄ω = 1.2h̄ω0,
which corresponds to the minimum of the photocurrent. One
sees that in the former (maximum-I) case, the photoexcited
electrons are able to jump to the states of the first and the
second subbands (covered by a red rectangle). In the latter
case, they jump only to the states of the first subband and do
not have enough energy to jump to the states of the second
subband. Therefore, this leads to a minimum of I. It is clear
that when the parameter ω/ω0 grows and approaches 1, the
spectrum of allowed final states at x > 0 overlap and the curve
I (ζR) becomes smooth, Fig. 3(a).

Figure 3(b) shows the behavior of function I in depen-
dence on ζL, in the interval ζL � ζR = 1.2 for several values
of ω/ω0 � 1. This time the right chemical potential is fixed,
whereas the left chemical potential grows. Now, the depen-
dence of I (ζL ) does not oscillate, the function I (ζL ) has a
maximum at μL − μR 
 h̄ω, and this maximum grows with
ω/ω0. The reason of these features is also seen in Fig. 3(d):
the number of occupied subbands in the left part of the panel,
and, hence, the number of initial electron states, which may
contribute to the flow of photoexcited electrons, grows with
ω/ω0. This leads to the increase in photocurrent. The maxi-
mum of I (ζL ) is seen at μL − μR 
 h̄ω because, in this case,
all states under the left chemical potential participate in the
photocurrent generation. In the opposite case, when μL − μR

substantially exceeds h̄ω, an essential part of electrons on the
left side of the device cannot contribute to I.

Similar features are seen in the dependence of I (ζL ) at
larger values of ω/ω0 � 1, see Fig. 3(c). The curves I (ζL )
become smoother, their maxima Imax (as a function of ζL)
shift to larger values of ζL, roughly corresponding to μL 

μR + h̄ω, and their absolute value increases.

Quantitatively, the maxima Imax of the curves, shown in
Figs. 3(b) and 3(c), grow with ω/ω0 approximately as

√
ω/ω0,

see Fig. 4. The regime (ζL � 1, ω/ω0 � 1) corresponds to the
situation considered in Ref. [6]: In this case, the transverse
quantization energy becomes smaller than both the photon
energy and the chemical potential, and the number of occu-
pied 1D subbands becomes much larger than 1. Therefore, it
makes sense to compare the absolute values of the photocur-
rent maxima calculated here and in Ref. [6] for the parabolic
and rectangular well confinements, respectively. As seen from
the definitions of the photocurrent I (1) in this paper and in
Ref. [6], the function I should be compared with

√
h̄ω/EWJ

in Ref. [6]. The maximum photocurrents are quantitatively
similar in both works. Indeed, in Ref. [6] Jmax was found
to be about 0.22, so that the maximum photocurrent is given
by a small number (∼0.22) times the square root of the
photon energy divided by the energy of the transverse quan-
tization

√
h̄ω/E⊥, where E⊥ = EW . In the present paper, it

is also a small number (e.g., ∼0.335 at ζR = 5, Figure 4)

FIG. 4. Maxima Imax of the function I(ζL, ζR ) vs (ω/ω0)1/2 for
ζR = 5. Imax = 0.3355 at ω/ω0 = 1.

times
√

h̄ω/E⊥ with E⊥ = h̄ω0 in the parabolic confinement
case.

It is noticeable that the photocurrent maxima in Figs. 2(a)
and 3(a) (at ω/ω0 � 1) are located equidistantly on the ζR

axis. This is a direct consequence of the equidistant spectrum
of electrons (2) in the parabolic confinement potential V⊥(y).
If electrons were moving in a rectangular potential well with
infinitely high walls [6], then, the energy E⊥,n would be pro-
portional to n2, and the positions of the photocurrent maxima
on the ζR axis would follow the n2 sequence. Thus, analysis
of the IPPE effect in quasi-one-dimensional electron systems
makes it possible, in principle, to draw a conclusion about the
spectrum of one-dimensional quantization E⊥,n and the shape
of the confining potential V⊥(y) in the system.

C. Quantum efficiency

Another quantity, which is interesting to analyze, is the
quantum efficiency η(ζL, ζR, ω/ω0). We define it in the same
way as in Ref. [6] as the ratio of the number of electrons
which absorbed a photon and contributed to the photocurrent
to the total number of electrons, which absorbed a photon. The
quantum efficiency can be symbolically written as

η(ζL, ζR, Z ) = W[T⇒
+ − T⇔

+ ]

W[T⇒
+ + T⇔

+ + R�
+ + R�

+ ]
, (14)

where the function in the nominator is the photocurrent (12),
whereas, the function in the denominator is obtained from
(12) by replacing the difference T⇒

+ − T⇔
+ by the sum T⇒

+ +
T⇔

+ + R�
+ + R�

+ in the integrand of Eq. (12).
Figure 5 shows the quantum efficiency as a function of

one of the chemical potential (ζL) at fixed values of the other
chemical potential ζR. Different panels correspond to differ-
ent values of ω/ω0. Let us consider first the case ζR = 0.5,
described by black solid curves on all panels of Fig. 5. It
corresponds to the case, when the bottom of the lowest-energy
band at x > 0 touches the Fermi level, i.e., there are no elec-
trons in the right half of the device. If ζL < 0.5, the quantum
efficiency, as well as the photocurrent vanish at all values of
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FIG. 5. The quantum efficiency η(ζL, ζR, Z ) as a function of ζL at a few values of ζR at (a) Z ≡ ω/ω0 = 0.1, (b) Z = 0.5, (c) Z = 2, and
(d) Z = 10.

ω/ω0 since in this case there are no electrons in the left half
of the device too. Now, if ζL is larger than ζR and tends to
it from above, ζL → ζR = 0.5, the quantum efficiency tends
to 0.5 for all values of ω/ω0. This limit 0 < ζL − ζR � 1,
corresponds to a very small potential step VB = μL − μR �
h̄ω0. The parameter 
 in Eqs. (9)–(10) becomes very large,
whereas the value of E is restricted 0 < E < 1. Under these
conditions, the probabilities T⇔

± and R�
± equal zero (there are

no electrons at x > 0), whereas the probabilities T⇒
± and R�

±
equals each other T⇒

± = R�
± ≈

√
E
3/4. (The formulas for

R�
± (E,
) and R�

± (E,
) can be found in Ref. [6]). Thus,
electrons approaching a small potential step from the left, have
equal probabilities to be reflected back or to keep moving to
the right after absorption of a photon. The quantum efficiency
then equals 1/2.

Then, when ζL grows, the quantum efficiency first grows
with ζL − ζR, passes through a local minimum at ζL − ζR 

h̄ω, and then grows again. The asymptotic values of η at large
ζL are larger at small values of ω/ω0: as seen from Fig. 5(a),
at ω/ω0 = 0.1 the quantum efficiency exceeds 80% already
at ζL 
 6. At larger ω/ω0 the asymptotic values of η are
smaller but still on the order of 40–50% for parameters of
Fig. 5.

Now, let us consider the cases of larger values of ζR

(>1/2) when there are electrons in the right half of the device.

At small frequencies ω/ω0 < 1, Figs. 5(a) and 5(b), the 1D
quantization of the electron spectrum manifests itself also in
the quantum efficiency. At small values of ζL < ζR, η has a
sharp maximum at ζL 
 0.5. When ζL grows, η oscillates,
with sharp maxima of the width 
ω/ω0 at ζL = n + 1/2;
however, when ζL reaches ζR, the function η becomes zero
and then becomes a smooth function which slowly decreases
with ζL. When ω/ω0 becomes larger than 1, Figs. 5(c) and
5(d), the maxima of η overlap and the curves η(ζL ) acquire a
simple form with zeros at ζL = h̄(ω0/2 − ω) and at ζL = ζR.
At ζL > ζR the curves η(ζL ) describe slowly varying with ζL

functions. Quantitatively the quantum efficiency can be as
large as ∼0.5 at ω/ω0 > 1 and larger (up to 0.8–0.9 in Fig. 5)
at ω/ω0 < 1. In the in-plane photoelectric effect the trans-
formation of photons to the photocurrent is, thus, extremely
efficient.

III. SUMMARY

We have investigated the in-plane photoelectric effect
in narrow, quasi-one-dimensional electron channels at low
temperatures when the transverse quantization energy E⊥
exceeds the thermal energy T . The confining potential in
the perpendicular direction was assumed to be parabolic
with the characteristic harmonic-oscillator frequency ω0 and
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E⊥ = h̄ω0. We have shown that, if the radiation frequency ω is
smaller than ω0, the photoresponse of the PETS detector oscil-
lates as a function of gate voltages due to the one-dimensional
quantization of the electron motion in the channel. The posi-
tions of the oscillating photocurent maxima carry information
about the spectrum of one-dimensional quantization and the
shape of the confining potential V⊥(y) in the system. The abso-
lute value of the photocurrent is proportional to the square root
of the number of occupied quasi-1D electronic subbands. The
quantum efficiency can be as large as 50%–90% at different
parameters of the device. The theory is applicable to any semi-

conductor systems with 2D electron gases, including III–V
quantum well structures, silicon-based field effect transistors,
as well as novel 2D layered semiconductor materials.
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