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Current-induced forces in nanosystems: A hierarchical equations of motion approach
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An approach to calculating current-induced forces in charge transport through nanosystems is introduced.
Starting from the fully quantum mechanical hierarchical equations of motion formalism, a timescale separation
between electronic and vibrational degrees of freedom is used to derive a classical Langevin equation of motion
for the vibrational dynamics as influenced by current-induced forces, such as the electronic friction. The resulting
form of the friction is shown to be equivalent to previously derived expressions. The numerical exactness of
the hierarchical equations of motion approach, however, allows the investigation of transport scenarios with
strong intrasystem and system-environment interactions. As a demonstration, the electronic friction of three
example systems is calculated and analyzed: a single electronic level coupled to one classical vibrational mode,
an Anderson impurity model coupled to one classical vibrational mode, and a single electronic level coupled to
both a classical and quantum vibrational mode.

DOI: 10.1103/PhysRevB.107.115416

I. INTRODUCTION

A comprehensive picture of nonequilibrium charge trans-
port through nanosystems, such as molecular junctions [1,2],
nanoelectromechanical systems [3,4], or suspended carbon
nanotubes [5,6], requires not only a description of charge
effects but also the coupling of electronic and vibrational
degrees of freedom. Novel effects arising from such electron-
vibration interactions include the Franck-Condon blockade
[7–10], current-induced heating and cooling [11–14], and
nonrenewal statistics [7,15–17]. Including such interactions,
however, requires transport methods able to treat the quantum
nature of the nanosystem while simultaneously incorporating
nonequilibrium effects from the electrodes. Examples of such
methods include nonequilibrium Green’s functions (NEGFs)
[18–31], which can treat strong molecule-lead couplings,
and Born-Markov master equations (BMMEs) [8,32–34],
which can treat strong intrasystem interactions at higher
temperatures. In recent years, furthermore, many more so-
phisticated and numerically exact methods have also been
developed, including path integral approaches [35,36], the
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) approach [37,38], or the hierarchical equations of
motion (HEOM) approach [39–42], although these can be
computationally challenging.

In the specific context of transport through molecular
junctions, many vibrational degrees of freedom, each cor-
responding to the motion of atomic nuclei, are necessary
for realistic simulations. In these scenarios, mixed quantum-
classical approaches, where the vibrational dynamics are
treated classically while subject to current-induced forces
from the quantum electronic degrees of freedom, are of-
ten more viable [43–45]. When the nuclear motion is slow
or limited to small displacements, furthermore, the vibra-
tional degrees of freedom follow a Langevin equation of
motion. In such regimes, the current-induced force splits into
a zeroth-order term, corresponding to the Born-Oppenheimer

approximation, and a first-order correction linear in the
vibrational momenta or coordinates [46]: the electronic fric-
tion, which is the specific current-induced force of interest in
this paper. Because the current-induced forces offer insight
into the role of the electron-vibration interaction in the dynam-
ics [47–61], especially in the regime of vibrational instabilities
[62,63], various theories have been developed for calculating
them in the context of quantum transport through nanostruc-
tures.

These approaches can be broadly categorized into two
classes: those that derive the electronic friction under a weak
electron-vibration coupling, and those that derive it using a
timescale separation between electronic and vibrational de-
grees of freedom. To the first class belongs an influence
functional approach that has been derived by several groups
[53,54,64–69]. The second class contains a wider variety of
transport methods. These include the approach introduced
in the seminal paper by Head-Gordon and Tully [70] (see
Refs. [44,71]), which has since been extended to finite tem-
peratures [57,72] and has been shown to be equivalent to a
combined scattering theory and NEGF approach [52,73]. The
connections between these various approaches and assump-
tions have been explicitly explored by Chen et al. [74], who
also used their unified formalism to investigate interacting
systems [75]. Although these approaches explicitly treat the
vibrational degrees of freedom as classical, there have also
been recent attempts to derive a quantum equivalent to the
classical electronic friction [76,77].

Under the timescale separation assumption, one can also
formulate master equation approaches, such as that pro-
posed by Dou et al. [78] and Dou and Subotnik [79]. Here,
a quantum-classical Liouville equation (QCLE) for the vi-
brational dynamics was embedded into a BMME for the
electronic dynamics. This approach has the benefit of allow-
ing for strong intrasystem interactions but is limited to weak
molecule-lead couplings under the Born-Markov assumption.
This method is particularly relevant to the purpose of this
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paper, in which a similar approach to calculating the electronic
friction is introduced, although with the numerically exact
HEOM approach instead of a BMME. Starting from the full
HEOM method, in which the vibrational degrees of freedom
are originally treated quantum mechanically, the QCLE is
formed by applying a partial Wigner transform of the vibra-
tional degrees of freedom [80,81]. Similar to Ref. [79], the
QCLE is then transformed to a Fokker-Planck equation in the
adiabatic limit of slow vibrational motion, from which the
Markovian electronic friction of the corresponding Langevin
equation can be identified. The resulting electronic friction is
then shown to be equivalent to expressions derived by treat-
ing all electronic degrees of freedom in the system and bath
equally [46,74]. Because it is derived from HEOM, which
systematically incorporates higher-order tunneling and non-
Markovian effects for, the results are general, applying to both
in- and out-of-equilibrium scenarios, and for systems with
strong interactions and strong molecule-lead couplings.

In order to demonstrate the approach, three model systems
are considered. In the first system, a single electronic level is
linearly coupled to a classical vibrational degree of freedom.
The electronic friction of this noninteracting system has pre-
viously been calculated from NEGFs [46], which the HEOM
approach reproduces. In the second system, electron-electron
interactions are incorporated via an Anderson impurity, and
the friction at equilibrium is shown to be equivalent to the
combined numerical renormalization group (NRG) and NEGF
method from Ref. [72]. The HEOM approach, however, can
also investigate this model out of equilibrium, and the cor-
responding friction at finite bias voltages is analyzed. The
final case study couples an electronic level to both a high-
frequency mode, treated quantum mechanically in the HEOM
framework, and a low-frequency mode, treated classically in
the Langevin equation framework. This system is similar to
one treated recently in Ref. [75], where the high-frequency
mode was used to model a strong light-matter interaction. The
additional vibrational degree of freedom adds extra structure
to the friction on the classical mode in nonequilibrium scenar-
ios, even turning it negative for particular parameters.

The paper is structured as follows. In Sec. II, the general
model of a molecular junction is outlined. Next, in Sec. III, the
two methods used to describe nonequilibrium charge trans-
port are introduced, the HEOM and BMME approaches. In
Sec. IV, these are then Wigner transformed to a QCLE and,
under the appropriate assumptions, to a Markovian Fokker-
Planck equation, from which the friction can be identified. In
order to demonstrate the method, Sec. V then presents results
for the three model systems, with the conclusions contained
in Sec. VI. Relevant derivations can be found in Appendixes
A, B, and C.

Throughout this paper we use units where h̄ = e = kB = 1.

II. MODEL

The total Hamiltonian of a junction containing a nanosys-
tem, H , can be decomposed into a part describing the
electrons in the leads, HB, a part containing the nanosystem,
HS, and a part containing the interaction between them, HSB:

H = HS + HB + HSB. (1)

The system Hamiltonian contains several coupled elec-
tronic and vibrational degrees of freedom, which can gener-
ally be written as

HS =
∑
mm′

εmm′ (x̂)d†
mdm′ +

∑
m,m′<m

Umm′ (x̂)d†
mdmd†

m′dm′

+
N∑

i=1

p̂2
i

2mi
+ Vvib(x̂), (2)

where (x̂ = (x̂1, . . . , x̂N ), p̂ = ( p̂1, . . . , x̂N )) are vectors of
displacement operators and their corresponding conjugate
momenta for each of the N vibrational coordinates. The po-
tential of the unperturbed vibrational degrees of freedom is
Vvib(x̂). The vibrational motion is coupled to the electronic
degrees of freedom via εmm′ (x̂), which is the energy of the
mth electronic energy level if m = m′ or the direct hopping
between the mth and m′th electronic energy levels if m �= m′,
and Umm′ (x̂), which is the electron-electron interaction be-
tween electrons in the mth and m′th electronic energy levels.
The annihilation and creation operators corresponding to the
mth electronic energy level are dm and d†

m, respectively. Note
that the vibrational operators have been explicitly written with
operator notation to distinguish x̂ and p̂ from their classical
variable counterparts, x and p, which will be introduced in
Sec. IV A.

Although the interest in current-induced forces and mixed
quantum-classical dynamics is often from the perspective of
transport through molecular junctions, the Hamiltonian in
Eq. (2) and the theory that follows in Secs. III and IV is
general for transport through any generic nanosystem.

The leads are modeled as two reservoirs of noninteracting
electrons, labeled the left, L, and right, R, electrodes,

HB =
∑

α∈{L,R}

∑
kα

εkα
c†

kα
ckα

. (3)

The (kα )th level is formed through the corresponding annihi-
lation and creation operators, ckα

and c†
kα

, and has energy εkα
.

Each electrode is held at local equilibrium, with temperatures
Tα and chemical potentials μα . By introducing a temperature
difference, �T = TL − TR, or voltage bias, � = μL − μR,
across the junction, the system can be driven out of equilib-
rium, producing a nonzero total current as electrons transport
across the junction.

The interaction term in the total Hamiltonian, which is
linear in both the system and bath annihilation and creation
operators, describes electron transfer between the nanosystem
and the electrodes,

HSB =
∑
α,kα

∑
m

Vkα,m(c†
kα

dm + d†
mckα

), (4)

where the molecule-lead couplings, Vkα,m, are assumed to be
real and independent of the vibrational positions. Although
this assumption is standard in the literature and greatly sim-
plifies the quantum and semiclassical transport theory, a more
general approach would include Vkα,m(x̂), such as in Ref. [82],
which will be incorporated in future work. Finally, the spectral
density of bath α is introduced,

�α,mm′ (ε) = 2π
∑

kα

Vkα,mVkα,m′δ(ε − εkα
), (5)
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which describes the interaction strength between electronic
levels in the nanosystem and electrodes.

III. QUANTUM TRANSPORT THEORY

This section outlines the two transport methods used to
simulate the nonequilibrium quantum dynamics of the general
Hamiltonian in Eq. (2). Although both methods have been
used extensively and there exist several detailed reviews, brief
outlines are included here for self-consistency within the pa-
per.

A. Hierarchical equations of motion

The HEOM formalism is a powerful method able to
simulate nonequilibrium quantum transport with strong in-
teractions beyond the Born-Markov regime. Although the
general steps are outlined in this section, readers interested in
a comprehensive review are referred to the original work by
Tanimura and Kubo [83], its extension to fermionic systems
[42,84–89], and the review articles in Refs. [90,91].

As with all master equation methods, the central object of
interest in the HEOM approach is the reduced density matrix
of the nanosystem, ρ(t ), which is obtained by tracing out
the bath degrees of freedom from the total density matrix,
ρ(t ) = TrB[ρT(t )]. One could obtain ρ(t ) by solving the cor-
responding Liouville–von Neumann equation,

∂

∂t
ρ(t ) = −iTrB[H, ρT(t )]. (6)

This, however, is a difficult task; the dynamics involves not
only the coherent time evolution of the nanosystem, but
also nontrivial dissipation due to interaction with the elec-
trodes. By employing a coherent state representation for the
fermionic annihilation and creation operators, the HEOM
approach treats the system-bath interaction via the Feynman-
Vernon influence functional, which collects the bath effects
into an effective action term: the influence functional. In this
paper, the influence functional is derived under the assumption
of a factorized initial state,

ρT(0) = ρ(0) ⊗ ρB(0), (7)

as initial correlations between the nanosystem and the bath
require a more complicated imaginary-time propagation ap-
proach [92,93].

As long as the molecule-lead coupling is linear in the bath
annihilation and creation operators, one can then show that
a cumulant expansion of the influence functional terminates
exactly after the second term. The bath statistics are therefore
Gaussian, and their effect is exactly described with the two-
time bath-correlation functions,

Cσ
α,mm′ (t − τ ) =

∑
kα

Vkα,mVkα,m′TrB
[
cσ

kα
(t )cσ̄

kα
(τ )ρB(0)

]
, (8)

where the notation σ ∈ {+,−}, with c−(+)
kα

= c(†)
kα

, has been
introduced. Based on the spectral densities of the baths, the
bath-correlation functions can be rewritten as

Cσ
α,mm′ (t ) = 1

2π

∫ ∞

−∞
dω eσ iωt�α,mm′ (ω) f σ

α (ω), (9)

with the Fermi-Dirac functions,

f σ
α (ω) = 1

1 + eσβ(w−μα )
, (10)

and β = 1/kBT .
The next key step in deriving the HEOM is to assume that

the bath-correlation functions can be expanded in a series of
exponential functions,

Cσ
α,mm′ (t ) = Vα,mVα,m′

�max∑
�=0

ηα,σ,�,me−κα,σ,�,mt. (11)

By incorporating a sum-over-poles decomposition scheme for
the Fermi-Dirac functions and choosing a specific form of
the bath spectral densities, the coefficients, ηα,σ,�,m, and ex-
ponents, κα,σ,�,m, can then be calculated directly with residue
theory from Eq. (9). In this paper, the Padé decomposition is
exclusively used, which performs much better than a standard
Matsubara decomposition [94]. All results below are also
calculated under the wide-band limit, such that �α,mm′ (ε) =
�α,mm′ = 2πVα,mVα,m′ , where the constant density of states
has been absorbed into the definition of Vα,m. Although the
wide-band limit is a physically reasonable assumption for
many systems of interest, such as molecules attached to metal
electrodes [95], it is not actually necessary for the HEOM
approach. The decomposition of the bath-correlation func-
tions in Eq. (9) can be performed for a wide variety of
�α,mm′ (ε), particularly with the recent development of numer-
ical schemes able to treat density of state functions without an
explicit analytic decomposition [96,97].

By repeatedly differentiating the bath-correlation func-
tions, a hierarchy of first-order differential equations coupling
the reduced system density matrix to a series of auxiliary
density operators (ADOs), ρ

(n)
j , is formed,

∂

∂t
ρ

(n)
j (t ) = − i

[
HS, ρ

(n)
j

] −
(

N∑
r=1

κ jr

)
ρ

(n)
j

− i
n∑

r=1

(−1)n−rC jr ρ
(n−1)
j− − i

∑
j

Aσ̄
α,mρ

(n+1)
j+ .

(12)

The notation here uses a vector of condensed superindices,
j = ( jn · · · j1) with jr = {α jr , σ jr , � jr , mjr }. The ADO tier,
which is given the label n, is then the number of indices
required to form the ρ

(n)
j ADOs. In this formulation, the

zeroth-tier ADO is then just the reduced density matrix of
the nanosystem, ρ (0)(t ) = ρ(t ). The HEOM also contain two
more superindices, j− = ( jn, . . . , jr+1, jr−1, . . . , j1), which is
formed by removing an ADO, and j+ = ( j, jn, . . . , j1), which
is formed by adding one. The superoperators C jr and Aσ̄

α,m,
meanwhile, are defined by their action on the ADOs,

C jr ρ
(n)
j (t ) = Vα,m

(
η jr d

σ
mρ

(n)
j (t ) − (−1)nη∗

jr ρ
(n)
j dσ

m (t )
)
, (13)

Aσ̄
α,mρ

(n)
j (t ) = Vα,m

(
d σ̄

mρ
(n)
j (t ) + (−1)nρ

(n)
j d σ̄

m (t )
)
. (14)

Equation (12) represents a large set of coupled first-order
differential equations. In order to generate the hierarchy, one
first constructs the equation of motion for the reduced den-
sity matrix of the nanosystem, which couples according to
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Eq. (14) to the first-tier ADOs, ρ (1)
j (t ). The respective first-tier

equations of motion are then generated from Eq. (12), which
couple according to Eqs. (13) and (14) to the reduced density
matrix and second-tier ADOs, ρ

(2)
j2 j1

, and reduced density ma-
trix, respectively. This process continues until the hierarchy
naturally terminates at some, typically large, tier. In prac-
tice, the hierarchy must be truncated before this point due
to numerical constraints, but at a large enough tier such that
the dynamics are converged. In this paper, a simple scheme
is used that truncates the hierarchy directly at a maximum
tier, N , such that the {ρ (N )

j (t )} couple only to ADOs of the

same tier and ADOs of the tier below, {ρ (N−1)
j− (t )}. The re-

sulting coupled set of first-order differential equations, with
the appropriate initial condition, is solved with a fourth-order
Runge-Kutta method.

B. Born-Markov master equation

In order to compare our method with the method in
Ref. [79], a Born-Markov master equation is also used to
calculate the electronic friction. Unlike the numerically exact
HEOM method, Born-Markov theory expands the Liouville–
von Neumann equation to second order in the system-bath
interaction and explicitly assumes that bath correlations decay
on a timescale quicker than the dynamics of the nanosystem
[32,34]. The resulting equation of motion for the reduced
system density matrix,

∂

∂t
ρ(t ) = −i[HS, ρ(t )]

−
∫ ∞

0
dτ TrB

([
HSB,

[
HSB(τ ), ρ(t ) ⊗ ρ

eq
B

]])
, (15)

is closed and, therefore, easier to treat numerically, but it is
only valid in the weak molecule-lead coupling regime. In
Eq. (15), the system-bath interaction follows the time evo-
lution HSB(τ ) = e−i(HS+HB )τ HSBei(HS+HB )τ . In all calculations,
the BMME will be further simplified by excluding the off-
diagonal elements of the density matrix from the transport,
yielding essentially a rate equation between pure states of the
nanosystem [98].

IV. QUANTUM-CLASSICAL TRANSPORT THEORY

A. Quantum-classical Liouville formulation of the HEOM

In this section, the fully quantum HEOM approach is trans-
formed into a quantum-classical Liouville equation. First, the
reduced system density matrix is partially Wigner transformed
with respect to the vibrational degrees of freedom [79,80],

ρel(x, p; t ) = (2π )−3N
∫

dy eip·y
〈
x − y

2

∣∣∣∣ρ(t )

∣∣∣∣x + y
2

〉
. (16)

Note that the Wigner-transformed quantities, such as
H el

S (x, p), are evaluated at positions and momenta, (x, p), but
are still operators in the electronic subspace of the nanosys-
tem.

Partially Wigner transforming the first of the coupled dif-
ferential equations in the HEOM yields

∂

∂t
ρel(x, p, t ) = − i

([
H el

S , ρ(t )
])el

(x̂, p̂)

− i
∑

j

Aσ̄
Kρ

(1),el
j (x, p; t ), (17)

where the partial Wigner transform of an nth-tier ADO is

ρ
(n),el
j (x, p; t ) = (2π )−3N

∫
dy eip·y

〈
x − y

2

∣∣∣∣ρ (n)
j (t )

∣∣∣∣x + y
2

〉
.

(18)

The crucial step that transforms this into a quantum-classical
equation comes when evaluating the partial Wigner transform
of a product of operators [81], which is

(AB)el(x, p) = Ael(x, p)eh̄�/2iBel(x, p), (19)

with the Poisson bracket operator

� = ←−∇ p · −→∇ x − ←−∇ x · −→∇ p. (20)

The direction in which each operator acts is indicated by the
arrows. In expanding the exponential, a classical approxima-
tion for the vibrational degrees of freedom is obtained by
keeping only terms up to linear in h̄, such that the commutator
in Eq. (17) becomes([

H el
S , ρ(t )

])el
(x̂, p̂) ≈ [

H el
S (x, p), ρel(x, p; t )

]
+ i

{
H el

S (x, p), ρel(x, p; t )
}

a, (21)

where {A1, A2}a = 1
2 ({A1, A2} − {A2, A1}) and the Poisson

bracket is

{A1, A2} =
N∑

i=1

(
∂A1

∂xi

∂A2

∂ pi
− ∂A1

∂ pi

∂A2

∂xi

)
. (22)

Overall, then, Eq. (17) becomes

∂

∂t
ρel(x, p; t ) = {

H el
S (x, p), ρel(x, p; t )

}
a

− i
[
H el

S (x, p), ρel(x, p; t )
]

− i
∑

j

Aσ̄
α,mρ

(1),el
j (x, p; t ). (23)

Each of the coupled equations in the hierarchy is then partially
Wigner transformed, yielding in general

∂

∂t
ρ

(n),el
j (x, p; t ) = {

H el
S (x, p), ρ (n),el

j

}
a

− i
[
H el

S (x), ρ (n),el
j

] −
(

N∑
r=1

κ jr

)
ρ

(n)
j

− i
n∑

r=1

(−1)n−rC jr ρ
(n−1),el
j−

− i
∑

j

Aσ̄
α,mρ

(n+1),el
j+ . (24)

In Eq. (24), the partial Wigner transform of the part con-
necting the nth-tier ADO to the (n + 1)th- and (n − 1)th-tier
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ADOs only affects the ADOs themselves, as the superopera-
tors A and C do not depend on the vibrational coordinates. It is
also noted that, although the momenta enter H el

S (x, p) through
the kinetic energies of the nuclei, they disappear in the com-
mutator with the electronic density matrix. This means that
the HEOM part of Eq. (24), that is, everything except for the
Poisson bracket, depends only on the vibrational coordinates,
x.

The reduced density matrix and all ADOs are next un-
folded into vector format and collected into one joint vector,
ρ̃el(x, p; t ) = (ρel, ρ

(1),el
j , . . . , ρ

(N ),el
j ). Everything can then be

rewritten in the joint Liouville space of all the ADOs,

∂

∂t
ρ̃el(x, p; t ) = {{

H el
S (x, p), ρ̃el(x, p; t )

}}
a

− Lel(x)ρ̃el(x, p; t ). (25)

The first term in Eq. (25) contains the symmetrized Poisson
bracket of the Wigner-transformed Hamiltonian with each
Wigner-transformed ADO in ρ̃el(x, p; t ),{{

H el
S (x, p), ρ̃el(x, p; t )

}}
a

= ({
H el

S , ρ (0),el
}

a
,
{
H el

S , ρ
(1),el
j1

}
a
,
{
H el

S , ρ
(1),el
j2

}
a
, . . .

)
,

(26)

which is then also unfolded into vector format. The second
term, Lel(x), contains all dynamics of the electronic HEOM
for a fixed vibrational frame, x. Although not shown here, the
same procedure can be applied to the BMME in Eq. (15) [79].

The procedure above involves in general a classical
approximation for the vibrational dynamics. If the electron-
vibration coupling is linear in x and the vibrational potential
is harmonic, as it is in all transport scenarios considered in this
paper, then the expansion in Eq. (19) naturally terminates after
the first term, and Eq. (21) is exact. For such a system, there-
fore, the mixed quantum-classical approach is just a formally
exact rewriting of the original HEOM. In the next section,
a further assumption will be introduced that will make the
resulting equations of motion approximate, but for now, they
remain formally exact.

B. Fokker-Planck equation

The goal of this section is to derive a Fokker-Planck equa-
tion from Eq. (25). The approach is very similar to that of
Ref. [79], which is from the perspective of Born-Markov
theory, but requires minor changes to suit HEOM.

First, the steady-state solution, σ̃el
ss(x), is defined as the

joint vector of all ADOs at vibrational frame x that satisfies
Lel(x)σ̃el

ss(x) = 0, which is subject to the normalization con-
dition that Trel[σ̃el

ss(x)] = 1. Here, the electronic trace is an
operation that returns the trace of only the reduced density
matrix. Its action on the joint Wigner transform of all ADOs,
for example, is

Trel[ρ̃
el(x, p; t )] = Trel[ρ

(0),el(x, p; t )] = Trel[ρ
el(x, p; t )].

(27)

Next, the phase-space quasiprobability distribution is defined
as

A(x, p; t ) = Trel[ρ̃
el(x, p; t )] = Trel[ρ

el(x, p; t )], (28)

for which a Fokker-Planck equation will be derived.
The key step is to write ρ̃el(x, p; t ) as the probability of

being at the steady state for a fixed vibrational frame, plus
some difference B̃el(x, p; t ),

ρ̃el(x, p; t ) = A(x, p; t )σ̃el
ss(x) + B̃el(x, p; t ), (29)

and consider the implications if B̃el(x, p; t ) is small.
Equations (29) and (25) are then used to write equations of

motion for A(x, p; t ) and B̃el(x, p; t ). Under the Markovian
assumption that the electronic degrees of freedom relax to
equilibrium immediately for each vibrational coordinate, x,
the equation of motion for B̃el(x, p; t ) can be solved and sub-
stituted into that of A(x, p; t ) [79]. This results in a Markovian
Fokker-Planck equation,

∂A(x, p; t )

∂t
= −

∑
i

pi

mi

∂A

∂xi
+

∑
i j

γi j (x)
∂

∂ pi

(
p j

mj
A

)

+
∑

i

Fi(x)
∂A

∂ pi
+

∑
i j

Di j (x)
∂2A

∂ pi∂ p j
, (30)

with details found in Appendix A. Here, the average electronic
force is

Fi(x) = −Trel

[
∂H el

S (x, p)

∂xi
σ̃el

ss(x)

]
, (31)

the Markovian electronic friction tensor is

γi j (x) = − lim
η→0+

∫ ∞

0
dt Trel

[
∂H el

S

∂xi
e−(Lel (x)+η)t ∂ σ̃el

ss

∂x j

]
, (32)

and the Markovian diffusion tensor is

Di j (x) = 1

2
lim

η→0+

∫ ∞

0
dt Trel

[
δFi(x)

× e−(Lel (x)+η)t(δFj (x)σ̃el
ss(x) + σ̃el

ss(x)δFj (x)
)]

.

(33)

In Eq. (33), the operator containing the difference between
the electronic force and the average electronic force has been
introduced,

δFj (x) = ∂H el
S

∂xi
− Trel

[
∂H el

S

∂xi
σ̃el

ss(x)

]
. (34)

Note that the Markovian assumption used to derive Eq. (30)
and the corresponding current-induced forces is completely
separate from the assumption made in deriving the BMME
in Sec. III B, in which the bath electronic degrees of freedom
relaxed quickly with respect to the system degrees of freedom.

The Markovian Langevin equation for the ith vibrational
coordinate, which corresponds to the Fokker-Planck equa-
tion in Eq. (30), is

miẍi = Fi(x) −
∑

j

γi j (x)ẋ j + fi(t ), (35)

where fi(t ) is a Gaussian random force with white noise,

〈 fi(t ) f j (t
′)〉 = 2Di j (x)δ(t − t ′). (36)
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C. Comments on the current-induced forces

In this section, the important properties of the current-
induced forces will be discussed, and relevant comments on
their derivation and computation will be made.

The form of the friction in Eq. (32) is very similar to
the expressions derived in Refs. [72–74]. These approaches,
however, use the total electronic density matrix and the full
time evolution due to some general electronic system and do
not explicitly include the splitting of electronic degrees of
freedom into system and electrodes. A natural question, then,
is whether the current-induced forces in Eqs. (31)–(33) are
equivalent to those in Refs. [72–74].

In Appendix B, this question is answered, and it is shown
that the current-induced forces derived from the HEOM
approach are, in fact, exactly the same quantities as have
previously been reported in Refs. [72–74]. The only condition
for this is that the vibrational degrees of freedom are restricted
to the reduced system, an assumption that already underpins
the mixed quantum-classical results of the previous section.
The HEOM form of the current-induced forces, however, is
an extremely useful representation, as it now provides access
to a wide variety of transport scenarios, including systems
with strong molecule-lead couplings and strong intrasystem
interactions, both in equilibrium and out of equilibrium.

In Refs. [72–74], furthermore, several important properties
of the current-induced forces were also derived. First, the
friction and diffusion tensors are positive definite and sym-
metric. Second, the fluctuation-dissipation theorem is satisfied
at equilibrium,

Di j (x) = kBT γi j (x). (37)

Finally, it was also shown that, under these conditions, the
renormalized vibrational force is conservative, enabling one
to define an effective potential of the mean force, Upmf(x), as

Upmf(x) =
∑

i

∫ x

x0

Fi(x
′)dx′. (38)

Given that the current-induced forces in Eqs. (31)–(33) are
equivalent to those in Refs. [72–74], they must also satisfy
these properties.

Because a Markovian approximation has been made in
deriving Eq. (35), such that the electronic degrees of freedom
are assumed to relax immediately to the steady state for each
vibrational frame, the friction and diffusion tensors depend
only on the vibrational coordinates at each time, t , and not
on the full history of the trajectory. If the explicit Markovian
assumption is removed, such that there was still a separation
of timescales between electronic and vibrational degrees of
freedom, but ∂B̃el

∂t �= 0, then the derivation would yield a fric-
tion tensor with a simple form of memory; details are given
in Appendix C. To include the full non-Markovianity of the
friction tensor, however, would require an approach such as
that outlined in Ref. [74].

The friction tensor in Eq. (32) is also conceptually similar
to the one derived from Born-Markov theory in Ref. [79],

γ BM
i j (x) = − lim

η→0+

∫ ∞

0
dt Trel

[
∂H el

S

∂xi
e−(Lel

BM(x)+η)t ∂σ el
ss

∂x j

]
.

(39)

In Eq. (39), however, the spatial derivative acts only on the
steady-state reduced system density matrix, σ el

ss (x). Similarly,
the time evolution defined in the Lel

BM(x) superoperator is also
due to Born-Markov theory, and not the numerically exact
HEOM method.

So far the theory has been developed under the assump-
tion that the vibrational degrees of freedom are restricted to
the reduced nanosystem. There are many interesting systems
and transport scenarios, such as current-induced bond rup-
ture [99], where position-dependent molecular-lead couplings
are necessary for a complete description. Although such
position-dependent molecule-lead couplings can be treated
within the HEOM formalism [93,99], they would substantially
complicate the theory of electronic friction considered here.
Equation (24), for example, would contain a Poisson bracket
not only from the partial Wigner transform of HSρ

(n)
j , but

also from the C jr (x)ρ (n−1)
j− and Aσ̄

α,m(x)ρ (n+1)
j+ terms, as these

superoperators now also depend on x. Similar to Ref. [82],
then, the friction would contain additional terms arising from
these extra contributions.

Finally, although the Langevin equation in Eq. (35) relates
the vibrational forces linearly to the vibrational velocities,
it includes the full nonlinear dependence of the vibrational
coordinates. This is different from several other treatments
of the friction [53,54,64–66,74,75], in which an expansion is
made in the electron-vibration coupling or, equivalently, small
vibrational displacements are assumed.

V. RESULTS

In order to assess the performance of the HEOM approach
when calculating current-induced forces in nanosystems out
of equilibrium, in this section the electronic friction of three
model systems is analyzed.

In all calculations, the Fermi energy of the electrodes is set
to εF = 0 eV.

A. One electronic level coupled to one vibrational mode

The first, well-studied system is a single electronic level
linearly coupled to a single vibrational coordinate. Using
the dimensionless coordinate, x̃ = x

√
mω/h̄, and momentum,

p̃ = p/
√

mωh̄, the corresponding Hamiltonian is

H el
S (x̃, p̃) = ε(x̃)d†d + 1

2ω( p̃2 + x̃2), (40)

where ε(x̃) = ε0 + g
√

2x̃. The vibrational degree of freedom
moves according to a harmonic potential, U0(x̃) = 1

2ωx̃2,
when the electronic level is unoccupied, and a shifted har-
monic potential, U1(x̃) = U0(x̃) + ε(x̃), when the electronic
level is occupied.

Under the wide-band limit and because the system without
the vibrational mode is noninteracting, the Markovian elec-
tronic friction tensor under a timescale separation assumption
can be analytically derived from NEGFs, as in Refs. [46,100],

γ (x̃) = �

2kBT

mω

h̄

(
∂ε(x̃)

∂ x̃

)2

×
∫

dω

4π

�L f +
L (ω) f −

L (ω) + �R f +
R (ω) f −

R (ω)

([ω − ε(x̃)]2 + [�/2]2)2
, (41)
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FIG. 1. Electronic friction as a function of the vibrational coor-
dinate x̃ and for three different values of the molecule-lead coupling
strength, �. The results are calculated at equilibrium, � = 0 V, and
the other parameters are chosen to match Ref. [46]: ε0 = 0.15 eV,
g = 0.02 eV, kBT = 0.026 eV, and h̄ω = 0.003 eV. Note that there
is no regime in which there exists a distinguishable difference
between the exact friction and that calculated from the HEOM
approach.

with � = (�L + �R). In Fig. 1, the analytic equilibrium fric-
tion in Eq. (41) is compared with the friction calculated from
the two transport methods presented in Sec. III and for three
different molecule-lead couplings. For this system, the only
feature of the electronic friction is a peak at x̃0 = −ε0/g

√
2.

This is the vibrational coordinate for which ε(x̃) crosses the
chemical potential of both electrodes and electron-hole pair
creation is the dominant relaxation process, corresponding to
the well-known mechanism of electronic friction [46]. One
can see either from Fig. 1 or from Eq. (41) that the strength
of the electronic friction is inversely related to the strength of
the molecule-lead coupling. In this regime of slow vibrational
motion, an increased � means that the electrons do not spend
long enough on the molecule to interact with the vibrational
mode, so that both the damping rate and the rate of energy
injection are reduced.

Figure 1 also demonstrates the accuracy of the HEOM
approach. For such a noninteracting electronic system, it has
previously been shown that the corresponding hierarchical
equations of motion terminate exactly at the second tier [101],
such that the friction here is equivalent to the NEGF result
in Eq. (41). The Born-Markov approach, in contrast, proves
to have a limited regime of validity. When � = 10 meV, cor-
responding to the black lines in Fig. 1, all three approaches
agree; as expected, Born-Markov theory performs well when
� � kBT . As the molecule-lead coupling increases to � ≈
2kBT and � ≈ 4kBT , corresponding to the red and blue lines,
respectively, Born-Markov theory deviates from the exact an-
alytic and HEOM results, producing a peak that is narrower
and taller due to its incorrect treatment of level-broadening
effects [46].

The HEOM approach works equally well for nonequi-
librium scenarios, which is shown in Fig. 2. At a finite
bias voltage, the friction displays two peaks at x̃α = −(ε0 −
μα )/g

√
2, where the renormalized energy level crosses the

−20 −10 0 10
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0.06

γ
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/
m

ω
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Φ = 0.1 V

Φ = 0.2 V

Φ = 0.3 V

Φ = 0.4 V

Φ = 0.5 V

HEOM

NEGFs

FIG. 2. Electronic friction as a function of the vibrational coor-
dinate x̃ and at nonzero bias voltages. Apart from the voltage, which
is applied symmetrically such that μS = −μD = �/2, all parameters
are the same as in Fig. 1. The molecule-lead coupling is � = 0.1 eV.
Note that, even for � �= 0, there is no regime in which there exists a
distinguishable difference between the exact friction and that calcu-
lated from the HEOM approach.

chemical potential of each electrode. The magnitude is also
halved, as now there are only electron-hole pair creation pro-
cesses associated with one electrode. Between the two peaks,
γ (x̃) has a minimum at x̃0, as the dominant transport process
at this point is resonant tunneling, which leads to the well-
understood mechanism of current-induced heating [11,99].

B. Anderson impurity coupled to one vibrational mode

In this section, a model describing an Anderson impu-
rity coupled to one vibrational mode is considered, which,
due to the presence of electron-electron interactions, cannot
be solved exactly. The system Hamiltonian now contains a
spin-degenerate level linearly coupled to the vibrational co-
ordinate of a harmonic vibrational mode, with a nonzero,
coordinate-independent Coulomb repulsion between electrons
of opposite spin,

H el
S (x̃, p̃) = ε(x̃)

∑
s∈{↑,↓}

d†
s ds + Ud†

↑d↑d†
↓d↓ + 1

2
ω( p̃2 + x̃2),

(42)

with the bath annihilation and creation operators also now
carrying a spin index,

HB =
∑

α∈{L,R}

∑
kα,s

εkα,sc
†
kα,sckα,s, (43)

HSB =
∑
α,kα

∑
s

Vkα,s(c
†
kα,sds + d†

s ckα,s). (44)

As with the single-electronic-level model, the Anderson
impurity model has already been investigated in the context
of electronic friction [48,58,72,102,103]. In Ref. [72], for ex-
ample, the authors diagonalize the electronic part of the total
Hamiltonian with a numerical renormalization group (NRG)
technique and then use NEGFs to calculate γ (x̃) at equilib-
rium, demonstrating the superiority of NRG to a mean-field
theory approach [48,58], which does not correctly recover
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FIG. 3. Electronic friction as a function of vibrational coordi-
nate x̃ for an Anderson impurity and at a range of temperatures.
Calculations are performed at equilibrium: � = 0 V. To compare
these results directly with Ref. [72], parameters were chosen as
ε0 = −0.05 eV, U = 0.1 eV, g = 0.0075 eV, and � = 0.01 eV.

the double-peaked behavior of γ (x̃). The HEOM method de-
veloped in this paper, in comparison, is able to perform a
numerically exact calculation of the friction for this model out
of equilibrium.

To compare our method with the NEGF approach, Fig. 3
shows, for a range of temperatures, the electronic friction
as a function of the vibrational coordinate for the same pa-
rameters as in Fig. 1(a) of Ref. [72]. At equilibrium, the
friction displays two peaks around the points where there
is an electron-hole pair creation resonance, ε(x̃) = 0 and
ε(x̃) + U = 0. At high-to-moderate temperatures, the HEOM
approach yields the same results as NEGFs. At low tem-
peratures, however, so many poles are required for the Padé
decomposition of the Fermi-Dirac function that the HEOM
become numerically intractable, a well-known problem that
limits the temperature range of the method. Recent propos-
als [96,104,105] for a more efficient pole expansion appear
promising in extending the HEOM approach to low tempera-
tures.

At finite bias voltage, which is shown in Fig. 4, the two
friction peaks split into four, as there is now a resonance
whenever an electron-hole pair creation process is resonant
with the chemical potential of an electrode: ε(x̃) = μα and
ε(x̃) + U = μα . The peaks at ε(x̃) = μα are larger than those
at ε(x̃) + U = μα , because in the first case the degenerate
level reaches μα and two electron-hole pair creation processes
become available, whereas in the second it is only the doubly
occupied process that activates. At � = 0.1 V, there is only
one extra peak at x̃ = 0, because ε(0) + U = μS and ε(0) =
μD.

C. One electronic level coupled to one classical vibrational mode
and one quantum vibrational mode

In the final example, a single electronic level is coupled
to two vibrational modes. One, which is treated classically,
is subject to the limit of slow vibrational driving, with a low

−20 −10 0 10 20
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Φ = 0.3 V

Φ = 0.4 V

Φ = 0.5 V

FIG. 4. Electronic friction as a function of vibrational coordinate
x̃ for an Anderson impurity model and at a range of bias voltages.
Calculations are performed for kBT = � = 0.01 eV, and all other
parameters are the same as in Fig. 3.

frequency h̄ωcl � �, and one, which remains in the fully
quantum mechanical HEOM treatment, has a high frequency
h̄ωqm > �. Although this degree of freedom is vibrational
and not electronic, it can still be included in H el

S (xcl, pcl ) as
long as it follows the timescale separation necessary for the
adiabatic approximation. As discussed in Ref. [75], in which
the electronic friction for a similar model was calculated under
different assumptions, such a model could describe a single
molecule in an optical cavity, where the high-frequency mode
describes a cavity mode with a strong light-matter interaction
[106,107]. An alternative experimental realization would be a
molecule with two bonds of distinctly different strengths.

Similar to the previous two case studies, the electronic
level is linearly coupled to both the classical and quantum
vibrational coordinates, such that the resulting Hamiltonian
is

H el
S (x̃cl, p̃cl ) = ε(x̃cl )d

†d + ωqmb†b

+ λqm(b† + b)d†d + 1
2ωcl

(
p̃2

cl + x̃2
cl

)
. (45)

The bosonic annihilation and creation operators are related
to the dimensionless coordinate, ˆ̃xqm = x̂qm

√
mqmωqm/h̄, and

momentum, ˆ̃pqm = p̂qm/
√

mqmωqmh̄, of the quantum vibra-
tional mode via

b = 1√
2

( ˆ̃xqm + i ˆ̃pqm) and b† = 1√
2

( ˆ̃xqm − i ˆ̃pqm). (46)

Unlike the previous two case studies, however, it is difficult
to investigate this model with other transport methods, as
it contains a strong electron-phonon interaction. This model
serves, therefore, as an excellent example of the new variety
of nanosystems now accessible by semiclassical Langevin
equations. The quantum part of the Hamiltonian can be di-
agonalized via a small polaron transformation [108], which
yields

H el
S (x̃cl, p̃cl ) = ε̃(x̃cl )d

†d + ωqmb†b + 1
2ωcl

(
p̃2

cl + x̃2
cl

)
, (47)
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a Hamiltonian similar to Eq. (40), except that the electronic
energy level has been renormalized to

ε̃(x̃cl ) = ε0 − λ2
qm

ωqm
+

√
2gclx̃cl. (48)

The quantum transport under the small polaron transforma-
tion occurs between eigenstates of the system Hamiltonian
|q, ν〉 → |q′, ν ′〉, where the quantum numbers q = 0, 1 and
ν = 0, 1, 2, . . . refer to charge and phonon occupancy, re-
spectively. Transporting electrons can exchange quanta of
vibrational energy with the quantum harmonic oscillator, with
the transition probability between vibrational states of the
occupied and unoccupied system given by the overlap of the
wave functions of the original and displaced quantum har-
monic oscillator, which is the Franck-Condon matrix,

Xν,ν ′ = 〈ν|X |ν ′〉 = 〈
ν
∣∣e λqm

ωqm
(b−b† )∣∣ν ′〉. (49)

In this transport picture, the ratio λqm/ωqm determines the
structure of the Franck-Condon matrix. For small λqm, the
Xν,ν ′ are close to diagonal, and the transitions between low-
lying vibrational states are favored, while the opposite is true
for strong λqm [7,8,11,13].

Due to the strong interaction between the electronic level
and the quantum vibrational mode, Eq. (47) is a model
well suited to the HEOM approach. Under the appropri-
ate high-temperature, weak-coupling limit, one could also
use a Born-Markov master equation, as this formulation is
also able to treat strong intrasystem interactions exactly. To
test this, Figs. 5(a) and 5(b) show the Born-Markov fric-
tion against the HEOM friction at equilibrium and for two
different molecule-lead couplings, �, and electron-phonon
couplings, λqm. As expected, in the strong-coupling regime
of � = kBT = 0.026 eV, Born-Markov theory does not re-
produce the numerically exact HEOM result. Even in the
weak-coupling regime of � = 0.01 eV < kBT , furthermore,
there are significant differences between γ calculated from the
HEOM and BMME approaches, indicating that the electronic
friction for this model requires the superior HEOM approach
even for moderate temperatures and molecule-lead couplings.

Apart from the differences between the Born-Markov and
HEOM approaches, the qualitative friction behavior strongly
resembles that of the single electronic level in equilibrium, in
that there is a single peak at

x̃0 = −ε0 − λ2
qm/ωqm

gcl

√
2

. (50)

In Fig. 5(b), however, the height of the friction peak is an
order of magnitude larger than it is in the noninteracting
case, which originates from the additional electron-hole pair
creation processes introduced by the quantum vibrational
mode, as was discussed in Ref. [11]. At equilibrium, an
electron-hole pair can be created with an effective cooling
process when an electron tunnels in from electrode α and
absorbs one or more vibrational quanta, allowing it to then
tunnel out to an unoccupied state in the same electrode; see
Fig. 2 in Ref. [11] for a schematic example. Because the
transition probability from the vibrational ground state to
the vibrational excited state, |X0,ν |2 = 1

ν! ( λqm

ωqm
)2νe−(λqm/ωqm )2

,

FIG. 5. Electronic friction in equilibrium as a function of vi-
brational coordinate x̃ for a single electronic level coupled to
a high-frequency quantum vibrational mode and low-frequency
classical vibrational mode. Results are shown for two differ-
ent molecule-lead couplings, � = 0.01 eV (red) and � = 0.026 eV
(blue), and from the HEOM and Born-Markov approaches, corre-
sponding to the solid and dashed lines, respectively. Other parameters
are gcl = 0.02 eV, kBT = 0.026 eV, h̄ωqm = 0.2 eV, and, in (a),
λqm = 0.1 eV, while in (b) λqm = 0.4 eV. The energy, ε0, is chosen
so that the renormalized energy level after the small polaron trans-

formation is always ε0 − λ2
qm

ωqm
= 0.3 eV.

is not suppressed for λqm/ωqm = 2, these electron-hole pair
creation processes contribute significantly to the friction. For
the weaker electron-phonon coupling in Fig. 5(a), where
λqm/ωqm = 0.5, the transition probabilities are suppressed,
and the friction is also quantitatively similar to the noninter-
acting system in Fig. 1.

At finite bias voltages, the electronic friction displays a
much richer structure, which is shown in Fig. 6. In Figs. 6(c)
and 6(d), where λqm/ωqm = 2, the friction displays character-
istic peaks at points where

x̃α,ν = μα − (ε0 − λ2
qm/ωqm + qωqm)

gcl

√
2

: (51)

that is, points where the renormalized energy level plus some
integer of vibrational quanta crosses the chemical potential
of electrode α. At each x̃α,ν , the electron-hole pair creation
process in electrode α associated with the absorption of ν vi-
brational quanta is enhanced. These side peaks are not visible
at equilibrium, however, as only the ground-state-to-ground-
state transition is energetically allowed [7].

In contrast, the friction minima occur when the chem-
ical potential of electrode α is located between two such
quasilevels and the system experiences current-induced heat-
ing. The peaks also decrease as the renormalized level is
pushed further into the center of the bias window; the further
ε0 − λ2

qm/ωqm + gcl

√
2x̃ is away from μα , the more vibra-

tional quanta are required for electron-hole pair creation, and
these processes are generally less probable. Finally, the main
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FIG. 6. Electronic friction at finite bias voltages and as a function of vibrational coordinate x̃ for an electronic level coupled to a high-
frequency quantum vibrational mode as well as a low-frequency classical vibrational mode. The molecule-lead coupling is � = 0.026 eV.
(a) and (b) correspond to λqm = 0.1 eV, while (c) and (d) correspond to λqm = 0.4 eV. (a) and (c) are held at a voltage of � = 0.5 V, while
(b) and (d) are held at a voltage of � = 1.0 V. All other parameters are the same as in Fig. 5.

difference between Fig. 6(c) and Fig. 6(d) is that the higher
voltage in Fig. 6(d) energetically allows more vibrational tran-
sitions to contribute to electron-hole pair creation, causing the
extra two friction peaks.

In Figs. 6(a) and 6(b), the electron-phonon coupling is
again weak, λqm/ωqm = 0.5, and electron-hole pair creation
via absorption of vibrational quanta is suppressed with in-
creasing voltage. At x̃α,0, the resonant electron-hole pair
creation process still yields a friction peak because the tran-
sition from the vibrational ground state to the vibrational
excited state has a strong Franck-Condon factor. At each of
the other x̃α,ν �=0, however, the electronic friction experiences
a local or global minimum, as the |X0,ν>0|2 are suppressed for
increasing ν and λqm/ωqm < 1. In this regime, the electronic
friction actually becomes negative. This implies not only
that the loss of cooling by electron-hole pair creation heats
the quantum vibrational mode, but also that energy is being
pumped into the classical mode by the usually dissipative pro-
cesses, driving it to instability. The identification of negative
friction is of high interest in transport through nanostructures,
as it provides easy insight into regimes of instability where the
junction can break [54,100].

VI. CONCLUSION

In this paper, the HEOM approach to nonequilibrium
charge transport through nanosystems was used to develop
a method for calculating current-induced forces. Similar to
other master equation approaches to electronic friction [79],
the fully quantum HEOM is first transformed to a QCLE
and then, under an adiabatic approximation for the vibra-
tional degrees of freedom, to a Markovian Fokker-Planck
equation, from which the average electronic force, Markovian
friction tensor, Markovian diffusion tensor, and correspond-
ing Langevin equation are identified. These quantities were

then shown to be equivalent to previous derivations of the
current-induced forces under a timescale separation, but in
a more computationally useful form. The electronic fric-
tion, for example, can now be calculated for junctions with
both strong molecule-lead couplings and strong intrasystem
interactions. The resulting friction and diffusion tensors, fur-
thermore, are completely general, applying to both in- and
out-of-equilibrium scenario.

The HEOM approach to calculating electronic friction was
applied to three models of different complexity. First, a single
noninteracting electronic level coupled linearly to one clas-
sical vibrational mode was considered, a system for which
exact results can be calculated; these were used to demon-
strate the numerical accuracy of the HEOM approach. In the
second model, an Anderson impurity coupled to one classical
vibrational mode was considered. Because adding extra levels
and interactions does not complicate the HEOM theory, this
system can be treated easily both in and out of equilibrium.
Finally, a system with an additional interaction between the
electronic level and a quantum vibrational mode was consid-
ered, which yielded a richer structure in the friction of the
classical mode. In particular, it was shown that for a simple
one-level, two-mode system, heating of the quantum vibra-
tional mode caused negative friction in the classical mode,
indicating that it is also being driven to instability.
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APPENDIX A: ON THE DERIVATION OF THE
MARKOVIAN FOKKER-PLANCK EQUATION

In this Appendix, the Markovian Fokker-Planck equa-
tion in Eq. (30) will be explicitly derived. First, the
equations of motion for A(x, p; t ) and B̃el(x, p; t ) are

∂A

∂t
= Trel

[{{
H el

S , Aσ̃el
ss

}}
a
] + Trel

[{{H el
S , B̃el

}}
a

]
= −

∑
i

pi

mi

∂A

∂xi
+

∑
i

Trel

[
∂H el

S

∂xi
σ̃el

ss

]
∂A

∂ pi

+
∑

i

Trel

[
∂H el

S

∂xi

∂B̃el

∂ pi

]
(A1)

and

∂B̃el

∂t
= {{

H el
S , B̃el

}}
a − σ̃el

ssTrel
[{{

H el
S , B̃el

}}
a] − LelB̃el

+ {{
H el

S , Aσ̃el
ss

}}
a − σ̃el

ssTrel
[{{

H el
S , Aσ̃el

ss

}}
a

]
, (A2)

where the (x, p; t ) notation has been suppressed for brevity
and Trel[Lelρ̃el] = 0 has been used. This relation can be seen
if one considers that Trel[· · · ] only traces over the zeroth-tier
ADO, and the corresponding part of the hierarchy in Lel

contains only commutators,

Trel[Lelρ̃el] = −iTrel
([

H el
S , ρel])

− i
∑

j

Vα,mTrel
([

d σ̄ , ρ̃
(1),el
j

])
(A3)

= 0. (A4)

The first few terms in Eq. (A2) involve derivatives of B̃el

with respect to t , xi, and pi, due to the Poisson bracket. As has
been discussed in Refs. [72,78], the limit of slow vibrational
degrees of freedom in comparison to fast electronic degrees of
freedom allows these terms to be neglected, as B̃el should be
much smaller than A. Equation (A2) becomes, therefore,

LelB̃el = {{
H el

S , Aσ̃el
ss

}}
a − σ̃el

ssTrel
[{{

H el
S , Aσ̃el

ss

}}
a

]
(A5)

= −
∑

j

p j

m j

∂ σ̃el
ss

∂x j
A −

∑
j

Trel

[
∂H el

S

∂x j
σ̃el

ss

]
∂A

∂ p j
σ̃el

ss

+ 1

2

∑
j

(
∂H el

S

∂x j
σ̃el

ss + σ̃el
ss

∂H el
S

∂x j

)
∂A

∂ p j
. (A6)

With the (x, p; t ) notation now explicitly written, and using
the identity

[Lel(x)]−1 = lim
η→0+

∫ ∞

0
dt e−(Lel (x)+η)t , (A7)

Lel(x) is formally inverted and B̃el(x, p; t ) can be directly cal-
culated. This is then substituted into the equation of motion for
A(x, p; t ), yielding the Markovian Fokker-Planck equation in
Eq. (30).

APPENDIX B: COMPARISON WITH
PREVIOUS APPROACHES

The goal of this Appendix is to show that the current-
induced forces derived via the HEOM approach in the main
text are equivalent to other approaches that treat all electronic
degrees of freedom without an explicit system-bath partition-
ing. See, for example, Eqs. (11), (18), and (19) in Ref. [46]
or the Markovian version of Eq. (27) in Ref. [74]. In these
approaches, the average force is

Fi(x) = −Trtot,el

[
∂H el

∂xi
ρel

tot,ss

]
, (B1)

the Markovian electronic friction is

γi j (x) = −
∫ ∞

0
dt Trtot,el

[
∂H el

∂xi
e−iH elt ∂ρel

tot,ss

∂x j
eiH elt

]
, (B2)

and the Markovian diffusion tensor is

Di j (x) =
∫ ∞

0
dt Trtot,el

[
δFie

−iH elt
(
δFjρ

el
tot,ss

+ ρel
tot,ssδFj

)
eiH elt

]
, (B3)

with

δFi = ∂H el

∂xi
− Fi(x). (B4)

Here, Trtot,el(· · · ) and ρel
tot,ss are the trace over and the steady-

state density matrix of all electronic degrees of freedom in the
system and bath, respectively. This is in contrast to Eqs. (31)–
(33) in the main text, where the trace is only over the system
electronic degrees of freedom and σ̃el

ss contains the steady-state
system electronic density matrix as well as all steady-state
ADOs.

The first question, then, is whether the information one
extracts from incorporating the bath effects via the ADOs
is the same as that from treating the full electronic density
matrix of system and bath. This is, however, not the only
difference between the approaches. Equations (B2) and (B3)
contain the time evolution of all electronic degrees of freedom
according to the full Hamiltonian, H el, whereas Eqs. (B2) and
(B3) contain the time evolution according to a HEOM derived
under the assumption that at the initial state of the object being
propagated, AT(0) can be factorized into system and bath

components, AT(0) = A ⊗ AB. Since the quantities ∂ σ̃el
ss

∂x j
and

δFj (x)σ̃el
ss evidently cannot be factorized, this raises another

question: Is the HEOM propagation defined by Lel(x) correct
for these quantities? In the remainder of this Appendix, both
of these questions will be answered, and the equivalence of
the two forms of the current-induced forces will be shown.

1. Average electronic force

As in the main text, the key assumption is that all vibra-
tional degrees of freedom are restricted to the system only,
such that

∂H el(x)

∂xi
= ∂H el

S (x)

∂xi
. (B5)
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To start, consider the average electronic force, Fi(x). Because
the spatial derivative now only involves system operators, it
can be simplified to

Fi(x) = −Trel

[
∂H el

S

∂xi
TrB

{
ρel

tot,ss

}] = −Trel

[
∂H el

S

∂xi
σ el

ss

]
, (B6)

which is exactly the result one obtains from the HEOM ap-
proach in Eq. (31). The system electronic steady-state density
matrix obtained by HEOM is, by definition, the same as that
obtained by the time evolution of all electronic degrees of
freedom to the steady state and then tracing out the bath, be-
cause HEOM is numerically exact and all systems considered
have a unique steady state.

2. Friction tensor

Next, consider the more difficult quantities defined in
Eqs. (B2) and (B3). In what follows, the equivalence will be
shown explicitly for the friction, as the diffusion follows a
very similar process. Similar to the previous section, Eq. (B2)
can be rewritten as

γi j (x) = −
∫ ∞

0
dt Trel

[
∂H el

S

∂xi
A(x, t )

]
, (B7)

where

A(x, t ) = TrB

[
e−iH el (x)t ∂ρel

tot,ss

∂x j
eiH el (x)t

]
(B8)

has been defined; it is evidently this quantity that now must
be shown to be equivalent to the HEOM approach. Note that
the time evolution has been explicitly written only as a func-
tion of the vibrational coordinates, x, because the classical
vibrational momenta do not couple directly to the electronic
degrees of freedom.

The next step, then, is to introduce the formal definition of
the spatial derivative,

∂ρel
tot,ss

∂x j
= lim

dx j→0+

ρel
tot,ss(x + dx j ) − ρel

tot,ss(x)

dx j
. (B9)

Because the electronic systems under consideration have
unique steady states, ρel

tot,ss(x + dx j ) and ρel
tot,ss(x) can be

found by starting the total system at some point in the
distant past, where they are assumed to be uncorrelated,

lim
τ→−∞ ρel

tot(τ ) = ρel(τ )ρel
B (τ ), and evolving them up until time

t = 0, such that

ρel
tot,ss(x+dx j ) = lim

τ→−∞ eiH el (x+dx j )τ ρel(τ )ρel
B (τ )e−iH el (x+dx j )τ ,

(B10)

ρel
tot,ss(x) = lim

τ→−∞ eiH (x)τ ρel(τ )ρel
B (τ )e−iH (x)τ . (B11)

Equation (B8) therefore will contain two terms, each with two
sets of time evolution. Consider the first term,

Ax+dx j (x, t ) = TrB
[
e−iH el (x)tρel

tot,ss(x + dx j )e
iH el (x)t ] (B12)

= lim
τ→−∞ TrB

[
e−iH el (x)t eiH el (x+dx j )τ

× ρel(τ )ρel
B (τ )e−iH el (x+dx j )τ eiH el (x)t

]
, (B13)

which can now be evaluated using HEOM. Note that the
subscript notation containing x + dx j specifies the vibrational
coordinates as the electronic degrees of freedom evolve to the
steady state from τ to t = 0. It is only this part that needs
to be specified, because, from Eq. (B7), one can see that the
evolution after t = 0 for any quantity is always at x.

Not all steps of the standard HEOM derivation will be
reproduced here, as they can be found in Refs. [42,83–91].
First, the basis of fermionic coherent states, which are eigen-
vectors of the fermionic annihilation and creation operators,
is introduced:

di|ξ 〉 = ξi|ξ 〉 and 〈ξ |d†
i = 〈ξ |ξ ∗

i . (B14)

The eigenvalues ξm, which are often collected into vectors,
ξ = (ξ1, ξ2, . . . ) and ξ∗ = (ξ ∗

1 , ξ ∗
2 , . . . ), are not ordinary com-

plex numbers, but rather Grassmann variables satisfying the
anticommutation relation between fermionic annihilation and
creation operators. In this basis, Ax+dx j (x, t ) is

Ax+dx j (ξ f , ξ
′
f ; x, t ) = lim

τ→−∞

∫
(dξ∗

i dξi ) (dξ∗′
i dξ′

i ) (dξ∗
iB dξiB ) (dξ∗′

iB dξ′
iB )e−ξ∗

i ξi e−ξ∗′
i ξ′

i e−ξ∗
iB

ξiB e−ξ∗′
iB

ξ′
iB

×
∫

(dξ∗
mdξm) (dξ∗′

m dξ′
m)(dξ∗

mB
dξmB ) (dξ∗′

mB
dξ′

mB
)e−ξ∗

mξm e−ξ∗′
m ξ′

m e−ξ∗
mB

ξmB e−ξ∗′
mB

ξ′
mB

× TrB
[
Gx(ξ fB , ξ f , t ; ξmB

, ξm, 0)Gx+dx j (ξmB, ξm, 0; ξiB , ξi, τ )

× 〈ξiB , ξi|ρel(τ )ρel
B (τ )|ξ ′

i , ξ
′
iB〉G∗

x+dx j
(ξ′

mB
, ξ′

m, 0; ξ′
iB , ξ

′
i , τ )G∗

x(ξ′
fB

, ξ′
f , t ; ξ′

mB
, ξ′

m, 0)
]
. (B15)

In Eq. (B15), coherent states with a “B” subscript denote bath variables, while those without a subscript denote system variables.
The object,

Gx(ξ fB, ξ f , t ; ξmB
, ξm, 0) = 〈ξ fB , ξ f |e−iH el (x)t |ξm, ξmB

〉, (B16)

for example, denotes forward time propagation from coherent states |ξmB , ξm〉 at time t = 0 to coherent states |ξ fB , ξ f 〉 at time t ,
all while the system is held at vibrational position x.
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FIG. 7. Schematic of the transformation of the forward paths into one joint path. In the left plot, the paths (ξa, ξ
′
a) and (ξb, ξ

′
b) are joined

at t = 0 by the midpoint (ξm, ξ′
m). In Eq. (B15), however, this midpoint is integrated over, and the two paths combine into one, albeit with

different actions before and after t = 0, which is shown in the right plot.

Since the total density matrix factorizes in the infinite past, ρel(τ ) can be brought outside the bath trace, and the expression
can be written with a propagator,

Ax+dx j (ξ f , ξ
′
f ; x, t ) = lim

τ→−∞

∫
(dξ∗

i dξi) (dξ∗′
i dξ′

i )(dξ∗
mdξ∗

m) (dξ∗′
m dξ′

m)e−ξ∗
i ξi e−ξ∗′

i ξ′
i e−ξ∗

mξm e−ξ∗′
m ξ′

m

× Jx+dx j (ξ f , ξ
′
f , t ; ξm, ξ′

m, 0; ξi, ξ
′
i , τ )ρel(ξi, ξ

′
i; τ ). (B17)

The propagator is then decomposed into four path integrals over the system coherent states, with path (ξa, ξ
∗
a ) from τ to the

steady state at time t = 0, and path (ξb, ξ
∗
b ) from t = 0 to time t ,

Jx+dx j (ξ f , ξ
′
f , t ; ξm, ξ′

m, 0; ξi, ξ
′
i , τ ) =

∫ ξ∗
b (t )=ξ∗

f

ξb(0)=ξm

D(ξb, ξ
∗
b )

∫ ξ∗′
b (t )=ξ∗′

f

ξ′
b(0)=ξ′

m

D
(
ξ′

b, ξ
∗′
b

) ∫ ξ∗
a (0)=ξ∗

m

ξa(τ )=ξi

D(ξa, ξ
∗
a )

∫ ξ∗′
a (0)=ξ∗′

m

ξ′
a(τ )=ξ′

i

D
(
ξa

′, ξ∗′
a

)
× eiSS[ξ∗

b ,ξb ; x,t,0]eiSS[ξ∗
a ,ξa ; x+dx j ,0,τ]F[ξa, ξ

′
a, ξ

∗
a , ξ∗′

a , ξb, ξ
′
b, ξ

∗
b , ξ∗′

b ; t, τ ]

× e−iS∗
S[ξ∗′

a ,ξ′
a ; x+dx j ,0,τ]e−iS∗

S[ξ∗′
b ,ξ′

b ; x,t,0]. (B18)

A schematic of these four path integrals for the forward propagation is shown in the left plot of Fig. 7, where paths (ξa, ξ
∗
a )

and (ξb, ξ
∗
b ) are joined by the middle point, (ξm, ξ∗

m). The effect of the bath on each path is contained in the Feynman-Vernon
influence functional, F[ξa, ξ

′
a, ξ

∗
a , ξ∗′

a , ξb, ξ
′
b, ξ

∗
b , ξ∗′

b ; t, τ ]. Notice that, because the vibrational coordinates enter only through H el
S ,

the influence functional is the same for path (ξa, ξ
∗
a ) and path (ξb, ξ

∗
b ). The difference between the two sets of paths, then, resides

exclusively in the system actions,

SS
[
ξ∗

b , ξb ; x, t, 0
] = −iξ∗

b (t ), ξb(t ) +
∫ t

0
dτ1

[
iξ∗

b (τ1)
∂ξb(τ1)

∂τ1
− H el

S (ξb(τ1), ξ∗
b (τ1) ; x)

]
, (B19)

SS
[
ξ∗

a , ξa ; x + dx j, 0, τ
] = −iξ∗

a (0), ξa(0) +
∫ 0

τ

dτ1

[
iξ∗

a (τ1)
∂ξa(τ1)

∂τ1
− H el

S (ξa(τ1), ξ∗
a (τ1) ; x + dx j )

]
. (B20)

This greatly simplifies the theory, as now the two distinct paths can be joined by the integral over the middle point in Eq. (B15).
The resulting joint path is shown in the right plot in Fig. 7, with the total propagator and influence functional now

Jx+dx j

(
ξ f , ξ

′
f , t ; ξi, ξ

′
i, τ

) =
∫ ξ∗(t )=ξ∗

f

ξ(τ )=ξi

D(ξ, ξ∗)
∫ ξ∗′ (t )=ξ∗′

f

ξ′ (τ )=ξ′
i

D(ξ′, ξ∗′)

× eiSS[ξ∗,ξ ; x,t,0]eiSS[ξ∗,ξ ; x+dx j ,0,τ]F[ξ, ξ′, ξ∗, ξ∗′; t, τ ]e−iS∗
S[ξ∗′,ξ′ ; x+dx j ,0,τ]e−iS∗

S [ξ∗′,ξ′ ; x,t,0], (B21)

F[ξ, ξ′, ξ∗, ξ∗′; t, τ ] =
∫

(dξ∗
iB dξiB ) (dξ∗′

iB dξ′
iB ) e−ξ∗

iB
ξiB e−ξ∗′

iB
ξ′

iB

× TrB[GB(ξ fB
, ξ f , t ; ξiB , ξi, τ )〈ξiB |ρB(0)|ξ ′

iB〉G∗
B(ξ′

fB
, ξ′

f , t ; ξ′
iB , ξ

′
i , τ )]. (B22)

Here, GB(ξ fB
, ξ f , t ; ξiB , ξi, 0) is the propagator for the bath density matrix while the system evolves along path (ξ∗, ξ).

In the bath interaction picture, where HI
SB(t ) = e−iHBt HSBeiHBt , this time evolution can be alternatively expressed with time-

ordered exponentials,

F = TrB
{
T e−i

∫ t
τ

dτ1HI
SB(τ1 ; ξ (τ1 ),ξ∗(τ1 ))ρel

B (τ )T −1ei
∫ t
τ

dτ1HI
SB(τ1 ; ξ′ (τ1 ),ξ∗′ (τ1 ))}, (B23)

where the coherent state notation has been suppressed from F for brevity.
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The influence functional in Eq. (B23) is similar to that found in standard HEOM theory, except now the initial time is at some
point in the distant past, τ . Following the usual HEOM approach [42,83–91] allows the influence functional to be expressed in
terms of the two-time bath-correlation functions, Cσ

α,mm′ (t ), and their expansion from Eq. (11) in the main text,

F = exp

⎛
⎝−i

∫ t

τ

dτ1

∑
j

Aσ̄
α,m

[
τ1; ξ, ξ′]B j

[
τ1, τ ; ξ, ξ′]

⎞
⎠. (B24)

Here, two new Grassmann variables have been introduced,

B j[ξ, ξ
′; t, τ ] = − iVα,m

(
η j

∫ t

τ

dτ1 e−κ jτ1ξσ
m (t − τ1) − η∗

j

∫ t

τ

dτ1 e−κ jτ1ξσ ′
m (t − τ1)

)
, (B25)

Aσ
α,m[ξ, ξ′; t] = Vα,m

[
ξσ

m (t ) + ξσ ′
m (t )

]
, (B26)

along with the superindex j = (α, σ, �, m) from the main text. One can now construct the standard hierarchical equations of
motion for F ,

∂

∂t
F (n)

j = −
(

N∑
r=1

κ jr

)
F (n)

j − i
n∑

r=1

(−1)n−rC jrF (n−1)
j− − i

∑
j

Aσ̄
α,mF

(n+1)
j+ , (B27)

where the nth-tier influence functional is formed by application of n Grassmann variables B j[ξ, ξ′; t, τ ],

F (n)
j = B jn · · ·B j1F , (B28)

such that the zeroth tier corresponds to the original influence functional, F (0) = F .
Now explicitly including the coherent state notation, a corresponding nth-tier propagator and auxiliary operator (AO) can be

defined,

J (n)
j,x+dx j

(
ξ f , ξ

′
f , t ; ξi, ξ

′
i, τ

) =
∫ ξ∗(t )=ξ∗

f

ξ(τ )=ξi

D(ξ, ξ∗)
∫ ξ∗′ (t )=ξ∗′

f

ξ′ (τ )=ξ′
i

D
(
ξ′, ξ∗′)eiSS[ξ∗,ξ ; x,t,0]eiSS[ξ∗,ξ ; x+dx j ,0,τ]

× F (n)
j [ξ, ξ′, ξ∗, ξ∗′; t, τ ]e−iS∗

S[ξ∗′,ξ′ ; x+dx j ,0,τ]e−iS∗
S [ξ∗′,ξ′ ; x,t,0], (B29)

A(n)
j,x+dx j

(ξ f , ξ
′
f ; x, t ) = lim

τ→−∞

∫
(dξ∗

i dξi ) (dξ∗′
i dξ′

i )e
−ξ∗

i ξi e−ξ∗′
i ξ′

iJ (n)
j,x+dx j

(
ξ f , ξ

′
f , t ; ξi, ξ

′
i , τ

)
ρel(ξi, ξ

′
i ; τ ), (B30)

respectively.
Consider now the case at t = 0. In this instance, two of the four system actions vanish, SS[ξ∗, ξ ; x, 0, 0] = 0, and, after

moving to a more computationally suitable basis, the AOs propagate according to

∂

∂t ′ A
(n)
j,x+dx j

(t ′) = i
[
HS(x + dx j ), A(n)

j,x+dx j

]
−

(
N∑

r=1

κ jr

)
A(n)

j,x+dx j
+ i

n∑
r=1

(−1)n−rC jr A
(n−1)
j−,x+dx j

+ i
∑

j

Aσ̄
α,mA(n+1)

j+,x+dx j
, (B31)

where τ < t ′ � 0. Equation (B31) is solved subject to the initial condition A(0)
x+dx j

(τ ) = ρel(τ ), which is the initial state of the

system electronic degrees of freedom in the distant past, and A(n>0)
j,x+dx j

(τ ) = 0. If one solves these equations of motion for

A(x + dx j, 0) = [
A(0)

x+dx j
(0), A(1)

j1,x+dx j
(0), . . .

]
, (B32)

then one is simply calculating

σ̃el
ss(x + dx j ) = [

σ (0),el
ss (x + dx j ), σ

(1),el
j1,ss (x + dx j ), . . .

]
, (B33)

the steady state of all ADOs for vibrational frame x + dx j . This entire process can be repeated for the second term in Eq. (B9),
Ax(x, t ), which just yields σ̃el

ss(x).
With these results, the propagation from time t = 0 to time t can be easily treated. First, note that both Ax(x, t ) and Ax+dx j (x, t )

will follow the same equation of motion for vibrational frame x during this interval. Since the AOs at t = 0 are known from the
previous section, furthermore,

lim
τ→−∞ A(n)

j,x+dx j
(0, τ ) = σ

(n),el
j,ss (x + dx j ),

lim
τ→−∞ A(n)

j,x (0, τ ) = σ
(n),el
j,ss (x), (B34)
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both can just be propagated from this point to time t . After putting both the Ax+dx j (x, t ) and Ax(x, t ) back together, then, Eq. (B8)
becomes

A(n)
j,x+dx j

(ξ f , ξ
′
f ; x, t ) = lim

τ→−∞

∫
(dξ∗

i dξi ) (dξ∗′
i dξ′

i )e
−ξ∗

i ξi e−ξ∗′
i ξ′

iJ (n)
j,x (ξ f , ξ

′
f , t ; ξi, ξ

′
i , 0)

∂σ
(n),el
j,ss (ξi, ξ

′
i ; x)

∂x j
. (B35)

Again, returning to a more computationally suitable basis
yields the corresponding HEOM,

∂

∂t
A(n)

j (x, t ) = −i
[
HS(x), A(n)

j

] −
(

N∑
r=1

κ jr

)
A(n)

j

− i
n∑

r=1

(−1)n−rC jr A
(n−1)
j−

− i
∑

j

Aσ̄
α,mA(n+1)

j+ , (B36)

an equation of motion that is solved subject to the initial
condition

A(n)
j (x, 0) = ∂ σ̃el

ss(x)

∂x j
. (B37)

Note that this is exactly the same HEOM one would obtain
for the time evolution of a reduced system density matrix
based on a factorized initial condition, except that now it
time-evolves the spatial derivative of the steady state of all
ADOs.

Evidently, therefore, both questions from the start of this
Appendix have been answered. First, when the vibrational de-
grees of freedom are only in the system Hamiltonian, H el

S , one
extracts the same information from σ̃el

ss(x) as from ρel
tot,ss(x).

Second, the resulting time propagation is under the same
HEOM as that derived for a factorized initial state. Finally, to
fully connect this with the form of the friction of the main text,
consider the HEOM in Eq. (B36) in a joint Liouville space,
where it has the solution

A(x, t ) = e−Lel (x)t ∂ σ̃el
ss(x)

∂x j
. (B38)

Here, Lel(x) is a superoperator containing the numerically
exact dynamics in Eq. (B36) and is, by definition, the same
quantity as in Eq. (25). The friction in Eq. (B2), consequently,
is now exactly the same expression as that derived in the main
text.

3. Diffusion tensor

The equivalence of the diffusion tensors can be shown
through a similar process. The only difference is that an op-
erator in the system space, δFj (x), is applied at time t = 0,

instead of a classical spatial derivative, which is the same
problem that the authors already considered in Ref. [93].

APPENDIX C: NON-MARKOVIAN FRICTION TENSOR

The friction and diffusion tensors derived in Appendix B
are Markovian, in that they depend only on the vibrational
position at time t . In general, introducing non-Markovian
dynamics for this problem is nontrivial; however, a simple
form of memory can be introduced by setting ∂B̃el

∂t �= 0, as in
Ref. [72]. This still keeps the timescale separation between
electronic and vibrational degrees of freedom, in that the
time evolution of B̃el(x, p; t ) and A(x, p; t ) is still for a fixed
vibrational frame, but now some relaxation effects from the
electronic degrees of freedom are retained. Again suppressing
the (x, p; t ) notation, this can be seen in the equation of
motion for B̃el(x, p; t ),

∂B̃el

∂t
= {{

H el
S , Aσ̃el

ss

}}
a − σ̃el

ssTrel
[{{

H el
S , Aσ̃el

ss

}}
a

] − LelB̃el.

(C1)

After solving this first-order differential equation and assum-
ing that the system starts in the electronic steady state, such
that B̃el(x, p; 0) = 0, time-dependent friction and diffusion
tensors,

γ̄i j (t − τ ) = −Trel

[
∂

∂xi
e−Lel (x)(t−τ ) ∂ σ̃el

ss(x)

∂x j

]
, (C2)

D̄i j (t − τ ) = 1
2 Trel

[
δFie

−Lel (x)(t−τ )
(
δFj σ̃

el
ss + σ̃el

ssδFj
)]

, (C3)

are derived. They form part of the resulting non-Markovian
Fokker-Planck equation,

∂A(t )

∂t
= −

∑
i

pi

mi

∂A(t )

∂xi
+

∑
i

Fi(x)
∂A(t )

∂ pi

+
∑

i j

∫ t

0
dτ γ̄i j (t − τ )

∂

∂ pi

(
p j

mj
A(τ )

)

+
∑

i j

∫ t

0
dτ D̄i j (t − τ )

∂2A(τ )

∂ pi∂ p j
, (C4)

Note that this non-Markovian friction is not equivalent to
that derived in Ref. [74], where all non-Markovian effects
are rigorously included and the full history of the classical
trajectory is used.
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