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Infinite-Q guided modes radiate in the continuum
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Guided modes in photonic structures, with broadband infinite-quality factors, are inaccessible from the far
field due to the momentum mismatch. They become leaky modes in the continuum when the mismatch is
compensated for by introducing periodic perturbations to form photonic structures. However, the quality factors
(Q factors) of such leaky modes deteriorate significantly in most regions of the k-space except at a few discrete
high-symmetry points. It is an intriguing question as to whether guided modes can hop above the light cone
and yet maintain high Q. Here, we propose a double-band-folding strategy to achieve high-Q leaky modes in
compound lattices, exemplified with a one-dimensional grating and a two-dimensional zigzag array of dielectric
disks. The Q factor of those leaky modes can be made ultrahigh at arbitrarily any incident angles, showing that
such modes do not originate from bound states in the continuum (BICs) above the light cone. Our findings
provide unique insight for elucidating the relations between guided modes, BICs, quasi-BICs, and radiation.
They further provide a generalized recipe for numerous optical applications such as all-dielectric sensing, lasing,
and nonlinear generation with multiple inputs.
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The use of resonant photonic structures is at the heart of
current nanophotonic research. Ideally, such resonance should
be associated with a leaky mode, whose dispersion curve is
located above the light cone to facilitate its coupling to and
thus excitation by free-space propagating waves. One vital
parameter of a leaky resonance is its Q factor, which, although
measured by the spectral linewidth in the far field, intrinsically
connects many characteristics important for nanoscale light-
matter interactions, e.g., the maximum local field enhance-
ment [1], the effective interaction lengths within the same
volume, and the local density of optical states (LDOS). The
Purcell factor of the resonance, which is proportional to Q/V
(V is the mode volume) [2], should be large enough to ensure
high local electromagnetic field enhancement. Photonic crys-
tal cavities [3] and whispering-gallery-mode resonators [4],
although with superhigh Q factors, are still not ideal due to
their relatively large footprint. In this respect, optical nanos-
tructures with tight modal confinement are more attractive.
More importantly, given a specific photonic structure, the res-
onant field enhancement should be accessible in a broad spec-
tral range to be useful for practical applications, where wide
spectral tunability or multiple input frequencies are required.
Those applications may include nonlinear optics such as
sum/difference frequency generation [5], optical switches and
tunable optical delays in all-optical signal processing [6], or
perfect absorbers in solar photovoltaic and stealth applications
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[7]. For plasmonic antennas, the generally low Q factors make
it possible to choose any frequency within a broad bandwidth
of resonances while still ensuring strong field enhancement
thanks to small mode volumes [8]. Unfortunately, signifi-
cant light absorption in metals (Ohmic losses) introduces
severe restrictions in many applications, especially in the
emerging optical signal processing regime [6]. A search for
alternative approaches using all-dielectric nanostructures sup-
porting Mie resonances is, therefore, becoming essential [9].
To deal with large radiation losses associated with typical Mie
resonances, researchers started exploiting the concept of a
bound state in the continuum (BIC) [10] and its derivative,
a quasi-BIC (QBIC) [11]. First proposed in quantum mechan-
ics, this concept has expanded rapidly into a new field that
has continued to grow exponentially after its introduction into
photonics [12–16].

Guided modes (GMs) in photonic structures, e.g., in a slab
waveguide, are known to have continuous dispersion curves
over a broad frequency range below the light cone. Such
modes boast infinite-quality factors, and they are therefore
inaccessible from the far field. Several works in the litera-
ture have discussed the intrinsic connection between GMs
and conventional guided resonances [17,18]. When the mo-
mentum mismatch between the GMs and the incident plane
waves is compensated for by introducing some geometri-
cal perturbations to form periodic structures, leaky modes
in the continuum will be formed. These modes are known
as guided mode resonances (GMRs) [19], and they occur
at the second-order stop band [20]. The Q factors of the
GMRs deteriorate significantly in most regions of the k-space
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FIG. 1. Conceptual diagram for generating high-Q leaky modes, illustrating the differences between the traditional and proposed ap-
proaches. The slab waveguide in (a) is first periodically perturbed to produce GMRs above the light cone as in (b). High-Q modes are only
retained at discrete points, known as symmetry-protected (marker 1) and accidental (marker 2) BICs. Disturbing the unit cells breaks the
symmetry and leads to quasi-BICs in (c). Although radiations are allowed, the frequencies at these points are restricted within a narrow
bandwidth dependent on the perturbation. The proposed double-band-folding strategy, as shown in (d), omits the intermediate BIC stage and
moves GMs directly into the light cone, thereby preserving ultrahigh Q factors over the same spectral band as the GMs.

except at a few discrete points with high symmetry, where the
infinite-Q factors of the original GMs are retained, forming
a BIC point. Typical instances of high symmetry include the
� point with perfectly antisymmetric mode profiles, and the
case in which two radiation channels have the same coupling
coefficient amplitudes and opposite phases, which correspond
to the symmetry-protected and accidental types of BIC, re-
spectively [10]. The latter case is often accompanied by the
behavior of avoided crossing, which is not shown in Fig. 1
for simplicity. This is the origin of BIC supported by many
periodic structures, e.g., resonant gratings on slab waveguides
[21], photonic crystal slabs [22], and metasurfaces [11]. An-
other equivalent approach to explain the requirement of high
symmetry in BIC resonances is based on their topological
nature [23]. BICs may form at the singularity points of vortex
centers in the polarization directions of far-field radiation,
where the polarization is undefined. However, regardless of
the approaches considered previously, the BIC can only oc-
cur at very few discrete points in the k-space, which can be
considered zero-dimensional (0D) resonances. In contrast, the
original GMs have infinite-Q factors over the whole opera-
tion bandwidth. This outstanding feature cannot be applied
to BICs through conventional interpretations. When certain
perturbations are introduced into the photonic systems, the
original BIC resonances are disturbed into QBIC, which are
possible for free-propagating wave excitation but lose their
infinite-Q factors [24,25]. Although this is currently a popular
and dominant approach for achieving leaky modes with high
Q factors through wavelength-scale or even subwavelength-
size optical nanostructures, the main drawback is that the
frequency of the resulting QBIC resonance is located within

a narrow spectral band close to that of the original BIC,
even at a wave number highly different from that of the BIC
point in the k-space. This band is even narrower when one
aspires to a higher Q factor at a weaker perturbation. This
narrowband limitation of QBIC resonances poses significant
restrictions in many applications, where light-matter interac-
tions need to be enhanced in broad spectral ranges. To address
this limitation, various approaches have been exploited, e.g.,
using an elaborate geometrical design to merge several BICs
at distinct locations in the k-space so that their correspond-
ing QBIC operation bands overlap [26], or using degenerate
BICs to have more robustness of the Q-factor relative to the
perturbations [27]. However, the number of merged BICs is
usually limited, and the overall bandwidth, over which one
can realize high Q factor resonances, is still rather narrow.
New concepts, including lines of BICs [28] or a ring of BICs
[29], have also been explored. However, these approaches
require the involvement of axially symmetric structures such
as two-dimensional photonic crystals with the third dimension
infinitely long [30] or a sphere array, which are challenging to
implement in practical applications. Besides, the wave vectors
providing infinite-Q factors are still limited to a finite set, and
the availability over a broad frequency bandwidth still needs
more investigation.

Here, we first realize an effective manipulation method
that truly converts guided modes below the light cone to
radiative modes above the light cone in periodic structures.
From the relations between GMs, BICs, QBICs, and radi-
ations, as illustrated by Fig. 1, we propose in this work
a strategy to realize leaky resonances by transforming the
GMs into leaky QGMs (quasi-GMs) with ultrahigh Q factors
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FIG. 2. (a) Schematics of a regular grating (left) and a compound grating (right) consisting of two ridges on a slab waveguide. The
compound grating is formed by shifting the lateral position of every second ridge, leading to a new period of 2P. (b) Dispersion curves for
modes supported by both the two-ridge compound grating (solid lines) and the undistorted one-ridge grating (blue dashed lines). The following
geometrical parameters are used: P = 540 nm, t = 220 nm, h = 60 nm, w = 50 nm, and δ = 5 nm. The inset is an enlargement of the spectral
gap at the boundary of the FBZ. (c) Calculated Q factors for the QGMs supported by the compound grating; (d) Q factor vs the lateral shift δ

for four arbitrary points, two on each band.

directly. Since the intermediate process of BIC is not nec-
essary and thus can be circumvented, it is now possible to
achieve novel leaky modes over a broad bandwidth. Conse-
quently, the problem with the narrowband operation in the
general BIC effect supported by periodic structures will be
properly addressed. The transition from the GMs into QGMs
is achieved when a perturbation is introduced between adja-
cent unit cells of a regular periodic structure to distort the
photonic lattice and increase the periodicity by an integer of
times. We do note that a similar dimerized grating structure
has been investigated in the literature [31]. However, the
connection between realized high-Q resonances and guided
modes was not noticed, as the focus was still put on discrete
BIC points but not on the GMs. As a result, the first Brillouin
zone (FBZ) of the original GMs will be folded. Due to the
translational symmetry in the k-space, the dispersion curves of
GMs originally extending to the FBZ boundary of the undis-
torted lattice will be folded above the light cone, denoting
the occurrence of leaky resonances. When the perturbation is
weak, the leaky resonances will retain many properties of the
original GMs while keeping ultrahigh Q factors, which are
strongly dependent on the level of perturbation, in a similar
manner to the QBIC resonance [11]. If the GMs supported by
the original undistorted structure have strong spatial disper-
sions (i.e., steep dispersion curves) over a broad bandwidth
in the k-space, the same behavior will also be found in the

new leaky modes. Thus, it is possible to spectrally tune the
resonance or even excite multiple resonances simultaneously
by simply choosing the proper incident angles. As a result,
enhanced interactions between matter and light at different
wavelengths or multiple wavelengths simultaneously can be
easily achieved.

We next use a 1D ridge grating on a slab waveguide to
demonstrate the basic idea of achieving QGMs. As schemati-
cally shown in Fig. 2(a), both the ridges and the waveguide
slab are assumed to be in the air and made from silicon
(index 3.45). Without losing generality, the TE-polarization
is considered with the electric field parallel to the y-direction
and the incident beam within the xz-plane at an angle of θ

with respect to the normal of the surface. The commer-
cial software COMSOL MULTIPHYSICS, which is based on the
finite-element method (FEM), is used for all the calculations,
adopting the lateral Floquet periodic boundary conditions to
account for the wave number kx. A regular grating structure
on a slab waveguide periodically modulates the propagation
of the guided modes and provides a momentum of K0 = 2π/P
(P is the grating period), giving rise to a coupling between
two counterpropagating guided modes [32]. This coupling is
manifested by the appearance of a spectral gap at the FBZ
boundary, kx = ±π/P, which is also known as the first-order
stopband. However, when the lattice is perturbatively dis-
torted by shifting the lateral position of every second ridge

115415-3



SUN, WEI, CHEN, CHEN, CAI, QIU, AND HAN PHYSICAL REVIEW B 107, 115415 (2023)

by δ, a compound grating composed of two alternatingly
aligned ridge arrays with a doubled period of P2 = 2P will
be formed. Similar lattice distortion can also be achieved by
changing the ridge width, e.g., compound gratings exploited
in the literature to improve the angular tolerance of narrow
band filters [20]. Due to the translational symmetry in the
k-space with a period of 2π/P2 = π/P, the QGMs will pos-
sess the dispersion relation f (kx ) = f (kx + π/P).When the
perturbation is weak, the distorted lattice will exhibit reso-
nances similar to those supported by the undistorted lattice,
i.e., f (kx + π

P ) ≈ f0(kx + π
P ), where f0(kx ) is the dispersion

of the GMs. Consequently, f (kx ) ≈ f0(kx + π/P), which im-
plies that the dispersion curves of the GMs in the undistorted
lattice centered at kx = ±π/P will appear around kx = 0,
leading to the occurrence of a new set of leaky modes at
the first stopband (in contrast with GMRs, which occur at
the second stopband) with the dispersion curves flipped from
below the light cone to above it.

Figure 2(b) presents the calculated band structure from
eigenfrequency analysis for the QGMs supported by the com-
pound grating when δ is 5 nm. The dispersion curves for the
GMs supported by the original undistorted one-ridge grating
are also presented as the dashed blue lines, which extend to the
boundary of the FBZ of the one-ridge grating at kx = ±π/P.
A small spectral gap can be seen at the FBZ boundary [see
the inset of Fig. 2(b)], which is due to the small ridges and
the weak modulation of the refractive index of the slab [32].
In the folded dispersion curves of the GMs, two identical
small spectral gaps (one on each side) are found at the fre-
quency around 0.222c/P (c is the vacuum light speed), which
are attributed to the coupling between two copropagating
guided modes in the Si slab and the photonic lattice layer,
respectively [33]. For a nonzero value of δ, it is clear from
Fig. 2(b) that the same dispersion profiles of two crossed
dispersion curves from the GMs can be found in the QGMs
supported by the compound grating, although the dispersion
curves for the two cases have been shifted by a value of
2π/P2. The avoided crossing behaviors at the frequency of
0.222c/P are also shown, which turn out to be accidental BICs
[see the infinite-Q factors at the crossing in Fig. 2(c)]. Since
we are only interested in the leaky resonances for light-matter
interactions, only the resonances above the light lines are
presented for the compound grating. The extension of disper-
sion curves beyond the light line is not shown because they
correspond to GMs in that case, with infinite-Q factors and no
coupling to free-space radiations.

We plot in Fig. 2(c) the calculated Q factors for the QGMs
presented in Fig. 2(b). Both bands exhibit ultrahigh Q fac-
tors over large bandwidths with different evolution trends as
the wave number increases. For the low-frequency branch
(band B), the resonance at the � point corresponds to an ideal
symmetry-protected BIC and thereby has an infinite-Q factor.
This arises from a mirror symmetry in the compound grating
across the central plane between two adjacent ridges, regard-
less of the value of δ. Resonances along the high-frequency
branch (band A) first see a slight increase in the Q factor until
they reach the accidental BIC point, which originates from the
coupling between two copropagating guided modes [19]. The
Q factor surges to infinity at this point, followed by a sudden
drop and a subsequent increase again for wave numbers be-

yond. When both branches extend beyond the cross with the
light line, the Q factors will be infinite because the resonances
under the light line are essentially GMs. Clearly, the well-
known BIC concepts still enter the discussion as the overall
structure has a periodicity of 2P. The difference is that the
resonances with ultrahigh Q factors are now observable over
the entire first Brillouin zone, unlike their BIC counterparts,
which are discrete. The reason is that those resonances are
originally the guided modes of the grating with a periodic-
ity of P. A perturbation with doubled periodicity effectively
shrinks the first Brillouin zone, exposing those modes in re-
gions above the light cone.

One distinctive behavior for all the QGMs in Fig. 2(b)
is that the Q factors have a significant dependence on the
level of perturbation. To demonstrate this point, in Fig. 2(d)
we plot the calculated Q factors at two different wave num-
bers on each band. All the results exhibit the same inversely
quadratic dependence of Q factors on the lateral shift δ of
every second ridge, and the Q factors surge to infinity as
δ vanishes. This behavior is very similar to the QBIC reso-
nances, which are generated by introducing some geometrical
perturbation into a metasurface structure supporting BIC [11].
When δ vanishes for the QBIC resonances, their dispersion
curve shrinks to a point corresponding to the original BIC;
however, the QGMs will switch back to GMs with the profile
of the dispersion curve unchanged. In other words, the Q
factors of all the QGMs on the two bands in Fig. 2(b) can
be tuned to infinity. This is valid for any frequency over the
large operation bandwidth, significantly outperforming BICs
which can only occur at a few discrete frequencies. A tuning
of the resonance wavelength by changing the incident angle
and the huge local electric field enhancement on resonance
can be seen from the results provided in the supplemental
material [34].

The idea of transforming GMs into QGMs with lattice
distortion can be extended to more general cases with the new
period Pm = mP, where m is an integer denoting the number
of periods in the original structure to be unified into the new
unit cell. To achieve leaky modes, one should ensure that the
dispersion curves of the GMs by the undistorted lattice will
appear above the light cone after a few translational operations
along the kx axis, i.e., |kx− jkm| < k0, where kx ∈ (k0, π/P]
and k0 are the wave numbers of the original GM and light
in free space at the same frequency, respectively, j ∈ (0, m)
is an integer, km = 2π/Pm is the momentum provided by
the compound grating, and it can be controlled by the num-
ber of ridges involved. As a subsequent example, we use a
three-ridge compound grating structure shown in the inset of
Fig. 3(b) to demonstrate the generality. Instead of shifting the
position of the ridges, we switch to an alternative approach
of increasing the width of every second (third) ridge by an
increment of δ = 5 nm compared to the first (second) one.
After the lattice distortion, the period of the compound grating
becomes P3 = 3P. The momentum from this new grating will
be reduced to 2π/P3, leading to the folding of the original
guided modes at kx = ±π/P to kx = ±π/3P. Figure 3(a)
presents the calculated band structure of the QGMs by the
new grating. Compared to the case of a two-ridge grating,
multiple bands appear within the FBZ in the wave-number
range of (−π/P3, π/P3) leading to more foldings of the
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FIG. 3. (a) Dispersion curves for both the three-ridge compound grating (solid lines) and the unperturbed one-ridge grating (blue dashed
lines). (b) The Q factors for the leaky resonances supported by the three-ridge compound grating. The schematic of a compound grating
composed of three ridges on a slab waveguide is shown in the inset.

dispersion. The original anticrossing behaviors located at the
frequency 0.222c/P and wave numbers around kx = ±2π/P3

appear as a spectral gap between branches A and B around
the � point. The Q factors for the resonances along these
bands are plotted in Fig. 3(b). There is no symmetry-protected
BIC resonance for the three-ridge compound grating, which
exhibits no mirror symmetry. However, the two Q factor peaks
at two small kx on band A correspond to two accidental BICs.
Furthermore, we note the high dependence of the Q factors for
all the resonances on the level of perturbation, and the trend
of Q approaching infinity for a zero δ, as shown in Fig. 2(d),
persists for the three-ridge compound grating.

Although the simple 1D periodic structure of compound
ridge gratings on a slab waveguide is used above to demon-
strate the transition from GMs to QGMs, we note that the
slab waveguide is not essential and the same physics can be
easily extended to other periodic gratings or more general
metasurfaces (see the supplemental material [34] for exam-
ples). One typical example is the zigzag array of dielectric
disks schematically shown in Fig. 4(a), which has been widely
employed in QBIC applications [35]. For simplicity, we use
a special case in which P2x = 2Py so that when the relative
angle α between two disks vanishes, the whole structure be-
comes a photonic crystal slab (PCS) structure of the rod-type
composed of Ge (index 4.01) disks aligned in the square
lattice on a CaF2 (index 1.38) substrate. This PCS is known to
support GMs [36], whose dispersion curve is calculated and
presented by the dotted lines in Fig. 4(b). When a nonzero α

is introduced, a compound double-disk structure of the zigzag
array is formed with the period in the x-direction increasing
from Px to P2x, and the FBZ shrinks in the kx axis; see
the inset of Fig. 4(b). The GMs will switch to QGMs with
the dispersion curves at the X point of FBZ in the square
lattice, f0(kx + π/Px, ky), folded to f (kx, ky) in the zigzag
array. As a result, a strong dependence of QGM resonance on
the incident angle for the TMx mode in the x-direction and
the TEy mode in the y-direction can be observed [20]. The
calculated dispersion curves of the QGMs are presented as the
solid lines in Fig. 4(b), confirming the connection between the
QGMs and GMs. We further plot in Fig. 4(c) the dependence
of the Q factors on the relative angle α at two arbitrary wave
numbers k = 0.02π/Px and 0.12π/Px along both lateral di-

rections on the dispersion curve in Fig. 4(b). Similar to the
case of compound grating structure, the Q factors exhibit a
strong dependence on the geometry perturbation and approach
infinity when α vanishes. Further studies also confirm that this
dependence of the Q factor and the trend of it to infinity is true
for any wave number, supporting the origination of QGMs
from GMs.

The results shown by the simulations provide a promising
way to realize QGMs experimentally. One can use mature
material platforms such as a silicon-on-insulator or Ge on
the CaF2 substrate, whose processing techniques have been
fully developed, for photonic applications. One can even use
different ridge materials from the slab waveguide in Fig. 2 so
that the slab layer does not need to be patterned.

In conclusion, we have unveiled in this work a strategy
to generate an alternative type of leaky resonances by trans-
forming the GMs with broadband infinite-Q factors directly
into QGMs, without resorting to the use of BICs. While
the collective behaviors between resonating elements have
been explored for high Q factor photonic structures including
phase gradient metasurfaces [37] and beam splitters [38], we
have reported a unified relation between GMs, QGMs, BICs,
QBICs, and radiations. In general, these QGMs combine all
the advantages (including ultrahigh Q factors, huge local elec-
tric enhancement, and intermediate mode volume) from vari-
ous photonic resonators, such as photonic crystal cavities [3],
whispering-gallery modes [4], plasmonic nanoantennas [8],
and QBIC resonances [10]. They further represent a sig-
nificant advancement over the BIC effect in many aspects,
particularly when considering the bandwidth over which ul-
trahigh Q factors are available. The strategy to generate leaky
resonances based on lattice distortion, although conceptually
simple, can provide a completely new and ideal platform
for light-matter interactions based on all-dielectric structures,
with broad application potentials in a large variety of optical
fields. For example, broadband operations can significantly
boost nonlinear applications with multiple inputs tuned on res-
onance simultaneously, which is not possible with the QBIC
effect.
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Foundation of China under Grants No. 11974221 and
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FIG. 4. (a) (left) Schematic diagram of the incident light. (right) Primitive cells of the periodic structure for two different cases: (1) both
disks are rotated from the symmetry axis by an angle; (2) a single disk with no rotation. Other parameters include Px = Py = 2.34 μm; the
long and short axis of the disks are 2.25 and 0.9 μm, respectively. (b) Dispersion curves calculated for the two cases in (a) with α being 10 °.
(c) Dependence of the resonance Q factors on the relative angle of α at two different wave numbers.
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