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We use the variational quantum Monte Carlo (VMC) method to study the wire-width (b) and electron-density
(rs) dependences of the ground-state properties of quasi-one-dimensional paramagnetic electron fluids. The onset
of a quasi-Wigner crystal phase is known to depend on electron density and the crossover occurs in the low
density regime. We study the effect of wire width on the crossover of the dominant peak in the static structure
factor from k = 2kF to k = 4kF. It is found that, for a fixed electron density, in the charge structure factor
the crossover from the dominant peak occurring at 2kF to 4kF occurs as the wire width decreases. Our study
suggests that the crossover is due to the interplay of both rs and b < rs. The finite wire-width correlation effect is
reflected in the peak height of the charge and spin structure factors. We fit the dominant peaks of the charge and
spin structure factors assuming fit functions based on our finite wire-width theory and clues from bosonization,
resulting in a good fit of the VMC data. The pronounced peaks in the charge and spin structure factors at 4kF and
2kF, respectively, indicate the complete decoupling of the charge and spin degrees of freedom. Furthermore, the
wire-width dependence of the electron correlation energy and the Tomonaga-Luttinger parameter Kρ is found to
be significant.
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I. INTRODUCTION

Many-body correlation effects in one-dimensional (1D)
electron systems give rise to fascinating properties with
diverse technological applications [1,2]. Advances in fabrica-
tion techniques have made the realization of extremely thin
wires feasible, although only a few aspects of theoretical
predictions have yet been experimentally tested. This is due to
the experimental difficulties of realizing ideal and controllable
1D systems. There are several features of 1D systems, such as
spin-charge separation [3], power-law behavior of correlation
functions, and other physical quantities such as conductance
[4], charge fractionalization [5], Wigner crystallization [6–9],
and so on, which make them unique and interesting. The
physics of 1D electron systems cannot be explained using
Landau’s Fermi liquid theory due to the fact that single-
particle excitation energies and their inverse lifetimes are of
the same order of magnitude.

The exactly solvable model by Tomonaga and Luttinger
[10–12] describes the low-energy spectrum of a 1D homoge-
neous electron gas (HEG) assuming short-range interactions
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and a linear dispersion relation. The assumption of short-range
interactions is quite successfully used in studies of the proper-
ties of various 1D structures such as quasi-one-dimensional
conductors where screening between adjacent chains leads
to effective short-range interactions within each chain [13].
However, the electrons in systems which do not have effective
screening, such as isolated metallic carbon nanotubes [8],
interact via the true long-range Coulomb potential [V (x) =
e2/|x|]. For the purpose of theoretical studies of 1D elec-
tron systems, there are several choices of confinement model
available such as hard wall [14,15], harmonic [16,17], and
Coulombic [18]. In all these cases, the effective electron-
electron interaction is known to have a 1/|x| long-range tail
in the lowest subband of the transverse motion. In this study,
we consider electrons interacting through an effective long-
range Coulomb interaction using a harmonic confinement
model.

One-dimensional interacting electron systems were studied
using several techniques such as density functional theory
(DFT) [18], exact diagonalization [19], the random phase
approximation (RPA) [16,20–24], density matrix renormaliza-
tion group (DMRG) [25,26], quantum Monte Carlo (QMC)
[27–31], lattice regularized diffusion Monte Carlo (LRDMC)
[32,33], and bosonization [34]. This last was used by Schulz
in an interesting paper [34] studying a 1D electron gas with
long-range interactions assuming a linearized kinetic energy
dispersion. The major finding of the paper was an extremely
slowly decaying 4kF component in the charge-charge corre-
lations, signifying the presence of a 1D Wigner crystal state
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even for the weakest long-range Coulomb interaction. How-
ever, it is not clear how the finite width of a wire and the
coupling strength will affect the Wigner crystallization. In
fact, one of the purposes of this paper is to find possible an-
swers to this question. At the same time, in the spin correlation
function, a finite 2kF peak was obtained whereas the 4kF peak
was absent.

The experimental observation of a Wigner crystal is a
tricky task since it requires extreme conditions such as low
temperatures and low densities [9]. In addition, we show in
this paper that it also requires small wire widths. Examin-
ing such a fragile crystal requires the use of noninvasive
imaging probes. In the case of 1D infinite systems, true
long-range order is forbidden due to thermal and quantum
fluctuations. However, in finite systems, physicists studied
1D Wigner crystals and produced crystalline correlations due
to quasi-long-range order. Introducing long-range Coulomb
interactions results in a 4kF oscillation in charge correla-
tions whose decay rate is slower than any power law [34].
The experimental realization of long-range interactions was
made possible in a recent work by Shapir et al. [8], where
a few electrons (<10) were housed in a carbon nanotube.
A second nanotube was used as a scanning probe to mea-
sure the spatial charge distribution of electrons in the first
nanotube. The measured charge densities were found to ex-
hibit the features of a quasi-Wigner crystal. There is no
critical density associated with the onset of the 1D Wigner
crystal.

Our aim in this work is to study the effects of confine-
ment and electron correlations on the ground-state properties
of a paramagnetic harmonic wire. Unlike our previous work
in Ref. [31] we investigate the emergence of quasi-Wigner
crystal phases at low density and we examine crossover in
the position of the dominant peak in the static structure factor
for various wire widths at low density. We employ a varia-
tional quantum Monte Carlo (VMC) technique to calculate
the ground-state properties of the system under consideration.
The paper is structured as follows. The model for confinement
of electrons in one dimension is described in Sec. II. The
energies for the paramagnetic harmonic wire are presented
in Sec. III A. The dependence of the 2kF → 4kF crossover on
wire width is discussed in detail in Sec. III B. In Sec. III C,
we present momentum density (MD) data around k ∼ kF

as a function of wire width. Our conclusions are drawn in
Sec. IV. Hartree atomic units (h̄ = |e| = me = 4πε0 = 1) are
used throughout this paper.

II. MODEL AND CALCULATION DETAILS

The form of the Hamiltonian used for simulating a 1D
electron fluid is

Ĥ = −1

2

N∑
i=1

∂2

∂x2
i

+
∑
i< j

Ṽ (xi j ) + N

2
VMad, (1)

where Ṽ (xi j ) and VMad describe the Ewald interaction and
Madelung energy, respectively. The Ewald-like interaction
for a harmonic wire in a periodic cell of length L is

[29,35]

Ṽ (xi j ) =
∞∑

m=−∞

[√
π

2b
e(xi j−mL)2/(4b)2

erfc

( |xi j − mL|
2b

)

− 1

|xi j − mL|erf

( |xi j − mL|
2b

)]

+ 2

L

∞∑
n=1

E1[(bGn)2] cos(Gnxi j ), (2)

where G = 2π/L, b is the wire width and E1 is the exponential
integral function.

We considered a 1D HEG in a simulation cell of length
L = 2Nrs subject to periodic boundary conditions, with N
being the total number of electrons in the periodic cell.
We keep N↑ = N↓ odd to avoid shell degeneracy effects. A
Slater-Jastrow-backflow wave function was used in the VMC
calculations [36,37]. The orbitals in the Slater determinant
were chosen to be plane waves with wave vectors up to kF =
π/(4rs) for the paramagnetic systems. The VMC method as
implemented in the CASINO code [38] was used to calculate
ground-state expectation values. More simulation details can
be found in our previous works [29–31].

In a 1D electron gas with an electron-electron interaction
potential that is appropriate for a finite wire of width b,
opposite-spin electrons have a small but nonzero contact prob-
ability density. By contrast, in an infinitely thin 1D electron
gas, the contact probability density is zero for both same-
spin and opposite-spin electrons. QMC calculations for 1D
electron gases with finite-width interactions are challenging
because the width introduces features on the small lengthscale
b into the wave function near coalescence points. Typically b
will be much smaller than other lengthscales in the problem,
such as the density parameter rs.

One issue that affects diffusion quantum Monte Carlo cal-
culations of finite-width wires is ergodicity; to explore all of
configuration space, opposite-spin electrons have to be able to
pass one another. However the “quasinodes” at opposite-spin
coalescence points lead to a very low (but nonzero) probability
of electrons passing each other, resulting in very long corre-
lation times. This is much less of an issue in VMC, where
there is no need to work in the limit of small time steps so that
electron moves past coalescence points are permitted. A sec-
ond issue is simply the challenge of creating and optimizing a
trial wave function that contains features on the small length
scale b as well as the large lengthscale L of the simulation
cell.

III. RESULTS AND DISCUSSION

A. Energies

The ground-state energy per electron for the harmonic wire
is calculated for rs = 0.5, 1, 2, and 5 and for b = 0.1, 0.3, 0.5,
0.7, 1, 2 a.u. We calculate the energies for N = 30, 50, 74,
98 electrons and then extrapolate them to obtain the thermo-
dynamic limit. The ground-state energy is found to scale with
system size as E (N ) = E∞ + BN−2 [29] where B and E∞ are
fitting parameters. We also calculate the correlation energy
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FIG. 1. Correlation energy per particle (Ec) as a function of wire
width b for rs = 0.5, 1, and 2 (top to bottom).

per electron using the ground-state energy. These energies
are tabulated in Table I of the Appendix A. The wire-width
dependence of correlation energy per particle for different
values of density parameter rs is drawn in Fig. 1.

B. Structure and correlation function

We calculate the VMC charge and spin static structure
factors (SSFs), which are defined as

Sρρ (k) = S↑↑ + S↑↓, (3)

Sσσ (k) = S↑↑ − S↑↓, (4)

respectively, for a paramagnetic quantum wire. Here S↑↑ and
S↑↓ are parallel-spin and antiparallel-spin SSFs. The SSF is
a crucial property of electron fluids that is used to look into
the structural properties of the electron system in reciprocal
space. The charge SSF, also known as the total SSF, describes
correlations between electron pairs irrespective of their spins.
The spin PCF describes the difference between pair correla-
tions for parallel- and antiparallel-spin electron pairs. To study
the charge-charge and spin-spin correlation functions in real
space, we define alternative quantities, namely, charge and
spin pair correlation functions (PCFs), as

gρρ = g↑↑ + g↑↓
2

, (5)

gσσ = g↑↑ − g↑↓
2

, (6)

respectively. Here g↑↑ and g↑↓ are parallel-spin and
antiparallel-spin PCFs, respectively. A peak at k = 4kF in
the charge structure factor corresponds to slowly decaying
oscillations of period 2rs, which is the average interparticle
spacing. This is a signature of crossover to a ordered phase
known as a Wigner crystal. For the case of ferromagnetic
infinitely thin wires, the singularity at k = 4kF is absent for
densities rs < 15 a.u., but a small feature at 4kF starts to
develop at rs ≈ 15 [29]. The effect of singularity at 4kF was
observed recently [39] for the case of electron-electron bi-
wires, where the parallel wire effectively provides an extra
spin degree of freedom to electrons. In the case of a param-

agnetic quasiquantum wire, it was verified in previous works
[27,28] that the dominant 4kF peak height grows sublinearly
with system size N at low density, which is a signature of
a quasi-Wigner crystal. The adjective “quasi” has been used
to emphasize the absence of true long-range order due to
quantum fluctuations. Further, it was found that, for any fixed
wire width, this crossover occurs as one decreases the electron
density (i.e., low density with large values of rs). In this work,
we observed a similar correlation effect by decreasing the wire
width at fixed coupling parameter rs.

The charge structure factor Sρρ (k) is plotted for several
values of b and rs for N = 98 electrons in Fig. 2. In Fig. 2(a),
Sρρ (k) shows a peak at k = 2kF and no peak at 4kF is present.
This leads to oscillations of period 4rs in charge-charge PCF,
as can be seen in Fig. 2(d). It is evident from Fig. 2(b) that,
as b decreases for rs = 2, the 4kF peak grows and the 2kF

peak is suppressed, indicating the crossover (2kF → 4kF) to
an ordered phase. This crossover leads to a change in the
period of the oscillations in the charge-charge PCF from 4rs

to 2rs, as apparent in Fig. 2(e). Further, it can be noted from
Fig. 2(c) that the 2kF peak is absent, but decreasing b leads to
an increase in the height of the 4kF peak. This is also reflected
in a more structured behavior of gρρ , with oscillation period
2rs in Fig. 2(f).

The spin structure factor Sσσ (k) is plotted for several values
of b and rs for N = 98 electrons in Fig. 3. Sσσ (k) is found
to show a peak at k = 2kF, which grows as b decreases for
all the densities considered [see Figs. 3(a) to 3(c)]. This is
followed by the spin-spin PCF in Figs. 3(d) to 3(f), where
the amplitude of oscillations of period 4rs is enhanced as b
decreases. It can also be noted from Figs. 3(a) to 3(c) that
the peak height increases with increasing rs for a given value
of b. In the present work, we observed complete decoupling
of the charge and spin degrees of freedom in the SSFs. For
example, in rs = 2, there is a crossover from 2kF → 4kF be-
havior, with complete disappearance of 2kF peak at b = 0.5,
in the charge SSF [Fig. 2(b)], while for the same values of b
and rs the spin SSF shows a peak at k = 2kF [see Fig. 3(c)].
The spin and charge excitations in the SSFs manifest the com-
plete separation of spin and charge of electrons due to strong
Coulomb correlation effects induced by the small transverse
confinement width.

The crossover observed is between (i) a state in which
opposite spin electrons can easily slide past each other (large
b/rs; in this case oscillations in both charge and spin PCFs
have period 4rs because correlation is only important for
same-spin electrons and negligible for opposite-spin pairs)
and (ii) a state in which opposite spin electrons cannot
slide past each other (small b/rs; in this case the system
is like a floating antiferromagnetic crystal lattice; the spin
PCF has period 4rs, whereas the charge PCF has period 2rs).
The “fluid-to-crystal” crossover can be visualized in terms
of the behavior of interlocking lattices of spin-up electrons
and spin-down electrons, with the crossover occurring at the
point at which the lattices start being able to slide past each
other.

On the basis of our finite wire-width theory [31], the SSF
is a function of b/rs. In view of this, and the clues from
bosonization theory [25,34], we propose that the dependence
of the peak heights Sρρ (4kF, b) and Sσσ (2kF, b) on wire width
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FIG. 2. (a)–(c) Charge structure factor Sρρ (k) plotted against k/kF and (d)–(f) charge-charge pair correlation function plotted against r/rs

for rs = 0.5, 2, and 5 for various b values with N = 98 electrons. The insets in (b) and (c) show the peak at k = 4kF in greater detail.

can be represented as

Sρρ (4kF, b) = a0
L rs

b
exp

(
−4c

√
ln

L rs

b

)
+ a1, (7)

and

Sσσ (2kF, b) = −a2

(√
ln

L rs

b
+ 1

c

)
exp

(
−c

√
ln

L rs

b

)
+ a3,

(8)

where a0, a1, a2, a3, and c are fitting parameters and L =
2Nrs.

Finite wire-width effects are studied in Fig. 4. The 4kF and
2kF peak heights in the charge SSF are plotted against the wire
width in Fig. 4 (top) for rs = 0.5, 1, and 2. The dependence

of the peak heights on b is found to be significant for rs = 1
and 2, and for these coupling parameters both the 4kF and 2kF

peaks are present. On the other hand, for rs = 0.5, there is no
4kF peak present for any of the wire widths considered and
even the 2kF peak height depends only weakly on b (at least
until b 	 rs). The 4kF peak heights were fitted to Eq. (7),
which was deduced on the basis of bosonization and which
shows a good representation of the numerically calculated
data. The wire-width dependence of the 2kF peak height in
the spin SSF is plotted in Fig. 4 (bottom) for rs = 0.5, 1,
and 2. It is observed that the peak height in the spin SSF
depends on both rs and b. It is also observed that, for a fixed
value of electron coupling, the amplitude of the peak height
at k = 2kF in the spin SSF strongly depends on the confine-
ment width. Further, the 2kF peak heights are well fitted by
Eq. (8).
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FIG. 3. (a)–(c) Spin structure factor Sσσ (k) plotted against k/kF and (d)–(f) spin-spin pair correlation function plotted against r/rs for
rs = 0.5, 1, and 2 for various b values with N = 98 electrons. The insets (a), (b), and (c) show the peak at k = 2kF in greater detail.

It should be noted from Fig. 4 that the SSF of the finite-
width paramagnetic wire is not expected to converge to that
of a ferromagnetic infinitely thin wire in the limit b → 0
because the latter system has only parallel spin correlations
whereas the former system has both parallel and antiparallel
spin correlations. Further, the quasi-long-range order in fer-
romagnetic and paramagnetic electron gases is represented
by dominant peaks in the charge structure factor Sρρ (k) at
k = 2kF and k = 4kF, respectively, when b is small. The
dominant peaks in Sρρ (k) for these two cases correspond to
the same 2rs oscillation period in the charge-charge PCF. A
nonmonotonic shift of the dominant peak from 4kF to 2kF

for b → 0 in a paramagnetic wire is not therefore expected.
This behavior is consistent with Eq. (7), the model formula
obtained from the bosonization prediction [25,34]. It is known

that the Lieb-Mattis theorem is not applicable for infinitely
thin wires, and in fact, the ferromagnetic and paramagnetic
states are energetically degenerate in this limit [29]. However,
physical observables which do not commute with the Hamil-
tonian, such as the SSF, need not be same for infinitely thin
paramagnetic and ferromagnetic wires.

C. Momentum density and TL parameters

TL theory suggests that the 1D MD has a peculiar
power-law behavior, which is continuous at kF with a singu-
lar first-order derivative and takes the form n(k) = n(kF) +
A[sgn(k − kF)]|k − kF|α close to k = kF, where n(kF), A, and
α are constants [11,40]. The method used to estimate the inter-
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FIG. 4. (Top) Charge SSF peak height at k = 4kF as a function
of wire width b for rs = 0.5, 1, and 2 for N = 98 electrons. The peak
heights at k = 4kF are fitted by Eq. (7) and the fits are shown by
solid lines, whereas the 2kF peak heights are joined by dashed lines.
(Bottom) Height of spin SSF plotted against b for rs = 0.5, 1, and 2
for N = 98 electrons and fitted by Eq. (8).

action exponent α is discussed in great detail in our previous
works [29–31].

In Fig. 5, the MD is plotted for N = 98 electrons at several
values of b and rs. The effect of wire width on the behavior of
the MD is clearly visible in the figure. It can be seen that as
b decreases or rs increases, the power-law behavior becomes
more appreciable. It can also be noted that the value of n(k =
0) decreases from 1 and the value of n(k) increases for k > kF

as b decreases or rs increases.
We also compare our QMC MD data with bosonization

results [25,34], finding a good fit of the jump in the MD
at k = kF at finite size by the asymptotic scaling function
predicted by bosonization theory

�n(kF) ∼ Le−c(ln L)3/2
. (9)

Figure 6 shows that Eq. (9) provides quite a good numerical
representation of the system-size scaling of the jump in the
MD at k = kF.

The TL parameter Kρ for repulsive interactions (Kρ < 1)
and exponent α are plotted against b for rs = 0.5, 1, and 2 in

FIG. 5. MD against k/kF for different values of wire width b and
rs for N = 98 electrons.

Fig. 7. It was observed that, as b decreases or rs increases, Kρ

decreases and the interacting electrons become more strongly
correlated. Hence it is found that Kρ significantly depends on
the confinement width b and rs.

IV. CONCLUSION

We studied the wire-width dependence of the ground-state
properties of quasi-1D quantum wires for several electron
densities. We analyzed the effects of adjusting the wire width
on the charge structure factor, where a crossover from a peak
at 2kF to a peak at 4kF was observed as b decreases. The
crossover indicates the onset of a quasi-Wigner crystalline
state in the 1D electron fluid. The PCF was also found to

FIG. 6. Jump in the MD at k = kF at finite size, plotted against
system size and fitted by �n(kF) = aLe−c(ln L)3/2

. The fitted parameter
values are a = 1.03(2) a.u. and c = 0.731(2) for rs = 1 and b = 1;
and a = 0.93(5) a.u. and c = 0.777(7) for rs = 2 and b = 2.
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FIG. 7. TL parameter Kρ against wire width b for different values
of the density parameter rs as indicated in the plot. The TL parameter
is obtained by fitting MD data to appropriate fitting functions to
obtain the exponent α and Kρ . The exponent α is plotted against b
in the inset.

show a more structured behavior as b decreases, which again
suggested a crossover to a quasi-Wigner crystal phase. We
found the crossover does not appear for all values of rs and b,
a result at variance with the bosonization findings of Schulz in
Ref. [34]. We also fitted the dominant peaks of the charge and
spin structure factors assuming fitting functions on the basis
of our finite wire-width theory and clues from bosonization,

giving a good fit of the VMC data. The crossover occurred
only for those density and wire-width values which brought
strong correlations in the system.

The correlation energy as a function of b and rs was repre-
sented by a formula which fits our VMC data perfectly. The
MD n(k) was found to show a power-law behavior. We found
that n(k) at k = 0 reduces from 1, whereas n(k) increases
beyond kF as b decreases or rs increases. We find the TL liquid
exponent α by fitting the MD data to an appropriate fitting
function near kF. The TL parameter Kρ was found to depend
significantly on the wire width at a constant rs.
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APPENDIX

The thermodynamic limit of the VMC ground-state energy
per electron E∞ and the correlation energy per electron Ec

are calculated by extrapolation from calculations performed
at several different values of system size N at different values
of b and rs; these are tabulated in Table I.

TABLE I. VMC energies in a.u. per electron [E (N )] for N = 30, 50, 74, and 98 for a paramagnetic harmonic wire. E∞ and Ec denote the
ground-state energy per electron extrapolated to the thermodynamic limit and the correlation energy per electron, respectively.

(rs, b) E (30) E (50) E (74) E (98) E∞ Ec

(0.5, 0.1) −0.937394(8) −0.935599(7) −0.935042(5) −0.934791(5) −0.93455(2) −0.14477(2)
(0.5, 0.3) −0.336230(3) −0.334478(2) −0.333931(2) −0.333725(2) −0.333473(7) −0.032178(7)
(0.5, 0.5) −0.127807(2) −0.126094(1) −0.1255490(9) −0.1253469(9) −0.125100(9) −0.014176(9)
(0.5, 0.7) −0.0145572(9) −0.0128579(7) −0.0123206(6) −0.0121214(5) −0.011877(8) −0.008008(8)
(0.5, 1.0) 0.0853158(5) 0.0869805(4) 0.0875067(3) 0.0877014(3) 0.087942(8) −0.004262(8)
(0.5, 2.0) 0.225663(2) 0.2272236(1) 0.22772541(9) 0.22791182(8) 0.228151(5) −0.001176(5)
(1.0, 0.1) −0.899453(5) −0.898910(4) −0.898695(3) −0.898505(3) −0.89847(6) −0.23295(6)
(1.0, 0.3) −0.478440(2) −0.477901(2) −0.477725(2) −0.477671(1) −0.477589(4) −0.074459(4)
(1.0, 0.5) −0.328023(1) −0.327485(1) −0.327323(1) −0.3272540(9) −0.327179(4) −0.036280(4)
(1.0, 0.7) −0.245460(1) −0.2449252(8) −0.2447628(7) −0.2446985(6) −0.244622(2) −0.021498(2)
(1.0, 1.0) −0.1710782(7) −0.1705563(5) −0.1703899(4) −0.1703292(4) −0.170254(3) −0.011984(3)
(1.0, 2.0) −0.0610819(3) −0.0605826(2) −0.0604240(2) −0.0603641(1) −0.060292(3) −0.003585(3)
(2.0, 0.1) −0.687882(6) −0.687592(7) −0.687429(6) −0.687309(2) −0.68726(3) −0.24309(3)
(2.0, 0.3) −0.428893(1) −0.428709(1) −0.4286485(9) −0.4285848(9) −0.42858(2) −0.11954(2)
(2.0, 0.5) −0.321088(1) −0.3209185(8) −0.3208670(7) −0.3208426(6) −0.320819(2) −0.072522(2)
(2.0, 0.7) −0.2583233(8) −0.2581581(7) −0.2581048(6) −0.2580852(5) −0.258061(1) −0.048212(1)
(2.0, 1.0) −0.2006410(7) −0.2004732(5) −0.2004218(5) −0.2004024(4) −0.2003781(3) −0.0292266(3)
(2.0, 2.0) −0.1146782(3) −0.1145145(2) −0.1144626(2) −0.1144422(2) −0.114419(1) −0.009582(1)
(5.0, 0.1) −0.393883(2) −0.393808(3) −0.393718(2) −0.3935256(8) −0.39352(6) −0.16401(6)
(5.0, 0.3) −0.284488(3) −0.283437(9) −0.284425(1) −0.2843393(4) −0.28433(5) −0.10955(5)
(5.0, 0.5) −0.234260(4) −0.234304(6) −0.234296(8) −0.2342142(4) −0.23420(3) −0.08464(3)
(5.0, 0.7) −0.201875(3) −0.2019512(7) −0.2019229(7) −0.2019149(2) −0.201911(9) −0.068787(9)
(5.0, 1.0) −0.168710(3) −0.1687108(6) −0.1686853(6) −0.1686792(2) −0.168670(4) −0.052681(4)
(5.0, 2.0) −0.1102775(8) −0.1102383(7) −0.1102273(5) −0.1102212(1) −0.1102150(4) −0.0260165(4)
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