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Generalized atomic limit of a double quantum dot coupled to superconducting leads
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We present an exactly solvable effective model of a double quantum dot coupled to superconducting
leads. This model is a generalization of the well-known superconducting atomic limit approximation of the
paradigmatic superconducting impurity Anderson model. However, in contrast to the standard atomic limit and
other effective models, it gives quantitatively correct predictions for the quantum phase transition boundaries,
subgap bound states as well as Josephson supercurrent in a broad range of parameters including experimentally
relevant regimes. The model allows fast and reliable parameter scans important for the preparation and analysis
of experiments, which are otherwise inaccessible by more precise but computational heavy methods such as
quantum Monte Carlo or the numerical renormalization group. The scans also allowed us to identify and
investigate new previously unnoticed phase diagram regimes. We provide a thorough analysis of the strengths
and limitations of the effective model and benchmark its predictions against numerical renormalization group
results.
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I. INTRODUCTION

The recent progress in controlled fabrication of systems
that combine nanodevices containing few active orbitals with
superconducting reservoirs brought a multitude of tunable
heterostructures [1,2]. The examples range through systems
of magnetic adatoms on superconducting surfaces [3,4], weak
links [5], small scale single and multiple quantum dots (QDs)
[1,6–8] to island structures [9] attached to superconducting
leads. In general, the overall complexity of these experimen-
tal systems steadily increases. The surface experiments are
already probing atomic dimers [10–15], weak links have been
prepared in multi-terminal-lead arrangements [16,17] and tun-
able double quantum dots (DQDs) have been constructed in
serial [8,18,19] and in parallel configurations [20,21]. This
progress is motivated by the ability of these heterostructures
to probe basic physical concepts as well as by the proposed
applications in future electronics, computational devices and
sensors [1,2].

A common feature and crucial characteristic of the super-
conducting heterostructures is the existence of bound states
within the gap of the superconductor. Although they are of
the same physical origin, depending on the parameter regime
and the physical realization of the investigated system, they
are referred to either as Yu-Shiba-Rusinov (YSR) or Andreev
bound states (ABS) [22], as preferred here. Moreover, in both
cases crossing of these bound states at the Fermi energy marks
a quantum phase transition (QPT). A singlet-doublet transi-
tion of this kind is known as the 0-π transition [6,7,23–29]
in experiments with single-dot Josephson junctions. There the
underlying QPT manifests itself by a sudden change of the
sign of the measured supercurrent.

Unfortunately, reliable theoretical investigations of the
evolution of ABS in realistic multi-parametric space often

require prohibitively expensive numerical approaches such
as the numerical renormalization group (NRG) [30–37] or
various types of quantum Monte Carlo (QMC) [6,38–40].
This limitation can be partially sidestepped by controlled
analytic approximations, e.g., various mean-field approaches
[31,41–43], perturbation expansions [44–48], or functional
renormalization group techniques [49,50]. However, their va-
lidity range is often not sufficient for typical experiments
or they cannot capture all of the relevant regimes. Another
frequently employed strategy is to utilize simple effective
models, such as the zero-bandwidth approximation (ZBW)
[19,45] or the superconducting atomic limit (AL) effective
model [51]. Their great advantage is that they can be straight-
forwardly extended to complex scenarios while remaining
exactly solvable. However, they are limited either to quali-
tative descriptions or require an ad hoc reparametrization to
match the experiments or full numerical solutions [34,51].
Moreover, even then they frequently predict transport proper-
ties which differ by orders of magnitude from the exact results
or perturbative calculations [19].

In our paper, we present a remedy for these shortcomings.
We introduce an effective model which is based on an ef-
fective AL Hamiltonian with scaled parameters. For brevity
we call it GAL (or MGAL) model, because it is devised to
reproduce the approximation of the phase boundary position
known as the generalized atomic limit (GAL) [47,48] or its
modification (MGAL) according to Ref. [52]. GAL was de-
rived perturbatively in the on-dot Coulomb interaction but
it can be also justified by other procedures [53]. Originally,
it was limited to the case of single QD and provided only
the position of the phase boundaries. Similar approximations
for more complex setups have been missing. In contrast,
the GAL model introduced here has the form of an exactly
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solvable AL finite-dimensional Hamiltonian with all its ad-
vantages, e.g., it can be used to calculate ABS energies or
Josephson current. On top of this, unlike AL, it is in a good
quantitative agreement with the NRG data for many relevant
regimes.

A big advantage of our effective GAL model is its scalabil-
ity to more complex systems. Interestingly, GAL model then
mitigate most of the shortcomings observed for single QD.
We show and utilize this feature for the case of a serial double
quantum dot (SDQD) coupled to two superconducting leads.
We demonstrate that GAL (unlike AL or ZBW) correctly
predicts the position of the singlet-doublet phase boundaries,
the subgap energy spectrum (ABS) and the Josephson current
not only qualitatively but also quantitatively in a broad range
of parameters including experimentally relevant regimes. This
makes GAL a useful tool not only for fast preliminary scans
of a broad parameter space but also for direct analysis of ex-
periments. Moreover, it can be straightforwardly generalized
to longer chains of QDs and even more complex structures
while keeping the advantage of a relatively small Hilbert
space even in comparison with other effective models such
as ZBW. Thus it can be utilized in theoretical investigations
of complicated setups which present a serious challenge for
both NRG and QMC, and where the standard AL gives only
qualitative results [54–56].

The paper is structured as follows. In Sec. II, we in-
troduce the Anderson impurity models for single QD and
SDQD systems, which is then followed in Sec. II A by their
corresponding AL effective models. In Sec. III, we briefly
summarize the main results of the GAL approximation for
single QD. At the beginning of Sec. IV, we introduce the
GAL model for SDQD and its modification MGAL for the
away from half-filling case. We then discuss the GAL pre-
dictions for the phase diagrams (Sec. IV A), subgap states
(IV B) and Josephson current (IV C) at half-filling with com-
parison to NRG results. In Sec. IV D, we present a detailed
MGAL scan of phase boundaries for the case away from half-
filling. In Sec. IV E, we test a region predicted by MGAL, in
which a small change of model parameters leads to dramatic
evolution of phase diagrams, via NRG and also benchmark
MGAL for experimentally relevant parameters. Section V
gives a summary of the main results. Some of the techni-
cal details related to the Green functions, GAL, MGAL and
NRG as well as additional supporting analysis of phase dia-
grams and subgap spectra are postponed to the corresponding
Appendices.

II. MODEL

The paradigmatic model for quantum dots coupled to
superconducting leads is the superconducting impurity Ander-
son model (SCIAM) [43,51]. Its general Hamiltonian can be
written as

H = Himp +
∑
j=L,R

(
Hlead

j + Hhyb
j

)
, (1)

where Hint describes one or more impurities in a serial con-
figuration as sketched in Fig. 1. In the case of single dot, it

FIG. 1. Illustration of the model of a single quantum dot (a) and
a serial double quantum dot (SDQD) (b) connected to two supercon-
ducting leads.

reads

Himp
1d = ε

∑
σ

d†
σ dσ + Ud†

↑d↑d†
↓d↓ (2)

= ε
∑

σ

(
d†

σ dσ − 1

2

)
+ U

2
(d†

↑d↑ + d†
↓d↓ − 1)2

+ const., (3)

where d†
σ (dσ ) creates (annihilates) an electron with spin σ

on the impurity with energy ε and U is the local Coulomb
interaction (charging energy) on the dot. In the case of SDQD
the impurity part becomes

Himp
2d =

∑
jσ

ε jd
†
jσ diσ − td

∑
σ

(d†
Lσ dRσ + H.c.)

+
∑

j

Ujd
†
j↑d j↑d†

j↓d j↓ (4)

=
∑

jσ

ε j

(
d†

jσ diσ − 1

2

)
− td

∑
σ

(d†
Lσ dRσ + H.c.)

+
∑

j

Uj

2
(d†

j↑d j↑ + d†
j↓d j↓ − 1)2 + const. (5)

Here, d†
jσ creates an electron on the site j = L, R with spin σ

and energy ε j , td is the inter-dot hopping amplitude and Uj is
the local Coulomb interaction on the site j. Note that we have
shifted both Hamiltonians by a constant term and introduced
shifted energy levels ε j ≡ ε j + U/2 measured with respect to
the particle-hole symmetric point (half-filling) [34].

The second term in Hamiltonian (1) describes left and right
superconducting leads according to the BCS theory via

Hlead
j =

∑
kσ

ε jkc†
jkσ c jkσ

− � j

∑
k

(eiϕ j c†
jk↑c†

j−k↓ + H.c.),

(6)

where c†
jkσ creates an electron with spin σ and energy ε jk in

the lead j ∈ L, R and � jeiϕ j is the complex superconducting
order parameter. In the following, we assume �L = �R ≡ �,
which is the typical case in experimenal realizations, and
introduce phase difference ϕ = ϕL − ϕR where ϕL = ϕ/2 and
ϕR = −ϕ/2 without loss of generality [51].

The last term in Hamiltonian (1) describes the hybridiza-
tion between the central part and leads:

Hhyb
j = t j

∑
kσ

(c†
jkσ d jσ + H.c.), (7)
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where t j is the hopping between the lead j = L, R and the
neighboring quantum dot. In our analysis we assume the
tunnel-coupling magnitudes � j (E ) = π |t j |2

∑
k δ(E − ε jk )

to be constant. Moreover, in the case of single QD, one
can focus solely on the symmetric coupling (�L = �R = � =
�T /2), because all typical observables of the asymmetric
scenario (�L �= �R), including the Josephson current, can be
easily extracted from the symmetric case [57].

In the paper we also apply a convention of omitting the
subscript whenever an equivalent magnitude of parameters on
the left and right side of the heterostructure is present, i.e.,
� ≡ �L = �R, U ≡ UL = UR, and ε ≡ εL = εR. If not stated
otherwise, we use � as the energy unit.

A. Atomic limit

Utilizing standard equation-of-motion technique [58], and
taking the limit of infinite bandwidth followed by the limit
of infinite superconducting gap � → ∞ allows to define an
effective AL model of the SCIAM [51]. Although it does not
reflect any experimentally relevant regime, it often gives a
correct qualitative picture [32,46,59–61]. For single QD, the
AL model reads

HAL
1d = ε

∑
σ

(
d†

σ dσ − 1

2

)
+ U

2
(d†

↑d↑ + d†
↓d↓ − 1)2

+ (�ϕd†
↑d†

↓ + H.c.), (8)

where �ϕ = �Le−iϕ/2 + �Reiϕ/2 = �T cos(ϕ/2) for �L = �R.
An analogous procedure for SDQD leads to AL Hamiltonian
[34]:

HAL
2d =

∑
jσ

ε j

(
d†

jσ diσ − 1

2

)
− td

∑
σ

(d†
Lσ dRσ + H.c.)

+
∑

j

Uj

2
(d†

j↑d j↑ + d†
j↓d j↓ − 1)2

+
∑

j

(� je
i
 j d†

j↑d†
j↓ + H.c.). (9)

While AL models are useful for qualitative analysis, they
show several drawbacks. For example, in the case of single
dot, the position of QPT given by(

U

2

)2

= ε2 + �2
T cos2 ϕ

2
(10)

does not reproduce the NRG or QMC results. To match the
precise numerical data, a significant shift of model parame-
ters, often very far away from the original ones, is necessary.
A more serious problem is related to the Josephson current.
For a single dot, the AL model predicts an U -independent
current in the singlet phase and zero current in the dou-
blet phase [51]. Neither of these predictions is supported by
the full SCIAM solutions or experiments. This issue cannot
be tamed by any manipulation of the model parameters as
it is a consequence of the absence of the incoherent band
states in AL model [53]. However, as we show in our paper,
these drawbacks are largely eliminated in the GAL model for
SDQDs.

III. GAL MODEL FOR SINGLE DOT SYSTEM

To find the GAL model, we start with the results of the
perturbation theory in U according to Refs. [47,48]. As shown
in the cited works, the energies of the lowest ABSs follow
ωABS ≈ F (Ĝ0,U )/(1 + �T /�) in the vicinity of the QPT.
The functional F (Ĝ0,U ) depends on the noninteracting (U =
0) Green function Ĝ0 of the full model and on the interaction
U and smoothly passes through zero exactly at the QPT point.
After omitting band contributions, this property can be used to
obtain analytical formula for the approximate position of the
phase boundaries,(

U

2(1 + �T /�)

)2

= ε2 + �2
T cos2 ϕ

2
, (11)

which at half-filling follows the NRG results closely
up to surprisingly strong Coulomb interaction (U ≈ 10�)
[47,48,52,57]. Interestingly, although derived by different
means, formula (11) clearly resembles the AL result (10) with
a correction for finite superconducting gap, therefore, it is
called the generalized AL.

Nevertheless, the connection between GAL (11) approxi-
mation and the actual AL model was not considered so far.
Yet, there is a clear link. To show this, it is enough to take the
AL Hamiltonian (8) and subject it to three requirements. First,
we require the AL QPT boundary to follow the GAL formula
(11). Second, the ABS should follow ≈1/(1 + �T /�) in the
vicinity of QPT. Third, the shifted energy levels should be zero
at the half-filling (particle-hole symmetric point). All this can
be achieved by the following simple scaling of the AL model
parameters

ε → ε̃ = νε, (12)

�ϕ → �̃ϕ = ν�ϕ, (13)

U → Ũ = ν2U, (14)

where ν = 1/(1 + �T /�) is a scaling factor reintroducing the
finite superconducting gap into the AL model. Note that the
original energy level, therefore, scales as

ε → ε̃ = ν

[
ε + (1 − ν)

U

2

]
(15)

and at half-filling we have ε̃ = −Ũ/2 as expected.
In other words, a parameter of the AL Hamiltonian (8)

is scaled by ν if it multiplies a quadratic term and by ν2

if it belongs to a quartic term. Strictly speaking, rigorous
derivation of this scaling is still missing. Nevertheless, it can
be justified by a mapping used originally for the derivation
of the microscopic basis for the Fermi liquid theory [62] as
recently shown in Ref. [53].

The resulting rescaled effective AL Hamiltonian is what
we refer to as the GAL model for brevity. It has the form of
(8) and is, thus, exactly solvable. Its spectrum consists of one
doublet state and two singlets. The eigenenergies are zero for
the doublet state while for the two singlets they read

E = U

2(1 + �T /�)2
±

√
ε2 + �2

ϕ

1 + �T /�
. (16)
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FIG. 2. Comparison of NRG (circles) and GAL (solid and
dashed lines) results for the single quantum dot at half-filling coupled
to two superconducting leads. [(a) and (b)] The difference between
the energy of excited subgap many-body states and the ground state
as a function of ϕ for � = �, U = 4� (a) and U = 8� (b). Note
that because of the parity selection rules only the excited states
underscored by the gray stripes will form ABS visible in the single-
particle excitation spectra. (c) Phase-dependent Josephson current
for � = �, U = 2, 4 and 8�, where J0 = e�/h̄.

As required, this reproduces the GAL formula (11) for the
position of the phase boundary.

The GAL formula (11) is in a good agreement with the
position of the phase boundaries obtained via NRG calcu-
lations only near the half-filling condition (ε = 0). A much
better agreement away from half-filling can be obtained by
introducing a phenomenological scaling of the local energy
level [52] known as MGAL which replaces Eq. (12) by

ε → ε̃MGAL = ν2ε

√
1 + 2�T

νU
. (17)

To distinguish this case, we refer to an effective model where
Eq. (17) is used as the MGAL model. Because GAL and
MGAL are identical at half-filling (ε = 0) we utilize phe-
nomenological MGAL only when ε �= 0.

Having the GAL Hamiltonian, the subgap energy spectrum
can be easily obtained as shown in Figs. 2(a), 2(b), and 3(a).
The GAL model rectifies the AL energy spectrum. For half-
filled case this leads to a solid agreement with the NRG states
even far away from the QPT. Away from half-filling GAL
deviates from the NRG as illustrated in Fig. 3(a). However,
this deviation can be to a large extend corrected by using
MGAL as shown in Fig. 3(b).

FIG. 3. The difference between the energy of excited subgap
many-body states and the ground state as a function of ε for � = �,
U = 5�, and ϕ = 0.9π . The two panels show the comparison of data
calculated with NRG (circles) and GAL (solid and dashed lines) in
(a) and MGAL in (b). Because of the parity selection rules only the
excited states underscored by the gray stripes will form ABS visible
in the single-particle excitation spectra.

Yet, the GAL model does not solve all of the AL short-
comings. Since the Josephson current at zero temperature is
given by J = 2e/h̄(∂E0/∂ϕ) [51], where E0 is the ground-
state energy, we obtain

J = J0
�2

T sin ϕ

2(� + �T )
√

ε2 + �2
T cos2(ϕ/2)

(18)

with J0 = e�/h̄ for the singlet phase and zero for the
doublet phase as its ground state energy does not de-
pend on ϕ. The GAL model leads to quantitative im-
provement of the Josephson current in the singlet phase
as shown by the comparison with the NRG data in
Fig. 2(c). Considering the perturbative origin of GAL,
it is not surprising that the discrepancies increase with
U , yet, we get a reasonable agreement unless U 
 �.
However, the GAL model inherits from the AL approxima-
tion both the already mentioned qualitative drawbacks. The
Josephson current is zero in the doublet phase and in the
singlet phase does not depend on U . These issues can be
solved by introducing a simple band correction [53]. This cor-
rection incorporates some effects of the leads, neglected by the
superconducting atomic limit, and restores the continuous part
of the impurity spectral function above the gap, as discussed
in detail in Ref. [53]. In the case of double QDs, the effects of
such correction are much weaker than for single dots. More
importantly, both above-mentioned issues of GAL related to
Josephson current are naturally rectified in SDQDs without
the necessity to include such correction at all. Therefore we
avoid it as we focus solely on SDQDs in the rest of the paper.

IV. GAL AND MGAL MODELS FOR SERIAL DOUBLE DOT

Adapting GAL scaling (12)–(15) to a more complex sys-
tem of SDQD requires some caution due to the emergence of
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new terms in AL Hamiltonian (9) and the fact that there is no
GAL formula to guide us here. We thus start with the limiting
case td = 0 for which the system becomes a combination
of two Hamiltonians describing independent single QD each
connected to its own lead through � j . In such a case, we
naturally generalize the single dot GAL scaling to

ε j → ε̃ j = ν jε j, (19)

� j → �̃ j = ν j� j, (20)

Uj → Ũj = ν2
j Uj, (21)

where ν j = 1/(1 + � j/�). When td �= 0, we use

td → t̃d = √
νLνRtd (22)

since it multiplies a quadratic term in the SDQD AL Hamil-
tonian. Analogously to the single dot case, it proved to be
advantageous to use MGAL for the away from the half-filling
scenarios where instead of Eq. (19), we have

ε j → ε̃MGAL
j = ν2

j ε j

√
1 + 2� j

ν jUj
. (23)

Although at half-filling MGAL reduces to GAL, we strictly
distinguish these two models in the following discussion to
stress the phenomenological nature of MGAL. Consequently,
we use MGAL only away from half-filling.

The GAL and MGAL Hamiltonians for the SDQD system
have a form of Eq. (9) but with rescaled model parameters.
Such Hamiltonian can be divided into its singlet, doublet and
triplet subspaces [34]. This allows a straightforward and trivial
numerical diagonalization. Moreover, analytical solutions are
possible for some limiting but useful cases (see Appendix B).
Consequently, calculating GAL phase diagrams takes seconds
on any modern PC while equivalent solutions of the full
SCIAM model via NRG or QMC can be computationally very
demanding. Yet, the GAL results are often in excellent agree-
ment with these much more elaborated techniques. We show
this in the following sections where we compare GAL with the
NRG solutions of the SCIAM. The GAL model can reliably
predict phase boundaries, complicated energy dependencies
of the subgap states (ABS) and even the Josephson current.
Such a fast and simple tool has a lot of benefits. For example a
broad parametric scan via MGAL model, which would not be
feasible with NRG, allowed us to find previously unadressed
regimes of SDQDs.

A. Phase diagrams at half-filling

It is illustrative to start the discussion with the td = 0
case, which decouples into a tensor-product-like combination
of two single dot subsystems. Each subsystem is identical
to a single dot coupled to its respective lead. Increasing td
adiabatically for ϕ = 0 allows us to combine the two, not
necessarily equal, dots. The state of each of them is located in
its corresponding single dot phase diagram shown in Fig. 4(a).
This leads to three possible ground states.

First, we can combine two dots from (single-dot) sin-
glet ground-state phase regions each. The resulting combined
ground state is, therefore, a singlet. The second possibility is
to choose such UL and UR (or �L and �R) that both belong

FIG. 4. (a) The SDQD system at td = 0 can be decoupled into
two single dot subsystems. The resulting ground-state phase diagram
is then a simple tensor-product-like combination of the correspond-
ing single impurity phase diagrams with a solid agreement between
NRG (points) and GAL (lines). (b) Ground-state phase diagrams of
the SDQD system at � = � and ϕ = 0. Two finite values of td are
presented at varying UL and UR. (a) explains the position of the td →
0 phase boundaries plotted by a dashed line. (c) Ground-state phase
diagrams of the SDQD system at parameters from the experimental
study published in Ref. [8]. The symbols represent NRG results and
lines of corresponding colors are the GAL predictions in all panels.

to (single-dot) doublet state regions. For td = 0, this leads to
a degenerated singlet-triplet combination. However, for any
finite td the singlet-triplet is split by the interdot exchange cou-
pling of ≈4t2

d /(UL + UR) (see Ref. [34] and Appendix B) and
the ground state is, therefore, again a singlet. Consequently, if
we combine equal dots, the combined ground state is always
a singlet for ϕ = 0. For the sake of clarity we refer to the
double-dot singlet that emerges (for td → 0) due to the com-
bination of two singlets as type I and to the one that combines
two doublets as type II. Lastly there is a third option where
one of the dots comes from singlet and the other from doublet
(single-dot) region. This leads to a combined doublet ground-
state. The resulting phase boundaries for td → 0 at varying Uj

or � j respectively are shown by dashed lines in Figs. 4(b) and
4(c). They reflect the tensor-product-like combinations of two
single-dot phase diagram of Fig. 4(a) with the three choices
discussed above.

Naturally, increasing td changes this simple picture and
modifies the phase diagrams [34]. Nevertheless, the GAL
model can account for this change. To be specific, the two
singlet phases merge and push the doublet phases to higher
asymmetries between UL and UR or �L and �R as seen both
from the effective GAL model (solid lines) as well as from
the NRG results for SCIAM (symbols) in Figs. 4(b) and 4(c).
Let us point out that for the shown parameters the GAL model
is in a very good agreement with the NRG for a fraction of
computational costs.
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FIG. 5. (a) Phase diagrams of the half-filled case with �L =
�R = �, UL = 2�, and varying UR and � at ϕ = 0. Symbols repre-
sent NRG results, lines of corresponding colors are GAL predictions.
Two finite values of td are presented together with td → 0 case
(dashed lines). (b) td dependence of the case in (a) for three selected
values of � = �L = �R. (c) The same as in (a) only UL = 8�. (d) The
same as in (b) only UL = 8�.

The parameters in Fig. 4(c) had been taken from the exper-
imental work presented in Ref. [8]. Despite strong interaction
U = 8� the GAL predictions for SDQD are still correct.
Its usefulness is underscored by the fact that the difference
between NRG and GAL boundaries are below the resolution
of a typical experiment [6,7,27].

The suppression of the doublet ground state at half-filling
is well demonstrated in the U -� plane as shown in Figs. 5(a)
and 5(c). Clearly, increasing td makes the pockets of dou-
blet ground state smaller and pushes them toward larger dot
asymmetries. However, this should not prohibit observation
of QPTs in experiments, even at half-filling, since some re-
alizations, e.g., scanning tunneling spectroscopy setups with
superconducting tip, may involve a large coupling asymmetry.
In addition, although increasing td suppresses the doubled
phase, it can survive even for hopping terms comparable with
the superconducting gap as it is shown in Figs. 5(b) and 5(d).
Again, all this can be deduced from the inexpensive GAL
analysis, which is in good quantitative agreement with the
NRG results.

Allowing for tunable phase difference ϕ, as possible in
some SQUID-based experiments, significantly enlarges the
parametric space. Scanning the multiparameter phase bound-
aries with NRG then becomes even more tedious as it requires
additional numerical resources. Fortunately, the GAL model
can be of help here as well. We illustrate this in Figs. 6(a)
and 6(b) in the ϕ-� plane for two values of U and various
values of td . Generally, the GAL and NRG results remain in
solid agreement and show that a QPT can be observed at half
filling even for otherwise perfectly symmetric dots if ϕ is large
enough.

In more detail, Figs. 6(a) and 6(b) show pockets of doublet
phase near ϕ = π which have been so-far reported only away

FIG. 6. [(a) and (b)] Phase diagrams for three selected values
of td for symmetric [�L = �R = �, UL = UR = U = 2� (a) and
U = 4� (b)] half-filled case in ϕ-� plane. The doublet ground states
are enclosed by the semielliptic phase boundaries while singlets
form outside this region. (c) Phase diagrams in �-td plane at ϕ = π

for U = 2 and 4�. The dotted black line � = td marks the GAL
boundary between two types of singlet phases at U = 0. For details
see the discussion in the text. In all panels, symbols represent NRG
results and lines of corresponding colors are GAL predictions.

from half-filling [63]. Their position and size is strongly influ-
enced by td . As it increases, the doublet phase is suppressed
toward higher values of ϕ. Nevertheless, at ϕ = π the width
of the doublet-phase pocket is relatively stable and as such
survives even for td > �. This is shown in panel (c), where
the doublet region is sandwiched between two singlet phases.

Analyzing the GAL model, we can back up these nu-
merical findings analytically. Comparing the eigenenergies in
Eqs. (B5) and (B6) from Appendix B, we get two critical
values of td . Namely,

t c1
d = � − U

2(1 + �/�)
,

t c2
d = �

3
+

√(
2�

3

)2

− U 2

12(1 + �/�)2
. (24)

They delimit the doublet-phase region at ϕ = π for finite
U . For the noninteracting case (U = 0), t c1

d = t c2
d = � [black

dashed line in Fig. 6(c)] the two phase boundaries collapse to a
single boundary between the two types of singlet phases with
doublet ground state completely eliminated from the phase
diagram. Because ϕ = π ensures the widest doublet phase
pocket, the formulas (24) also limit the parameters td , U , and
� or their combinations for which the doublet phase can be
observed for otherwise symmetric dots. We discuss this in
more detail in Appendix E.

Note that to have a finite phase difference ϕ the system has
to have two leads. In the limit td → 0, we practically split the
double dot into two independent systems. Each has just one
electrode. Therefore, for td → 0, we are always combining
single dots with ϕ = 0. Consequently, the � which separates
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FIG. 7. Example of a complicated subgap state dependence on
� for asymmetric dots at half-filling. (a) depicts the NRG results and
panel (b) shows the GAL predictions. There are three different singlet
states (blue solid lines and circles), two doublet states (red dashed
lines and squares), and one triplet state (green dot-dashed lines and
crosses). Note that the differences between the energies of excited
states and the ground state energy equals the absolute values of ABS
energies if the single particle transition between the states is allowed.
The energies of ABS are underscored by gray stripes. The orange
circle in (a) marks the avoided crossing between singlet I and single
II type of excited states.

the singlet states of type I and II at td → 0 in Fig. 6(c) can be
read out from the phase diagrams in Fig. 4(a) for any U .

B. Subgap states at half-filling

One of the main benefits of the GAL model for single QD
was the quantitative correction of the ABS profile of the origi-
nal AL theory. For SDQDs, the same is demonstrated in Fig. 7
with subgap many body states [(En − E0) < �] calculated
for parameters UL = 2�, UR = 6�, td = 0.1� and ϕ = 0 via
NRG [panel (a)] and GAL model [panel (b)]. Note that despite
its simplicity the GAL approximation captures correctly all of
the main features of the subgap spectrum as discussed in more
detail below. In addition, with the exception of the region of
small �, the energies of the subgap states are in a very good
quantitative agreement with the NRG as well. In Appendix D,
we directly compare the energies of the NRG and GAL subgap
states as functions of ϕ for different parameter settings. Here,
we instead focus on the qualitative aspects.

In this regard, we stress that the agreement between NRG
and GAL is impressive considering the complexity of the
subgap states. For example, the behavior of the ground state
and the first excited state in Fig. 7 reflects the reappearance of
the singlet phase separated by doublet phase shown in Fig. 5.
As discussed for td → 0, the two singlet regimes have differ-
ent origins. The one at small � has a type II singlet ground
state. The first excited state in this region is, therefore, a
triplet state (dot-dashed green line) emerging from the singlet-
triplet splitting. Because the splitting energy is of the order of
t2
d /(UL + UR) and td = 0.1�, the triplet state closely ground

state. The second excited state in this region is a doublet state

FIG. 8. Direct comparison of NRG (symbols) and GAL (lines)
results for subgap many-body states as functions of � calculated for
two sets of parameters. Note the logarithmic scales. There are four
different singlet states (blue solid lines and circles) in (a) and five in
(b), four doublet states (red dashed lines and squares) and one triplet
state (green dot-dashed lines and crosses) in both panels.

(dashed red line) which at the QPT point � ≈ 0.6� becomes
the ground state. In the doublet phase, the first excited state is
singlet (solid blue line), which becomes again the ground state
at the second QPT point at � ≈ 1.3�. However, following
the discussion for the td → 0 case, the ground state of this
second singlet phase is the type I singlet. Therefore it is not
accompanied by a triplet state and the first as well as the
second excited states are doublets (red dashed lines). Only
above them the triplet state closely follows a type II singlet.
An avoided crossing of type I and type II singlets can be seen
in the central part of the doublet phase marked by orange
circle in panel (a). The GAL model in panel (b) correctly
captures all of these details. We would like to stress here that
the excitations singlet-to-triplet as well as singlet-to-singlet
violate the �Sz = 1/2 selection rule and, therefore, will not
be visible in the one-electron spectral function, i.e., not all of
the excited states will contribute to ABS [34]. The energies of
the allowed transitions, i.e., ABS, are underscored with gray
stripes in Fig. 7.

Considering that the GAL model is based on AL theory
with scaled parameters that reintroduce the finite gap, it is
important to check how the GAL model reacts to evolving
�. Therefore, in Fig. 8, we selected two very distinct sets of
model parameters and tested the GAL model against NRG
solutions in a wide range of �/� values. Their agreement
increases with increasing �/� as expected for AL theory.
Nevertheless, even for small �, i.e., several times smaller than
any other energy parameter, the GAL model gives surprisingly
good predictions for the positions of subgap states for a tiny
fraction of the NRG computational costs.

C. Josephson current at half-filling

The GAL model captures correctly also the Josephson cur-
rent. We illustrate this in Fig. 9, where we compare the GAL
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FIG. 9. Direct comparison of the Josephson current calculated
for various parameters via NRG (symbols) and GAL (solid lines),
where J0 = e�/h̄. (a) and (b) show the ϕ dependence. In (a), the
changes of the sign coincide with the respective singlet-doublet phase
boundaries shown in Fig. 6(a) for symmetric case. (b) represents
an asymmetric case. (c) shows the � dependence for ϕ = 0.9π ,
therefore, the change of current sign is close to the respective phase
boundaries in Fig. 6(c) where we used ϕ = π .

predictions with the NRG results for various parameters as a
function of ϕ [panels (a) and (b)] and � [panel (c)]. In contrast
to its single dot version, the GAL model for the double-dot
system correctly predicts the current in both phases. Up to
a small shift in the predicted position of the phase transition
point, the GAL Josephson current follows the NRG results. It
is sensitive to U in the singlet phase and nonzero in the doublet
phase. There was no necessity to introduce any band correc-
tions, as the doublet ground state energy is phase-dependent
for SDQD. This is true for both symmetric (a), (c) and non-
symmetric dots (b). It indicates that, in contrast to the single
dot case, the Josephson current for SDQD in the doublet phase
at half-filling is predominantly carried by the ABS and not the
incoherent band states.

D. Away from half-filling: MGAL phase boundary scan

The half-filled case discussed so far plays a crucial role
in the analysis of any structure of QDs coupled to a su-
perconductor. Nevertheless, the filling of each dot in the
SDQD system can be controlled in some experiments via

respective gate voltages [8,9,18]. Combining the electrostatic
control of energy levels εL and/or εR of each dot with
the differential conductance measurements ensures a high
degree of tunability. However, it also enlarges the avail-
able parameter space and, therefore, pushes its theoretical
analysis via NRG or QMC to the limits of their practical
usability.

To reproduce the experimental charge stability diagrams,
one can analyze the SCIAM in the εL/UL − εR/UR plane
since in the limit of weakly coupled dots 〈ni〉 ≈ 1 + εi/Ui

[8,19]. However, to produce maps with a needed resolution
is extremely costly when NRG and/or QMC calculations are
employed. This gets even more complicated when some of
the model parameters are unknown, or not known with a suf-
ficient precision. On the other hand, the MGAL model can be
easily utilized for a detailed preliminary scan of the parameter
space on a standard PC. This led us to the discovery of some
interesting regimes.

Here we focus on a symmetric scenario with UL = UR = U
and �R = �L = � = �. In Fig. 10, we show MGAL phase
boundaries in the εL/UL − εR/UR plane for ϕ = 0 (red lines)
and ϕ = π (blue lines) at varying values of td and U . The
figure captures a complicated evolution of the phase diagram.
Starting at U 
 td , e.g., td = 0.1� and U = 20� (upper left
corner in Fig. 10), we identify a rather trivial phase diagram
that resembles a disconnected SDQD system (td → 0) with an
emerging checkerboard pattern of singlet and doublet phases
(with the singlet one in the center). Only very small bending
is observed at what would be the quadruple degeneracy points
for td = 0 due to td/U → 0. In this limit, the dots are only
weakly linked, therefore, the ϕ = π and ϕ = 0 cases are indis-
tinguishable. Consequently, the phase diagrams are insensitive
to the presence of the phase bias.

Keeping a constant td = 0.1�, we can observe how de-
creasing U shapes the phase boundaries. Initially, both ϕ = 0
and ϕ = π , evolve indistinguishably as increased td/U ra-
tio induces stronger bending of the parity transition lines
around the (almost) quadruply degenerated points. However,
the doublet phases disconnect for ϕ = 0 at U ≈ 5� and form
four isolated regions. These are pushed by the decreasing U
to higher values of ε j/U until they completely vanish from
the plotted regions at U ≈ 4� leaving only a singlet ground
state in the plotted phase space. The evolution for ϕ = π

is different. Instead of splitting, the doublet phases merge
into one region, which at U ≈ 4.6� leads to a formation of
a closed pocket of the singlet phase around the half-filled
point εL = εR = 0. With further decreasing of U this central
singlet phase pocket shrinks until it completely vanishes for
U ≈ 4.2�. Simultaneously, the doublet phase shrinks as well.
First it evolves into an elongated four-pointed star-like pattern
with no phase transitions appearing along the εL = 0 and
εR = 0 lines. Next, upon further decreasing of U , the branches
of the starlike pattern connect. Therefore, in this region, the
doublet phase forms a pocket in the center of the plane, e.g.,
for U ≈ 3.8�.

If we now fix U ≈ 3.8� and let td increase, we see how this
pocket again grows and eventually splits into two independent
doublet regions. Going back to the strong interaction, a similar
evolution in td forms bended stripes of alternating singlet and
doublet phases.

115407-8



GENERALIZED ATOMIC LIMIT OF A DOUBLE QUANTUM … PHYSICAL REVIEW B 107, 115407 (2023)

FIG. 10. Evolution of the phase boundaries for the symmetric
case with UL = UR = U and �R = �L = � = �, ϕ = 0 (red lines)
and ϕ = π (blue lines), respectively. Phase diagrams are plotted in
the εL/U − εR/U planes (from −1 to 1 on each axis) for different
combinations of td and U . The rows show (from bottom up) the
results for U = 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 7, 10, 20�. The
columns show from left to right the results for td = 0.1, 0.2, 0.6, 1,
2�. Particular regions are marked by s for singlet and d for doublet.
The violet letters signal that both ϕ = 0 and ϕ = π have the same
type of ground state in the marked region. On the other hand, blue d
means that the ground state is doublet only for the ϕ = π case.

These patterns are the most common outcomes in stabil-
ity diagrams measured experimentally, for an example see
Ref. [8]. Both the ϕ = 0 and ϕ = π phase boundaries show
such phase orderings for U � 10�. However, the ϕ = 0
doublet stripes are less stable. With decreasing U and/or in-

creasing td they disconnect as seen for example for U = 7�

and td = 0.6�. The split parts contract upon decreasing U
and td , which consequently leaves only a singlet phase present
even for large U .

For ϕ = π , the stripe pattern persists even at moderate pa-
rameters such as td ≈ 0.6� and U � 4.4�. Nevertheless, for
smaller U , these stripes merge either into already discussed
star-like shapes for small td or isolated doublet pockets for
moderate td .

Both ϕ = 0 and ϕ = π eventually collapse into trivial sin-
glet regimes if U or/and td are small enough, where no QPT
exists. Nevertheless, it is important to stress two aspects here.
First, the doublet phases for ϕ = 0 (actually, any ϕ < π ) are
encapsulated within doublet phases for ϕ = π . Second, for
ϕ = π , the doublet phase survives to much lower values of U
and td than for ϕ = 0. In Fig. 10, the trivial singlet outcome
appears for all panels with ϕ = 0 and U < 4.2�. Yet only a
single panel shows such an outcome for ϕ = π (U = 3.6�

and td = 0.1�).

E. Away from half-filling: comparison with NRG

The MGAL scan of the parameter space predicts the ex-
istence of regions where a small change in U or td leads to a
dramatic evolution of the εL/U − εR/U phase diagrams. Con-
sidering that even at half-filling the GAL phase boundaries are
not perfectly aligned with NRG points, one can expect in this
region a mismatch between MGAL and NRG. This is indeed
the case. Nevertheless, this issue can be often solved by a
small shift of selected MGAL parameters, as we discuss in
this section. Its main purpose is to test the MGAL predictions
against the NRG results and to establish the validity bounds
of the MGAL approximation away from half-filling.

We first explore the case of td = 0.1� with �L = �R =
� = �, at varying U = UL = UR. We have selected ϕ = π

because this case shows the most complex and most stable
(with respect to parameter change) structures in the MGAL
analysis. Both NRG and MGAL predict a trivial singlet phase
for U � 3.8� without any doublet phases. We, therefore, omit
this regime. The results for four higher values of U , represent-
ing different phase diagram regimes, are shown in Fig. 11.
At U = 4� [panel (a)] the NRG confirms a small pocket of
doublet phase in the center of the diagram as predicted by
MGAL. Here the color map was obtained by NRG and it
shows a difference between the lowest singlet and lowest dou-
blet eigenenergies. Therefore the blue color signals a stable
singlet phase (negative values) and yellow the doublet phase
(positive values). The black line marks the corresponding
phase boundary provided by MGAL. It coincides with the
(white) transition area in the NRG map.

As we tune U up to ≈4.2�, the NRG result confirms
a significant change of the phase diagram as predicted by
MGAL. Regions of the doublet ground state elongate along
the εL = 0 and εR = 0 axes. The phase diagram becomes
star-shaped with doublet ground state in the center and with
no signs of QPTs along the εL = 0 and εR = 0 lines as shown
in Fig. 11(b).

When U is further increased the expected central singlet
island emerges in the NRG data as illustrated by panel (c) for
U = 5�. Both MGAL and NRG show wide doublet branches
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FIG. 11. Evolution of phase (stability) diagrams in the εL/UL -
εR/UR plane at � = �, td = 0.1� and ϕ = π upon increasing U .
Color-maps show the difference between the lowest singlet and low-
est doublet eigenenergies calculated via NRG. The blue color denotes
the stability region of a singlet phase and the yellow color of a
doublet phase. The black curves show the MGAL phase boundaries.
(d) The Josephson current along the diagonal εL = εR calculated
with NRG (symbols) and MGAL (solid lines). Note that MGAL
employs slightly shifted Coulomb energies with respect to NRG. For
explanation of the shift see the main text.

of the former star-like pattern stretching along the εL = 0 and
εR = 0 lines.

Finally, for strong U the overall pattern indeed resem-
bles a regular rectangular checkerboard consisting of singlet
and doublet regions. Initially, for sufficiently high ratio of
td/U , there is a clear bending of the phase boundaries at the
parity transition lines. However, this is strongly suppressed as
td/U → 0 as shown in Fig. 11(d) for U = 10�.

Note that in Figs. 11(a)–11(c), we have used slightly
smaller (within 5%) values of U for MGAL than for the
NRG calculations. As already discussed, a small variation
of parameters U and td leads in the discussed region to a
qualitative change of the phase diagram. This easily leads to a
situation where MGAL and NRG phase boundaries calculated

for exactly the same U and td predict a different type of phase
diagrams. However, a small constant shift of U (or td ) solves
this problem. After such trivial reparametrization the resulting
phase boundaries from MGAL are in agreement with NRG in
the whole investigated εL/U − εR/U plane.

Moreover, this small correction also leads to very good
agreement between the Josephson current calculated with
NRG and the MGAL model. We show this in panel (e) where
the current is plotted as a function of εL/U = εR/U , i.e., it
follows the diagonal in the plotted phase diagrams (a),(b)
and (c). Although, we use ϕ = 0.9π instead of π , because
at ϕ = π there is no supercurrent. Clearly, even for moder-
ate U , represented by U = 4� (blue) and U = 5� (red) in
panel (e) alike some experimental realizations [18], there is a
good quantitative agreement between NRG and MGAL. This,
however, changes when we push U further into the strong
interaction limit.

Seemingly, no parameter adjustments are needed for U 

� 
 td , as the MGAL and NRG phase boundary are nicely
aligned in Fig. 11(d) for the same U = 10�. However, this
is related to the checkerboard pattern which is stabilized at
U = 10�. Besides a small bending of the corners of the
central square, there are not enough details to distinguish
diagrams with similar U (ot td ) in this regime. MGAL can,
therefore, predict the phase boundaries with great accuracy.
Nevertheless, the MGAL Josephson current in panel (e) shows
for strong U = 10� a much larger quantitative difference
from the NRG results than for intermediate U . The position
of the phase transition can be tuned by adjusting U = 9�.
However, in the vicinity of the QPT, the amplitude of the
current differs significantly from the NRG result. Here the
NRG Josephson current can be more than twice the MGAL
Josephson current. Although this is still not a bad result for an
effective model, it points to the limitations of MGAL in the
strongly interacting regime. Considering that in experiments
one can have U 
 � and simultaneously td ≈ � [8], it is
worth looking into how the diagram in Fig. 11(d) evolves
with increasing td . We illustrate this in Fig. 12 where we
show diagrams at U = 10�, � = � and ϕ = π but now we
gradually increase td from 0.2� (a) to 2� (d). In general,
the increasing intradot hopping causes bending of the phase
boundaries. Consequently, the checkerboard pattern evolves
into a diagonal stripelike phase diagram. This is supported by
both NRG (color map) and MGAL (black lines). However,
a direct quantitative comparison between NRG and MGAL
reveals that their phase boundaries coincide only for small td
[e.g., td = 0.2� in panel (a)]. To get a quantitative agreement
for higher td , we have to adjust the MGAL parameters. This
time we adapt td instead of U . Unfortunately, a much larger
shift is needed here (≈30%). Nevertheless, once again a con-
stant shift of td is sufficient to reproduce NRG results in the
whole εL/U − εR/U plane. We show this in Figs. 12(b)–12(d)
where the red lines are the MGAL phase boundaries calcu-
lated with shifted td (see the description above the panels for
particular values) keeping all other parameters the same as in
the NRG solutions. The great agreement between red-lined
MGAL boundaries and NRG illustrates the strength of the
generalized AL approach. On the other hand, the large pa-
rameter shifts also clearly show the limitations of the MGAL
model in this particular regime.
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FIG. 12. Evolution of phase (stability) diagrams in the εL/UL -
εR/UR plane at � = �, U = 10� (NRG) and ϕ = π upon increasing
td . Color-maps show the difference between the lowest singlet and
lowest doublet eigenenergies calculated via NRG. The blue color
signals the stability region of a singlet phase and the yellow color
of a doublet phase. In the vicinity of the phase boundaries the color
changes to white. The black curves show the MGAL phase bound-
aries calculated for U = 10�. The red curves in (b) and (c) show
MGAL results for shifted values of U for which MGAL results show
a better agreement with NRG data.

Therefore a question arises as to whether the MGAL model
is also applicable to the strongly coupled regime which is
often relevant for experiments. To test this, we investigate
a case for which the parameters had been taken from the
experimental setup discussed in Ref. [8]. Namely, we fix UL =
7�, UR = 6�, td = 1.2�, � = 0.3�, ϕ = 0.5π and focus on
changing ε j/Uj . We present the NRG and MGAL results in
Fig. 13. Panel (a) shows the NRG stability diagram (color
map) and the MGAL phase boundaries (black lines). Despite
being in the regime of strong coupling Uj 
 �, the agreement
is reasonably good taking into account the simplicity of the
MGAL model. In addition, a small constant modulation of
td (td = �) is sufficient for MGAL to faithfully reproduce
the NRG phase boundary as it is shown by the red lines in
panel (a). In this respect, the MGAL can be indeed useful for
the analysis of experiments. However, because of the large
U the MGAL model predictions for the Josephson current
are much less precise. We show this in panels (b) and (c)
where the Josephson current is plotted as a function of εR/UR

for εL = 0 (b) [horizontal cut in panel (a)] and as a function
of εR/UR = εL/UL [diagonal cut in panel (c)]. Here the blue
circles show the NRG results, black lines the MGAL solution
for td = 1.2� and red one the solution for td = �. There is
a clear discrepancy between NRG and MGAL. Although the

FIG. 13. Analysis of an experimental setup from Ref. [8]. Here,
UL = 7�, UR = 6�, td = 1.2�, � = 0.3�, ϕ = 0.5π . (a) Phase dia-
gram in the εL/UL - εR/UR plane. The color-map shows the difference
between the lowest singlet and lowest doublet eigenenergies calcu-
lated via NRG. The blue color signals the stability region of a singlet
phase and the yellow color of a doublet phase. The black curves show
the MGAL phase boundaries for the same parameters as in NRG. The
red lines mark MGAL phase boundaries with td = �. [(b) and (c)]
Josephson current for horizontal (b) and diagonal (c) cuts marked by
the white dashed lines in panel (a).

correction of the td leads to a better location of the QPT points
it also makes the magnitude of the Josephson current slightly
smaller and, therefore, further away from NRG data. How-
ever, here it is important to stress that this disagreement looks
bad only when compared to the success of the GAL model
in the half-filling or to the MGAL results for intermediate U .
When compared to other effective models, e.g., ZBW, what
is shown in panels (b) and (c) is still a solid result as the
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currents of other effective models can be off by several orders
of magnitude [8].

V. SUMMARY

Effective theories like AL and ZBW are known to capture
some of the qualitative properties of the SCIAM model but
they fail quantitatively. Here we have introduced a rescaling
of the AL theory that overcomes its usual shortcomings. The
rescaling is based on the GAL formula which was obtained
perturbatively and which is known to correctly capture the
phase boundaries for a broad range of parameters. In the case
of single dot, the effective GAL model presented here gives
not only the correct position of QPT but also a very good
quantitative prediction for the position of subgap many-body
states and, therefore, ABS. However, its main advantage is
that it can be easily generalized to more complex setups which
present a significant challenge to NRG or QMC.

We have discussed this in detail for the case of two dots
coupled in series. While there is no simple formula for the
phase boundaries for the SDQD case, the GAL transfor-
mations can be generalized to this case starting from the
vanishing intradot coupling limit. At half-filling, the resulting
GAL model gives very good quantitative predictions for the
position of QPT and subgap states for a broad range of ex-
perimentally relevant parameter regimes. Moreover, unlike for
the single-dot case, GAL for SDQD gives correct Josephson
current in both singlet and doublet phase as confirmed by
comparing the GAL predictions with the NRG results. The
typical difference between GAL and NRG was for the most
relevant cases within a few percent and, as such, often below
the resolution of a typical experiment. The effective GAL
model, therefore, allows a fast and reliable analysis of relevant
regimes for a tiny fraction of the costs of NRG or QMC.

The GAL model, however, needs some adjustments when
used away from half-filling. First of all, the energy levels on
the dots have to be modified according to a phenomenological
MGAL formula. The MGAL model then gives a solid pre-
diction of the phase boundaries in the εL/UL − εR/UR plane
which are crucial for understanding experimental (charge) sta-
bility diagrams. Moreover, outside the strong interaction limit
(U 
 �), one can apply a slight constant shift (within 5%)
of td or U in MGAL to outline the NRG boundaries almost
perfectly in the whole εL/UL − εR/UR plane. In addition, this
also leads to very good predictions of the Josephson current.
Nevertheless, we also discuss the limitations of the MGAL
model. They can be clearly shown in the strong interaction
limit. Here a much larger shift of the MGAL parameters
is needed (typically 30% in case of U = 10�) to faithfully
capture the NRG phase boundaries. Even then, the Josephson
current can differ by a factor of two from the NRG in the
vicinity of the QPT. However, it is worth noting that this dif-
ference is large when compared to the precision of GAL in the
half-filling or to the MGAL results for small and intermediate
U but still favorable when compared to other effective theories
[8].

Because of its simplicity and reliability GAL or its modifi-
cation can be used for fast and broad parameter scans like the
one presented Fig. 10. This allowed us to notice, and later con-
firm via NRG, several interesting properties which might be

relevant for future experiments. For example, if a sufficiently
large phase difference is introduced, then the doublet phase
can emerge even at half-filling and for otherwise perfectly
symmetric dots. In addition, the doublet phase can survive
even for inter-dot hopping td > �. We have also identified
interesting regimes away from half-filling. For example, at
intermediate U and small td , an island of the doublet phase
exists in the center of the εL/UL − εR/UR phase diagram
which transits into a star-like shape with increasing td . Fur-
ther increase of td leads to broadening of the star-shape and
simultaneously a small singlet island emerges in its center.

Taken together, all of the findings presented in the paper
indicate that the exactly solvable GAL model and its modified
version MGAL do not oversimplify the complex behavior of
quantum dots coupled to superconducting leads. Instead, these
effective models deliver results in good accordance with elab-
orate theoretical techniques such as NRG. Therefore they can
be used not only for preliminary theoretical investigations but
their precision is sufficient for direct analysis of experimental
data. In addition, GAL scaling can be also utilized in studies of
systems that combine superconducting and normal leads via
hybrid methods, where the superconducting part is threaded
by AL approximation and normal part via different method,
e.g., NRG [54,64–66]. The quantitative agreement of GAL or
MGAL with NRG results also opens a possibility that GAL or
its modification may actually be an effective model of SCIAM
that follows from a rigorous application of the NRG ap-
proach as discussed originally by K. G. Wilson et al. [67–69].
This would indicate a fundamental nature of the AL scalings
(12)–(14) in the sense of approximate RG renormalizations to
the corresponding parameters. We, however, leave this as an
open problem for future research.
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APPENDIX A: THE NONINTERACTING GREEN’S
FUNCTION FOR SDQD

The AL theory for the SDQD can be derived using the
noninteracting (U = 0) Green’s function. First, we define
a Nambu spinor � = (dL↑, d†

L↓, dR↑, d†
R↓) for the SDQD.

The noninteracting, imaginary-time Nambu-Green function
Ĝ0(τ ) = −〈Tτ [�(τ )�†(0)]〉 is then a 4×4 matrix,

Ĝ0(τ )

= −

⎛
⎜⎜⎜⎝

〈dL↑d†
L↑〉τ 〈dL↑dL↓〉τ 〈dL↑d†

R↑〉τ 〈dL↑dR↓〉τ
〈d†

L↓d†
L↑〉τ 〈d†

L↓dL↓〉τ 〈d†
L↓d†

R↑〉τ 〈d†
L↓dR↓〉τ

〈dR↑d†
L↑〉τ 〈dR↑dL↓〉τ 〈dR↑d†

R↑〉τ 〈dR↑dR↓〉τ
〈d†

R↓d†
L↑〉τ 〈d†

R↓dL↓〉τ 〈d†
R↓d†

R↑〉τ 〈d†
R↓dR↓〉τ

⎞
⎟⎟⎟⎠,

(A1)
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where 〈xy〉τ ≡ 〈Tτ [x(τ )y(0)]〉. The Green function in the Mat-
subara (imaginary) frequency domain reads

Ĝ0(iωn) =
∫ β

0
dτe−iωnτ Ĝ0(τ ) = [iωnÎ − ε̂ − �̂(iωn)]−1,

(A2)

where ωn = (2n + 1)πkBT , Î is a 4×4 unit matrix, ε̂ describes
the local energy levels and hoppings in the isolated SDQD:

ε̂ =

⎛
⎜⎜⎜⎜⎝

εL 0 −td 0

0 −εL 0 td

−td 0 εR 0

0 td 0 −εR

⎞
⎟⎟⎟⎟⎠, (A3)

and �̂i(iωn) is the hybridization function describing the
coupling between the quantum dot i = L, R and the supercon-
ducting lead:

�̂(iωn) =
(

�̂L(iωn) 0̂

0̂ �̂R(iωn)

)
(A4)

with

�̂ j (iωn) = � j√
�2 + ω2

n

2

π
arctan

(
D√

�2 + ω2
n

)

×
(

iωn �eiϕ j

�e−iϕ j iωn

)
, j = L, R. (A5)

Here 2/π arctan(D/
√

�2 + ω2
n ) is the correction due to the

finite bandwidth D.
The Green function which corresponds to the noninteract-

ing part of the AL Hamiltonian (9) can be then obtained by
taking first the limit D → ∞ and then sending � → ∞.

APPENDIX B: SUBSPACES OF THE GAL HAMILTONIAN

While the Hilbert space of the GAL Hamiltonian is already
small (only 16 states for SDQD) it can be further cast into
the singlet, doublet and triplet subspaces. Following the sup-
plementary information to Ref. [34] the singlet subspace is
spanned by five states:

|0〉 , d†
R↓d†

R↑ |0〉 ,
1√
2

(d†
L↓d†

R↑ − d†
L↑d†

R↓) |0〉 ,

d†
L↓d†

L↑ |0〉 , d†
L↓d†

L↑d†
R↓d†

R↑ |0〉 (B1)

and its Hamiltonian reads

HS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ŨL+ŨR
2 − ε̃L − ε̃R −�̃Re−iϕ/2 0 −�̃Leiϕ/2 0

−�̃Reiϕ/2 ŨL+ŨR
2 − ε̃L + ε̃R −√

2t̃d 0 −�̃Leiϕ/2

0 −√
2t̃d 0 −√

2t̃d 0

−�̃Le−iϕ/2 0 −√
2t̃d

ŨL+ŨR
2 + ε̃L − ε̃R −�̃Re−iϕ/2

0 −�̃Le−iϕ/2 0 −�̃Reiϕ/2 ŨL+ŨR
2 + ε̃L + ε̃R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

Analogously, the four doublet states can be ordered into
the doublet ket vector upon which the doublet projection of
the GAL Hamiltonian yields

d†
L↑ |0〉 , d†

R↑ |0〉 , d†
L↑d†

R↓d†
R↑ |0〉 , d†

L↓d†
L↑d†

R↑ |0〉 (B3)

which leads to

HD=

⎛
⎜⎜⎜⎜⎜⎜⎝

ŨL
2 −ε̃L −t̃d 0 −�̃Leiϕ/2

−t̃d
ŨR
2 −ε̃R −�̃Re−iϕ/2 0

0 −�̃Reiϕ/2 ŨR
2 −ε̃R t̃d

−�̃Le−iϕ/2 0 t̃d
ŨL
2 −ε̃L

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B4)

We omit here the explicit form of the triplet state, because it
never becomes the ground state of SDQD and always yields
zero eigenenergy.

In general, SDQD has to be solved numerically, which is
a trivial task given the small size of the subspaces involved.
Moreover, some useful limiting cases are solvable analyti-
cally. For ϕ = π and �L = �R at half-filling (εL = εR = 0),

the singlet eigenvalues read

ŨL + ŨR

2
,

ŨL + ŨR

2
± 2�̃,

ŨL + ŨR

4
±

√
(ŨL + ŨR)2

4
+ 4t̃2

d , (B5)

while doublet eigenvalues become

1
4

(
ŨL + ŨR − 4�̃ ±

√
(ŨL − ŨR)2 + 16t̃2

d

)
,

1
4

(
ŨL + ŨR + 4�̃ ±

√
(ŨL − ŨR)2 + 16t̃2

d

)
. (B6)

By comparing Eqs. (B5) and (B6), one can get critical values
of td that bound the π -phase region as discussed in the main
text and in Sec. D.

APPENDIX C: NUMERICAL RENORMALIZATION GROUP

The NRG results presented in the paper had been cal-
culated using the open source package NRG Ljubljana
[70,71]. For single channel problems, e.g., single dot at ϕ = 0
and double-dot case with td → 0, we used the logarithmic
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FIG. 14. Direct comparison of NRG (symbols) and GAL (lines)
results for subgap many-body states as functions of ϕ calculated
for two sets of parameters. Singlet states are marked by blue solid
lines (GAL) and circles (NRG), doublets by red dashed lines and
squares and triplets by green dot-dashed lines and crosses. Note that
the differences between the energies of the excited states and the
ground state energy equal the absolute values of ABS energies if
the single-particle transition between the states is allowed. The ABS
energies are underscored by gray stripes.

discretization parameter � = 2, the maximum (minimum)
number of states kept after each of the truncations was ns =
10000, nm = 1000 times the corresponding multiplicities and
the cut-off energy was set to EC = 10 in the units of the
characteristic NRG energy scale (see the manual to NRG
Ljubljana [71]).

For two channel problems, we always used � = 4. When
calculating the profiles of sub-gap energies or the suppercur-
rent the remaining parameters were set as ns = 6000, EC = 6,
and nm = 1000. Since the phase boundary calculations are
less sensitive to the truncations we used ns = 6000, EC = 6
and nm = 600 or nm = 1000. In all cases, we have used the
half-bandwidth of D = 100� which effectively suppresses
band-edge related effects. For details on the derivation and
implementation of the Josephson current into NRG Ljubljana,
see the supplementary material to Ref. [8] and manual to
Ref. [71].

APPENDIX D: SUBGAP STATES

In Sec. IV B, one particularly representative case of phase-
bias controlled ABS states is discussed. Two more cases are

FIG. 15. Phase diagrams of symmetric (UL = UR, �L = �R) half-
filled case in td -U plane for ϕ = π (solid lines) and ϕ = 0.8π

calculated by GAL.

shown here in Fig. 14 for slightly larger Coulomb interaction
of U = 4� while phase bias was kept to ϕ = π . Unlike in the
main text, GAL (lines) and NRG results (points) are directly
compared.

In Fig. 14(a), the case of � = � and td = 0.1� shows a
very good quantitative agreement between the GAL theory
and the corresponding NRG calculations. Due to the resulting
small ratio of td/U , the ABS states are pushed very close to
the Fermi energy with a singlet-doublet QPT is observed at
ϕ ≈ 0.6π .

Setting then instead � = 1.4� and td = � the ABS states
moves the QPT to ϕ ≈ 0.8π with phase-bias controlled ABS
states populating the entire gap region. The outer singlet
ABS state even clearly crosses into the continuum. Once
again, an overall very good quantitative agreement between
the GAL theory and the corresponding NRG calculations
is observed.

APPENDIX E: OBSERVABILITY OF DOUBLET
PHASE IN SDQD AT HALF-FILLING

As discussed in the main text, formulas (24) put restric-
tions on the combination of parameters U , �, and td for
which the doublet phase can manifest itself at half-filling.
As discussed therein and shown in Fig. 15 in the td − U
plane, the doublet phase space is largest at ϕ = π . It forms
dropletlike islands surrounded by singlet phase spaces. Fig-
ure 15, then clearly shows rapid shrinking of the doublet
phase space with ϕ as illustrated by the dashed lines for
ϕ = 0.8π .

Consequently, smoothly increasing U or td at half-filling
while keeping sufficiently large ϕ can lead, for a proper
combination of U and td , to a re-entrant behavior. The
system first leaves the first singlet phase and goes over
into the doublet phase and then enters the second singlet
phase.
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