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Moving media as photonic heat engine and pump
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A system consisting of two slabs with different temperatures can exhibit a nonequilibrium lateral Casimir
force on either one of the slabs when Lorentz reciprocity is broken in at least one of the slabs. This system
constitutes a photonic heat engine that converts radiative heat into work done by the nonequilibrium lateral
Casimir force. Reversely, by sliding two slabs at a sufficiently high relative velocity, heat is pumped from the
slab at a lower temperature to the other one at a higher temperature. Hence the system operates as a photonic
heat pump. In this paper, we study the thermodynamic performance of such a photonic heat engine and pump via
the fluctuational electrodynamics formalism. The propulsion force due to the nonreciprocity and the drag force
due to the Doppler effect were revealed as the physical mechanisms behind the heat engine. We also show that in
the case of the heat pump, the use of nonreciprocal materials can help reduce the required velocity. We present
an ideal material dispersion to reach the Carnot efficiency limit. Furthermore, we derive a relativistic version of
the thermodynamic efficiency for our heat engine and prove that it is bounded by the Carnot efficiency that is
independent of the frame of reference. Our paper serves as a conceptual guide for the realization of photonic heat
engines based on fluctuating electromagnetic fields and relativistic thermodynamics and shows the important role
of electromagnetic nonreciprocity in operating them.

DOI: 10.1103/PhysRevB.107.115406

I. INTRODUCTION

The effects of radiative heat transfer and nonequilibrium
Casimir force can both occur between two objects having
different temperatures, due to the exchange of energy and mo-
mentum as carried by thermally fluctuating electromagnetic
fields emitted from the objects. The significant enhancement
of these effects [1–20], when the two objects are brought in
close proximity separated by nanoscale gaps, has motivated
extensive studies due to the fundamental importance of these
effects as well as opportunities for energy [21–25] and op-
tomechanical applications at nanoscales [26–29]. The focus of
most of these studies was on either radiative heat transfer or
Casimir force alone. On the other hand, since both effects arise
from the same underlying thermal electromagnetic fields, it
should be of interest to study the relationship and the con-
version between radiative heat transfer and nonequilibrium
Casimir forces.

Recently, it was shown that materials with different tem-
peratures can experience nonequilibrium Casimir force in the
direction parallel to the interacting surfaces when at least one
of them breaks Lorentz reciprocity, i.e., when at least one
of them is made of nonreciprocal materials [30–37]. While
lateral Casimir force can also exist in reciprocal systems
both at thermal equilibrium [27,28,38–41] and nonequilib-
rium [42,43], the objects must break translational or rotational
symmetry. Moreover, the lateral force in reciprocal systems
both in thermal equilibrium and nonequilibrium results in
a relaxation process to mechanical equilibrium, and contin-
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uous external stimuli such as external illumination of light
or mechanical work are necessary to realize the persistent
lateral force. In contrast, breaking Lorentz reciprocity of the
system allows persistent nonequilibrium lateral Casimir force
on translationally or rotationally invariant objects so far as the
objects are in thermal nonequilibrium.

This existence of such a persistent lateral force suggests
the possibility of a heat engine that converts the radiative
heat transfer into mechanical work done by nonequilibrium
lateral Casimir force. Recently, a single gyrotropic sphere at
a different temperature from the environment was analyzed as
a heat engine where the radiative heat transfer between the
sphere and the environment results in the mechanical torque
on the sphere [36]. The thermodynamic analysis revealed that
the thermodynamic efficiency is bounded by the Carnot ef-
ficiency limit and magnetic hyperbolic plasma was proposed
as a material that can be used to approach the Carnot limit
in this system. The nonequilibrium lateral Casimir force in
a parallel plate configuration has also been explored for the
construction of a heat engine [37]. The parallel plate geometry
is desirable since it allows for the possibility of scaling up
such a heat engine. The analysis in [37] however was based
on the linear order approximation of radiative heat transfer
and nonequilibrium lateral Casimir force [44] with respect
to the velocity and temperature difference. The validity of
such linear approximation is limited to small temperature
differences as well as small velocities of relative motion. To
our best knowledge, the detailed analysis of two semi-infinite
parallel slabs at relative motion as a heat engine has not been
performed. Moreover, the reverse process, i.e., operation as a
heat pump, was not analyzed before due to the requirement
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FIG. 1. Two semi-infinite parallel slabs separated by a vacuum
gap d that are moving relative to each other at constant velocity V
along the x direction. Two slabs are at the proper temperatures T1

and T ′
2 in the rest and comoving frames, respectively. The physical

quantities with the prime mark are defined in the comoving frame. (a)
The system operating as a heat engine where the net heat flux ϕ1→2

from slab 1 to slab 2 is converted into work driven by nonequilibrium
lateral Casimir force fx,2 on slab 2 under proper directions of external
magnetic fields. (b) The system operating as a heat pump where the
external work done by the force fext pumps heat from slab 2 at a low
proper temperature to slab 1 at a higher proper temperature. External
magnetic fields are not necessary.

of high velocities of relative motion, which is beyond the
applicability of the linear approximation.

In this paper, we analyze a system consisting of two semi-
infinite parallel slabs in thermal nonequilibrium as a photonic
heat engine as well as a photonic heat pump. The photonic
heat engine [Fig. 1(a)] operates by the conversion of radiative
heat flux from a high-temperature to a low-temperature slab
into relative motion between the slabs driven by nonequilib-
rium lateral Casimir force. We show that the same system
operates as a photonic heat pump [Fig. 1(b)] where the
radiative heat flows from the low-temperature to the high-
temperature slab at high velocities of relative motion driven
by external work. We reveal that nonreciprocity and Doppler
effects play essential roles in the operation of the heat engine
and pump. Compared to the previous work [37], we analyze
the operation of the heat engine at different velocities of rela-
tive motion from the rest to the steady-state velocity. For the
heat engine, nonreciprocity allows the heat engine to self-start
and the Doppler effect makes the heat engine reach the steady-
state velocity. We show that the same system as the heat
engine operates as a photonic heat pump at high velocities of
relative motion realized by external work. Such a heat pump
was suggested but not considered in detail in previous works
[36,37]. For the heat pump, breaking material’s reciprocity is
not necessary since nonreciprocal wave propagations can be
induced by the relative motion. However, the use of nonre-
ciprocal materials allows the operation of the heat pump at
lower relative velocities and enhances the performance of the
heat pump. Furthermore, the operation of the heat pump at
nonrelativistic velocities requires the slabs to be in the near
field. We also show that the photonic heat engine can achieve
Carnot efficiency and derive an ideal dispersion of materials
that approach the Carnot limit. In principle, we can conceive
of operating the heat engine and pump at relativistic velocities.
For such situations, we derive the relativistic thermodynamic
efficiency and show that it is bounded by the Carnot efficiency
that is independent of the frame of reference.

The paper is organized as follows. In Sec. II, we derive
the fluctuational electrodynamics formalism of radiative heat
transfer and lateral Casimir force between two semi-infinite
slabs at a relative motion separated by a vacuum gap. The
formalism is applicable to nonmagnetic slabs with general
dielectric function tensors at a relative motion with arbitrary
velocities. We also discuss the constraints related to the
second law of thermodynamics and imposed by Lorentz reci-
procity. In Secs. III and IV, we analyze the system as a heat
engine and a heat pump, respectively. In Sec. V, we derive
the relativistic thermodynamic efficiency of our heat engine.
In Sec. VI, we summarize our findings.

II. FORMALISM

We consider two semi-infinite parallel slabs labeled as 1
and 2 that are separated by a vacuum gap d as shown in Fig. 1.
Two slabs can move laterally at a constant velocity V . We
derive the radiative heat flux and lateral Casimir force per unit
surface area, i.e., shear stress, between the two slabs in rela-
tive motion in the framework of fluctuational electrodynamics
[45]. Previous studies have investigated radiative heat transfer
between two slabs with general dielectric function tensors at
rest [46,47], shear stress on two slabs of isotropic media in
a relative motion [48,49], and the friction coefficient, i.e., the
ratio of the shear stress to the velocity of relative motion, in
the linear response regime between two slabs of anisotropic
materials [37]. As a step further, in this paper we develop
the fluctuational electrodynamic formalism for radiative heat
flux and shear stress between two slabs with general dielec-
tric function tensors in relative motion at arbitrary velocity.
This formalism is applicable to materials breaking Lorentz
reciprocity. Our development is motivated by the observation
that in the two-slab system, one of the slabs must be non-
reciprocal in order to construct a heat engine driven by the
nonequilibrium lateral Casimir force [36,37]. Moreover, to
have a complete picture of the operation of such a heat engine,
it is important to go beyond the linear response regime. In
this section, we describe the main results of our formalism.
A detailed derivation can be found in Supplemental Material
(SM) [50] (see also [51] therein).

Due to quantum and thermal fluctuations, any object made
of lossy materials emits electromagnetic waves. Radiative
heat transfer and Casimir force between the slabs occur by
such emission from one slab and the absorption by the other
slab. The absorption and emission processes, moreover, in-
volve multiple reflections of the waves between the slabs.
The strength of the fluctuations, as well as the absorption
and emission processes, depend on the temperatures and op-
tical properties of the slabs. Since the physical properties
of a slab are well defined in its rest frame where the local
thermodynamic equilibrium is established, we incorporate the
effects of the relative motion between the slabs by the Lorentz
transformation of the electromagnetic waves in the vacuum
between the slabs. Thus, we need not perform the Lorentz
transformation of thermodynamic quantities.

In this paper, we assume that slab 1 is at rest whereas slab 2
can move, and we refer to the frames in which slabs 1 and 2 are
at rest as the rest frame and the comoving frame, respectively.
We use primes on the physical quantities in the comoving
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frame. We consider the two slabs at the proper temperatures
T1 and T ′

2 , respectively. We assume the slabs are made of
linear and nonmagnetic materials, i.e., the relative magnetic
permeability is unity. Under the framework of fluctuational
electrodynamics with these assumptions, our formalism is
exact. Without loss of generality, we also assume slab 2 is
moving at the velocity V in the x direction with respect to slab
1. For the observer in the rest frame, the net radiative heat flux
ϕ1→2 from slab 1 to slab 2 and the net shear stress fx,1 on
slab 1 are given as

[
ϕ1→2

fx,1

]
=

∫ ∞

0

dω

2π

∫
dq

(2π )2

[
h̄ω

−h̄qx

]

× [nB(ω, T1) − nB(ω′, T ′
2 )]τ1→2(ω, q;V ), (1)

where ω and q = (qx, qy) are the angular frequency and the in-
plane wave-vector components of the electromagnetic waves,
nB(ω, T ) = 1

exp( h̄ω
kBT )−1

is the Bose-Einstein distribution, and h̄

and kB are the reduced Planck constant and the Boltzmann
constant, respectively. The shear stress on slab 2 is related
as fx,2 = − fx,1. τ1→2 is the transmission coefficient for the
electromagnetic waves emitted from slab 1 and absorbed by
slab 2. For the propagative waves (q = |q| < k0 = ω

c ) and
evanescent waves (q > k0), the transmission coefficients are
given as

τ1→2(ω, q;V ) =⎧⎨
⎩

Tr
[
(I − R̃†

2R̃2) 1
D12

(I − R1R†
1) 1

D†
12

]
, q < k0

Tr
[
(R̃†

2 − R̃2) 1
D12

(R1 − R†
1) 1

D†
12

e−2κzd
]

q > k0

, (2)

where I is the 2 × 2 identity matrix, D12 = I − R1R̃2e2ikzd ,
kz is the z component of the wave vector in the vacuum,

κz =
√

q2−k2
0 , and R̃2 = LR′

2(LT )−1. R1 and R′
2 are the reflec-

tion matrices of slabs 1 and 2 in the linear polarization basis,
respectively, and their explicit expressions are

R1 =
[

rss
1 (ω, q) rsp

1 (ω, q)

rps
1 (ω, q) rpp

1 (ω, q)

]
,

R′
2 =

[
rss

2 (ω′, q′) rsp
2 (ω′, q′)

rps
2 (ω′, q′) rpp

2 (ω′, q′)

]
,

(3)

where ri j
k (i, j = s, p and k = 1, 2) is the Fresnel reflec-

tion coefficient for the j-polarized incident light and the
i-polarized reflected light for slab k. Note that the reflection
matrix of slab 2, R′

2, is evaluated in the comoving frame.
The angular frequency and wave vector in the two frames are
related by the Lorentz transformation as

ω′ = γ (ω − qxV ), q′
x = γ (qx − βk0), q′

y = qy, k′
z = kz,

(4)
where β = V

c and γ −1 =
√

1 − β2.
The matrix L transforms the electric fields of forward

propagating waves in the vacuum, i.e., the waves propagat-
ing towards the positive z direction, from the rest frame to
the comoving frame via the Lorentz transformation. It is

expressed as

L = k′
0γ

k0qq′

[
q2 − βk0qx βkzqy

−βkzqy q2 − βk0qx

]
, (5)

where k′
0 = ω′

c and q′ = |q′|. Similarly, LT transforms back-
ward propagating waves, and L−1 transforms the forward
propagating waves from the comoving frame to the rest frame.
Thus, from the viewpoint of the observer in the rest frame, the
reflection of electromagnetic waves from the moving slab 2
is calculated by three steps as indicated in R̃2 = LR′

2(LT )−1.
First, the forward propagating waves are Lorentz transformed
from the rest to the comoving frame by L, the reflection is
calculated in the comoving frame by R′

2, and the backward
propagating waves, represented by LT , are transformed from
the comoving frame to the rest frame by (LT )−1. We note that
the inverse of L exists for all the electromagnetic modes that
contribute to heat and momentum transfer (see discussions in
SM [50]).

Two identities are imposed on the transmission coeffi-
cient τ1→2 in our formalism. Previously, for the case of two
nonmagnetic slabs with general dielectric function tensors
at rest, direct calculations showed the relation τ1→2(ω, q) =
τ2→1(ω, q) [47]. This relation guarantees that the system sat-
isfies the second law of thermodynamics [47], which requires
that ϕ1→2 = 0 when T1 = T2 at V = 0. Moreover, the re-
flection matrix of a reciprocal material satisfies Ri(ω,−q) =
σzRT

i (ω, q)σz, where σz is the Pauli matrix. Therefore, if both
slabs are made of reciprocal materials, the transmission co-
efficient is further constrained as τ1→2(ω, q) = τ1→2(ω,−q)
[47]. We extend these results for the case of two nonmagnetic
slabs with general dielectric function tensors at relative mo-
tion. When the slabs are in relative motion, direct calculations
show

τ1→2(ω, q;V ) = τ2→1(ω, q;V ). (6)

If the two slabs are made of reciprocal materials, the con-
straint on the transmission coefficient is derived as

τ1→2(ω,−q;V ) = τ1→2(ω, q; −V ), (7)

where −V on the right-hand side means that object 2 is
moving towards the negative x direction. Equation (7) indi-
cates that the propagation of electromagnetic waves becomes
nonreciprocal in the presence of relative motion even when
the materials are reciprocal in the respective rest frames. The
nonreciprocal propagation induced by moving materials was
previously discussed in many different contexts such as the
Fizeau drag [52], and the acoustic and optical wave isolation
[53,54].

Radiative heat flux and shear stress are not Lorentz scalars.
With respect to the Lorentz transformation, the frequency
and momentum form a four-vector qμ = (ω/c, qx, qy, kz ),
whereas the electromagnetic fields form a tensor. From
Eq. (1), therefore, the radiative heat flux and shear stress
also form a four-vector f μ = (− ϕ1→2

c , fx,1, fy,1, fz,1) as far
as the Lorentz boost within the xy plane is concerned. The
four-vector transforms between the rest and comoving frame
via f ′μ = 
μ

ν f ν where 
μ
ν is the Lorentz boost along the xy

plane (see SM [50] for details). Thus, the radiative heat flux
and shear stress between the two frames in our system are
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related as

ϕ′
1→2 = γ (ϕ1→2 + fx,1V ), (8)

where ϕ′
1→2 is the radiative heat flux from slab 1 to slab 2 for

the observer in the comoving frame. We also obtained Eq. (8)
by direct calculations.

Finally, the thermodynamic efficiency of our heat engine η

and the coefficient of performance (COP) of our heat pump
are defined for T1 > T ′

2 as

η = fx,2V

ϕ1→2
, COP = ϕ1→2

fx,2V
, (9)

where this efficiency η and COP are meaningful only for
fx,2V > 0 and ϕ1→2 < 0, respectively. We also note that the
definition in Eq. (9) is sensible for nonrelativistic velocities,
i.e., V

c � 1, and we discuss the relativistic corrections in
Sec. V.

III. HEAT ENGINE

Using the formalism as described in the previous section,
we analyze the two-slab structure as schematically shown in
Fig. 1(a) from the perspective of using it as a heat engine.
This heat engine converts the radiative heat flux into me-
chanical work driven by the nonequilibrium lateral Casimir
force. Practically, a heat engine should be able to self-start.
Thus, the two-slab system needs to support a lateral force at
V = 0 when both slabs are at rest. To fulfill this requirement,
two conditions need to be satisfied as can be obtained by
examining Eq. (1). First, the two slabs must have different
temperatures. For this two-slab system, in general, the radia-
tive heat flux and the shear stress will be identically zero if the
slabs are in thermal equilibrium with each other. Second, at
least one of the slabs must contain nonreciprocal materials.
If both slabs are made entirely of reciprocal materials, the
momentum transfer at q and −q cancels out, resulting in null
lateral force. This can be seen by observing that the integrand
in Eq. (1) for fx,1 is an odd function of qx, since the transmis-
sion coefficient satisfies the condition τ1→2(ω,−q;V = 0) =
τ1→2(ω, q;V = 0) from Eq. (7). These two requirements were
also discussed in previous works [36,37].

Based on the discussion above, we consider an n-doped
indium antimonide (n-InSb), a well-known magneto-optical
material, as the slab material. To break the reciprocity, we
externally apply static magnetic fields in the y direction on the
two slabs as shown in Fig. 1(a). The direction of the external
magnetic fields is selected to be perpendicular to the intended
direction of motion of the slabs along the x direction, so that
the degree of asymmetry in the wave propagations will be
the greatest and the resulting nonequilibrium lateral force in
the x direction will be the largest. In this paper, we assume
that the external static magnetic fields on slabs 1 and 2 are
independently applied in the rest frame and the comoving
frame, respectively. If the external magnetic field is applied on
both slabs in the rest frame, the external field on the moving
slab in the comoving frame is composed of static magnetic
and electric fields, i.e., B′

y = γ By, and E ′
z = γV By where By is

an external static magnetic field in the rest frame, which com-
plicates our theoretical treatment. As long as we consider the
heat engine and pump operating at nonrelativistic velocities,

i.e., γ = 1 and V � c, the two ways of applying the external
static magnetic fields give approximately the same results.

Under an external static magnetic field in the positive y
direction, the dielectric function of n-InSb is given as

ε(ω)

ε∞
= I3 + εphI3 − ω2

p

(ω + iγ )2 − ω2
c

×

⎡
⎢⎣

1 + i γ

ω
0 − iωc

ω

0 (ω+iγ )2−ω2
c

ω(ω+iγ ) 0
iωc
ω

0 1 + i γ

ω

⎤
⎥⎦, (10)

where I3 is the 3 × 3 identity matrix, ωp =
√

nee2/(meffε0ε∞)
is the plasma frequency, γ = 3.39 × 1012 rad/s is the electron
scattering rate, and ωc = eB/meff is the cyclotron frequency.
The carrier concentration and the electron effective mass are
taken to be ne = 1.07 × 1017 cm−3 and meff = 0.022me where
me is the bare electron mass, respectively. The bound electron
and ions contribution to the dielectric function is incorporated
in ε∞ = 15.7. The phonon contribution εph is given by the
Lorenz model as

εph(ω) = ω2
L − ω2

T

ω2
T − ω2 − i�ω

, (11)

where ωL = 3.62 × 1013 rad/s, ωT = 3.39 × 1013 rad/s, and
� = 5.65 × 1011 rad/s. All the parameters in the model of n-
InSb above are taken from [55,56].

Figure 2 shows the performance of the heat engine. We set
the temperatures of the slabs to be T1 = 305 K and T ′

2 = 300
K, respectively, and the separation between the slabs to be
d = 10 nm throughout this paper. Note that the small gap
between the slabs is not required for the operation as a heat
engine, but rather is selected to enhance the power output.
In our system, the coupled surface plasmon modes, as well
as phonon-polariton modes, have large in-plane momenta as
compared with the maximal in-plane momentum of free-space
photons at the frequency, i.e., qx � k0, which contributes to
larger lateral forces.

Figure 2(a) shows the radiative heat flux from slab 1 to
slab 2 as a function of the velocity of relative motion under
different magnitudes of the magnetic fields. For two slabs
under antiparallel static magnetic fields, at a fixed velocity, the
radiative heat flux decreases as the magnetic field increases in
the considered range. The reduction of the radiative heat flux
at increasing velocities is due to Doppler shift, and is further
related to the interplay of the evolution of surface plasmon
and phonon-polariton waves, as well as hyperbolic modes that
progressively appear as the magnetic field increases [55]. All
these aspects will be discussed in detail later. Practically, it
is challenging to apply antiparallel static magnetic fields for
two slabs separated by a nanoscale gap. Therefore, we also
consider applying an external static magnetic field to only one
of the slabs, i.e., B1 = 0 T and B2 = −3 T. The results, shown
in the green curve in Fig. 2(a), have qualitatively the same
behavior as the cases when antiparallel magnetic fields are
applied to the two slabs. We also note that the shear force
is zero at V = 0 when the same magnetic fields are applied
to both slabs (not shown in Fig. 2). This is consistent with
the observation of the symmetry in heat flux spectra when the
same magnetic field is applied [47].
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FIG. 2. (a) Radiative heat flux from slab 1 to slab 2, (b) shear
stress on slab 2, and (c) thermodynamic efficiency of the heat engine
as a function of the velocity of relative motion. Two slabs made of
n-InSb are at T1 = 305 K and T ′

2 = 300 K and separated by d = 10
nm. The results for different magnitudes of external magnetic fields
are shown. The dash-dotted line in panel (b) describes fx,2 = 0. The
results of the linear approximation Eqs. (12) and (14) are plotted in
the dashed lines.

Figure 2(b) shows the shear stress on slab 2. In the absence
of the external magnetic field, the shear stress is zero at rest, in
consistency with the discussions above. For a moving object, a
force that is along the direction of the velocity accelerates the
motion of the object. We refer to such a force as a propulsion
force. A force with a direction opposite to that of the velocity
decelerates the motion of the object. We refer to such a force
as a drag force. We also use these wordings of propulsion
or drag forces to refer to the different components of a total
force. When slab 2 moves in the positive x direction as a
result of external mechanical work, the shear stress on slab 2
acts as a drag force, as previously shown for the isotropic
materials [48]. This drag force is due mostly to the Doppler
shift in the angular frequency. In contrast, in the presence
of the external magnetic fields, the shear stress on slab 2 is

nonzero even at rest. Therefore, the shear stress here propels
slab 2 in the positive x direction, allowing the heat engine to
self-start, and acts as a propulsion force after slab 2 starts
moving. Figure 2(b) shows that the shear stress on slab 2 at
nonzero V acts as a propulsion force over a wide range of V .
In this range, within the total shear stress, the propulsion force
component is greater than the drag force component. As the
velocity of slab 2 increases, the total force acting on slab 2
decreases due to the increasing drag force component and
becomes zero at a steady-state velocity. Under the simulation
condition, the steady-state velocity is around V ≈ 103 m/s.
This steady state is stable: further increase of the velocity
results in the net drag force on slab 2. Therefore, to go beyond
the steady-state velocity, external work must be applied, and
the two-slab structure no longer operates as a heat engine.

We analyze the spectral contribution to the shear stress,
i.e., the integrand of the ω integral in Eq. (1), to reveal the
mechanism behind the velocity dependence of the radiative
heat flux and shear stress. Figure 3(a) shows the spectral
distribution of the shear stress on slab 2 for different velocities
when the two slabs are under the antiparallel magnetic fields
of 3 T. First, we discuss the origin of the three peaks and
their signed contributions at V = 0 m/s. Since the system
is translationally invariant and the in-plane momentum is
conserved upon reflection, the momentum transfer between
slabs can only occur through the emission and absorption
processes. Therefore, the momentum transfer to slab 2 can
arise either due to the absorption of the thermal emission
from slab 1 or the emission of slab 2. Figure 3(b) shows
the transmission coefficient τ at V = 0 m/s as a function of
frequency ω and the in-plane wave-vector component along
the x direction qx. For other modes with nonzero qx and qy, the
qualitative characteristics of the transmission coefficient are
similar (see SM [50]). From Fig. 3(b), surface plasmon and
surface phonon-polariton modes at around ω = 1.9 × 1013

and 3.8 × 1013 rad/s, respectively, are supported at qx > 0 but
not at qx < 0. When the two slabs are at rest, the number of
emitted thermal photons from slab 1 is greater than that from
slab 2, nB(ω, T1) > nB(ω, T ′

2 ). Thus, for these surface modes,
the force on slab 2 due to the absorption of thermal radiation
emitted by slab 1, which acts as a propulsion force, is greater
than the recoil force on slab 2 due to its emission, which acts
as a drag force. As a result, the contributions to the lateral
force fx,2(ω) from these two peaks are positive. Similarly, the
negative spectral lateral force arises from the surface plasmon
modes supported at around ω = 4.6 × 1013 rad/s at qx < 0.

We note that the lack of symmetry in τ (ω, qx ), i.e., the
fact that τ (ω, qx ) �= τ (ω,−qx ), is essential for the presence
of lateral forces. The lateral forces would have been zero if
τ (ω, qx ) = τ (ω,−qx ). Thus, following an argument in [47],
which states that for a reciprocal two-slab system τ (ω, qx ) =
τ (ω,−qx ) at V = 0, in reciprocal two-slab systems there is no
lateral force at V = 0. We also note that the radiative heat flux
is dominated by those surface modes and flows from slab 1 to
slab 2 irrespective of the sign of qx as shown in Fig. 3(d).

In Fig. 3(a), the magnitudes of the three peaks vary with
respect to the velocity. Such variations primarily originate
from the Doppler shift of the angular frequency, which affects
the thermal photon occupation number for the emission from
slab 2. The transmission coefficient τ has a negligible depen-
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FIG. 3. (a) Spectral shear stress on slab 2 for different velocities of relative motion. (b) Plot of the transmission coefficient τ as a function
of the frequency ω and x component of the wave vector qx when two slabs are at rest. The transmission coefficient is plotted for the modes
with in-plane wave vectors along the x direction, i.e., q = (qx, 0). The magnetic fields are B1 = −B2 = 3T. (c) The ratio of the net transferred
thermal photon number with relative motion �nB = nB(ω, T1) − nB(ω′, T ′

2 ) to the one without relative motion �nB = nB(ω, T1) − nB(ω, T ′
2 )

for fixed qx = ±108 m−1 at V = 102 and 1.4 × 103 m/s. (d) Plot of mode-resolved radiative heat flux ϕ̃1→2(ω, qx, qy ) defined as ϕ1→2 =∫ ∞
0 dω

∫ ∞
−∞ dqϕ̃1→2(ω, qx, qy ) for the same condition as panel (b). The unit is [10−15 W s

rad ]. The other physical parameters are the same as those
in Fig. 2.

dency on the velocity range of the heat engine (see SM [50]).
Suppose that slab 2 is moving at a nonrelativistic velocity
V > 0, i.e., γ ≈ 1. In the rest frame, consider the thermal ra-
diation emitted by slab 2 with qx > 0 and ω. In the comoving
frame, this thermal radiation has a frequency ω′ = ω − qxV ,
which is smaller than ω, and an in-plane momentum q′

x =
qx−βk0 ≈ qx, where β = V/c. Thus, the frequency of the
radiation is blue-shifted from the viewpoint of the observer in
the rest frame. On the other hand, the number of photons does
not change in the two frames and an observer in the rest frame
sees the same number of thermally emitted photons as the
observer in the comoving frame, which is given as nB(ω′, T ′

2 ).
Thus, the frequency spectrum of the photon number flux that
the observer in the rest frame sees is velocity dependent. For
the waves with qx > 0, the number of thermal photons at a
frequency ω is exponentially enhanced at V > 0 compared

to the number at V = 0, since nB(ω′, T ′
2 ) ≈ e

− h̄ω

kBT ′
2 e

h̄qxV
kBT ′

2 for
h̄(ω − qxV ) � kBT ′

2 . As a result, as the velocity of slab 2
along the x direction increases, the emission of thermal pho-
tons with qx > 0 from slab 2 is exponentially enhanced. This
has the effect of enhancing the recoil force, which reduces
the total force that propels slab 2. To illustrate this effect,
Fig. 3(c) shows the ratio of the number of net transferred
thermal photons per mode at a frequency ω in the presence

of relative motion, �nB = nB(ω, T1) − nB(ω′, T ′
2 ), to the one

without relative motion, �n0
B = nB(ω, T1) − nB(ω, T ′

2 ). The
plotted relative velocities are the same as those in Fig. 3(a)
with in-plane wave vectors qx = ±108 m−1, which has a typ-
ical magnitude. For the waves with qx > 0, the net transferred
thermal photon number from slab 1 to slab 2 is decreased
for all the relevant frequencies as the velocity increases.
Particularly, the reduction is significant at higher velocities
and at lower angular frequencies. This explains the greater
reduction of the magnitude of the peak at ω = 1.9 × 1013

rad/s compared to that at ω = 3.8 × 1013 rad/s as the velocity
increases. For the modes with qx < 0, the observer in the rest
frame sees the exponentially suppressed number of thermal
photons from slab 2 due to the motion-induced red-shift of the
angular frequency. As a result, the net transferred number of
thermal photons from slab 1 to slab 2 is increased as shown in
Fig. 3(c). As the velocity increases, the drag force component
on slab 2 due to the surface modes at around ω = 4.6 × 1013

rad/s increases. Overall, the increasing velocity of slab 2
results in a greater drag force component on it due to the
Doppler shift of the angular frequency. The total force on
slab 2 becomes zero at the velocity V ≈ 1.4 × 103 m/s at
which the propulsion force due to the nonreciprocity and the
increasing drag force due to the Doppler shift balances.
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We numerically observed that the velocity dependence of
the radiative heat flux and shear stress is dominated by the ex-
ponential change in the thermal occupation number. Then, the
expansion of nB(ω′, T ′

2 ) with respect to velocity while setting
V = 0 in τ leads to compact expressions of the radiative heat
flux and the shear stress. The radiative heat flux and the shear
stress can be expressed to the linear order in the nonrelativistic
limit γ = 1 as

ϕ1→2(V ) ≈ ϕ0
1→2 − aV, fx,2(V ) ≈ f 0

x,2 − bV (12)

where ϕ0
1→2 ≡ ϕ1→2(V = 0) and f 0

x,2 ≡ fx,2(V = 0). The co-
efficients a and b are given as

[
a
b

]
=

∫ ∞

0

dω

2π

∫
dq

(2π )2 h̄

[
ω

qx

]
h̄qx

kBT ′
2

nB(ω, T ′
2 )

× [nB(ω, T ′
2 ) + 1] τ1→2(ω, q;V = 0). (13)

The derivation of Eq. (13) assumes that there is no velocity
dependence of the transmission coefficient. The black dashed
lines in Fig. 2(a) show the radiative heat flux calculated by
the linear approximation in Eq. (12). The results agree very
well with the full calculation up to a velocity V ≈ 5 × 103

m/s, which is beyond the steady-state velocity. The linear
approximation of the shear stress also agrees well with the
full calculation as shown in Fig. 2(b). In [37], the coefficients
a and b are obtained in the operator form by generalizing
the linear response expressions of the radiative heat and shear
stress to the velocity of relative motion [44] for nonreciprocal
systems. Moreover, the coefficient b is derived in the linear
polarization basis in the electrostatic limit. Furthermore, the
Onsager theorem for fluctuational electrodynamics [44] was
used to show that the efficiency is bounded by the Carnot
efficiency as far as small perturbations of velocity and tem-
perature difference from the thermodynamic equilibrium are
concerned. Here, we provide the linear response expressions
in the linear polarization basis and show that they agree well
with the full calculations. By taking the electrostatic limit in
Eq. (13), the coefficient b should be identical to the friction
coefficient in [37]. Furthermore, the expressions Eq. (12) can
be applied to two objects at different temperatures.

The linear expansion of the radiative heat flux and shear
stress reveals the competing effects that lead to the maximum
thermodynamic efficiency seen in Fig. 2(c). Using Eq. (12),

this efficiency can be approximated up to the order of V 2 as

η ≈
(

f 0
x,2 − bV

)
V

ϕ0
1→2 − aV

≈ f 0
x,2

ϕ0
1→2

V − b

ϕ0
1→2

V 2 + f 0
x,2a(

ϕ0
1→2

)2 V 2.

(14)
For small velocities, the efficiency increases linearly with

respect to the velocity driven by the propulsion force, f 0
x,2,

due to the nonreciprocity of the slab materials. As the velocity
increases, the drag force component due to the exponential
change in the thermal emission from slab 2, i.e., bV , becomes
significant, which reduces the efficiency. While the efficiency
increases due to the decrease of the heat flux, the overall
effects from the terms with the quadratic velocity dependence
reduce the efficiency. As a result, the efficiency reaches the
maximum at the velocity around

V ≈ f 0
x,2

2
(

b − f 0
x,2a

ϕ0
1→2

) . (15)

The black dashed lines in Fig. 2(c) show the thermody-
namic efficiency calculated by Eq. (14) and show a good
agreement with the full calculation. We note that while the
linear approximation works very well in our heat engine,
the full calculation beyond the linear order and the velocity
dependence of the transmission coefficient is critical in the
operation of the system as a heat pump at high velocities as
we will show in the next section. Finally, we note that the
nonzero linear scaling of the radiative heat with respect to the
velocity can be considered as a signature of nonreciprocity.
When the two slabs are made of reciprocal materials, we can
show that, ϕ1→2 − ϕ0

1→2 ∝ V 2 (see SM [50]), in contrast to
the linear scaling ∝ V as seen for the nonreciprocal systems.

For the two source temperatures T1 = 305 K and T ′
2 =

300 K considered in this paper, the Carnot efficiency is
ηCarnot ≈ 0.016. The maximum efficiency shown in Fig. 2(c),
i.e., η = 8 × 10−4, is about 5% of the Carnot limit. To
understand the origin of the discrepancy between the two
efficiencies, we derive an ideal scenario where the heat engine
operates at Carnot efficiency. In our formalism, each fre-
quency is independent. Then, the Carnot efficiency of the heat
engine is achieved if and only if the heat engine achieves the
Carnot efficiency for each frequency. Since the operating ve-
locity of the heat engine is nonrelativistic, we assume γ = 1.
Also, we fix the frequency to be ω = ω0 > 0, and consider the
monochromatic thermodynamic efficiency η(ω0) = fx,2(ω0 )V

ϕ1→2(ω0 )
in the following argument.

By rewriting the integral over qx only in the positive region,
the radiative heat flux and the shear stress on slab 2 are
expressed as

ϕ1→2(ω0) =
∫ ∞

0

dqx

2π
h̄ω0

[ {nB(ω0, T1) − nB(ω0 − qxV, T ′
2 )}τ (qx )

+{nB(ω0, T1) − nB(ω0 + qxV, T ′
2 )}τ (−qx )

]
, (16)

fx,2(ω0) =
∫ ∞

0

dqx

2π
h̄qx

[ {nB(ω0, T1) − nB(ω0 − qxV, T ′
2 )}τ (qx )

−{nB(ω0, T1) − nB(ω0 + qxV, T ′
2 )}τ (−qx )

]
, (17)

where τ (qx ) = ∫ ∞
−∞

dqy

2π
τ (qx, qy;V ) and we omit V from the

argument to simplify the notation. Here we assume that slab 2

is allowed to move only along the x direction. This assumption
appears in the Doppler shift of the angular frequency in the
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occupation number. The waves with both positive and nega-
tive qx contribute to heat transfer from slab 1 to slab 2, but
the contribution to the shear stress on slab 2 from modes with
negative qx acts as a drag force and reduces the conversion
efficiency. This can be seen in the sign difference in front of
the second term in Eqs. (16) and (17), and since nB(ω0, T1) >

nB(ω0 + qxV, T ′
2 ) for T1 > T ′

2 in the nonrelativistic velocities.
Thus, to achieve ideal conversion efficiency from heat to me-
chanical work, the contributions from modes with negative
qx should be suppressed, i.e., we should set τ (−qx ) → 0 to
obtain the thermodynamic efficiency as

η(ω0) =
∫ ∞

0
dqx

2π
qxV

[
nB(ω0, T1) − nB

(
ω0 − qxV, T ′

2

)]
τ (qx )∫ ∞

0
dqx

2π
ω0

[
nB(ω0, T1) − nB

(
ω0 − qxV, T ′

2

)]
τ (qx )

.

(18)
To achieve the Carnot efficiency, we assume that for the an-

gular frequency ω0, only modes with single qx0 are supported.
In this case, Eq. (18) simplifies to

η(ω0) = qx0V

ω0
. (19)

Thus, the efficiency linearly increases with V . The critical
velocity VC where the system reaches steady state can be
obtained by setting nB(ω0, T1) = nB(ω0 − qx0V, T ′

2 ), which
results in

Vc = ω0

qx0

(
1 − T ′

2

T1

)
. (20)

As V → Vc, the heat engine approaches the Carnot ef-
ficiency η(ω0) → 1−T ′

2/T1. Note, however, that the power
output approaches zero as the velocity reaches the critical
velocity as expected for a Carnot engine.

In the derivation above we show how to achieve Carnot
efficiency from heat transfer at a single frequency ω0. To
achieve the Carnot efficiency over a broad range of frequen-
cies, the critical velocity Vc as determined in Eq. (20) must be
independent of ω0. Thus, the required dispersion is

ω = Vc

1 − T ′
2

T1

qx, with qx > 0 (21)

and no waves in the opposite direction qx < 0. Thus, the
discrepancy between the achievable efficiency in using n-InSb
shown in Fig. 2(c) and the Carnot limit can be translated to
the deviation of the supported modes, e.g., as in Fig. 3(b) for
q = (qx, 0), from the ideal dispersion in Eq. (21).

IV. HEAT PUMP

In the operation of the heat engine, the velocity of relative
motion eventually reaches a steady state at which the output
work is zero. In this section, we consider the situation where
external work is applied on slab 2 to further increase the veloc-
ity beyond the steady-state velocity. In this case, the external
work provides energy input to the system by operating against
the drag force. As the velocity increases, the thermal emission
from slab 2 is enhanced, which results in enhanced energy
transfer from slab 2 to slab 1. At sufficiently high velocity,
we show that the radiative heat flows from slab 2 at a lower
proper temperature to slab 1 at a higher proper temperature.
Hence, the system operates as a photonic heat pump that

utilizes external mechanical work to pump from a lower- to
a higher-temperature object.

We consider the system under external work as shown
in Fig. 1(b). We first provide an intuitive explanation of
the mechanism of the photonic heat pump by considering
an electromagnetic mode with ω and q = (qx, 0). When
slab 2 is moving at the relative velocity V in the posi-
tive x direction, the net radiative heat flux from slab 1 to
slab 2 due to the modes with qx > 0 satisfies ϕ1→2(qx ) ∝
h̄ω[nB(ω, T1) − nB(γ (ω − qxV ), T ′

2 )]τ (qx;V ). As we dis-
cussed in the previous section, the increasing velocity of
slab 2 induces the exponential enhancement of the thermal
emission due to this mode from slab 2 for the observer in
the rest frame. When the velocity is sufficiently high, the
net radiative heat flux from these modes flows from slab 2
to slab 1 even when T1 > T ′

2 and hence ϕ1→2(qx ) < 0. The
electromagnetic modes that contribute to cooling must have
nB(ω, T1) < nB(γ (ω − qxV ), T ′

2 ), and thus must have the dis-
persion relation satisfying the constraint

ω <
V

1 − T ′
2

γ T1

qx ≈ c
T1

T1 − T ′
2

V

c
qx. (22)

For nonrelativistic velocities, the constraint in Eq. (22) im-
plies that ω � cqx and thus requires a dispersion relation that
lies outside the light cone. Therefore, the near-field radiative
heat transfer is critical in order to achieve the heat pump.

For the modes with qx < 0, the radiative heat flux is
ϕ1→2(−|qx|) ∝ h̄ω[nB(ω, T1) − nB(γ (ω + |qx|V ), T ′

2 )] ×
τ (−|qx|;V ). When T1 > T ′

2 , these modes contribute
to heating only. Therefore, to achieve cooling after
integrating contributions from all modes, it is also required
that the transmission coefficient exhibits strong enough
nonreciprocity τ (qx;V ) � τ (−qx;V ).

Based on the discussion above, two conditions are required
to achieve cooling at nonrelativistic velocities. First, two slabs
must support the electromagnetic modes whose dispersions
satisfy the constraints of Eq. (22). This can be achieved by the
coupled surface modes in the near field. Second, considering
that the total radiative heat flux is integral over the frequency
and wave-vector spaces, the surface modes that satisfy the
dispersion Eq. (22), which contribute to cooling, must dom-
inate over the other modes that contribute to heating. This is
achieved by the nonreciprocity that allows strong directional
surface modes.

Figure 4(a) and 4(b) show the radiative heat flux from slab
1 to slab 2 and the shear stress on slab 2, respectively, for
the same materials and temperatures as the heat engine in
Fig. 2, but in a range of higher velocity. The shear stress on
slab 2 is negative and external work needs to be applied in
order to move slab 2 at such velocities. In the absence of
the external magnetic field, the radiative heat flux becomes
negative for the velocity greater than 105 m/s, where the heat
flows from slab 2 at a lower proper temperature to slab 1 at
a higher proper temperature. This shows that structures made
of reciprocal material can operate as a heat pump due to the
nonreciprocal wave propagations as induced by the Doppler
effect. With reciprocal materials, the heat pump cannot occur
at nonrelativistic velocities if the velocity dependence of the
transmission coefficient is ignored because the heating from
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FIG. 4. (a) Radiative heat flux from slab 1 to slab 2, (b) shear
stress on slab 2, and (c) coefficient of performance of the heat
pump as a function of the velocity of relative motion. The physical
parameters are the same as those in Fig. 2. The dash-dotted line in
panel (a) describes ϕ1→2 = 0. The COP is only defined for the region
of ϕ1→2 < 0 where the system operates as the heat pump. The black
dashed line in panel (a) represents the radiative heat flux from the
modes with ω′ < 0 only.

the modes with qx > 0 always overcomes the cooling from
the modes with qx < 0. Hence, the velocity dependence of the
transmission coefficient is essential in the heat pump regime
when reciprocal materials are used. The application of the
external static magnetic fields can lower the velocity at which
the cooling occurs; with the presence of antiparallel magnetic
fields of 6 T, the onset of the cooling occurs at a velocity
of V ≈ 2 × 104 m/s, which is almost an order of magnitude
lower as compared with that without the magnetic fields.
Comparing the cases of B1 = B2 = 0 T and B1 = −B2 = 3
T, the greater amount of radiative heat can be pumped by
applying less amount of external mechanical work when the
velocity is below V = 4.5 × 105 m/s. This shows that the
nonreciprocal materials can enhance the performance of the
heat pump. The magnitude of pumped radiative heat further

FIG. 5. Spectral radiative heat flux between two slabs under
antiparallel static magnetic fields of 3 T for different velocities of
relative motion. The other physical parameters are the same as those
in Fig. 2.

increases under B1 = −B2 = 6 T while the shear stress ex-
hibits a moderate change compared to the cases of B1 =
B2 = 0 T and B1 = −B2 = 3 T. As a result, the heat pump
performance further increases with increasing magnetic fields.
Figure 4(c) shows the COP defined in Eq. (9). The onset of the
heat pump operation at lower velocities and the enhancement
of the performance by the external magnetic fields can be
clearly seen.

Figure 5 shows the spectral radiative heat flux for different
velocities under the application of the antiparallel external
magnetic fields of 3T. To understand the evolution of the
spectral radiative heat flux as the velocity increases, Figs. 6(a)
and 6(b) show the transmission coefficients and Figs. 6(c) and
6(d) show the spectral radiative heat flux for the modes with
q = (qx, 0) and for the two different velocities in the case
of B1 = −B2 = 3 T. For other modes with nonzero qy, the
qualitative characteristics of the transmission coefficient are
similar (see SM [50]). As discussed in Sec. II, the increase
of the velocity reduces the net radiative heat flux from slab
1 to slab 2 due to the exponential change of the emission
from slab 2. For the waves with dispersions that satisfy the
constraint in Eq. (22), the exponential enhancement of thermal
emission from slab 2 exceeds the thermal emission from slab
1, resulting in the net negative radiative heat flux and con-
tributing to cooling. In Figs. 6(c) and 6(d), the right-hand side
of Eq. (22) is plotted as the “cooling line.” Any mode that lies
below the cooling line contributes to cooling. As shown in
Fig. 6(c), at V = 104 m/s, the large part of the coupled surface
plasmon modes around ω = 1.9 × 1013 rad/s, which has qx >

0 and qy = 0, lies below the cooling line. Moreover, there are
no surface modes near this frequency with qx < 0 due to non-
reciprocity. Thus, there is a significant contribution to cooling
from these modes at qy = 0. For the other waves with nonzero
qy, the net contribution to cooling is smaller due to the smaller
portion of the surface waves that contribute to cooling. But the
net cooling contribution persists after integrating over all qy.
As a result, the radiative heat flux at around ω = 1.9 × 1013

rad/s is net negative as shown in Fig. 5. For the coupled sur-
face phonon polariton modes at around ω = 3.8 × 1013 rad/s,
the cooling line intersects with its dispersion relation. Thus,
the magnitudes of their contributions to heating and cooling
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FIG. 6. (a, b) Plot of the transmission coefficient τ as a function of the frequency ω and x component of the wave vector qx at
V = 104 and 1.5 × 105 m/s, respectively. (c, d) Plot of mode-resolved radiative heat flux ϕ̃1→2(ω, qx, qy = 0) defined in the caption
of Fig. 3. The unit is [10−15 W·s

rad ]. The physical parameters are the same as those in Fig. 2. The black lines in panels (c) and (d)
are the constraint for cooling in Eq. (22). The dashed line in panel (d) is the line below which the angular frequency in the co-
moving frame is negative, i.e., ω′ < 0. The white dashed lines are the solutions of the dispersion relation Eq. (23) in the lossless
limit.

are similar, resulting in the small radiative heat flux at V =
104 m/s as shown in Fig. 5. The coupled surface plasmon
modes at around ω = 4.6 × 1013 rad/s mostly have qx < 0.
Thus, the net radiative heat flux from slab 1 to slab 2 is
enhanced due to the exponential suppression of thermal emis-
sion from slab 2. As a result, the spectral radiative heat flux
increases at V = 104 m/s compared to that at rest. At V = 104

m/s, while the spectral radiative heat flux at the lower fre-
quencies contributes to cooling, the overall radiative heat flux
still flows from slab 1 to slab 2. However, the magnitude of
radiative heat flux from slab 1 to slab 2 at V = 104 m/s is
suppressed to almost half of that at rest.

As the velocity of relative motion further increases to V =
1.5 × 105 m/s at which the COP reaches the maximum, the
magnitude of the negative radiative heat flux from the modes
below the cooling line further increases as shown in Fig. 6(d).
At this velocity, the negative radiative heat flux dominates
over the positive radiative heat flux even after integrating over
the frequency and wave-vector space, which results in the
heat pump as discussed in Fig. 4(a). Furthermore, Fig. 6(d)
shows that the dominant contribution to cooling arises from
the coupling between the surface plasmon and surface phonon
polariton modes at around ω = 3.8 × 1013 rad/s and qx =
2 × 108 m−1 due to the Doppler shift of the surface plasmon
modes, which will be discussed in detail below. The contri-
bution from this coupled mode appears as a strong peak in
Fig. 5.

Another observation from Fig. 6 is the strong modification
of the dispersion relation of the surface modes compared with
the case of V = 0 shown in Figs. 3(b) and 3(d). In Fig. 6(d),
the dispersion of the surface waves for qx > 0 and qx < 0
shows upward and downward tilting, respectively, due mostly
to the Doppler shift of the angular frequency. Suppose that the
resonance condition of a surface wave on slab 1 is satisfied
in the rest frame, i.e., for a given qx, ω = f (qx ), where f is
the dispersion of the surface wave. In the comoving frame, the
same surface mode is supported on the surface of slab 2, i.e.,
ω′ = f (q′

x ). When observing this surface wave from the rest
frame, the Lorentz transformation of the frequency and wave
vector results in the surface wave supported at the interface
of the moving slab as ω ≈ qxV + f (qx ). Thus, the dispersion
curve shows upward or downward tilting by qxV depending on
the sign of qx. The Lorentz transformation of the frequency is
the effect of Doppler shift. This Doppler shift of the angular
frequency results in the off resonance of the two surface waves
that are in resonance at rest. The decoupling of the surface
waves typically causes a smaller transmission coefficient at
the original resonant frequency and instead the transmission
coefficient spreads over a wider frequency range around the
original resonant frequency. Interestingly, the opposite can
happen at high velocities. At high velocities, two surface
modes supported on two slabs that are off resonance in the
absence of the relative motion can be brought into resonance
in the presence of the relative motion. To show this clearly, the
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dispersion of the surface waves supported between the two
slabs at relative motion with nonrelativistic velocities is de-
rived (see SM [50] for derivation) for the Voigt configuration
[57] where the wave vector q = (qx, 0) is perpendicular to the
magnetic field as[

−ω′

ω
+ 1

ε
(1)
V ε

(2)
V

(
ε(2)

xz

ε
(2)
xx

qx

kz
+ i
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2
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)(
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(
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κ ′
2
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)

+ ω′

ω

1

ε
(1)
V

(
ε(1)

xz

ε
(1)
xx

qx

kz
− i

κ1

kz

)
= 0, (23)

where κ1 =
√

q2
x−ε

(1)
V k2

0 , κ ′
2 =

√
q2

x−ε
(2)
V k′

0
2, kz =

√
k2

0−q2
x ,

and ε
(i)
V = ε(i)

zz + (ε(i)
xz )2

/ε(i)
zz i = 1, 2 where the subscripts

stand for the elements of the dielectric function tensor. For
slab 2, the dielectric functions are evaluated in the comoving
frame, i.e., ε(2)

zz = ε(2)
zz (ω′), ε(2)

xz = ε(2)
xz (ω′). The solutions of

Eq. (23) in the lossless limit are plotted in Fig. 6 by the
white dotted lines for the region where ω′ > 0. The dispersion
relation Eq. (23) reproduces the velocity dependence of the
surface waves by the full calculations very well. In Fig. 6(d),
the dispersion curve Eq. (23) clearly shows that the surface
plasmon modes that are blue-shifted due to the Doppler effect
come into resonance with the surface phonon polariton modes
at around ω = 3.8 × 1013 rad/s. Although the transmission
coefficient as a result of the resonance is moderate, i.e., τ ≈
0.15, the modes are supported at the high in-plane momentum.
As a result, the contribution to the radiative heat flux becomes
significant as we discussed in Fig. 5. Note however that such
modes are supported at the high in-plane momentum, and the
incorporation of nonlocal effects into our dielectric function
models can suppress the resonance. Nevertheless, this result
shows that the Doppler shift can provide an additional control
knob to engineer two off-resonant modes into resonance. We
also note that the photonic heat pump can occur without this
coincidental resonance. In fact, the heat pump can be achieved
by magnetized plasma by turning off the contribution from the
phonon polaritons, i.e., εph = 0 (see SM [50]).

Finally, we emphasize that the heat pump does not re-
quire electromagnetic modes with negative frequencies in
the comoving frame, i.e., ω′ < 0. In such regimes, from the
viewpoint of the observer in the rest frame, the moving slab
behaves as a gain material. In general, the modes with ω′ < 0
contribute to the cooling since nB(ω′, T ′

2 )τ1→2 > 0. The black
dashed line in Fig. 6(d) sets the boundary below which the
frequency in the comoving frame becomes negative. One can
see that all relevant electromagnetic modes contributing to the
heat pump exist in the positive frequency domain. However,
as the relative velocity increases further the significant contri-
bution comes from the modes with negative frequencies in the
comoving frame. The contribution of the modes with ω′ < 0
to the radiative heat flux under the antiparallel magnetic fields
of 3 T is shown in Fig. 4(a). At V = 1.5 × 105 m/s where the
maximum COP is achieved, the contribution from the negative
frequency modes is less than 10% of the total radiative heat
flux and even less at lower velocities. Thus, those modes

are not required to achieve the heat pump. As the velocity
increases, the contribution to the radiative heat flux from the
modes with ω′ < 0 becomes dominant.

V. RELATIVISTIC THERMODYNAMIC EFFICIENCY

The thermodynamic efficiency of the heat engine consid-
ered in this paper is defined as Eq. (9). For situations where
the velocity of relative motion is nonrelativistic, i.e., γ ≈ 1,
we showed that such definition of the thermodynamic effi-
ciency of the heat engine approaches the Carnot efficiency
1− T ′

2
T1

when the electromagnetic modes satisfy the dispersion
in Eq. (21). In principle, we can conceive of a heat engine
where two slabs are in relative motion at relativistic velocities.
For such systems, as we will show below, the efficiency as
defined in Eq. (9) is problematic. For the observer in the rest
frame, this definition leads to the efficiency limit of 1− T ′

2
γ T1

. On
the other hand, for the observer in the comoving frame, it leads
to the limit of 1− γ T ′

2
T1

. Therefore, this definition results in the
thermodynamic limit that depends on the frame of reference.
This indicates that in some inertial frame, the efficiency limit
is higher than what one may define as the sensible definition of
the Carnot efficiency 1− T ′

2
T1

. Moreover, in the limit of V → c,
it indicates that the perfect conversion of heat into work is
possible in the rest frame since γ → ∞.

The difficulty of the efficiency definition in Eq. (9) orig-
inates from the definition of fx,2V as the useful work in our
system, which does not take the relativity effects into account.
It was pointed out that with different choices of the forms
of useful work, the relativistic Carnot efficiency in the rest
frame can take different forms η = 1− γ aT ′

2
T1

where a = 0,±1
[58]. Thus, the problem is also closely related to the Lorentz
transformation of the temperature of the moving material
T2 = T ′

2γ a where T2 is the temperature of the moving material
in the rest frame, which has been a topic of discussion for
decades and remains to be answered [59].

In this section, our purpose is to derive the expression
of relativistic thermodynamic efficiency for our system that
considers the relativistic effects. We focus on the operation of
the system as a heat engine to derive the relativistic thermody-
namic efficiency, but a similar argument should follow for the
operation as a heat pump. First, we show that the efficiency
bound based on the nonrelativistic thermodynamic expression
Eq. (9) depends on the frame of reference in the relativistic
regime. Adopting the viewpoint of Landsberg and Johns [58]
that the Carnot limit should not depend on the choice of a
particular reference frame, we discuss two contributions as
nonextractable work by using the relativistic thermodynamics
[60]. By considering these contributions to the definition of
useful work, we derive the relativistic thermodynamic effi-
ciency and show that it is bounded by the Carnot efficiency
which is independent of the frame of reference.

First, we can prove the following identity (see detailed
derivation in SM [50]):

T1 fx,2V �
∣∣∣∣T1 − T ′

2

γ

∣∣∣∣sgn

(
T1 − T ′

2

γ

)
ϕ1→2. (24)

By applying Eq. (24) to the expressions of the conven-
tional thermodynamic efficiency of Eq. (9), we can find the
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FIG. 7. (a) Application of the first law of relativistic thermody-
namics on the control volume enclosed by the dashed line. slab 2
is hypothetically separated into the engine and heat sink, both of
which are moving at the velocity V . (b) The evolution of the energy
of slab 2 and the work done to slab 2 for acceleration Wa and the work
extracted by decelerating slab 2 Wd . For both panels, we consider the
observer is in the rest frame with slab 1.

efficiency bound as

η =
⎧⎨
⎩

fx,2V
ϕ̂1→2

� 1 − T ′
2

γ T1
if T1 >

T ′
2
γ

fx,2V
ϕ̂1→2+ fx,2V � 1 − γ T1

T ′
2

if T1 <
T ′

2
γ

, (25)

where ϕ̂1→2 = sgn(T1− T ′
2
γ

)ϕ1→2 and this definition is mean-
ingful only if fx,2V � 0. Thus, the conventional thermody-
namic efficiency expression in Eq. (25) leads to the bound that
depends on the frame of reference due to the dependence on
the Lorentz factor γ .

The contribution that cannot be extracted as useful work
originates from the change of momentum of slab 2 as a re-
sult of heat transfer. In relativistic mechanics, the changes of
energy and momentum are directly related. In the rest frame,
the x component of the momentum of a moving body at the
velocity V in the x direction is related to its energy E by
Gx = E

c2 V . To identify the part of work that is nonextractable,
we separate slab 2 into a hypothetical engine connected to an
infinitely large heat sink at T ′

2 . Both the hypothetical engine
as well as the heat sink move at the velocity V as shown in
Fig. 7(a). We consider the control volume with the surface
area dA = dxdy on the xy plane that encloses the engine. For
this control volume, we consider the first law of relativistic
thermodynamics from the viewpoint of an observer in the rest
frame [60]:

dE = δQ + δW + V dGx. (26)

This relativistic first law of thermodynamics dictates that
the energy change dE of the control volume is due to the heat
input to the control volume, δQ, the work done to the control
volume, δW , and the change of the momentum associated with
the heat transferred to the control volume, V dGx. We apply
Eq. (26) to one cycle of the heat engine and we denote the
period as �t . The heat transferred to the control volume is
δQ

A�t = ϕ1→2 where A is a surface area of the control volume
measured in the rest frame. The work done to the control vol-
ume is δW

A�t = − fx,2V . The contribution to the energy change
due to the change of the momentum is V dGx

A�t = β2 dE
A�t . In the

operation of a heat engine, the system must return to the same
thermodynamic state as the initial state after one cycle. In
relativistic thermodynamics, it means that the system must

retain not only the same energy but also the same momentum
after one cycle. Thus, in order to keep the momentum of the
moving medium unchanged after one cycle, the amount β2 dE

A�t
has to be rejected to the heat sink and cannot be used as useful
work. The energy change of the control volume after one cycle
is given from Eq. (26) as

dE

A�t
= γ 2(ϕ1→2 − fx,2V ) = γ ϕ′

1→2. (27)

Subtracting the nonextractable work β2 dE
A�t from fx,2V , we

have the net useful work from the engine as

W1 = fx,2V − γ 2β2(ϕ1→2 − fx,2V ). (28)

Another way to interpret Eq. (28) is that the total energy
change in the control volume after one cycle must be zero.
Thus, the amount of energy given in Eq. (27) must flow into
the heat sink to keep the momentum unchanged. Then, the
useful work is given as W1 = ϕ1→2 − γ ϕ′

1→2, which is the
same result as Eq. (28).

The other missing contribution in Eq. (25) is the additional
work that can be extracted as a result of the energy increase
of slab 2 after one cycle. Consider the operation of the heat
engine from the state where the two slabs are at rest. To
operate the heat engine at finite velocity V , we need work to
accelerate slab 2. In our heat engine, this work is provided
by the propulsion force driven by the nonequilibrium lateral
Casimir force. After the operation of the heat engine at the
velocity V, we decelerate slab 2 until the two slabs are at
rest. Under the adiabatic approximation for the acceleration
and deceleration, the amount of work required for the two
processes is given as the differences in the kinetic energies.
In nonrelativistic physics, the works required for the two
processes are the same because the mass of slab 2 is invariant
before and after the operation of the heat engine. However, in
the relativistic cases, the work done by slab 2 in the decelera-
tion is greater than the work done to slab 2 to accelerate due
to the energy increase of slab 2 after the acceleration process.
In principle, this difference between the two can be extracted
as useful work.

To estimate the portion of the work, we consider operat-
ing the heat engine from the slabs at rest and determine the
amount of work necessary to accelerate slab 2 to the velocity
at which we operate the heat engine and decelerate it back
to rest after the operation of the heat engine as shown in
Fig. 7(b). We consider the adiabatic acceleration and deceler-
ation of slab 2 from the point of the observer in the rest frame.
Then, the work required to accelerate slab 2 to the velocity V
is given by the energy difference Wa = (γ−1)E where E is
the energy of slab 2 at rest. During the operation of the heat
engine over the time period �t , the increase of the energy
of slab 2 evaluated in the comoving frame is ϕ′

1→2A′�t ′ =
ϕ′

1→2A�t where we used A�t = A′�t ′, which results from
the fact that the number of photons is Lorentz invariant. Thus,
the work that can be extracted by decelerating slab 2 to rest
is given as Wd = (γ−1)(E + ϕ′

1→2A�t ). This is greater than
the work required for the acceleration process. Then, the
net mechanical work that can be extracted is given as the
difference between them as Wd − Wa = (γ−1)ϕ′

1→2A�t =
γ (γ−1)(ϕ1→2 − fx,2V )A�t where we used Eq. (8). Thus, the
portion of the work per unit area per cycle contributed by the
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mechanical energy of slab 2 is given as

W2 = γ (γ − 1)(ϕ1→2 − fx,2V ), (29)

which needs to be added to the useful work.
Overall, the amount of useful work per unit area per second

is

Wnet = W1 + W2 = fx,2V − γ 2β2(ϕ1→2 − fx,2V )

+ γ (γ − 1)(ϕ1→2 − fx,2V ). (30)

And the relativistic thermodynamic efficiency for T1 >
T ′

2
γ

is given as

ηrel = Wnet

ϕ1→2
= γ fx,2V − (γ − 1)ϕ1→2

ϕ1→2
. (31)

In the nonrelativistic limit, Eq. (31) goes back to the con-
ventional nonrelativistic thermodynamic efficiency. By using
the efficiency bound Eq. (25), we find that the relativistic
thermodynamic efficiency is bounded by the Carnot efficiency
that is independent of the frame of reference:

ηrel � 1 − T ′
2

T1
. (32)

The appreciable difference between the relativistic ther-
modynamic efficiency and the nonrelativistic one is observed
when the velocity of relative motion is a sizable fraction of the
speed of light.

VI. CONCLUSIONS

In summary, we studied a system consisting of two semi-
infinite parallel slabs with different temperatures as a photonic
heat engine driven by nonequilibrium lateral Casimir forces.
To analyze the system, we formulated the radiative heat flux
and shear stress between two nonmagnetic slabs with general
dielectric function tensors that are moving relative to each
other at arbitrary velocities. For the photonic heat engine to
self-start, one of the materials must break Lorentz reciprocity
and we considered n-InSb under static external magnetic
fields. The Doppler effect of the angular frequency causes
the exponential change of the thermal photon number emitted

from the moving slab as the velocity increases. We revealed
that such exponential change plays the essential role for the
moving slab to reach the steady-state velocity. This insight
leads to the linear approximation of the radiative heat flux
and shear stress that agreed well with the full calculations.
Furthermore, we showed the ideal frequency dispersion with
which the photonic heat engine achieves Carnot efficiency
requires truly one-way propagations.

We also showed that this system operates as a photonic
heat pump if a sufficiently high velocity of relative motion
is realized by external work. We showed that a photonic heat
pump does not require external magnetic fields due to non-
reciprocal wave propagations induced by the relative motion.
Nevertheless, the use of nonreciprocal materials by the appli-
cation of static external magnetic fields can further reduce the
required velocity of relative motion and enhance the perfor-
mance of the heat pump. Our calculations indicated that the
dispersion relation of the surface modes is strongly altered at
high velocities of relative motion and brings two off-resonant
surface modes at rest into resonance in the presence of relative
motion. Finally, we considered operating the heat engine at
relativistic velocities and derived the relativistic thermody-
namic efficiency of the photonic heat engine and pump. We
showed that the efficiency is bounded by the Carnot efficiency
that is independent of the frame of reference. Regarding the
experimental feasibility of our system, Srituravanich et al.
demonstrated a flying plasmonic lens at a speed of 12 m/s with
a distance of 20 nm away from a surface [61]. In our paper, we
have assumed a speed that is about two orders of magnitude
higher. Further optimization of the dispersion relation of the
slab structures may lead to a lower speed requirement.

Our results point to a way of thermal energy harvesting
and cooling by nonequilibrium Casimir forces enabled by
breaking Lorentz reciprocity.
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