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Spin relaxation, diffusion, and Edelstein effect in chiral metal surface
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We study electron spin transport at the spin-splitting surface of chiral-crystalline-structured metals and
the Edelstein effect at the interface, by using the Boltzmann transport equation beyond the relaxation time
approximation. We first define spin relaxation time and spin diffusion length for two-dimensional systems
with anisotropic spin-orbit coupling through the spectrum of the integral kernel in the collision integral. We
then explicitly take account of the interface between the chiral metal and a nonmagnetic metal with finite
thickness. For this composite system, we derive analytical expressions for efficiency of the charge current–spin
current interconversion as well as other coefficients found in the Edelstein effect. We also develop the Onsager
reciprocity in the Edelstein effect along with experiments so that it relates local input and output, which are
respectively defined in the regions separated by the interface. We finally provide a transfer matrix corresponding
to the Edelstein effect through the interface, with which we can easily represent the Onsager reciprocity as well
as the charge-spin conversion efficiencies we have obtained. We confirm the validity of the Boltzmann transport
equation in the present system starting from the Keldysh formalism in supplemental material. Our formulation
also applies to the Rashba model and other spin-splitting systems.
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I. INTRODUCTION

Over the last three decades, there has been considerable
interest in spin generation, spin detection, and spin trans-
port in surfaces, interfaces, and noncentrosymmetric crystal
structures. One of the well-studied phenomena in this field is
charge-spin interconversion by the Edelstein effect (EE) [1–3]
and its reciprocal effect, i.e., the inverse Edelstein effect (IEE)
[4,5]. They have been explored both theoretically [6–9] and
experimentally at the Rashba spin-splitting surface [10–12]
or topological insulator surfaces [13,14], where spin and mo-
mentum are perpendicularly coupled.

Recently, current-induced magnetization and its inverse
effect have been observed in chiral-crystalline-structured met-
als, bringing a new perspective to the field of spin transport.
Experiments on the paramagnetic phase in a chiral metal
CrNb3S6 [15,16] and nonmagnetic chiral metals TaSi2 and
NbSi2 [17,18] with the D6 (622) point group display parallel
coupling of charge current and spin polarization in the direc-
tion of the principal axis, associated with an external electric
field or spin current injection to the metals. The relative sign
of the current and polarization depends on the chirality of the
metal, which makes sure that the observed effects are unique
to the chiral crystalline structure [19].

The parallel current-induced magnetization, allowed in
chiral systems [20,21], may be understood based on a mi-
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croscopic spin-orbit coupling (SOC), which includes parallel
coupling of spin and momentum around the � point [22].
However, there are two distinctive features within spin polar-
ization in the chiral metals: high efficiency of the charge-spin
conversion and long-range spin transport. They make this
effect intriguing but challenging from a theoretical standpoint.
For the former feature, the current-induced magnetization is
reported to be so large [16] that the spin polarization has
been detected simply by attaching nonmagnetic metals onto
the surface of chiral metals [15,17,18]. That process has been
phenomenologically explained as a spin diffusion across the
interface. Such a large polarization is not shown in elemen-
tal tellurium [20,23], and may be characteristic to the chiral
metals. For the latter feature, the chiral metals are reported to
have robust spin polarization, which persists over millimeters
even in the absence of net charge current. That length scale is
much longer than typical spin diffusion length in metals, and
the origin of such nonlocality is still under discussion [24,25].

With these backgrounds, highly required is a theoretical
scheme (a) having a firm basis and (b) capable of dealing
with nonlocal spin transport in the presence of anisotropic
SOC as well as (c) the charge-spin interconversion through
an interface between a chiral metal and nonmagnetic achiral
metal with finite thickness. We aim to present a prototypical
model satisfying those conditions.

In this paper, we study spin and charge transports in two-
dimensional (2D) metals with an anisotropic SOC with weak
disorder due to nonmagnetic impurities in Sec. II [Fig. 1(a)]
and spin transport between this 2D system, and a three-
dimensional nonmagnetic metal with a finite thickness in
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FIG. 1. Schematic pictures of temporal spin relaxation and spa-
tial spin diffusion [(a)] at the chiral metal surface, direct Edelstein
effect [(b)], inverse Edelstein effect [(c)] across the interface, and
radial spin texture of the Fermi contours at the surface [(d)]. Ar-
rows denote spin polarization. (d) The spin-orbit coupling is set to
be isotropic (left) and anisotropic (right, δ = π/64) with the same
strength of SOC α/vF h̄ = 0.6.

Sec. III [Figs. 1(b), 1(c)]. The 2D systems can be regarded
as a chiral metal surface, a mimic of three-dimensional chiral
metals, or an equivalent to the Rashba system or a Rashba-
Dresselhaus system via 90-degree rotation in spin space. We
model the interface as a tunnel junction with a nonmag-
netic bulk metal that follows the spin diffusion equation [26]
(Sec. III A). We make full use of the Boltzmann transport
equation (BTE) beyond the relaxation time approximation,
which provides accurate transport properties when the 2D
electron system at the surface is clean enough or spin splitting
caused by SOC is large enough [27]. That is just the case when
the Edelstein effect becomes evident. Derivation of the BTE
based on the Keldysh formalism is given in Sec. S4 of the
Supplemental Material [27] (see, also, Refs. [28–39] therein).

Our contributions are threefold: (i) We have defined spin
diffusion length for each spin component and diffusion direc-
tion in the chiral metal surface, as well as spin relaxation time

for each spin component (Secs. II B and II C). Our definition
does not rely on spin-dependent chemical potential, which
is conventionally employed but is ill-defined under strong
SOC. We have also clarified how these spin relaxation time
and diffusion length depend on the anisotropy of the SOC,
since some chiral crystals have strongly anisotropic SOC,
such as elemental tellurium [23]. (ii) We have obtained ana-
lytical expressions for the conversion efficiencies at the chiral
metal interface, from charge current to spin current, and vice
versa (Sec. III B). Here in accordance with the spin-current-
injection experiment, we take account of a finite thickness of
the three-dimensional (3D) nonmagnetic metal and consider
the spin current density at an edge of the 3D metal as a
controllable parameter. Such a realistic description has been
done by this study, in contrast to previous theoretical studies
on the EE and IEE [5,8,9]. The Rashba-Edelstein effect at
interfaces also follows our analytical results, which practically
supports a phenomenological model proposed by Ref. [40].
(iii) We have developed the Onsager reciprocity between the
EE and IEE, originally given by Ref. [5] at a surface, to the
interface system (Sec. III C). Along with experiments, the
reciprocity we found relates local input and output, which
are defined in the regions separated by the interface. The
reciprocity as well as the charge-spin conversion efficiencies
are finally summarized in terms of a transfer matrix method,
which reflects the nature of the composite systems.

II. SPIN TRANSPORT IN CHIRAL METAL SURFACE

A. Formulation for the surface

We start with a two-band effective model for electrons in
the chiral metal surface

H2D(k) = h̄2
(
k2

z + k2
x

)
2m

+ HSO, (1)

with z, x axes in the surface plane. The second term of SOC is
described as

HSO = α‖kzσz + α⊥kxσx = g(k) · σ, (2)

with two SOC parameters (α‖, α⊥) = (α cos δ, α sin δ), stand-
ing for its strength α and anisotropy δ. We here put the
momentum k = (kz, kx ) = (k cos θ, k sin θ ) and spin denoted
by Pauli matrices σ = (σz, σx ).

The SOC model we provide in Eq. (1) is suitable for
describing slowly varying spin polarization in the 2D sys-
tem, i.e., spin relaxation time much longer than momentum
relaxation time and spin diffusion length much longer than
mean free path. Indeed, if we take anisotropic limit δ → 0 or
δ → π/2, spin σz or σx becomes a pseudoconserved quantity,
which leads to almost-constant spin polarization in the chiral
metal surface. We thus write the SOC term HSO with two
different parameters (α‖ and α⊥), while we assume the kinetic
energy part to be isotropic for simplicity.

That parallel coupling of spin and momentum (2) is de-
signed to simulate the observed spin polarization at the
surface of the chiral metals that is parallel to charge current
[15,17,18]. That parallel coupling terms may result from the
bulk inversion asymmetry of the chiral-crystalline structure,
in the same manner as the Dresselhaus SOC in zinc blende
structure reflected in SOC at the interface [41,42]; that SOC
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is obtained after we eliminate the freedom of motion along
the y axis normal to the surface from the hedgehog-like SOC
α‖kzσz + α⊥(kxσx + kyσy) around the � point in the bulk
chiral metals with the D6 (622) point group [22]. The spin
splitting due to the hedgehog-like SOC in TaSi2 and NbSi2
has been observed by de Haas–van Alphen measurements
[43]. The microscopic origin of the hedgehog-like SOC in the
bulk of chiral crystals has recently been revealed in terms of
atomic-scale multipoles [44].

The surface model may also require the Rashba SOC [45]
and other SOC terms due to the structural inversion asymme-
try, but the whole SOC in that case is also reduced to the same
expression as Eq. (2) under appropriate rotations (Sec. S1 of
the Supplemental Material [27]). In particular, simple Rashba
SOC corresponds to an isotropic case of that coupling (2)
α‖ = α⊥ = α/

√
2; the Rashba model is obtained after we

rotate the spin by 90 degrees while leaving the momentum
space unchanged [46].

The vector g(k), written in polar coordinates as

g(k) = |g(k)| · ĝ(k) ≡ �(k)

2
(cos 	(k), sin 	(k)), (3)

serves as an effective magnetic field in the momentum space.
Spin-degenerated states are then lifted into two bands

ε(k,±) = h̄2k2

2m
± �(k)

2
, (4)

with band indices γ = +,−. The spin-splitting energy is ac-
cordingly �(k). The spin wave function for the state (k, γ ) is
expressed in the basis of eigenstates of spin σz as

|k,+〉 = cos
	(k)

2
|k,↑〉 + sin

	(k)

2
|k,↓〉 , (5a)

|k,−〉 = sin
	(k)

2
|k,↑〉 − cos

	(k)

2
|k,↓〉 , (5b)

which has spin polarization in S(k, γ ) ≡ 〈k, γ |σ|k, γ 〉 = γ ·
ĝ(k). As a result, a hedgehog spin texture is formed on Fermi
contours at Fermi energy εF = ε(k, γ ) > 0 [Fig. 1(d)]. The
radii of the Fermi contours can be typically measured by
kF ≡ √

2mεF/h̄, but are modulated for each band γ = ± and
direction θ . In the highly anisotropic SOC case when δ → 0 or
π/2, the whole spin texture tends to face in the same direction,
and that component of spin becomes nearly conserved.

The BTE for the 2D electron system is given by

∂ f

∂t
+ v · ∂ f

∂r
+ (−e)E

h̄
· ∂ f

∂k
= df

dt

∣∣∣
col

, (6)

with charge of the electron (−e) and group velocity v =
v(k, γ ) = h̄−1∇kε(k, γ ). Here the nonequilibrium distribu-
tion function f = f (t, r, k, γ ) is the number of electrons in
a band γ occupying the volume of the phase space drdk at a
time t . In equilibrium, it is identical to the Fermi distribution
function f = f0(ε(k, γ )). Here we assume that the system is
in the low temperature kBT � εF. The chemical potential μ

then satisfies μ � εF.
The right-hand side of Eq. (6) is a collision integral for

nonmagnetic impurity scattering. We assume that the impu-
rity potential is like a δ function with strength v0, randomly
distributed with the density nimp in the 2D system with the
areal volume V . The collision integral is then derived along

the Fermi golden rule (Sec. S2 of the Supplemental Material
[27]) as

df

dt

∣∣∣
col

= 2πv2
0nimp

h̄V

∑
k′,γ ′

|〈k′, γ ′|k, γ 〉|2

× [ f (k′, γ ′) − f (k, γ )] · δ(ε(k′, γ ′) − ε(k, γ )).
(7)

The factor |〈k′, γ ′ | k, γ 〉|2, represented as

|〈k′, γ ′ | k, γ 〉|2 = 1 + S(k, γ ) · S(k′, γ ′)
2

, (8)

measures the relative angle of spin polarization between states
before and after the spin-conserving scattering [47]. Spin re-
laxation and diffusion in this system are thus associated with
the spin-dependent transition probability caused by the non-
collinear spin texture in the momentum space. The collision
integral (7) also indicates a typical impurity scattering rate,
i.e., an inverse of quasiparticle lifetime

1

τp
≡ 2πv2

0nimp · N0/2

h̄
. (9)

Here N0 = m/(π h̄2) is an exact density of states of this 2D
system (Sec. S2 of the Supplemental Material [27]).

The validity of the BTE shown above for spin-splitting
bands is supported by a derivation from the Keldysh Green’s
function method (Sec. S4 of the Supplemental Material [27]),
which tells us that the BTE is valid in a clean limit h̄/τp �
�F � εF. Here �F = �(kF) is the spin-splitting energy gap
around the Fermi energy εF. This condition validates the BTEs
for each band, which are coupled through the collision inte-
gral.

In addition to the BTE, we must consider the Gauss law,
described as

∇ · E(t, r) = −e

ε0dyV

∑
k,γ

[ f (t, r, k, γ ) − f0(ε(k, γ ))]. (10)

Here we denote by dy a typical length normal to the surface.
The right-hand side stands for the charge density induced by
the shift of the Fermi contours.

In the rest of Sec. II, we apply Eqs. (6)–(10) to the transport
at the surface slightly out of equilibrium. We consider the
following two cases in the absence of external fields in order
to extract spin relaxation time and spin diffusion length: spa-
tially uniform relaxation and temporary stationary diffusion.
We also consider the linear response to a uniform stationary
electric field in Sec. S3 of the Supplemental Material [27].

B. Spin relaxation time

When we consider the relaxation of a spatially uniform
nonequilibrium state, the left-hand side of the BTE (6) is
reduced to only a time-derivative term,

∂ f

∂t
= df

dt

∣∣∣
col

. (11)

We are interested in the relaxation of low-energy states. We
thus assume that electron distribution f = f (t, k, γ ) is dis-
placed around the Fermi energy εF and seek for a solution to
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Eq. (11) in the form

f (t, k, γ ) = f0(ε(k, γ )) + e−t/τ ϕτ (k, γ )

(
−∂ f0(ε)

∂ε

)
, (12)

with −∂ε f0(ε) � δ(ε(k, γ ) − εF ). The BTE after substitution
of this assumption (12) results in an eigenvalue problem
around the Fermi contours ε(k, γ ) = εF, written as

λτϕτ (k, γ ) =
∑
k′,γ ′

Mcol(k, γ , k′, γ ′)ϕτ (k′, γ ′). (13)

Here we defined eigenvalue λτ = −τp/τ and a symmetric
matrix between the states (k, γ ) and (k′, γ ′)

Mcol(k, γ , k′, γ ′) = 1

V N0/2

∑
k′′,γ ′′

|〈k′′, γ ′′|k, γ 〉|2

× (δk′,k′′δγ ′,γ ′′ − δk,k′δγ ,γ ′ )

· δ(ε(k′′, γ ′′) − ε(k, γ )), (14)

which we shall refer to as the relaxation matrix (this can be
regarded as the integral kernel because the collision integral is
an integral transform of the distribution function). Let τ ( j) be
the relaxation time of the jth eigenvector ϕτ ( j) of Eq. (13). The
general solution (restricted to the low-energy state) to Eq. (11)
is given in the form

f (t, k, γ ) = f0(ε(k, γ )) +
∑

j

c( j)e−t/τ ( j)ϕτ ( j)(k, γ )

×
(

−∂ f0(ε)

∂ε

)
, (15)

where the coefficients c( j) are determined by the initial dis-
tribution function in a relaxation process. The μ (= x, z)
component of the spin density at time t is given by∑

k,γ

〈k, γ |σμ|k, γ 〉
V

f (t, k, γ )

= 〈sμ〉eq +
∑

j

c( j)e−t/τ ( j)srelax
μ ( j), (16)

with

srelax
μ ( j) = 1

V

∑
k,γ

〈k, γ |σμ|k, γ 〉ϕτ ( j)(k, γ )

(
−∂ f0(ε)

∂ε

)
.

(17)
When srelax

μ ( j) �= 0, we say that the jth eigenmode carries sμ.
We identify the longest relaxation time τ ( j) among those of
eigenmodes j carrying sμ with the spin relaxation time for sμ.

The eigenvalue spectrum τp/τ is plotted with varying
anisotropy of the SOC δ in Fig. 2(a). Here one trivial mode
ϕτ = constant with τp/τ = 0 is omitted from the plots since
it violates the charge neutrality condition (10) with E = 0
[48], while the other eigenmodes automatically satisfy that
condition (Sec. S3 of the Supplemental Material [27]). Most
eigenvalues are located at τ = τp but two eigenmodes have
relaxation times longer than the others. We will focus on the
latter two modes.

We confirm that the mode with the relaxation time di-
verging as δ → 0 (δ → π/2) carries the z (x) component of
spin. It can be naturally understood from the fact that the

FIG. 2. Eigenmode analysis of the Boltzmann transport equa-
tion for relaxation. (a) Inverse of the relaxation time τ plotted for
all modes and for various anisotropy α⊥/α‖ = tan δ. All eigenmodes
but two are degenerate in τ = τp. (b) Deviation from equilibrium in
the distribution function around the Fermi contours ϕτ (θ, γ ) that has
the longest relaxation time when δ = π/64. The amplitude is put
in arbitrary units. (c) Schematic illustration of the deviation of the
electron distribution (b), drawn as a shift of the Fermi contours.

spin component in the z (x) direction is conserved in the
highly anisotropic limit δ → 0 (π/2), i.e., α⊥ → 0 (α‖ → 0).
Figure 2(b) shows the deviation ϕτ (k, γ ) = ϕτ (θ, γ ) in dis-
tribution function of the slowest mode from the equilibrium,
when spin sz is almost conserved (α‖ � α⊥). The inner and
outer Fermi contours are shifted in opposite directions, which
induces nonzero spin density in the z direction, as shown
in Fig. 2(c). Indeed, ϕτ (k, γ ) is analytically expressed as
ϕτ (k, γ ) ∝ γ cos 	(θ ) = 〈k, γ |σz|k, γ 〉 (Sec. S3 of the Sup-
plemental Material [27]). It follows that this slow mode ϕτ

has nonzero srelax
z ( j) defined in Eq. (17), i.e., carries the z

component of spin density, regardless of the anisotropy δ. We
obtain the analytical expressions for the two spin relaxation
times shown in Fig. 2(a), as a function of the anisotropy
angle δ, and we find that they are independent of the SOC
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strength α (the explicit expressions are available in Sec. S3).
Such a characteristic spin relaxation time is attributed to the
BTE scheme, which is valid in the clean limit or strong SOC
case. In a region �Fτp/h̄ � 1 [49], on the other hand, the
semiclassical picture of the spin-splitting bands breaks down.
The spin relaxation time then follows the Elliott-Yafet [50,51]
and D’yakonov-Perel’ [52] mechanisms, instead of our de-
scription here.

C. Spin diffusion length

Spin diffusion length is extracted in the same way as the
spin relaxation times, except for the treatment of the Gauss
law. The spatially inhomogeneous charge distribution accom-
panied by the diffusion induces an internal electric field. The
stationary diffusion thus follows both the BTE and Gauss law,

v · ∂ f

∂r
+ (−e)E in

h̄
· ∂ f

∂k
= df

dt

∣∣∣∣
col

, (18a)

∇ · E in = −e

ε0dyV

∑
k,γ

[ f (r, k, γ ) − f0(ε(k, γ ))], (18b)

where the internal electric field E in works for charge screening
effect. We then assume that the distribution function f (r, k, γ )
and the electric field E in decay in the +z direction with a
diffusion length � > 0, represented as

f (r, k, γ ) = f0(ε(k, γ )) + e−z/�ϕ�(k, γ )

(
−∂ f0(ε)

∂ε

)
, (19a)

Ein,z = E�

(−e)vFτp
e−z/�, (19b)

with vF = h̄kF/m a typical Fermi velocity. Substitution of
Eqs. (19) to Eqs. (18) yields a generalized eigenvalue problem
with eigenvalues −vFτp/� and eigenvectors ({ϕ�(k, γ )}, E�) to
be determined (Sec. S3 of the Supplemental Material [27]).

Similarly to the characterization of the relaxation eigen-
mode in the previous subsection, we say that the jth
eigenmode of spatial decaying carries sμ when sdiff

μ ( j) �= 0
with

sdiff
μ ( j) = 1

V

∑
k,γ

〈k, γ |σμ|k, γ 〉ϕ�( j)(k, γ )

(
−∂ f0(ε)

∂ε

)
. (20)

We identify the longest decay length �( j) among those of
eigenmodes j carrying sμ with the spin diffusion length for
sμ.

In solving this problem, we have to fix a dimensionless
parameter, i.e., a ratio of charge screening length to diffusion
length

η−1 ≡ (vFτp)2 ·
(

e2N0/2

ε0dy

)
∼ (vFτpqTF)2 ∼ 106, (21)

with vFτp ∼ 10−8 m and Thomas-Fermi screening wave vec-
tor qTF ∼ 1011 m−1. Numerical details of the dimensionless
parameter η, however, give no striking difference in the results
presented below.

The eigenvalue spectrum, which presents the inverse of the
diffusion length of each mode, is plotted in Fig. 3(a). The
spectrum is originally symmetric in ±� since diffusions in
the ±z direction are equivalent. We plot here only positive

FIG. 3. Eigenmode analysis of Boltzmann transport equation for
diffusion. (a) Eigenvalues corresponding to inverse of the diffusion
length � > 0 arranged in descending order. The red arrow points to
an isolated slowly decaying mode. The total number of components
reflects the 358 grids in the azimuthal direction around the Fermi
contour used in the numerical calculation. (b) Inverse of the diffusion
length � plotted for the isolated slowly decaying modes labeled
(A)–(D) and for different anisotropy δ. Both diffusion lengths in
the z direction and that in the x direction are shown. (c) Deviation
from equilibrium in distribution function around the Fermi contours
ϕ�(θ, γ ) that has the longest diffusion length when diffusing in the z
direction. The amplitude is put in arbitrary units.

diffusion length � > 0. We also neglect a mode vFτp/� = 0
since it describes homogeneous charge current density with-
out external fields.

Most positive eigenvalues are continuously distributed and
are concentrated around � = vFτp. There exist, however, iso-
lated modes that have longer diffusion length than the others.

Figure 3(b) shows the inverse of such long diffusion
lengths plotted for different anisotropy of the SOC. The same
figure also shows the result for the case when the x direction
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is substituted for the z direction in Eq. (19). We confirm that
each of the slowly decaying modes (A)–(D) as spin diffusion
carries a different spin component into a different direction.
As for the diffusion in the +z direction [branches (A) or (D)],
the diffusion length diverges at δ → 0 or π/2, which results
from good conservation of spin sz or sx, respectively. It follows
that branch (A) carries spin sz, while (D) carries spin sx in
the +z direction. That is supported by spin density calculation
based on the shift of the Fermi contours [Fig. 3(c) depicts the
branch (A)]. In the same manner, the branches (B), (C) are
characterized as spin sz, sx diffusion in the +x direction, re-
spectively. Spin diffusion length for each spin component and
each diffusion direction is thus uniquely defined as the diffu-
sion length of corresponding slowly decaying modes (A)–(D).

III. CHARGE-SPIN INTERCONVERSION AT THE
INTERFACE

A. Formulation for the interface

We turn to the Edelstein effect (EE) and the inverse Edel-
stein effect (IEE) at the 2D surface of the chiral metal attached
with a 3D nonmagnetic metal. The presence of an interface is
treated as a boundary condition for the electron distribution
in the 3D metal [see Figs. 1(b) and 1(c)], while it introduces
an additional relaxation matrix and a driving term to the 2D
system we have examined. We now apply the electric field E
in the z direction on the surface [Fig. 1(b)], or inject spins
with polarization in the z direction [Fig. 1(c)], both of which
favor the z component of spin polarization in the 3D metal.
More generally, spin polarization of the 3D metal can point in
an arbitrary direction, and we consider such cases in Secs. S5
and S7 of the Supplemental Material [27]. In the following,
we assume that both the 2D and attached 3D metals are
electrically neutral and have a common chemical potential μ0,
for simplicity.

We first explain the 3D nonmagnetic metal. As illustrated
in Figs. 1(b) and 1(c), it is placed at 0 � y � L with the y = 0
plane the interface at the chiral metal and the y = L plane an
open end or interface with spin current source. In the bulk, the
one-particle state is specified by wave vector q and z compo-
nent of spin σ , denoted as |q, σ ). The energy ε (n)(|q|) of that
state is degenerate with spin degrees of freedom and isotropic
as a function of the modulus of q. We denote the distribution
function in the 3D nonmagnetic metal as F (t, r, q, σ ).

To describe the effect of the interface, we adopt a tunneling
Hamiltonian

ĤT =
∑
k,q

∑
σ=↑,↓

[Tkq |k, σ 〉 (q, σ | + T ∗
kq|q, σ ) 〈k, σ |], (22)

which allows spin-independent transmission across the inter-
face. Here we consider that the interface between the two
metals is rough enough to randomize momentum. That en-
ables us to take Tkq = T . The net transition rates into |k, γ 〉
and |q, σ ) are, respectively, given by the Fermi golden rule as

df (t, r, k, γ )

dt

∣∣∣∣
int

= 2π |T |2
h̄

∑
q,σ

| 〈k, γ |σ 〉 |2

× [F (t, r, q, σ ) − f (t, r, k, γ )

× δ(ε(k, γ ) − ε (n)(q)) (23a)

and

dF (t, r, q, σ )

dt

∣∣∣∣
int

= 2π |T |2
h̄

∑
k,γ

| 〈k, γ |σ 〉 |2

× [ f (t, r, k, γ ) − F (t, r, q, σ )]

× δ(ε(k, γ ) − ε (n)(q)), (23b)

with r in the y = 0 plane. These terms serve as extra collision
terms in the BTE in the 2D and 3D metals. They vanish in
equilibrium, and we can replace f and F in Eqs. (23) by the
deviation from the equilibrium

f (t, r, k, γ ) − f0(ε(k, γ )) = −∂ f0(ε(k, γ ))
∂ε(k, γ )

ϕ(t, r, k, γ )

(24)
and F1(t, r, q, σ ) = F (t, r, q, σ ) − f0(ε(n)(|q|)). In the fol-
lowing, we consider that the whole system is stationary and
spatially homogeneous in the z and x directions, parallel to the
interface [see Fig. 1(a), where the x, y, z directions are shown].
We also denote the transmission rate across the interface [9]
by

1

τt
≡ 2π |T |2V (n)N (n)(μ0)/2

h̄
. (25)

Here N (n)(ε) = 2(V (n) )−1 ∑
q δ(ε − ε (n)(q)) is the density of

states per volume of the 3D system V (n).
Let us write down the electron distribution in the 3D metal.

We assume that both the spin-conserving impurity scattering
and much weaker spin-flip impurity scattering occur in the
3D metal. The BTE in that nonmagnetic metal is examined by
Valet and Fert [26], and is briefly reviewed in Sec. S6 of the
Supplemental Material [27]. In the absence of external fields,
the shift of the distribution F1 they provide is expressed as

F1(y, q, σ ) = −∂ f0(ε(n)(|q|))
∂ε

{μ̄ − μ0

+ σ

2

[
μ(n)

s (y) + 2e2λ(n)

σ (n)

qy

|q|J (n)
s (y)

]}
(26)

and higher multipole terms in q proportional to the Legen-
dre polynomials Pm(qy/|q|) with m � 2, which are negligibly
small. Here λ(n) and σ (n) are the electron mean free path and
the electrical conductivity summed over spins, respectively,
while μ̄ is a constant to be determined later. The two spatially
varying quantities

μ(n)
s (y) = 2(Ae−y/�sf + Bey/�sf ), (27a)

J (n)
s (y) = σ (n)

e2�sf
(Ae−y/�sf − Bey/�sf ) (27b)

are spin accumulation polarized in the z direction and spin
current density flowing parallel to the y direction, respectively.
They follow the spin diffusion equation with spin diffusion
length �sf [26], but two coefficients A, B in them are still un-
determined. For later use, we here introduce a dimensionless
parameter τp/τ3D that measures spin diffusion in the 3D metal
with a typical rate

1

τ3D
≡ σ (n)

e2�sf N0
. (28)
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When the spin-flip scattering relaxation time τsf is much
longer than the spin-conserving scattering relaxation time τs,
this timescale τ3D is given as τ3D � N0 · [N (n)(μ0)v(n)

F ]−1 ·√
3τsf/(2τs) with the Fermi velocity in the 3D metal v

(n)
F

(Sec. S7 of the Supplemental Material [27]).
To determine the electron distribution (26) with (27) de-

scribed by Valet and Fert, we consider boundary conditions
to the 3D metal based on the extra collision term (23b) at the
interface. There are three conditions: (i) the absence of charge
current through the interface, (ii) the continuity of spin current
at the interface, and (iii) the boundary condition on the other
side of the 3D metal at y = L. The three parameters μ̄, A, and
B will be then expressed as the functionals of the distribution
function in the 2D metal.

The first condition (i) is described as

1

V

∑
q,σ

dF (y = 0, q, σ )

dt

∣∣∣∣
int

= 0, (29)

with the left-hand side being the number of electrons flowing
through the unit area of the interface from the 2D metal to the
3D metal per unit time. This condition yields the balance of
electrochemical potentials on both sides of the interface

μ̄ − μ0 = 1

V N0

∑
k,γ

ϕ(k, γ )δ(ε(k, γ ) − μ0), (30)

with the right-hand side net charge density of the 2D metal
divided by −e times the density of states. As we have first
assumed that the whole system is electrically neutral with the
same chemical potential μ0, both sides of Eq. (30) are zero;
it follows that μ̄ = μ0 and the charge neutrality condition for
the 2D system.

We turn to the remaining conditions. The condition (ii) on
the transmission of the z-component spin is described in the
same way as Eq. (29),

1

V

∑
q,σ

σ
dF (y = 0, q, σ )

dt

∣∣∣∣
int

= J (n)
s (y = +0), (31)

with the right-hand side given by Eq. (27b). As for the condi-
tion (iii), we assume either that the 3D metal has an open end
at y = L or that the 3D metal is attached with the source of
spin current—such as a ferromagnetic metal or a metal with
strong spin Hall effect at this location y = L. In both cases,
the boundary condition is expressed as

J (n)
s (y = L) = 0 or Jext

s , (32)

where Jext
s �= 0 implies the external spin current injected from

the source. The relations (31) and (32) determine the parame-
ters A and B (Sec. S7 of the Supplemental Material [27]).

The Valet-Fert solution F (y, q, σ ) is thus determined by
the distribution function ϕ(k, γ ) in the 2D metal and the spin
current density at the boundary J (n)

s (L). It follows that the
electron in the 2D metal under an electric field is described
by

(−e)Evz(k, γ )
∂ f0(k, γ )

∂ε(k, γ )
= df

dt

∣∣∣∣
col

+ df

dt

∣∣∣∣
int

, (33)

with the second term on the right-hand side the extra Boltz-
mann collision term (23a), which is written with ϕ and J (n)

s (L).

This extra term also includes three dimensionless parameters
L/�sf, τp/τt, and τp/τ3D, which provide information on the
3D metal and the interface. The effective BTE (33) for 2D
electron distribution is simplified as

bEE(k, γ ) + bIEE(k, γ ) =
∑
k′,γ ′

Mtot (k, γ , k′, γ ′)ϕ(k′, γ ′)

(34)
for |k, γ 〉 such that ε(k, γ ) = μ0 (Sec. S7 of the Supplemental
Material [27]). The two terms on the left-hand side are driving
forces: One term is the electric field applied on the surface

bEE(k, γ ) ≡ eEτpvz(k, γ ), (35a)

which is a source of the EE—charge-to-spin conversion. The
other term is the spin current injected from the 3D metal

bIEE(k, γ ) ≡ 2KτpJext
s

N0
· Sz(k, γ ), (35b)

which leads to the IEE—spin-to-charge conversion. Here we
introduce a notation

2K ≡ [cosh L/�sf + (τt/τ3D) sinh L/�sf ]
−1. (36)

The IEE source term (35b) indicates that the injected spin cur-
rent serves as a time-dependent magnetic field coupling to the
spin Sz(k, γ ) ≡ 〈k, γ |σz|k, γ 〉, inducing the nonequilibrium
state in the surface [5,6].

On the right-hand side of Eq. (34), the relaxation matrix
is given by two contributions Mtot = Mcol + Mint where the
matrix Mcol, provided in Eq. (14), stems from the impurity
scattering within the surface, while

Mint (k, γ , k′, γ ′) ≡ τp

τt

{
− δk,k′δγ ,γ ′ + δ(ε(k, γ ) − ε(k′, γ ′))

N0V

× [1 + K ′S(k, γ ) · S(k′, γ ′)]
}
, (37)

with K ′ ≡ 2K cosh L/�sf represents an effective scattering
process mediated by the interface.

We here assume that no charge current is induced in the 3D
metal without considering the penetration of an electric field
applied on the 2D system into the 3D metal. Such leakage
of the electric field in the EE case is small only when the
3D metal has low conductivity and/or the thickness L of the
3D metal is sufficiently small. It is thus generally needed
to incorporate the charge current density in the 3D metal.
We, however, restrict ourselves to neglecting that effect as a
starting point of the formulation of the EE.

B. Comparison between the Edelstein effect and its inverse

Let us compare the nonequilibrium distributions of the
EE and the IEE. In both effects, there exist charge current
density and spin density induced in the 2D metal and spin
accumulation and spin current density in the 3D metal. The
deviations of the electron distribution around the Fermi con-
tours ϕ(k, γ ) = ϕ(θ, γ ) for the two effects are, however,
different, as can be seen from Figs. 4(a) and 4(b). Their analyt-
ical expressions are available in Sec. S8 of the Supplemental
Material [27]. In the EE, ϕ = ϕEE(θ, γ ) driven by the external
electric field E �= 0 without spin current injection J (n)

s (L) = 0
is illustrated in Fig. 4(a). The Fermi contours are basically
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FIG. 4. The deviation from the equilibrium distribution function
around the two Fermi contours for direct Edelstein effect [(a)] and
inverse Edelstein effect [(b)], and associated charge-spin conversion
efficiencies at the interface qEE [(c)] and λIEE [(d)]. The parameters
are chosen as (α/vF h̄, δ, L/�sf ) = (0.1, π/64, 1). [(c), (d)] The col-
ored lines show different spin diffusion rates in the three-dimensional
nonmagnetic metal [defined in Eq. (28)]. Those lines collapse onto a
single curve in (d).

shifted in the direction of the electric field with a relaxation
time (1/τp + 1/τt )−1, modified from the ordinary momentum
relaxation time τp due to the interface transmission. More pre-
cisely, the deviation from the equilibrium distribution function
for the two bands differ of order α/vF h̄, which induces net
spin density. In the IEE, on the other hand, the distribution
function ϕ = ϕIEE(k, γ ) driven by the external spin current
J (n)

s (L) = Jext
s without electric field E = 0 is illustrated in

Fig. 4(b). The deviation changes its sign with respect to the
band γ = ±. Indeed, it is found analytically that the deviation
is proportional to the spin polarization Sz(k, γ ), which is the
same as the spin sz relaxation mode [Fig. 2(b)]. The different
distribution functions given in Figs. 4(a) and 4(b) show that
the EE and IEE are in different nonequilibrium states.

Linear responses found in the EE and IEE are differ-
ent, consequently. We now consider charge-spin conversion
efficiency—the ratio between electric current density in the
2D metal and spin current density in the 3D metal at the
interface [8–10,12,14,40]. In the EE and IEE, that efficiency
is defined as

qEE ≡
∣∣J (n)

s (y = 0)
∣∣

| jc/(−e)|

∣∣∣∣∣
EE

, (38a)

λIEE ≡ | jc/(−e)|∣∣J (n)
s (y = 0)

∣∣
∣∣∣∣∣
IEE

, (38b)

with jc = jc
z a charge current density in the surface of the

chiral metal, flowing in the z direction. The two efficiencies
look similar but behave differently with respect to both the
interface transmission rate 1/τt and the detail of the 3D metal,
specified by the timescale of spin diffusion τ3D and the thick-
ness L/�sf. Figure 4(c) shows that the charge current–to–spin
current conversion efficiency qEE decreases with τ3D, while
Fig. 4(d) shows that the spin current–to–charge current con-
version efficiency λIEE is independent of τ3D. It is also found
that qEE increases with the thickness of the 3D metal L/�sf,
while λIEE is independent of L/�sf (Sec. S9 of the Supplemen-
tal Material [27]).

The efficiency λIEE is determined only by the interface—
the nonequilibrium state in the 2D metal for the IEE case is
affected only by the spin current injected from the interface
J (n)

s (y = 0). This explains why the details of the 3D metal do
not affect the conversion efficiency λIEE. Indeed, λIEE is pro-
portional to the modified relaxation time in the 2D metal by
the interface transmission (1/τp + 1/τt )−1 [9]. The increase of
tunneling rate 1/τt thus suppresses λIEE, as shown in Fig. 4(d).

The behavior of qEE, on the other hand, depends on the
details of the 3D metal; the timescale τ3D ∝ (τsf/τs )1/2 [see
Eq. (28) for definition of τ3D] increases and the thickness
measured in units of the spin diffusion length L/�sf de-
creases when the spin-flip scattering is negligibly small, i.e.,
τsf, �sf → ∞. Stationary spin current density in the 3D metal,
which is nearly constant in that case, is then suppressed since
we impose the boundary condition J (n)

s (L) = 0 for the EE
case. The efficiency into spin current qEE thus decreases with
τ3D but increases with L/�sf. Indeed, we find based on an
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TABLE I. Comparison between previous studies and the present study with respect to the charge current–spin current conversion efficiency
at the interface for the EE and IEE. “TI” stands for topological insulator. The definition of the efficiencies qEE and λIEE are given in Eqs. (38).

The present study
Zhang and Fert [8] Dey et al. [9] Isshiki et al. [40] (δ = π/4, L/�sf → ∞)

Subject TI surface TI surface Rashba model Chiral metal surface

qEE
1

vF(τt + τsf )
a αR

vF h̄
· 1

vFτt

b α/
√

2

vF h̄
· 2 + O((α/vF h̄)2)
vF[τt + τ3D + (1/τp + 1/τt )−1]

λIEE vFτp
a vF

1/τp + 2/τt

c αR

vF h̄
· vF

1/τp + 1/τt

b α/
√

2

vF h̄
· vF

1/τp + 1/τt

aEquations (13) and (19) in Ref. [8].
bEquations (3), (6), and (7) in Ref. [40].
cEquations (18) in Ref. [9].

analytical calculation that qEE is roughly proportional to a rate
(τt + τ3D coth L/�sf )−1, which indicates the spin transmission
rate across the interface into the 3D metal with finite thick-
ness.

We now compare our results with previous studies, as
summarized in Table I. Here the Rashba SOC αR(kzσx − kxσz )
can be regarded as the isotropic case of the SOC here (2)
with the Rashba parameter αR = α/

√
2, as we stated at the

beginning of Sec. II A. The different behaviors between qEE

and λIEE were discussed by Zhang and Fert [8], where they
considered charge-spin interconversion at the topological in-
sulator surfaces. Dey et al. [9] then found that the efficiency
λIEE is suppressed by the interface transmission rate 1/τt,
which is in good agreement with our results, except for the
difference in the factor (α/

√
2)/vF h̄ due to the difference in

the targeted systems; indeed, τt/2 in their paper is equivalent
to τt in our study. Isshiki et al. [40] also provided phenomeno-
logical calculation of qEE and λIEE. Our analytical calculation
practically supports their expression for λIEE. A trade-off re-
lation between the conversion efficiencies for the EE and IEE,
proposed by Isshiki et al. [40], is also found in general, which

is expressed as

qEE · λIEE <
2α‖α⊥
(vF h̄)2

. (39)

The efficiency qEE itself is, on the other hand, obtained
on the basis of the Boltzmann equation by the present study.
Indeed, qEE obtained by Zhang and Fert [8] is similar to our
result in that τ3D ∝ (τsf/τs )1/2 consists of spin-flip scattering
relaxation time. We, moreover, clarify the dependence of qEE

on the momentum relaxation time τp, the thickness L/�sf (in
Table I, we put it infinite), and the SOC anisotropy of the
surface δ (in Table I, δ = π/4). It also should be noted that
the previous studies considered the spin accumulation at the
interface as an external parameter in the formulation of both
the EE and IEE. According to the experiments on the IEE
[10,12,14], and on the chiral metals [15,17,18], however, the
controllable parameter—which we can exert directly—to the
3D nonmagnetic metal is often spin current, injected or fixed
to be zero at the open surface (y = L plane in this study).
We here adopt a formulation close to these experimental
situations.

TABLE II. Ratios between physical quantities in the case of direct Edelstein effect, Y
X |EE, including the linear response to the electric field.

The entry in the row X and column Y gives the ratio Y/X . The timescales τp and τ3D are defined in Eq. (9) and Eq. (28), respectively, while τa,
τb, α̃, and r are defined in Eqs. (40).

Y

2sz/N0 jc/[(−e)vFN0/2] μ(n)
s (0) μ(n)

s (L) τpJ (n)
s (0)/N0

X (−e)vFτpE −2α̃ sin δ · 1/τp

1/τa + 1/τb

(τa tan δ) · r

τp
−2α̃ sin δ · (τ3D/τp) coth L/�sf

1 + τb/τa

−2α̃ sin δ(τ3D/τp)

(1 + τb/τa ) sinh L/�sf

−α̃ sin δ

1 + τb/τa

= 2

N0
· 〈Sz, vz〉

vF
= 2

N0
· 〈vz, vz〉

v2
F

= −2 · λrecip

vFτp

2sz/N0 1 − (1 + τa/τb)r

2α̃ cos δ

τ3D

τb
coth L/�sf

τ3D/τb

sinh L/�sf

τp

2τb

jc/[(−e)vFN0/2] 1
−2α̃ cos δ

r
· τ3D coth L/�sf

τa + τb

−2α̃ cos δ

r sinh L/�sf
· τ3D

τa + τb

−α̃ cos δ

r
· τp

τa + τb

= −qEE · vFτp

2

μ(n)
s (0) 1

1

cosh L/�sf

τp

2τ3D coth L/�sf

μ(n)
s (L) 1

τp sinh L/�sf

2τ3D

τpJ (n)
s (0)/N0 1
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TABLE III. Ratios between physical quantities in the case of inverse Edelstein effect, Y
X |IEE. The entry in the row X and column Y gives

the ratio Y/X . The timescales τp, τt, and τ3D are defined in Eq. (9), Eq. (25), and Eq. (28), respectively, while τa, τb, τc, α̃, and r are defined in
Eqs. (40).

Y

2sz/N0 jc/[(−e)vFN0/2] μ(n)
s (0) μ(n)

s (L) τpJ (n)
s (0)/N0

X 2sz/N0 1

jc/[(−e)vFN0/2]
−1

α̃ sin δ
1

μ(n)
s (0)

1

1 + τt/τa

−α̃ sin δ

1 + τt/τa
1

= 1

Q12vFN0

μ(n)
s (L)

τa

τc sinh L/�sf

−α̃ sin δ · τa

τc sinh L/�sf

τt + τa

τc sinh L/�sf
1

τpJ (n)
s (0)/N0

−2τa

τp
2α̃ sin δ · τa

τp
(−2) · τt + τa

τp

−2τc

τp
· sinh L/�sf 1

= 2 · λIEE

vFτp

τpJ (n)
s (L)/N0

−2τ3D/τp

(1 + τb/τa ) sinh L/�sf

2α̃ sin δ · (τ3D/τp)

(1 + τb/τa ) sinh L/�sf

−2τ3D/τp

sinh L/�sf
· τt + τa

τa + τb

−2τ3D

τp
· τc

τa + τb

τ3D

(τa + τb) sinh L/�sf

= 2K ′′

τp
· 〈Sz, Sz〉 = 2λrecip

vFτp
= 2K ′′

τp
· 〈vz, Sz〉

vF

We then consider other coefficients and linear responses
in the EE and IEE. We analytically obtained ratios between
typical quantities—electric field applied in the z direction E ,
2D spin density sz, 2D charge current density flowing in the z
direction jc, 3D spin accumulation μ(n)

s (y) at y = 0, L planes,
and 3D spin current density J (n)

s (y) at y = 0, L planes. These
ratios are listed in Table II for the EE case and Table III for the
IEE case, where we used the following auxiliary variables:

1

τa
≡

(
1

τp
+ 1

τt

)
tan δ, τb ≡ τt + τ3D coth

L

�sf
, (40a)

τc ≡ τ3D + (τt + τa) coth
L

�sf
, α̃ ≡ α

vF h̄
, (40b)

r ≡ 1 + α̃2

(
1 − sin 2δ

1 + τb/τa

)
. (40c)

For example, a current-induced spin polarization coefficient
β found in a relation sz = β jc is obtained in Tables II and
III as βEE = (evF)−1 · 2α̃ cos δ/[(1 + τa/τb)r] for the EE, and
βIEE = (evF · α̃ sin δ)−1 for the IEE. They are different from
each other, reflecting the different nonequilibrium states be-
tween the EE and IEE.

C. Reciprocal relationship

We here derive the reciprocal relationship between the EE
and IEE within the presented schemes. Let V be the linear
space of ϕ(k, γ ) and G(k, γ , k′, γ ′) be the inverse matrix
of Mtot (k, γ , k′, γ ′) in the quotient space V /Ker(Mtot ). Then
ϕ(k, γ ) is expressed as

ϕ(k, γ ) =
∑
k′,γ ′

G(k, γ , k′, γ ′)[bEE(k′, γ ′) + bIEE(k′, γ ′)].

(41)

The charge current density and spin density are accordingly
expressed as[

jc
z /(−e)

sz

]
=

[〈vz, vz〉 〈vz, Sz〉
〈Sz, vz〉 〈Sz, Sz〉

][
(−e)Ezτp

K ′′ · Jext
s

]
, (42)

with K ′′ = −2Kτp/N0 [the symbol K has been defined in
Eq. (36)]. Here we defined a bilinear form

〈X,Y 〉 ≡ −1

V

∑
k,γ ,k′,γ ′

X (k, γ )G(k, γ , k′, γ ′)Y (k′, γ ′)

· δ(ε(k, γ ) − μ0). (43)

As we consider the elastic scattering process, the matrices
Mtot and its inverse G have nonzero elements only between
eigenstates with the same energy. We can thus replace ε(k, γ )
in Eq. (43) by ε(k′, γ ′). In addition, Mtot is a symmetric matrix
and so is its inverse G. The symmetry

〈Y, X 〉 = 〈X,Y 〉 (44)

holds accordingly, which leads to equality between cross-
coefficients: 〈Sz, vz〉 = 〈vz, Sz〉. This equality is also expressed
as a ratio of quantities on both sides of Eq. (42). We can
eliminate a factor K ′′ from this expression by using a relation
for the spin accumulation at the open end μ(n)

s (L) = 4Ksz/N0

that holds for the EE. A reciprocal relationship between the
EE and IEE is then obtained as

−1

2
· μ(n)

s (L)

(−e)E

∣∣∣∣
EE

= jc/(−e)

Jext
s

∣∣∣∣
IEE

( ≡ λrecip ). (45)

Here the coefficients on both sides represent nonlocal re-
sponses separated by the interface; E and Jext

s are input, and
2D electric current jc can be detected as a voltage at the
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FIG. 5. Linear response specified by the reciprocal relationship
of the Edelstein effect λrecip for varying the parameters of the inter-
face and 3D metal. The colored lines show different spin diffusion
rates in the three-dimensional nonmagnetic metal. The dashed black
line shows the peak location of the response with respect to the trans-
mission rate τp/τt. The parameters are chosen as (α/vF h̄, δ, L/�sf ) =
(0.1, π/64, 1).

boundary of the 2D metal; the spin accumulation at the edge
μ(n)

s (L) can also be detected by the Kerr effect.
The reciprocal relationship obtained above is a general-

ization of the reciprocal relationship at the surface derived
by Shen et al. [5] to the interface system. In their study,
the spin current injection in the IEE was treated effectively
as a time-dependent magnetic field applying on the surface,
though there remained ambiguity to read such external field
to the spin current. Our direct calculation on the spin current

injection from the 3D metal and resulting reciprocal relation-
ship (45) overcome that difficulty.

The cross-coefficient given by the reciprocal relationship
λrecip is shown in Fig. 5. It is read that the linear response ex-
hibits nonmonotonic behavior with respect to the transmission
rate across the interface τp/τt, while the smaller spin diffusion
rate in the 3D metal τp/τ3D gives a larger response. In a low
transmission rate τp/τt � 1, the response across the interface
is governed by the spin transmission rate into or out of the
3D metal with finite thickness (τt + τ3D coth L/�sf )−1, as the
same as qEE. Then we find λrecip ∼ qEE · [μ(n)

s (L)/J (n)
s (0)]EE ∼

τ3D/(τt sinh L/�sf + τ3D cosh L/�sf ), which explains the be-
havior of λrecip in τp/τt � 1. In a high transmission rate
τp/τt � 1, on the other hand, the bottleneck of the response
is the Edelstein effect or its inverse at the 2D metal, which is
roughly represented as the modified relaxation time in the 2D
metal by the interface transmission (1/τp + 1/τt )−1. We thus
find λrecip ∼ (1/τp + 1/τt )−1 in τp/τt � 1. The response λrecip

is maximal in the intermediate region, accordingly.
As the cross-coefficient given by the reciprocal relationship

can be measured directly, λrecip is an experimentally important
ratio as well as qEE and λIEE.

We close this section by showing another representation
of the reciprocal relationship that captures the essence of
the composite system we have considered. That is obtained
by arranging the original linear transformation between the
external forces (E , J (n)

s (L)) and responses ( jc, μ(n)(L)) into a
new linear transformation between the pairs at both sides of
the system (μ(n)

s (L), J (n)
s (L)) and (E , jc):

[
μ(n)

s (L)/2
−J (n)

s (L)

]
=

[
cosh L/�sf

e2�sf
σ (n) sinh L/�sf

σ (n)

e2�sf
sinh L/�sf cosh L/�sf

][
μ(n)

s (0)/2
−J (n)

s (0)

]
,

[
μ(n)

s (0)/2
−J (n)

s (0)

]
=

[
Q11 Q12

Q21 Q22

][
(−e)E
jc/(−e)

]
. (46)

Here the former represents the spin diffusion equation in the
3D metal, while the latter indicates a local charge-spin conver-
sion at the interface. The matrix elements Qi j are calculated
based on the coefficients in Tables II and III as

Q11 = (1 + Q12Q21)/Q22, (47a)

Q12 = −(1 + τt/τa)/(vFN0α̃ sin δ), (47b)

Q21 = (1 + α̃2)vFN0/(2α̃ cos δ), (47c)

Q22 = −(vFτaα̃ sin δ)−1 = −λ−1
IEE. (47d)

The Onsager reciprocity (45) is equivalent to that the de-
terminant of each matrix above is equal to 1, in particular
det Q = 1.

Moreover, the transfer matrix method expressed in
Eqs. (46) serves as a powerful tool for computing transport
coefficients via the Edelstein effect in the composite systems.
First, by using Eqs. (46) and the matrix elements Qi j , we can
derive not only the spin current–to–charge current conversion
efficiency λIEE = −Q−1

22 but also the charge current–to–spin
current conversion efficiency and cross-coefficient

qEE =
∣∣∣∣Q11 + Q21 · e2�sf

σ (n)
coth

L

�sf

∣∣∣∣
−1

, (48a)

λrecip = −
[

Q12 · σ (n)

e2�sf
sinh

L

�sf
+ Q22 cosh

L

�sf

]−1

. (48b)

The matrix elements Qi j thus play a fundamental role in
the conversion ratio of the Edelstein effect. Second, Eqs. (46)
allow us to consistently describe the EE and IEE not depend-
ing on the choice of controllable parameters. For example,
we can regard (E , μ(n)

s (0)), not (E , J (n)
s (L)), as a set of in-

dependent variables in Eqs. (46), i.e., input for the EE and
IEE, which is consistent with the previous studies [8,9]. Third,
the transfer matrix method is useful for systematic calcula-
tions of transport coefficients when another system, such as a
spin Hall material, is attached on the y = L plane [shown in
Figs. 1(b) and 1(c)]. In that new composite system, another
transfer matrix would be multiplied to the vector at y = L
plane (μ(n)

s (L)/2,−J (n)
s (L)), which relates other parameters at

another end of the attached system.

IV. DISCUSSION

We have presented a theoretical scheme capable of dealing
with spin relaxation, nonlocal spin transport of a metal with
strong SOC and charge-spin interconversion at an interface
between a metal with strong SOC and a nonmagnetic metal.
Our model and results have an advantage in that the calcula-
tions on the spin relaxation times, spin diffusion lengths, and
coefficients found in the Edelstein effect at the chiral metal
interface can be interpreted as the counterparts of the spin
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transport in the 2D systems with the Rashba SOC or Rashba-
Dresselhaus SOC. In particular, the analytical solution for the
composite system beyond the relaxation time approximation
will help us to understand and control spin transport through
the interface between those 2D systems and metals.

We now focus on the application of our theory to exper-
iments. In particular, we consider how we can make use of
the obtained reciprocal relationship for the Edelstein effect
in the composite systems. We then discuss how to formulate
the theory more consistently with the experiments on spin
transport in chiral metals [15,17,18].

There are various applications for experiments stemmed
from the Onsager reciprocity that we have both formulated
and analytically calculated. First, we can make use of that
reciprocal relationship (45) as a measure of accuracy of ex-
periments on the direct and inverse Edelstein effect across
the interface. Furthermore, we can estimate the SOC pa-
rameters at the chiral metal surface (α‖ and α⊥) from the
cross-coefficient λrecip by the following procedure.

When the 3D metal attached on the chiral metal is thin
enough to satisfy both L/�sf � 1 and L/�sf � τ3D/τt, we find
that λrecip � λIEE/(cosh L/�sf ) � λIEE[1 − (L/�sf )2/2] holds
according to Eq. (48b) and Table III. A ratio between λrecip

and electrical conductivity in the case of the direct Edelstein
effect (shown in Table II) is then written as

λrecip

( jc/E )|EE
� λIEE

( jc/E )|EE/r

[
1 − 1

2

(
L

�sf

)2
]

(49)

= 2π h̄

e2

α‖
εF

[
1 − 1

2

(
L

�sf

)2
]

(50)

with r = 1 + O(α/vF h̄)2 � 1. We can read the SOC param-
eter α‖ from the relation above if we know L/�sf of the 3D
metal, the electrical conductivity ( jc/E )|EE and Fermi level
εF in the chiral metal surface, and the cross-coefficient due to
the Edelstein effect λrecip. Here we can directly measure both
( jc/E )|EE and λrecip since they are ratios of input to output in
the composite system. We can also estimate the other SOC
parameter α⊥ if we replace spin polarization and electrical
conductivity in the z direction with those in the x direction.

Our analytical calculations also provide a way to enhance
the cross-coefficient λrecip. Figure 5 and Eq. (48b) show
that λrecip increases as the ratio τp/τ3D = σ (n)τp/(e2�sfN0)
decreases to zero. In other words, for a given chiral metal or
other 2D spin-splitting systems, we can efficiently measure
the response of both direct and inverse Edelstein effect,
represented by λrecip, by adopting a 3D nonmagnetic
metal with long spin diffusion length �sf or low electrical
conductivity σ (n).

We now discuss future prospects in more accurately de-
scribing the experimental situation of spin transport in chiral
metals. An important direction of a future study is an
application/generalization of the present scheme to the 3D
chiral metal with the SOC expressed as α‖kzσz + α⊥(kxσx +
kyσy). It will unravel the underlying mechanisms in transport
properties found in [15,17,18].

In generalizing the scheme in Sec. III to the bulk chiral
metals, along with the experimental setup, we need to cal-
culate the spatial distribution of the charge current density

and spin density in the chiral metal from the interior to the
interface with another nonmagnetic metal, which may de-
scribe charge-spin interconversion more consistently with the
experiments.

Along the experimental situations, we have to consider also
spin-flip scattering process, which we neglected at the surface
in the present study. It can contribute to these spin relaxation
time and spin diffusion length of the conduction electrons in
general. That scattering process is due to spin-orbit interaction
from impurity potentials, lattice vibrations, and the hyperfine
interaction [51,53,54].

V. CONCLUSIONS

We have described spin transport in a spin-splitting model
of the chiral metal surface and interface, making full use
of the Boltzmann transport equation beyond the relaxation
time approximation. The condition if we can safely use the
Boltzmann transport equation for that two-band system is
also discussed based on the Keldysh formalism in the Sup-
plemental Material [27], which endorses the validity of the
following results. We have first extracted slow modes respon-
sible for spin relaxation and spin diffusion in the surface,
respecting conservation laws. That enables us to define spin
relaxation time and spin diffusion length without using the
conventional idea of spin-dependent chemical potentials. Our
definition applies to the systems with strong spin-orbit cou-
pling in the clean limit when the Edelstein effect becomes
evident, and it will serve as a foundation for discussing the
nonlocal spin transport in the bulk chiral metal. We have then
clearly addressed the charge-spin interconversion efficiency at
the interface, which has been treated phenomenologically in
previous studies. In particular, we have derived the analytical
expression for the charge current–to–spin current conversion
efficiency qEE, which is found to depend on the details of the
3D nonmagnetic metal attached on the chiral metal surface.
We have finally developed the Onsager reciprocal relation-
ship for the Edelstein effect (45) that relates local input and
local output spatially separated by the interface. Comparing
the Edelstein effect and its inverse effect, their distribution
functions help us to understand the nonequilibrium states. In
addition, expressions for various transport coefficients that
we have obtained analytically would provide a powerful tool
to evaluate the accuracy of measurements of the Edelstein
effect, or to calculate what cannot be measured directly in the
Edelstein effect.
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