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Interplay of Pauli blockade with electron-photon coupling in quantum dots
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Both quantum transport measurements in the Pauli blockade regime and microwave cavity transmission mea-
surements are important tools for spin-qubit readout and characterization. Based on a generalized input-output
theory we derive a theoretical framework to investigate how a double quantum dot (DQD) in a transport setup
interacts with a coupled microwave resonator while the current through the DQD is rectified by Pauli blockade.
We show that the output field of the resonator can be used to infer the leakage current and thus obtain insight into
the blockade mechanisms. In the case of a silicon DQD, we show how the valley quasidegeneracy can impose
limitations on this scheme. We also demonstrate that a large number of unknown DQD parameters including
(but not limited to) the valley splitting can be estimated from the resonator response simultaneous to a transport
experiment, providing more detailed knowledge about the microscopic environment of the DQD. Furthermore,
we describe and quantify a back action of the resonator photons on the steady-state leakage current.

DOI: 10.1103/PhysRevB.107.115302

I. INTRODUCTION

Spin qubits in few-electron quantum dots (QDs) [1] are ad-
vancing to become one of the leading platforms for quantum
information, with numerous demonstrations of high-fidelity
quantum operations on the few-qubit scale [2–5]. Great hopes
to achieve the required scalability lie with circuit quantum
electrodynamics (cQED) implementations [6], relying on the
dipole moment of electrons in a double QD (DQD). Af-
ter strong spin-photon coupling [7–10] and cavity-mediated
spin-spin coupling [11,12] have been demonstrated, photon-
mediated two-qubits gates [13–16] and resonator-based spin
readout [17–23] are conceivable.

Another well-established instrument in the spin qubit tool-
box is Pauli blockade [1,24]. A DQD with two electrons can
be in a state with one electron in each dot or one doubly
occupied QD. Due to the Pauli exclusion principle not all
two-electron states are allowed in a doubly occupied QD.
For example, two electrons forming a spin triplet in two dots
cannot be merged into one QD unless the excited orbital state
becomes available [25]. In a closed system the Pauli blockade
can be harnessed for initialization [26–28] and readout [26,29]
of different types of spin qubits.

In a transport setup Pauli blockade can lead to a rectifi-
cation of the current through a DQD already occupied with
one electron [30]. The blockade can be partially lifted by
interactions that mix the spin states such as spin-orbit inter-
action [31,32], hyperfine interaction [33–35], or cotunneling
processes [36,37]. The observation of Pauli blockade is proof
of a large single-dot singlet-triplet splitting and therefore a
crucial first step towards spin qubit applications.

Pauli blockade has already been studied in the presence
of a resonant drive, which can cause transitions between the
spin-like eigenstates of the DQD, thus significantly altering
the line shape of the leakage current [38–40]. This can be
utilized to gain information about the DQD spectrum [41].
An off-resonant probe field, which does not lift the blockade

can dispersively interact with the dipole moment that goes
along with the DC current. It has been demonstrated in GaAs
QDs that this dipole moment can be harnessed to detect the
lifting of the blockade in a cavity transmission measurement
[42,43].

Silicon is one of the most promising host materials for
spin qubits as it allows for long spin coherence times [44].
In QDs based on silicon, a valley pseudospin arises from
the degenerate conduction band minima [1,45]. It is known
from carbon-based spin qubits [46,47] that the valley de-
gree of freedom makes Pauli blockade much more intricate
and subtle [48–50] since it allows spin triplets in the orbital
ground state of a doubly occupied QD, as long as the total
wavefunction is antisymmetric under particle exchange. Fur-
thermore, in silicon, the parameters of the valley Hamiltonian
are largely determined by the microscopic environment of
the QDs [51–54] with only limited possibilities to address
them experimentally after the fabrication process [53,55–57].
Microwave resonators have proven useful, here, to measure
valley splitting and the inter-valley tunneling matrix elements
in a given device [58–61].

In this article, a comprehensive theory for electronic trans-
port through a DQD simultaneously coupled to a microwave
resonator is developed. We quantitatively investigate the res-
onator response to the leakage current in the Pauli spin
blockade regime and describe an additional enhancement or
suppression of the leakage current due to the electron-photon
coupling. The analysis is extended to the case of a Pauli block-
ade including valley degree of freedom, where we discuss
potential complications and present a scheme for a resonator-
aided measurement of the leakage current. In particular, we
discuss the yet largely unexplored regime of the dispersive
interaction between the current and the probe field where
the resonator transmission is sensitive to the spin and valley
physics of the DQD with only a minimal back-action. This
regime holds the promise of a reduction of complexity in
large-scale QD spin qubit devices because the number of
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specialized methods and detectors could potentially be re-
duced by replacing them by a single resonator.

The remainder of this article is organized as follows. In
Sec. II we introduce the theoretical framework of the analysis.
In Sec. III we discuss the interaction of spin blockade and
the resonator coupling. In Sec. IV we include a lifted valley
degeneracy into the discussion and present schemes for a
resonator-aided current measurement in this case as well as
for the measurement of unknown DQD parameters. Finally,
in Sec. V the results are summarized.

II. MODEL

In this section we develop a model for a DQD, which is
shunted in series and coupled to electronic reservoirs as well
as a microwave resonator. In Sec. II A the Hamiltonian is in-
troduced and in Sec. II B we adopt a generalized input-output
(IO) theory [62] and develop a treatment of the Pauli blockade
beyond the original generalized IO formalism.

A. Hamiltonian

To describe all relevant interactions as depicted in Fig. 1
we introduce the Hamiltonian H = HS + HE + HI , where
the system Hamiltonian HS = HQD + Hres + Hdip contains the
DQD, the microwave resonator Hres and the dipole interaction
Hdip. The environment HE comprises the source and drain
leads of the DQD and the photonic reservoirs. The interaction
HI between the system and the environment will later be
captured by the generalized IO theory.

To model a double quantum dot where only the lowest
orbital state is available we use an extended Hubbard Hamil-
tonian [1,24],

HQD =
∑
j,σ,v

E ′
jσvd†

jσvd jσv +
∑

σ,σ ′,v,v′
(tσvσ ′v′d†

Rσ ′v′dLσv + H.c.)

+ULRnLnR +
∑

j

Uj

2
n j (n j − 1). (1)

Here, d (†)
jσv annihilates (creates) an electron with spin σ =↑

,↓ and valley index v = ± in QD j = L, R and nj =∑
σ,v d†

jσvd jσv denotes the occupation number operator of
dot j. We have introduced the on-site energies E ′

jσv = Vj +
Bj (σz )σσ /2 + � j (σz )vv with the electric potential Vj , Zeeman
splitting Bj , and valley splitting � j . Here, σz denotes the
Pauli z matrix. Inter-dot tunneling (tσvσ ′v′ ) can either be spin
conserving, tc, or spin flipping, t f , and we define the valley
phase difference ϕv such that tc( f ) cos ϕv is the matrix element
for intravalley tunneling and tc( f ) sin ϕv is the matrix element
for intervalley tunneling. The Coulomb repulsion between
electrons in adjacent QDs (the same QD) is given by ULR (Uj ,
j = L, R).

The resonator is modeled as a single-mode harmonic oscil-
lator, Hres = ω0a†a with resonance frequency ω0 and ladder
operator a. The interaction between the DQD and the res-
onator photons is given by [63,64]

Hdip = g0

2
(a† + a)

∑
σ,v

(d†
LσvdLσv − d†

RσvdRσv ). (2)

FIG. 1. Schematic rendering of the DQD energy levels (without
valley degree of freedom for simplicity). The DQD is coupled to
source (left, L) and drain (right, R) leads as well as a resonator
with two ports. The spin degeneracy is lifted by the Zeeman split-
ting BL(R). The on-site potentials Vj of the QDs are tuned such
that the right dot is always occupied by one electron. A second
electron can tunnel from the source to the left QD, between the
QDs via the spin conserving (flipping) tunneling tc( f ) and from the
right QD to the drain, resulting in an electric current I through
the system. For ε − U = VL − VR − (UR − ULR ) = 0 the tunneling
between the singlets is elastic. The electric dipole moment of the
moving electrons couples to the electric field inside a cavity field
with resonance frequency ω0. If the spin structure of a two-electron
state is incompatible with a doubly occupied QD, Pauli block-
ade occurs and the current is suppressed. This is the case for the
spin triplet states T0(±). The interaction with the environment is
described by the input and output fields along with the coupling
rates �L(R), κ1(2).

We assume that each QD j is coupled to one fermionic
reservoir where c(†)

k jσv
annihilates (creates) an electron with

wavenumber k, spin σ , and valley v. At the same time, the
resonator interacts with one photonic reservoir with ladder
operator bx,ω at each port x = 1, 2,

HE =
∑

j,k,σ,v

εk jσvc†
k jσv

ck jσv +
∑

x

∫
dω ωb†

x,ωbx,ω. (3)

The electrons can tunnel between reservoir j and QD j with
a matrix element τk jσv and for each port of the resonator we
define the coupling gx(ω) to the continuum. The interaction
of the electrons and the cavity photons with their respective
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reservoirs is described by the Hamiltonian term,

HI =
∑

j,k,σ,v

τk jσv (c†
k jσv

d jσv + d†
jσvck jσv )

+
∑

x

∫
dω gx(ω)(b†

x,ωa + a†bx,ω ). (4)

For the remainder of the derivation all operators are treated as
time dependent.

To investigate Pauli blockade we restrict the system to be
close to the triple point of the charge configurations (nL, nR) =
(1, 1), (0,2), (0,1) where ε = VL − VR is given by ε = U ,
with U = UR − ULR. Under these premises the two-electron
Hilbert space of the DQD is spanned by ten supertriplet
states and six supersinglets with the (1,1) charge configura-
tion and six supersinglets with the (0,2) charge configuration
[49,65]. In the basis of the charge degree of freedom we
separate the two-electron states into the (1,1) states |1i〉, i =
1, ...16, and the (0,2) states |2i〉, i = 1, ...6. With nonzero in-
terdot hopping these states hybridize and form the eigenstates
|μ〉 =∑ j, j′,σ,σ ′,v,v′ α

(μ)
jσv. j′σ ′v′d

†
j′σ ′v′d

†
jσv|vac〉 of the Hamilto-

nian HQD, μ = 1, ...22, where |vac〉 is the vacuum state and
α(μ) are the coefficients of the basis change, and where the
corresponding eigenenergies are denoted Eμ. If the valley
degree of freedom is disregarded, the (1,1) states form a spin
triplet and one singlet and there is one (0,2) singlet.

The restriction to the triple point of (1,1), (0,2), and (0,1)
allows a change of the particle number of the DQD only in
processes that add the second electron to a single-occupied
DQD or remove one electron from a double-occupied DQD.
With this restriction of the electron number we can define d (†)

μ

that annihilates (creates) the two-electron eigenstate μ out of
the vacuum [66]. The operators d†

μdμ yield the probability of
finding the system in the eigenstate μ, which we will use for
the derivation of the leakage current. It is important to note
that d (†)

μ are not multiparticle creators and annihilators on the
entire Fock space; they are only defined for up to two particles.

B. Input-output theory

Input-output (IO) theory is a powerful tool for the mod-
eling of cavity-coupled qubits [6,58,67]. Here, we apply a
generalized version to combine the treatment of the electronic
transport process and the description of the resonator field in
one formalism [62].

First, the Hamiltonian is transformed into a rotating frame,
H̃ = UrHU †

r + i( ∂
∂t Ur )U †

r , denoted by the tilde and defined
by

Ur = exp(−iωpta†a) exp

⎛
⎝−it

∑
μ

�μd†
μdμ

⎞
⎠, (5)

with the frequency ωp of the probe field that is injected into
the resonator. With more than two electronic levels, finding
a rotating frame that removes all time dependence from the
Hamiltonian is possible only in special cases. In general, a
rotating wave approximation (RWA) could lead to the (unin-
tended) negligence of certain transitions. To account for cases
where a RWA is inappropriate we leave �μ general and will
give both a solution with RWA and beyond the RWA.

In the system under consideration a RWA can be made
for t f /tc, tan(ϕv ) � 1, and BL/BR ≈ 1 ≈ �L/�R. This is
because the two-particle states |μ̃〉 approximately arrange
themselves in six pairs of bonding and antibonding molecu-
lar supersinglet states (only one pair of singlet states in the
absence of the valley pseudospin) μ̃ = s1, ...s6 and s′

1, ...s
′
6

and a set of ten (three) decoupled supertriplet states [31,68],
and Hdip couples only within the pairs [40,43,62]. The choice
�s′

i
= ωp, i = 1, ...6, and all other �μ = 0 approximately

then removes time dependence. If our theory is applied to
other Hamiltonians, a case-by-case analysis is required which
rotating frame can be used and whether a RWA is useful or
not. It is also possible to choose �μ = 0 and thus use no
rotating frame.

Following the procedures of IO theory [62,67], the Heisen-
berg equations of motion for the reservoir operators are
formally integrated to eliminate the reservoir operators in the
equations of motion of the system operators. This results in
the Langevin equations,

d

dt
ã = −(i�c + κ/2)ã +

∑
x=1,2

√
κxãin,x

− i
∑
μ,ν

gμνe−i(ωp−�ν+�μ )(t−t0 )d̃†
ν d̃μ, (6)

d

dt
d̃μ = −

⎡
⎣i(Eμ − �μ) +

∑
j=L,R

(
1 − n j

F (Eμ)
)
�̃ jμ

⎤
⎦d̃μ

− i
∑

ν

(gνμaei(ωp−�μ+�ν )(t−t0 ) + H.c.)d̃ν

+
√

2π
(
d̃ in

Lμ(t ) + d̃ in
Rμ(t )

)(
1 −

∑
ν

d̃†
ν d̃ν

)
. (7)

Here, we defined �c = ω0 − ωp, the coupling matrix el-
ements gνμ = g0

∑
i〈ν|2i〉〈2i|μ〉 and introduced the Fermi

distribution function n j
F such that lead j = L, R is described

by its Fermi energy μ j and the temperature T . The coupling
to the environment is captured in the rates

κ =
∑

x

κx ≈ 2π
∑

x

g2
x(ω), (8)

�̃Lμ = π
∑
k,σ,v

∣∣∣∣∣
∑

i

〈1i|μ〉τLkσv

∣∣∣∣∣
2

δ(ε − εkLσv ), (9)

�̃Rμ = π
∑
k,σ,v

∣∣∣∣∣
∑

i

〈2i|μ〉τRkσv

∣∣∣∣∣
2

δ(ε − εkRσv ), (10)

and the input fields

ãin,x = −i√
2π

∫
dωe−iω(t−t0 )bx,ω(t0), (11)

d̃ in
jμ(t ) ≈ −i

π

√
�̃ jμ

2
n j

F (Eμ) e−i(Eμ−�μ )(t−t0 ). (12)

The derivation of these expressions relies on the ap-
proximations that the couplings between the resonator and
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the environment is flat, gx(ω) ≈ gx, and that the electronic
reservoir of the leads are infinite. As a reference we also
define the total tunneling rates between dot j = L, R and its
lead,

� j ≈ π
∑

k

|τk jσv|2δ(ε − ε jkσv ), (13)

assuming that τk jσv ≈ τk j . For simplicity we will further
choose �c = 0 and t − t0 
 1/κ, 1/�̃L(R) throughout the re-
mainder of the paper.

We assume that the resonator is driven with a coherent
input field from one port only, ãin,1 = ain, ãin,2 = 0. Unlike
Ref. [62] we proceed by formally integrating the equation for
the field ã to

ã(t ) =
∫ t

t0

dt ′ e−κ (t−t ′ )/2

(
√

κ1ain − i
∑
μ,ν

gμνe−i(ωp+�μ−�ν )t ′
d̃†

μ(t )d̃ν (t )

)
(14)

and we apply a RWA, which is justified for |ω0 − (Eμ − Eν )| � Eμ − Eν ≈ ωp [69]. Introducing the auxiliary variable Nμν =
d̃†

μd̃ν the remaining system of equations is Laplace transformed.
The time dependent exponential functions result in a shift in the complex frequency space [70], which can be expressed by

defining a displacement operator Sx f (s) = f (s + x) with S−1
x = S−x. The resulting system of linear equations can be solved for

Ld̃μ(s), the Laplace-transform of d̃μ(t ) [71],

Ld̃μ(s) =
∑

ν

(
A−1

0

)
μν

(s)Cν (s) +
∑
ν,λ,η

(
A−1

0

)
μν

(s)(A1)νλ(s)
(
A−1

0

)
λη

[s + i(Eλ − Eη − �λ + �η )]Cη(s)

−
∑
ν,λ,η

(
A−1

0

)
μν

(s)(A1)νλ(s)
(
A−1

0

)∗
λη

[s + i(Eλ + Eη − �λ − �η )]C∗
η (s), (15)

where the initial conditions at t0 enter via

Cμ(s) =
√

2π d̂ in
μ

[
1

s + i(Eμ − �μ)
−
∑

ν

Ñνν (t0)

s + 2γν

]
+ d̃μ(t0).

(16)
and the coefficient matrices are

(A0)μν (s) = δμν{s + [i(Eμ − �μ) + γμ]} + ipμν, (17)

(A1)μν (s) = 2π d̂ in
μ

(
d̂ in

ν

)∗
(s + 2γv )−1, (18)

d̂ in
μ = −i

π

∑
j=L,R

√
�̃ jμ

2
n j

F (Eμ), (19)

γμ =
∑
j=L,R

(
1 − n j

F (Eμ)
)
�̃ jμ, (20)

pμν = 4
g0

κ
|ain|δ(ωp − �ν + �μ) + qμν, (21)

where δμν is the Kronecker symbol and δ is the δ distribution.
The term qμν in Eq. (21) can be understood as a back action
of the DQD on itself via the resonator. It can be expected to
be small and is neglected in the discussion in Secs. III and IV.
An estimate for the case κ � �L, �R is given by

qμν �
√

2π g2
0ζμν2e−κτ/2

∣∣∣∣∣
∑

λ

d̂ in
λ

∣∣∣∣∣
2

, (22)

ζμν = sgn{(�ν − �μ) cos[(�ν − �μ)τ ]}, (23)

τ = 2maxλ,η|�λ − �η|/(κ�R), (24)

where sgn is the sign function.
Although the Laplace transform Ld̃μ itself has no phys-

ical meaning, the steady-state solution of the Langevin

equations can be obtained from Eq. (15) by the identity

lim
t→∞ d̃μ(t ) = lim

s→0+
sLd̃μ(s) (25)

if Ld̃μ has no other singularities with Re s � 0 than a simple
pole at s = 0 [70]. Alternatively, an inverse Laplace trans-
form of Eq. (15) yields the real-time dynamics of d̃μ(t ) for
t − t0 
 1/κ, 1/�̃L(R). Substituting into Eq. (14) gives the
time evolution of ã, the output field aout is obtained from the
IO relations [67]. Eventually, the current from the DQD to
the drain contact in units of electron charges e is given by
I/e = d

dt

∑
k,σ,v〈c†

kRσv
ckRσv〉, which can be expressed using

the IO relation [62],

I = 2e
∑
i,μ

|〈2i|μ〉|2(�R〈d̃†
μd̃μ〉 −

√
2πRe

〈
d̃†

μd̃ in
Rμ

〉)
. (26)

The first term in Eq. (26) describes the decay of population in
the right QD to the right lead with a decay rate �R computed
from IO theory. The second term describes tunneling from
the right lead to the DQD, which becomes relevant with high
temperatures or a small bias window μL − μR. We emphasize
that the solution using Eq. (25) is analytic, although it requires
the (numerical) diagonalization of HQD.

It is also possible to solve the Laplace-transformed equa-
tions without RWA. The analog of Eq. (15) beyond the RWA
is presented in Appendix A. We further note that it is straight-
forward to generalize our theory to a QD system with arbitrary
geometry coupled to any number of resonators.

III. DISCUSSION

We first investigate the basic properties of the interaction
without valley degree of freedom. In this case the (1,1) triplets
(T0(±)) are blockaded unless spin-flip processes allow transi-
tions to the (0,2) singlet (S(0,2)). The solution with RWA is
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FIG. 2. Comparison of the leakage current and the cavity re-
sponse in different regimes. (a) Leakage current I as a function
of the Zeeman splitting. The orange curve has small tunneling
t2
c + t2

f = 1 µeV2, BR − BL = 14 µeV, and ω0 = √
2 5 µeV. The red

(blue) curve have strong tunneling tc = 20 µeV and the magnetic
field gradient BR − BL = 1.5(10) µeV and ω0 = √

2 20 µeV. For all
curves we chose tc = 4t f , ε = U , g0 = 0.5 µeV, κ = 1.28 µeV, �L =
2�R = 10 µeV, and ain = 1 µeV1/2. The dashed curves have the same
setting as their solid counterparts (light red corresponds to orange)
except κ = 0.0128 µeV to highlight the back action of the photons on
the DQD. The dashed gray curve has the same setting as the orange
curve but is obtained from a numerical treatment of the system, the
agreement with the analytically approximated solution is very good.
For clarity the red (blue) curves are scaled up (down) by a factor of
10 (0.5) and the light red curve is offset by 0.01e/ns. Note that �R

is relatively small, here. (b) Phase shift δϕ of outgoing photons in
the same cases. Up to narrow resonances Eμ − Eν = ωp the phase
shift correlates with the current I; the connection is established by
Eqs. (14) and (26).

used and the stationary state is obtained from Eq. (25). We
assume a bias window of μL − μR = 1 meV, centered around
the DQD levels and T = 0.1 K.

In Fig. 2(a) the leakage current I is plotted for different
values of the total tunneling strength and the differences in
Zeeman splitting, BL − BR. The dashed gray curve is based
on an exact numerical treatment without RWA of the system
for the same parameters as the orange curve. Analogously,
the case with valley pseudospin is shown in Figs. 3(a) and
4(a). A comparison between the analytical solution and the
exact numerical treatment without RWA is included in Fig.
4(a). The agreement with the approximate analytical solution
is very good in both cases. However, in the case of Fig. 4(a)
the deviation is larger since the RWA is worse since ϕv is
relatively close to π/4. Note that the analytically derived

FIG. 3. The phase shift δϕ can be used to estimate the leak-
age current, except in a window set by the resonator linewidth κ

around the ALCs between supertriplets with opposite spin, given
in Eqs. (32)–(34). (a) Current I (red) and phase shift δϕ (blue,
gray) with valley. The solid (dashed) curve of δϕ is computed with
ωp = 60 µeV (ωp = 40 µeV) and thus the resonances Eq. (28)–(31)
are met at different values of BL + BR. The choice for the solid curve
is according to the scheme to measure I discussed in Sec. IV A, the
intervals with gray curve are those where the measurement cannot
yield clear information on I . (b) Level diagram of the DQD. The
color scale indicates the overlap with the (0,2) sector,

∑
i |〈μ|2i〉|2:

green (black) states are open (blockaded). Parameters for both pan-
els are �L = 50 µeV, �R = 60 µeV, ϕv = π/13, tc = 4t f = 20 µeV,
BL − BR = 2κ = 10 µeV. The rest is as in Fig. 2.

curves are missing one point at BL + BR = 0. These results
are obtained from Eq. (25); however, this identity is only valid
if Ld̃μ(s) has no poles with Re s � 0 other than a simple pole
at s = 0 [70]. Due to the magnetic field dependence of the
triplet energies at BL + BR = 0 a pole with multiplicity two
also falls to s = 0 and therefore Eq. (25) must not be applied.
We emphasize that an inverse Laplace transform of Eq. (15)
can still yield the solution at these instances, although at a
higher computational cost.

As Fig. 2(a) shows, the model can reproduce the features
known to appear in spin blockade. The leakage current ex-
hibits a transition from a Lorentzian dip to a peak at zero
magnetic field when the tunneling is decreased [31]. For large
magnetic fields the current decays to zero [36,37] to the extent
that it can appear as a double peak with the width determined
by �R [72]. We also observe a small dip at BL + BR = ±2

√
2tc

where the strongly hybridized singlets anticross with the T±
triplet states that are only weakly coupled to the (0,2) sector
since the degenerate levels rearrange into blockaded and open
states [31].
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FIG. 4. Outline of the proposed measurement of unknown DQD
parameters. (a) The phase shift δϕ for ωp = √

2|tc cos ϕv| as a func-
tion of the magnetic field. Note that here ωp is not at the ideal
point for measuring I (Sec. IV A), thus δϕ cannot be used to re-
liably quantify I . The gray dotted line shows the exact numerical
solution for I . The agreement with the analytical solution is very
good, although not as good as in Fig. 2, since ϕv is close to π/4
(large intervalley tunneling). (b) The level diagram of the DQD as
a function of the magnetic field. As indicated by the blue vertical
lines and matching ellipses the extrema of δϕ can be related to
the ALCs between Ẽ1 − Ẽ3 (dashed purple) and Ẽ ′

1 − Ẽ ′
6 (dashed

gray) given in Appendix D. Additional resonances (cyan ellipse)
or very close ALCs can obscure the result. A useful technique to
identify the undesired resonances is sketched in Fig. 5. Parameters
for both panels are the same as Fig. 3 up to ωp = √

2 10 µeV and
ϕv = π/3. The color scale indicates the overlap with the (0,2) sector,∑

i |〈μ|2i〉|2. Due to the strong valley-flip tunneling none of the states
is totally blockaded (black).

The phase shift δϕ = arg aout/ain, displayed in Fig. 2(b),
responds to the current since the photons couple to the dipole
moment of the tunneling electrons, as can be expected from
Eqs. (14) and (26). Thus, it is possible to qualitatively infer
the relative change of the leakage current from δϕ during the
sweep. However, to estimate the value of I it is important to
respect the dependence of gμν of the levels μ, ν that carry
current on the DQD parameters, and to consider how close ωp

is to a resonance with the DQD level splitting. In the example
this is highlighted by comparing the cases of strong (blue) and
weak (orange) tunneling both with strong magnetic gradient.
Even though the maximal current in the blue curve is twice
as high as the maximum of the orange curve, the resonator
response is weaker due to different effective couplings.

The resonator response δϕ also exhibits narrow peaks
where the probe field is resonant with a DQD level transition,
ωp = Eμ − Eν . These resonances could disturb a resonator-
aided measurement of the leakage current if the level structure
of the DQD is unknown.

Furthermore, there can be a significant back action of the
resonator photons on the current I . The dashed curves in
Fig. 2(a) strongly deviate from their solid counterparts, al-
though the only difference is a smaller value of κ . The reason
is that absorption or emission of photons can lead to a different
electronic equilibrium state than without the resonator. In
particular, near the avoided level crossings (ALCs) between
singlet and triplet states the electron can be excited from a
triplet to a singlet, which has much higher probability for a
transition to the drain. Vice versa, excitation from a singlet to
a triplet reduces the current.

To estimate the magnitude of this effect we treat the ALCs
between the singlets and the T0 (T±) at BL + BR = 0 (BL +
BR = ±2

√
2tc) separately with an effective three (two) level

Hamiltonian. In both cases we find that the current has the
form

I ′ ≈ I0 + p0
√

I0δ (27)

with p0 = 4g0|ain|/κ , the current I0 through the uncoupled
DQD and a correction δ. Thus, in strongly driven high-Q
resonators it can be expected that the current is altered by the
resonator. The explicit expressions that describe the relative
change of I near these ALCs are given in Appendix B.

We further find that in the off-resonant dispersive regime
gμν � |ωp − (Eμ − Eν )| [69] the leakage current I (ε) appears
to be displaced along the detuning axis ε if p0 is large. This
can be understood by the well-known dispersive shift of the
energy splittings to which the DQD-photon interaction is re-
duced in the dispersive regime. The shift χm(a†a + 1/2) of
the molecular transition frequencies [20] affects only the (0,2)
singlet state and appears as a shift of ε → ε − 2χm(a†a +
1/2) near the ALC of the singlets at ε = 0.

IV. LIFTED VALLEY DEGENERACY

In this section the repercussions of the valley de-
gree of freedom are discussed. This case is important for
conduction-band electron transport through silicon DQDs
with near-degenerate valleys. Eventually, we present schemes
to estimate the leakage current in Sec. IV A and to measure
the parameters of the (valley) Hamiltonian from the resonator
response during a transport experiment in Sec. IV B.

Now, there are 16 (1,1) states with subtle conditions to be
blockaded [39,48–50]. The effects discussed in Sec. III—a
resonator response to the leakage current and back action of
both resonant and off-resonant photons in the current for large
p0—are present in this case as well. However, in the more
complex level diagram there are many transitions between
different supersinglet and -triplet states that can interact with
the resonator.

To identify the resonance conditions we use the analyt-
ical result Eq. (25) and determine the contribution of each
eigenstate to the leakage current and the transmission. We
approximate the relevant eigenstates of HQD by transform-
ing the total Hamiltonian H into a rotating frame describing
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resonant transitions between these states, performing a RWA
and diagonalizing the part of the Hamiltonian acting on the
DQD. Further assuming tc 
 t f we find that any of the fol-
lowing resonance conditions can give rise to a strong resonator
response:

ωp ≈
√

2|tc cos ϕv|, (28)

ω2
p ≈

[
(ε − U ) ± BL − BR

2
± �L + �R

2

]2

+ 4(tc sin ϕv )2,

(29)

ω2
p ≈

[
(ε − U ) ± BL + BR

2
± �L + ξ�R

2

]2

+ 4(t f λξ )2

(30)

with ξ = ±1, λ−1 = cos ϕv , λ1 = 1√
2

sin ϕv and also

ω2
p ≈

[
(ε − U ) − ξ�R ± BL − BR

2

]2

+ 4(t f λξ )2 (31)

with ξ = 0,±1, λ±1 = 1√
2

sin ϕv , λ0 = cos ϕv . Note that
Eq. (28) is a good approximation only for ε = U . A more
accurate expression is given in Appendix C.

Due to the different couplings gμν the resonances
Eqs. (28)–(31) have different visibilities in the resonator re-
sponse. This can be seen in Fig. 3(a) where I is plotted
together with δϕ for two different values of ωp.

A. Observation of the leakage current

During a sweep of ε, the Zeeman splitting or the tunneling,
several of the resonances Eqs. (28)–(31) can be traversed. As a
result, similar values of I can appear with different visibility in
δϕ since the relevant resonances are associated with different
dipole moments. In the example of Fig. 3(a), the dashed curve
is not suited to extract information on I since the resonances
are met on the flanks of the peaks of I .

This challenge can be partially mitigated if the measure-
ment is performed with ε ≈ 0, κ � |BL − BR|/2 and ωp ≈
(�L + �R)/2 + t f . With this choice of ωp the probe field is
approximately resonant with the splitting between pairs of
states where both states have equal spin projection but oppo-
site valley configuration. The eigenenergies of such pairs are
separated by the valley splitting and are parallel as a function
of BL + BR [e.g., Fig. 3(b)]. The resonator field is therefore
sensitive to ALCs, which lift the blockade if one state from
such a pair is involved. The choice of κ makes sure that all
states are part of one such pair. This is necessary since the
supertriplet states without spin polarization are shifted by the
difference in Zeeman splitting. An advantage of a relatively
large κ is the suppression of unwanted back-action effects.

The result of a sweep of BL + BR is depicted in Fig. 3(a)
by the solid curve. The figure also highlights the limitation of
this method. Near the ALCs of supertriplets with opposite spin
the correlation of resonator response and leakage current is
broken and the phase shift is much stronger as can be expected
from I . These ALCs occur at

BL + BR = 0, (32)

BL + BR = BL − BR

2
, (33)

BL + BR = ±(�L + �R + 2t f ). (34)

Within a window of width ≈4κ around these ALCs the
resonator-aided measurement of the leakage current is not
reliable. These intervals are indicated in Fig. 3(a) by changing
the color of the curve to gray.

Thus, the utility of the proposed measurement scheme to
observe the leakage current is limited by the mean valley
splitting (�L + �R)/2 and the difference in Zeeman splitting
|BL − BR| to which κ is tied. Another practical limitation
to certain regimes might arise from the requirement to set
ωp to a value determined by the valley splitting. In silicon-
based heterostructures the valley splitting is sensitive to the
fabrication details [51–53] and electrically tunable only in
a limited range [53,55–57], in bilayer graphene the valley
splitting can be tuned by means of an out-of-plane magnetic
field [73], which also couples to the spin magnetic moment.
Prior knowledge of the valley splittings required to identify
the operating regime of this measurement technique can be
obtained from a transmission measurement in a closed system
[58–61].

B. DQD characterization

It is favourable to know the valley splittings �L(R) and the
valley phase ϕv for a given DQD device. In the context of
Pauli blockade this is important since the ratio of the differ-
ent tunneling matrix elements has a major effect on I , as a
comparison of the leakage current in Figs. 3 and 4 shows.
Furthermore, when using the scheme discussed in Sec. IV A
to measure the leakage current knowledge about the valley
splitting is crucial to set ωp and to determine the windows of
unreliable results that should be clipped.

This knowledge can be inferred from a prior measurement
using well-established protocols and the same microwave
resonator [58–61]. Here, we present an alternative resonator-
aided scheme for the DQD characterization during a transport
experiment.

For this application the resonance condition Eq. (28) can be
used, ωp ≈ √

2|tc cos ϕv|, with ε = U . Thus, the probe field is
resonant with the splitting between the energy levels Ê1(3) and
Ê2 approximately given by Eqs. (D1) and (D2) in Appendix D.
The ALCs of these states with Ê ′

1 − Ê ′
6, Eqs. (D3)–(D7), dur-

ing a sweep of the magnetic field give rise to an extremum in
the resonator response, each. This is depicted in Fig. 4. Un-
known DQD parameters can then be inferred by equating the
expressions from Appendix D and solving for the unknown
DQD parameters.

The performance of this scheme is limited by two possible
caveats. First, the ALCs might be closer than the resonator
linewidth κ/2 and could thus not be resolved individually.
This is shown in Fig. 4 near (BL + BR)/2 = 37 µeV. Second,
some of the other resonance conditions, Eqs. (29)–(31), might
be met during the sweep, giving rise to an unexpected ex-
tremum. This is shown by the cyan highlight in Fig. 4.

To identify the expected extrema of δϕ and distinguish
them from undesired features it is of avail to sweep the tun-
nel coupling tc in a small range. The measurement scheme
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FIG. 5. Center positions of the dips of δϕ in Fig. 4(a) as a
function of tc and BL + BR. The color of the lines indicates their
normalized visibility, the darker the curve the more prominent the
dip. The transitions that are used for the characterization (solid) be-
come off-resonant upon changing tc and decrease with a Lorentzian
lineshape, while the parasitic resonance (dashed), Eqs. (29)–(31),
remains at maximum visibility. Since the positions of the ALCs
depend on the tunneling the dips shift along the BL + BR-axis as a
function of tc. Both effects together can help identifying the desired
dips and distinguishing them from the undesired resonances.

relies on the resonance condition ωp ≈ √
2|tc cos ϕv|, thus, if

tc is swept the visibility of the desired lines changes with a
Lorentzian profile centered around the resonance with a width
set by the resonator linewidth. Furthermore, the position of the
ALCs depends on tc, thus the positions of the extrema along
the magnetic field axis is a function of tc, this can aid the
discrimination of very close extrema. Among the undesired
resonance conditions only Eq. (29) depends on tc. Features in
δϕ caused by Eq. (29) appear at different values of BL + BR if
tc is changed, however, with approximately constant visibility.
The other undesired resonances, Eqs. (30) and (31) do not
depend on tc, thus they remain at the same magnetic field value
and approximately maintain their visibility during the sweep
of tc. The different behavior of desired and undesired extrema
makes it possible to identify them. For the example of Fig. 4
this is illustrated in Fig. 5.

V. SUMMARY AND CONCLUSIONS

In this article we extended the generalized IO theory
and derived an analytic description of electronic transport in
the Pauli blockade regime in semiconductor quantum dots
coupled to a microwave resonator. We first investigated the

interaction of a spin blockade with the microwave photons
within a RWA, although we also provide a solution beyond
the RWA. While the resonator’s output field carries quanti-
tative information on the leakage current, there can also be
back action on the current. Near the resonance of the probe
field with a DQD transition, this is due to the absorption of
photons. Away from resonance the mutual dispersive shift of
DQD and resonator may also obscure experimental results.
We analytically estimated the change of the leakage current
and concluded that back action can be mitigated by choosing
parameters where p0 = 4g0|ain|/κ is small.

In the case of a lifted valley degeneracy, i.e., for silicon
or carbon based spin qubits, the back-action effects persist.
The resonator response to the leakage current, however, can
show a complicated dependence due to different resonance
conditions with a large number of states. As a result, there
is not necessarily a quantitative agreement between δϕ and
I . Nonetheless, we devised a scheme that allows to observe
the leakage current from a measurement of the output field,
limited by the valley splitting and the difference in Zeeman
splitting between the QDs. Furthermore, we provide a scheme
that can be used to extract information on unknown DQD
parameters simultaneous to a transport experiment.

Pauli blockade is a powerful tool for the characterization
of spin qubits. Our results can help leveraging its utility to
large-scale qubit applications without dedicated components
for charge or current sensing in each QD. This can be use-
ful because the same resonator used for two-qubit gates and
possibly readout can accomplish this task. The back action de-
scribed here can open a pathway to manipulate the electronic
state of a QD system by enhancing or suppressing a leakage
current. For future research directions, applications relevant
for photonic platforms are also worth investigating. For ex-
ample, a tunable interaction between two resonators coupled
to the same DQD is conceivable, harnessing the properties of
Pauli blockade and the back action.
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APPENDIX A: SOLUTION BEYOND THE RWA

The solution of the Langevin equations derived in the main
text and used for the discussion of the interaction was based
on a rotating wave approximation (RWA). The RWA is not
strictly necessary to solve the problem. Here, we give the
analog of Eq. (15) without RWA,

Ld̃μ(s) =
∑

ν

(
Â−1

0

)
μν

(s)Cν (s) − 2i

p0

∑
ν

{
Cν[s − i(ωp − �ν − �μ)] + Cν[s + i(ωp − �ν − �μ)]

}

+
∑

λ

{∑
ν

(
Â−1

0

)
μλ

(s)(A1)νλ(s) − 2i

p0

∑
ν

{(A1)νλ[s − i(ωp − �ν − �μ)] + (A1)νλ[s + i(ωp − �ν − �μ)]}
}
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∑
η

{(
Â−1

0

)
λη

[s + i(Eλ − Eη − �λ + �η )]Cη(s) − (Â−1
0

)∗
λη

[s + i(Eλ + Eη − �λ − �η )]Cη(s)†

− 2i

p0

∑
ζ

{
Cζ [s + i(Eλ − Eη − �λ + �ζ − ωp)] + Cζ [s + i(Eλ + Eη − �λ + 2�η − �ζ + ωp)]

+C†
ζ [s + i(Eλ + Eη − �λ − 2�η + �ζ − ωp)] + Cζ † [s + i(Eλ + Eη − �λ − �ζ + ωp)]

}}
, (A1)

with the new definitions

(Â0)μν = δμν{s + [i(Eμ − �μ) + γμ]}, (A2)

p0 = 4g0|ain|/κ. (A3)

APPENDIX B: ESTIMATION OF THE BACK ACTION

To assess the magnitude of the back action if ωp is resonant
to a singlet (S)-triplet (T ) ALC we use reduced Hamiltonians
of the states contributing to these ALCs. In both cases Eq. (25)
yields the current

I ′ ≈ 2�R

h̄

|kc|2
N2

, (B1)

kc =
(
β + p0

α
β ′
)∏

μ

N−1
μ (B2)

with the following definition:

α =
∑

μ

∣∣d̂ in
μ

∣∣2 ∏
ν �=μ

γν (E1 − iγν ) +
∏
μ

γμ

π
(E1 − iγμ), (B3)

β =
∑

μ

d̂ in
μ

∏
ν �=μ

Nν (E1 − iγν ), (B4)

N2 =
∑

μ

π
∣∣d̂ in

μ

∣∣2 ∏
ν �=μ

γν

(
E2

1 + γ 2
ν

)
. (B5)

Near BL + BR = 0 with the three-level system

HT0 =

⎛
⎜⎜⎝

0 BL−BR
2 0

BL−BR
2 0

√
2t∗

c

0
√

2tc U − ε

⎞
⎟⎟⎠ (B6)

in the basis {|T (1,1)
0 〉, |S(1,1)〉, |S(0,2)〉} it is furthermore

β ′ = α

⎡
⎣N1d̂ in

1

∑
μ=1,2

Nν (E1 − iγν ) + N2N3δ

⎤
⎦

+ β
[
γ2γ3

(
d̂ in

1

)∗
δ − iγ1d̂ in

1 (γ3
(
d̂ in

2

)∗
(iE1γ3)

+ γ2
(
d̂ in

3

)∗(
iE1γ2)

)]
, (B7)

δ = d̂ in
2 (E1 − iγ3) + d̂ in

3 (E1 − iγ2), (B8)

Nμ =
[

4

∣∣∣∣∣ tc
BL − BR + E1

∣∣∣∣∣
2

+
∣∣∣∣∣E1 + (μ − 1)ωp + 2(ε − U )

2tc

− 2t∗
c

BL − BR + E1 + (μ − 1)ωp

∣∣∣∣∣
2

+ 1

]1/2

. (B9)

Expanding this result to first order in p0 results in the form of
Eq. (27).

Analogously, near the ALCs of the T± triplets with each
singlet branch approximated by the two-level system

HT± =
(±BL+BR

2 t∗
f

t f U − ε

)
(B10)

in the basis {|T (1,1)
± 〉, |S(0,2)〉} it is

β ′ =
⎛
⎝α −

∏
μ

γμ

π
(E1 − iγμ)

⎞
⎠(γ1N2

(
d̂ in

2

)∗ − γ2N1
(
d̂ in

1

)∗)

− i

π

∑
μ

Nμd̂ in
μ

∏
μ

γμ(E1 − iγμ), (B11)

Nμ = 1
4

√∣∣E1 + (μ − 1)ωp + ε − U
∣∣2/|t f |2 + 1. (B12)

E1 is the lowest-energy eigenstate of the respective Hamilto-
nian.

Note that this is not the absolute leakage current, since the
other states were disregarded. Nonetheless, Eq. (B1) can be
used to estimate the relative change of I .

APPENDIX C: MORE ACCURATE EXPRESSION
FOR EQ. (28)

The resonance condition in Eq. (28) is valid only for ε ≈
U . If the DQD energy levels are detuned the resonance condi-
tion is given by ωp ≈ λ3 − λ2. Here, λ4 � λ3 � λ2 � λ1 are
the roots of the polynomial

s�2α2[(�L − �R)2 − z]|tc|2 sin ϕv + (z + |�L + �R|)
{s�(�L − �R)2|tc|4 cos2 ϕv sin2 ϕv[2α − |tc|2(�L

+�R + s�z) sin2 ϕv] − z[|tc]2 cos2 ϕv ( − 2α(�L + �R)

|tc|2 sin2 ϕv )2 − αz(α(BR − ε − U + λ) + 2s��L�R

|tc]2 sin2 ϕv )] + (�L − �R)2[−α2(BR + ε − U + λ)

+ s�|tc|2 sin2 ϕv (−2α�L�R + cos2 ϕv (2α|tc|2
− (�L + �R)|tc|4 sin2 ϕv ))]} = 0, (C1)

where we defined

α = −2(�L + �R)|tc|2 cos ϕv + �L�R[�L + �R

+ s�(BL − BR + 2ε − 2U )], (C2)

z = BL + BR + 2λ, (C3)

s� = sgn(�L + �R). (C4)
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APPENDIX D: DETAILS OF THE DQD
CHARACTERIZATION

To determine parameters of the DQD from the resonator
response as described in Sec. IV B the resonator is tuned to a
specific resonance to be sensitive to the ALCs of the energy
levels given in this section. The expressions are approxi-
mate solutions, neglecting the matrix elements that open the
ALCs between them and assuming |�L − �R|2 � t2

c + t2
f �

�2
L,�2

R,

Ê1(3) ≈ −1

4

(
BL − (−1)α

√
(BL − BR)2 + 32t2

c cos2 ϕv

+ 3BR − (−1)α2(�L − �R)2√
(BL − BR)2 + 32t2

c cos2 ϕv

)
, (D1)

Ê2 ≈ −BL + BR

2
− (�L − �R)2√

(BL − BR)2 + 32t2
c cos2 ϕv

, (D2)

where α = 0, 1. Due to the resonance condition of the mea-
surement procedure it is Ê1(3) ≈ Ê2 ± ωp. The equations to
determine unknown DQD parameters are obtained by equat-
ing the previous expressions with

Ê ′
1 ≈ −1

4

(√
(�L − �R)2 + 32t2

c cos2 ϕv

+�L + 3�R − 2t2
c sin2 ϕv

�L + �R

)
, (D3)

Ê ′
2(3) ≈ −�L + �R

2
− t2

c sin2 ϕv

�L + �R

±
√

(BL − BR)2(�L + �R)2 + 4t2
c sin2 ϕv

2(�L + �R)
, (D4)

Ê ′
4 ≈ 1

4

{
BL + BR − �L − 3�R +

[
16|t f |2 cos2 ϕv

+
(

(BL − BR)2(�L + �R)2 + 4t2
c sin2 ϕv

BL − BR + �L + �R

)2] 1
2
}

,

(D5)

Ê ′
5 ≈ 1

4

(
BL −

√
(BL − BR)2 + 32t2

c cos2 ϕv

+ 3BR + 2(�L − �R)2√
(BL − BR)2 + 32t2

c cos2 ϕv

)
, (D6)

Ê ′
6 ≈ BL + BR

2
+ (�L − �R)2

4
√

(BL − BR)2 + 32t2
c cos2 ϕv

. (D7)

Here, again one finds Ê ′
5 ≈ Ê ′

6 − ωp.
The positions of the level crossings depend on the tun-

neling tc. This is shown in Fig. 5 exemplary for the seven
ALCs that appear in the cavity response shown in Fig. 4(a)
and are discussed in the main text in Sec. IV B. The reso-
nance condition chosen for the characterization of the DQD,
ωp ≈ √

2|tc cos ϕv|, is only satisfied at one specific value of tc.
However, the effect of the ALCs on the phase shift δϕ vanishes
if tc is detuned from that value.
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