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We propose a quantum approach to “electron-hole exchange,” better named electron-hole pair exchange,
that makes use of the second quantization formalism to describe the problem in terms of Bloch-state electron
operators. This approach renders transparent the fact that such singular effect comes from interband Coulomb
processes. We first show that, due to the sign change when turning from valence-electron destruction operator to
hole creation operator, the interband Coulomb interaction only acts on spin-singlet electron-hole pairs, just like
the interband electron-photon interaction, thereby making these spin-singlet pairs optically bright. We then show
that, when written in terms of reciprocal lattice vectors Gm, the singularity of the interband Coulomb scattering
in the small wave-vector transfer limit entirely comes from the Gm = 0 term, which renders its singular behavior
easy to calculate. Comparison with the usual real-space formulation in which the singularity appears through a
sum of “long-range processes” over all R� �= 0 lattice vectors once more proves that periodic systems are easier
to handle in terms of reciprocal vectors Gm than in terms of lattice vectors R�. Well-accepted consequences of
the electron-hole exchange on excitons and polaritons are reconsidered and refuted for different major reasons.
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I. INTRODUCTION

Excitons result from semiconductor excitations that are
correlated by Coulomb interaction. In materials hosting Wan-
nier excitons, the electron energies form bands separated by
gaps, as beautifully demonstrated by the Bloch theorem for
periodic crystals [1–3]. The physically relevant bands are
the highest valence band and the lowest conduction band,
respectively full and empty for undoped semiconductors at
zero temperature. The first set of semiconductor excitations
corresponds to one valence electron jumping to the conduc-
tion band, with an empty state left in the valence band. It is
possible to show that a full valence band minus one electron
essentially behaves as a single particle called “hole,” that has
a positive charge and a positive mass. Yet, the remaining
valence electrons can “boil” into virtual conduction electron-
valence hole pairs. Such virtual pairs are the ones that lead
to reduction of the Coulomb potential through a dielectric
constant [4] of the order of 10.

The Coulomb interaction acts on valence and conduction
electrons in two distinct ways [4].

(1) Each electron can stay in its band through intraband
Coulomb processes (see Fig. 5). Their repetition transforms
one plane-wave conduction electron and one plane-wave va-
lence hole into a single plane wave for the exciton center of
mass.

(2) Each electron can change band through interband
Coulomb processes (see Fig. 6): a conduction electron returns
to an empty state of the valence band, while a valence electron

jumps to the conduction band, leaving an empty state in the
valence band. Since the valence band with an empty state
is nothing but a hole, the interband processes correspond to
the recombination of an electron-hole pair along with the
excitation of another pair (see Fig. 8). So, the interband
Coulomb interaction fundamentally leads to an exchange of
electron-hole pairs. This literally differs from an “electron-
hole exchange,” as commonly named, because an electron
cannot have a quantum exchange with a different fermion
like the hole. Actually, an even better name simply is “inter-
band Coulomb interaction” because this name readily tells the
physics that drives the effect.

The interband Coulomb processes have a marginal role
compared with the intraband processes that correlate free
electron-hole pairs into a Wannier exciton. Yet, interest-
ing effects induced by these interband processes deserve
investigation.

(i) The interband Coulomb interaction only acts on
electron-hole pairs that are in a spin-singlet state, just like the
interband electron-photon interaction, thereby making these
pairs optically bright, whereas pairs in a spin-triplet state are
dark, that is, not coupled to photons.

(ii) When the valence band has a threefold spatial level, as
for GaAs-like semiconductors, the interband Coulomb scatter-
ing is highly singular when the wave-vector transfer—which
also is the wave vector of the scattered electron-hole pair—
goes to zero: it has two different limits that depend on the
direction of this wave vector with respect to the crystal axes.
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The singularity of the interband Coulomb scattering is
commonly understood in terms of “long-range” and “short-
range” processes within the usual lattice vector formulation:
long-range processes that take place across multiple lattice
cells are responsible for the singularity, while short-range
processes that take place inside a single lattice cell bring a
regular contribution. Although adopted for a long time, we
will show that this formulation is not the appropriate one to
pin down the scattering singularity for the very simple reason
that the lattice vector space is not the appropriate space to
handle periodic systems.

In this work, we present an ab initio approach to the
various scatterings associated with the Coulomb interaction
in a semiconductor; it makes use of the second quantization
formalism in terms of operators for Bloch-state electrons.
Beside avoiding heavy Slater determinants, this operator for-
malism allows us to trivially elucidate why electron-hole pairs
in a spin-triplet state do not suffer the interband Coulomb
interaction. Moreover, through this Bloch-state formulation, it
becomes easy to catch why the interband Coulomb scattering
between electron-hole pairs has a singularity that depends
on the direction of the pair center-of-mass wave vector with
respect to the crystal axes.

The paper is organized as follows.
In Sec. II, we come back to the foundation of the two-body

Coulomb interaction between fermions in the conduction and
valence bands, first in terms of valence and conduction elec-
trons and then in terms of electrons and holes, the latter being
the appropriate language when dealing with excitations. We
visualize this interaction through Feynman diagrams, which
are especially enlightening in the case of interband Coulomb
processes because they render transparent the fact that such
processes fundamentally correspond to exchange an electron-
hole pair.

In Sec. III, we formulate the electron-electron Coulomb in-
teraction in second quantization within the Bloch-state basis,
which is the relevant one-electron basis for semiconductors
hosting Wannier excitons. We pay a particular attention to
the interband Coulomb scattering. First formulated in terms
of lattice vectors R�, we show how to rewrite this scattering
in terms of reciprocal vectors Gm, which is the appropriate
space to handle the lattice periodicity. We also pin down the
importance of the one-body average electron-electron interac-
tion, introduced to properly define the Bloch-state basis, as it
eliminates the zero-wave-vector transfers not only for intra-
band Coulomb processes but also for interband processes—a
crucial point to get rid of spurious volume-infinite terms
that appear in the calculation. This elimination is carefully
established here. Finally, we transform electron-electron in-
teraction into electron-hole interaction. This change readily
reveals that electron-hole pairs that suffer interband processes
are in a spin-singlet state.

In Sec. IV, we analytically calculate the interband
Coulomb scattering. We derive its singular behavior in the
limit of small wave-vector transfer, this wave vector transfer
also being the center-of-mass wave vector of the scattered
electron-hole pair. By using the expression of the interband
scattering as a sum over reciprocal vectors Gm, we show that
its singularity only comes from the G0 = 0 term. To make
a link with the former approach to electron-hole exchange,
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FIG. 1. Interband Coulomb scattering VK(k′, k) in terms of
(a) electron (solid line) and hole (dashed line) pairs with center-of-
mass wave vector K or (b) valence and conduction electrons. Note
that the wave-vector transfer K for interband Coulomb processes also
is the center-of-mass wave vector of the scattered electron-hole pair.
As Coulomb interaction conserves the spin, the electron-hole pairs
involved in the interband Coulomb processes have a total spin equal
to zero. They moreover are in a spin-singlet state due to a subtle
sign change [see Eq. (47)] that appears when turning from valence
electron to hole.

we also calculate this scattering as a sum over lattice vectors
R�. The singularity then comes from the sum over all nonzero
lattice vectors R� �= 0, known as “long-range processes.” We
prove that this singularity is the same as the one coming from
the G0 term of the Gm sum. Bridging calculations done in
the R� and Gm spaces provide a deeper insight to this highly
singular effect.

In Sec. V, we present a “state of the art” on the so-called
electron-hole exchange. We also reconsider the well-accepted
consequences of this singular interband scattering in two fully
different frameworks: the energy splitting between dark and
bright excitons and the transverse-longitudinal splitting of the
polariton. We explain why in both cases, but for different
reasons, the singular electron-hole pair exchange can hardly
be associated with experimental results.

We then conclude.

II. COULOMB INTERACTION BETWEEN CONDUCTION
AND VALENCE ELECTRONS

A. Definitions

What is commonly called electron-hole exchange refers to
a two-body interband process mediated by the Coulomb in-
teraction. The system starts with an electron-hole pair having
a center-of-mass wave vector K and a k electron; it ends with
a pair having the same center-of-mass wave vector K and a k′
electron. The state change involves filling a valence hole with
the k conduction electron, while creating another hole and an-
other k′ conduction electron, the initial and final electron-hole
pairs having the same center-of-mass wave vector K because
the Coulomb interaction conserves the total wave vector of the
involved pair. Let us denote as

VK(k′, k) (1)

the scattering amplitude associated with this state change. It
depends on three wave vectors: the pair center-of-mass wave
vector K and the wave vectors k and k′ of the incoming and
outgoing electrons.

This interband process can be represented either in terms
of electron and hole by the Feynman diagram of Fig. 1(a) or
in terms of conduction and valence electrons by the Feynman
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FIG. 2. In the interband Coulomb process shown in Fig. 1(b), a
spin s electron goes from the conduction state k to the valence state
(k − K), thus filling a −(k − K) hole with spin −s present in the
valence band, while another electron having an s′ spin goes from the
valence state (k′ − K) to the conduction state k′, leaving a −(k′ −
K) hole with spin −s′ in the valence band.

diagram of Fig. 1(b). The corresponding physical process is
shown in Fig. 2.

The purpose of this work is to derive the behavior of
VK(k′, k) in the K → 0 limit.

Note that it is possible to achieve the same state change
via the intraband Coulomb process shown in Fig. 3(a) and
represented by the Feynman diagram of Fig. 3(b). Repetition
of these intraband Coulomb processes, which transforms free
electron-hole pairs into correlated pairs, is responsible for
binding an electron and a hole into a Wannier exciton [4].

B. Generalities on Feynman diagrams

Feynman diagrams provide an enlightening way to visual-
ize interactions between particles. We draw them here in an
unconventional way, with arrows from right to left, in order
to match the processes they represent: indeed, the latter are
written with the initial-state destruction operators at the right
of final-state creation operators.

1. In terms of valence and conduction electrons

We consider the Coulomb scattering, shown in Fig. 4, in
which a pair of valence and conduction electrons changes
from the [(v, k1); (c, k2)] states to the [(v, k′

1); (c, k′
2)] states,

with k1 + k2 = k′
1 + k′

2 as required by wave vector conserva-
tion. Two fundamentally different processes can take place.

(1) Each electron stays in its band. This intraband
Coulomb process for (k′

1, k′
2) written as (k1 + q, k2 − q) [see

Fig. 5(a)] is represented by the Feynman diagram of Fig. 5(b).
Each electron keeps its spin since the Coulomb interaction
does not act on spin.

(a)
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s

′s
k − K′k − K

s

′s v, ′k − K

FIG. 3. (a) Intraband Coulomb process responsible for the for-
mation of Wannier excitons: each electron stays in its band.
(b) Feynman diagram for this intraband process. Such a process
exists whatever the electron spins, s and s′.
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FIG. 4. General diagram for scattering between a valence elec-
tron k1 and a conduction electron k2 that keeps the number of
electrons in each band. The scatterings that do not keep this number
lead to processes far away in energy.

(2) Each electron changes band. This interband Coulomb
process that corresponds to k′

1 = k2 − q and k′
2 = k1 + q

[see Fig. 6(a)] is represented by the Feynman diagram of
Fig. 6(b).

2. In terms of electrons and holes

The proper way to handle problems regarding excited
semiconductors is not in terms of valence electrons but
in terms of valence-electron absences, that is, in terms of
electron-hole excitations. This is especially true for interband
Coulomb processes. The (v, k1, s1) electron that jumps to the
conduction band leaves a (v, k1, s1) empty state in the valence
band; this empty state corresponds to a hole with wave vector
−k1 and spin −s1, on top of the total wave vector and spin
of the fully occupied valence band. So, the excitation of a
valence electron into the conduction band can be seen as
a pair of valence electron-valence hole [see Fig. 7(a)] that
boils into a pair of conduction electron-valence hole [see
Fig. 7(b)].

This leads us to replace Fig. 6 for valence and conduction
electrons by Fig. 8 for electrons and holes. Accordingly, the
Feynman diagram of Fig. 6(b), which can also be redrawn as
in Fig. 8(b), appears as in Fig. 8(c), when written in terms of
electrons and holes, the electron-hole pair wave vector q being
equal to the wave-vector transfer of the interband Coulomb
process.

The Feynman diagram of Fig. 1(a) that represents the
interband Coulomb scattering VK(k′, k) is identical to the
Feynman diagram of Fig. 8(c). A careful handling of
the sign change that mathematically appears when turning
from valence-electron destruction operator to hole creation
operator, as done in Sec. III G, further shows that the in-
volved electron-hole pairs with total spin Sz = 0 are in
the spin-singlet state (S = 0, Sz = 0), not in the singlet-
triplet state (S = 1, Sz = 0) having the same component
along z.
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FIG. 5. Figure 4 in the case of intraband Coulomb process: that
is, conduction and valence electrons staying in their band.
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FIG. 6. Figure 4 in the case of interband Coulomb process: the
conduction electron k2 fills the empty valence state k2 − q, while the
valence electron k1 jumps into the conduction state k1 + q.

III. COULOMB SCATTERING IN
THE BLOCH-STATE BASIS

A. Coulomb interaction in first quantization

The electron-electron Coulomb interaction for N electrons
located at r j reads in the first quantization as

Ve−e = 1

2

N∑
j=1

N∑
j′ �= j

e2

|r j − r j′ | . (2)

The good way to tackle this interaction is to turn to the second
quantization. An important advantage of this formalism is to
avoid writing N-electron states as Slater determinants that im-
pose one to carefully follow the resulting minus signs induced
by fermion exchanges when calculating matrix elements in the
N-electron subspace.

The first step in the second quantization is to choose an
appropriate one-electron basis. The relevant basis for elec-
trons in a periodic ion lattice hosting Wannier excitons is not
made of free electron states |k〉 with wave function 〈r|k〉 =
eik·r/L3/2, for k quantized in 2π/L in a sample volume L3

(within the Born–von Karman boundary conditions), but it is
made of Bloch states |n, k〉 that differentiate electrons with
the same wave vector k in different bands n. According to the
Bloch theorem [1–3], their wave function

〈r|n, k〉 = eik·r

L3/2
un,k(r) ≡ eik·r〈r|un,k〉 (3)

(b)(a) (b)

′k ,s

−k,−s

FIG. 7. (a) Semiconductor ground state: the conduction band is
empty and the valence band is fully occupied; this can be seen as
each valence electron (k, s) filling its corresponding valence hole
(−k, −s). (b) Lowest set of excitations: one valence electron-valence
hole pair has “boiled”: the valence electron (k, s) now is in the
conduction state (k′, s), while the valence hole (−k, −s) still is in
the valence band.

s
2 s

1

−s
1−s

2

(a)

c ,k
2
,s
2

v,k
1
,s
1

v,k
2
−q,s

2

c ,k
1
+q,s

1

q

(b)

(c)

q
k
1
+q,s

1

−k
1
,−s

1

k
2
,s
2

−k
2
+q,−s

2

FIG. 8. Interband Coulomb process: (a) one electron-hole pair
with spins (s2, −s2) recombines, while another pair is created.
(b) Feynman diagram for the interband process of Fig. 6(b), but
drawn differently. (c) Same as (b) in terms of electron and hole.

appears as the free electron wave function 〈r|k〉 modulated by
a Bloch function un,k(r) that has the lattice periodicity

un,k(r) = un,k(r + R�) (4)

for any lattice vector R� with � = (1, . . . , N ). The appropriate
way to handle the lattice periodicity is not in terms of these N
lattice vectors R� but in terms of the N reciprocal vectors Gm,
by Fourier expanding un,k(r) as

un,k(r) =
N−1∑
m=0

eiGm·r un,k;Gm (5)

for Gm quantized in 2π/ac with ac being the lattice cell size,
in order to have eiGm·R� = 1 whatever R�.

The Bloch states are eigenstates of a one-body Hamiltonian
h,

0 = (h − εn,k )|n, k〉, (6)

which corresponds to a free electron with mass m0 that in-
teracts with all the lattice ions and also with all the other
electrons through a one-body average repulsive interaction
that has the lattice periodicity [4]. The h Hamiltonian in ad-
dition contains a constant term that comes from the ion-ion
interaction, as required for h to represent a neutral system, in
order to avoid spurious overextensive terms [4].

This h Hamiltonian follows from the system Hamiltonian
H for N electrons labeled by j and N ions with charge |e| and
infinite mass, located at R�,

H =
N∑

j=1

p2
j

2m0
−

N∑
j=1

N∑
�=1

e2

|r j − R�|

+ 1

2

N∑
j=1

∑
j′ �= j

e2

|r j − r j′ | + 1

2

N∑
�=1

∑
�′ �=�

e2

|R� − R�′ | , (7)

which we rewrite as

H =
N∑

j=1

h j + VCoul. (8)
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This splitting concentrates the two-body part of the prob-
lem, i.e., the one leading to many-body effects, into

VCoul = Ve−e − V e−e, (9)

with Ve−e given in Eq. (2), while

V e−e =
N∑

j=1

ve−e(r j ), (10)

with ve−e(r j ) = ve−e(r j + R�) whatever R�, is the one-body
average electron-electron Coulomb interaction that is intro-
duced to properly define the Bloch-state basis.

Another important requirement for this average interaction
is to catch most of the electron-electron repulsion in order
to possibly treat VCoul in a perturbative way when dealing
with many-body effects. The simplest choice is to replace the

electron gas by a jellium [5,6] having the same charge density,
Ne/L3. Its interaction with the r j electron would then lead to

v
(jel)
e−e (r j ) = 1

2

∫
L3

d3r

L3

Ne2

|r j − r| , (11)

with the 1/2 prefactor coming from the fact that the r j electron
belongs to the jellium. Note that this v

(jel)
e−e (r j ) interaction has

the required lattice periodicity in the large L limit.
The resulting one-body Hamiltonian, from which the

Bloch states are constructed, then reads

h j = p2
j

2m0
+ v(r j ), (12)

with the total Coulomb interaction given by

v(r j ) = −
N∑

�=1

e2

|r j − R�| + ve−e(r j ) + 1

2N

N∑
�=1

∑
�′ �=�

e2

|R� − R�′ | , (13)

so that v(r j ) = v(r j + R�) whatever R�, as required.

B. Electron-electron interaction using Bloch states

Following the second quantization procedure [4], we can write the two-body electron-electron interaction Ve−e given in Eq. (2)
in terms of the creation operators â†

n,k,s for electrons with spin s in the Bloch state (n, k). The Ve−e interaction then leads to the
operator

V̂e−e = 1

2

∑
q1q2

∑
{n,k,s}

V

(
n′

2, k2 − q2 n2, k2

n′
1, k1 + q1 n1, k1

)
â†

n′
1,k1+q1,s1

â†
n′

2,k2−q2,s2
ân2,k2,s2 ân1,k1,s1 , (14)

since the Coulomb interaction does not act on spin. The scattering amplitude, written here as a square box to evidence that
the spin-s1 electron in the Bloch state (n1, k1) ends with the same spin in the Bloch state (n′

1, k1 + q1), reads in terms of the
Bloch-state wave functions (3) as

V

(
n′

2, k2 − q2 n2, k2

n′
1, k1 + q1 n1, k1

)
=

∫∫
L3

d3r1d3r2〈n′
1, k1+q1|r1〉〈n′

2, k2−q2|r2〉 e2

|r1−r2| 〈r2|n2, k2〉〈r1|n1, k1〉. (15)

To calculate this quantity, we write r as R� + ρ; this divides the r integrals over the sample volume L3 into a sum over the N
lattice vectors R� and an integral over a unit cell volume a3

c as∫
L3

d3r =
∑
R�

∫
a3

c

d3ρ. (16)

Because of the lattice periodicity (4) of the Bloch functions, we can rewrite Eq. (15), for r2 = ρ2 + R�2 and r1 = ρ1 + R�1 =
ρ1 + R� + R�2 , as

V

(
n′

2, k2 − q2 n2, k2

n′
1, k1 + q1 n1, k1

)
= 1

L6

∫∫
a3

c

d3ρ1d3ρ2 ei(q2·ρ2−q1·ρ1 ) u∗
n′

1,k1+q1
(ρ1) u∗

n′
2,k2−q2

(ρ2) un2,k2 (ρ2) un1,k1 (ρ1)

×
N∑

�=1

e−iq1·R�
e2

|R� + ρ1 − ρ2|
N∑

�2=1

ei(q2−q1 )·R�2 . (17)

Since the sum over �2 is equal to Nδq1,q2 for q quantized in 2π/L with L3 = Na3
c , we recover the expected wave-vector

conservation for the scattered electron pair.
This gives the electron-electron interaction (14) in the Bloch-state basis as

V̂e−e = 1

2

∑
q

∑
{n,k,s}

V

(
n′

2, k2 − q n2, k2

n′
1, k1 + q n1, k1

)
â†

n′
1,k1+q,s1

â†
n′

2,k2−q,s2
ân2,k2,s2 ân1,k1,s1 , (18)
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with the Coulomb scattering amplitude given by

V

(
n′

2, k2 − q n2, k2

n′
1, k1 + q n1, k1

)
= 1

N

∫∫
a3

c

d3ρ1

a3
c

d3ρ2

a3
c

eiq·(ρ2−ρ1 )u∗
n′

1,k1+q(ρ1) u∗
n′

2,k2−q(ρ2) un2,k2 (ρ2) un1,k1 (ρ1)

×
N∑

�=1

e−iq·R�
e2

|R� + ρ1 − ρ2|
. (19)

C. Average electron-electron interaction

We can also write the one-body average electron-electron
interaction V e−e as an operator in the Bloch state basis. Using
the second quantization procedure, this one-body operator
first appears as

V̂ e−e =
∑

s

∑
n′,n

∑
k,q

ve−e(n′, k + q; n, k) â†
n′,k+q,sân,k,s, (20)

with the prefactor given by

ve−e(n′, k + q; n, k) =
∫

L3
d3r〈n′, k + q|r〉ve−e(r)〈r|n, k〉.

(21)

To calculate this prefactor, we use the Bloch-state wave func-
tions (3) and we split the integral over r according to Eq. (16).
The above scattering amplitude then reads, for r = R� + ρ, as

ve−e(n′, k + q; n, k) = 1

L3

N∑
�=1

∫
a3

c

d3ρ e−iq·(R�+ρ)

× u∗
n′,k+q(ρ) un,k(ρ) ve−e(R� + ρ).

(22)

Since ve−e(R� + ρ) = ve−e(ρ) is periodic, the sum over �

reduces to
∑

� e−iq·R� = Nδq,0; so, we get

ve−e(n′, k + q; n, k) = δq,0 vk(n′, n), (23a)

vk(n′, n) =
∫

a3
c

d3ρ

a3
c

u∗
n′,k(ρ) ve−e(ρ) un,k(ρ).

(23b)

By using these results, we find that the one-body average
electron-electron interaction (20) reduces to

V̂ e−e =
∑
n′,n

∑
k,s

vk(n′, n) â†
n′,k,sân,k,s. (24)

It allows a band change (n′ �= n), but not a wave-vector
transfer.

It is possible to rewrite this one-body operator as a two-
body operator by noting that Î

(N )
defined as

Î
(N ) = 1

N

∑
n,k,s

â†
n,k,sân,k,s = 1

N

∑
n′,n

∑
k,s

δn′,nâ†
n′,k,sân,k,s (25)

with δn′,n possibly written as

δn′,n = 〈n′, k|n, k〉 =
∫

a3
c

d3ρ

a3
c

u∗
n′,k(ρ) un,k(ρ) (26)

reduces to the identity operator when acting on any N-electron
state in the Bloch-state basis.

Consequently, the operator â†
n′,k,sân,k,s in Eq. (24) acts on

such an N-electron state in the same way as â†
n′,k,s Î

(N−1)
ân,k,s.

So, we can rewrite V̂ e−e in Eq. (20) as

V̂ e−e = 1

2

∑
{n′,n}

∑
{k,s}

V

(
n′

2, k2 n2, k2

n′
1, k1 n1, k1

)

× â†
n′

1,k1,s1
â†

n′
2,k2,s2

ân2,k2,s2 ân1,k1,s1 , (27)

with the scattering amplitude for N − 1 ∼ N large, being
given by

V

(
n′

2, k2 n2, k2

n′
1, k1 n1, k1

)

= 1

N

∫∫
a3

c

d3ρ1

a3
c

d3ρ2

a3
c

(ve−e(ρ1) + ve−e(ρ2))

× u∗
n′

1,k1
(ρ1) u∗

n′
2,k2

(ρ2) un2,k2 (ρ2) un1,k1 (ρ1). (28)

The main characteristic of this average electron-electron in-
teraction is to be associated with zero-wave-vector transfers.

D. Semiconductor Coulomb interaction VCoul

When used in the semiconductor Coulomb interaction
VCoul defined in Eq. (9), we find that this interaction is rep-
resented in the Bloch-state basis by a two-body operator, with
a scattering that splits in a natural way into a part associated
with zero-wave-vector transfers that comes from Ve−e − V e−e

and a part associated with finite-wave-vector transfers that
only comes from Ve−e

V̂Coul = 1

2

∑
q

∑
{n,k,s}

V
(

n′
2, k2 − q n2, k2

n′
1, k1 + q n1, k1

)

× â†
n′

1,k1+q,s1
â†

n′
2,k2−q,s2

ân2,k2,s2 ân1,k1,s1 , (29)

with the scattering amplitude given by

V
(

n′
2, k2 − q n2, k2

n′
1, k1 + q n1, k1

)
=V

(
n′

2, k2 − q n2, k2

n′
1, k1 + q n1, k1

)

− δq,0V

(
n′

2, k2 n2, k2

n′
1, k1 n1, k1

)
.

(30)

By properly choosing the average electron-electron inter-
action, it is possible to exactly cancel the singular q = 0 part
of the V̂e−e scattering, as required to ultimately treat VCoul in a
perturbative way. The operator V̂Coul then reduces to the part
of V̂e−e for finite wave-vector transfers only.
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E. Interband scattering

The V̂e−e Coulomb interaction (14) generates two types of
terms: the ones (n′

1 = c, n1 = c; n′
2 = v, n2 = v) and (n′

1 =
v, n1 = v; n′

2 = c, n2 = c) are associated with intraband pro-
cesses, while the ones (n′

1 = c, n1 = v; n′
2 = v, n2 = c) and

(n′
1 = v, n1 = c; n′

2 = c, n2 = v) are associated with inter-
band processes. These two pairs of terms remove the 1/2
prefactor in the V̂e−e Coulomb interaction given in Eq. (14).

In the following, we will focus on the interband Coulomb
interaction. It appears in terms of valence and conduction
electron operators as

V̂ (inter)
e−e =

∑
K

∑
s′,s

∑
k′,k

VK(k′, k) â†
c,k′,s′ â

†
v,k−K,sâc,k,sâv,k′−K,s′ .

(31)

The interband Coulomb scattering, shown in Fig. 1(b), is
given, according to Eq. (17), by

VK(k′, k) ≡ V

(
v, k − K c, k

c, k′ v, k′ − K

)
=

N∑
�=1

VK(k′, k; R�),

(32)

with, by rewriting (ρ1, ρ2) as (ρ′, ρ), q as K, and (k2, k1) as
(k, k′ − K) in Eq. (19),

VK(k′, k; R�) = 1

N

∫∫
a3

c

d3ρ ′

a3
c

d3ρ

a3
c

e−iK·(R�+ρ′−ρ)

× e2

|R� + ρ′ − ρ| w∗
K,k′ (ρ′)wK,k(ρ) (33)

for wK,k(ρ) defined as

wK,k(ρ) ≡ u∗
v,k−K(ρ) uc,k(ρ). (34)

There are two ways to calculate the interband scattering
amplitude VK(k′, k).

(i) The usual way is to stay in real space and to tackle the
R� sum in Eq. (32) by isolating its R� = 0 term, identified
with the so-called short-range Coulomb process, from the
R� �= 0 sum associated with long-range processes.

(ii) The other way, which is the appropriate one when
dealing with periodic systems, is to handle the lattice peri-
odicity of the Bloch functions by expanding these functions
on reciprocal vectors Gm according to Eq. (5). Equation (32)
then appears as

VK(k′, k) =
N−1∑
m=0

VK,Gm (k′, k). (35)

While the latter way is mathematically appropriate for peri-
odic systems, both ways, that indeed produce the same result,
are of interest because they bring out different aspects of the
problem. In particular, the singularity, in the K → 0 limit, of
the single VK,G0=0(k′, k) term is the same as the singularity
that appears in the sum of VK(k′, k; R�) over all lattice vectors
R� �= 0 associated with long-range Coulomb processes.

F. Formulation in the reciprocal space

To rewrite the interband Coulomb scattering amplitude
VK(k′, k) defined in Eq. (32) as a sum over reciprocal vec-

tors Gm instead of lattice vectors R�, we first note that since
un,k(ρ)’s are periodic functions, we can expand their product
defined in Eq. (34) as

wK,k(ρ) =
N−1∑
m=0

eiGm·ρ wK,k;Gm , (36)

with the prefactor given by

wK,k;Gm = 〈uv,k−K|e−iGm·r|uc,k〉. (37)

To check it, we use Eqs. (3) and (16). The above right-hand
side (RHS) then reads, for r = ρ + R� and e−iGm·R� = 1 what-
ever R�, as(∑

R�

∫
a3

c

d3ρ

)
u∗

v,k−K(r)

L3/2
e−iGm·r uc,k(r)

L3/2

=
∫

a3
c

d3ρ

a3
c

e−iGm·ρwK,k(ρ). (38)

By inserting Eq. (36) into Eq. (33), the interband Coulomb
scattering (32) then appears as

VK(k′, k) =
∑
m′m

WK(Gm′ , Gm) w∗
K,k′,Gm′ wK,k;Gm , (39)

with the Coulomb part concentrated into

WK(Gm′ , Gm) =
∫∫

a3
c

d3ρ ′

a3
c

d3ρ

a3
c

eiGm·ρ e−iGm′ ·ρ′

× 1

N

N∑
�=1

e2

|R� + ρ′ − ρ|e−iK·(R�+ρ′−ρ).

(40)

To calculate the above quantity, we first set R� + ρ′ = r′.
By noting that e−iGm′ ·ρ′ = e−iGm′ ·r′

, since e−iGm′ ·R� = 1 what-
ever R�, we get

1

N

N∑
�=1

∫
a3

c

d3ρ ′

a3
c

e2

|R� + ρ′ − ρ|e−i(K+Gm′ )·(R�+ρ′ )

=
∫

L3

d3r′

L3

e2

|r′ − ρ|e−i(K+Gm′ )·r′ = e−i(K+Gm′ )·ρ vK+Gm′ ,

(41)

with the Coulomb part defined as

vq =
∫

L3

d3r

L3
e−iq·r e2

|r| . (42)

The RHS of the above equation shows that vq scales as e2/L
for q = 0, while for nonzero q, its value, obtained by using
the mathematical identity

e2

|r| = 1

(2π )3

∫
∞

d3q
4πe2

q2
eiq·r, (43)

is equal in the large sample limit to

vq �=0 = 4πe2

L3q2
. (44)
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When inserted into Eq. (40), we end with

WK(Gm′ , Gm) = vK+Gm′

(
1

N

N∑
�=1

) ∫
a3

c

d3ρ

a3
c

eiρ·(Gm−Gm′ )

= vK+Gm′

∫
L3

d3r

L3
e−ir·(Gm−Gm′ )

= δm′,m vK+Gm . (45)

All this allows us to write the interband Coulomb scattering
VK(k′, k) as in Eq. (35), with VK,Gm (k′, k) equal to

VK,Gm (k′, k) = vK+Gm w∗
K,k′;Gm

wK,k;Gm (46)

for vq given in Eq. (44) and wK,k;Gm given in Eq. (37).

G. From valence electron to hole

Before calculating the VK(k′, k) scattering amplitude ex-
plicitly, let us first turn from valence and conduction electrons
to electrons and holes, in order to demonstrate that the inter-
band Coulomb processes only act on electron-hole pairs that
are in a spin-singlet state. This important point follows from
the sign change that appears when transforming the destruc-
tion operator for valence electron into the creation operator
for hole.

In the case of valence states with a threefold cubic de-
generacy labeled by μ = (x, y, z) along the crystal axes, it
is possible to show [4,7,8] that the destruction of a valence
electron with spatial index μ, spin s, and wave vector k cor-
responds to the creation of a (μ,−s,−k) hole within a sign
change, namely

âμ,v,k,s = (−1)
1
2 −s b̂†

μ,−k,−s. (47)

When used in the sum over spins of Eq. (31), that we
rewrite as∑

s′,s

â†
c,k′,s′ â

†
v,k−K,sâc,k,sâv,k′−K,s′

= −δk′,k

∑
s

â†
c,k,sâc,k,s +

∑
s′

â†
c,k′,s′ âv,k′−K,s′

×
∑

s

â†
v,k−K,sâc,k,s, (48)

we see appearing the creation operator for an electron-hole
pair having a center-of-mass wave vector K and an electron
wave vector k′, in a spin-singlet state (S = 0, Sz = 0), namely∑

s′
â†

c,k′,s′ âv,k′−K,s′ = â†
k′, 1

2

b̂†
K−k′,− 1

2

− â†
k′,− 1

2

b̂†
K−k′, 1

2

≡
√

2 B̂†
K,k′;S=0,Sz=0. (49)

As a result, the interband Coulomb interaction given in
Eq. (31) ultimately reads in terms of electron-hole pairs as

V̂ (inter)
e−e = −

∑
K

∑
sk

VK(k, k)â†
c,k,sâc,k,s

+ 2
∑

K

∑
k′,k

VK(k′, k)B̂†
K,k′;0,0B̂K,k,0,0. (50)

The first term brings a contribution to the kinetic energy of
the conduction electrons that accounts for the Coulomb inter-
action of a conduction electron with all valence electrons—a
contribution that is forgotten when speaking in terms of holes.
The second term demonstrates that the interband Coulomb
interaction brings a repulsive interaction between electron-
hole pairs that are in the spin-singlet state (S = 0, Sz = 0): the
“incoming” pair is made with a k electron and the “outgoing”
pair with a k′ electron, both pairs having the same center-of-
mass wave vector K, which also is the wave vector transfer of
the interband scattering at hand, as seen from Fig. 1.

IV. CALCULATION OF THE INTERBAND
COULOMB SCATTERING

A. In the Gm reciprocal space

The Gm space is the appropriate space to calculate the inter-
band Coulomb scattering amplitude VK(k′, k) in the small K
limit because K + Gm in Eq. (46) never cancels in this limit:
indeed, the (2π/ac) scale for Gm vectors is very large com-
pared with the (2π/L) scale for K vectors. So, vK+Gm defined
in Eq. (42) is unambiguously equal to 4πe2/L3|K + Gm|2
when K → 0. It then becomes clear from Eq. (46) that if a
singular behavior has to exist for VK→0(k′, k), it has to come
from the G0 = 0 term of the Gm sum in Eq. (35), with the
remaining part of the sum going smoothly to its K = 0 value
given by∑

m �=0

VK→0,Gm (k′, k) =
∑
m �=0

4πe2

L3G2
m

〈uc,k′ |eiGm·r|uv,k′ 〉

× 〈uv,k|e−iGm·r|uc,k〉. (51)

By contrast, VK,G0=0(k′, k) is indeed singular in the small
K limit: it depends on the K direction with respect to the
crystal axes. To show it, we first note that [4]

|un,k+K〉 � |un,k〉 + h̄

m0

∑
n′ �=n

|un′,k〉〈un′,k|K · p̂|un,k〉
εn,k − εn′,k

, (52)

as obtained from first-order perturbation theory in the k · p
formalism. So, from

VK,G0=0(k′, k) = 4πe2

L3K2
〈uc,k′ |uv,k′−K〉〈uv,k−K|uc,k〉, (53)

as obtained from Eqs. (37) and (46), we get

VK→0,G0= 0(k′, k) � 4πe2

L3K2
〈uc,k′ | h̄K · p̂

m0Egap
|uv,k′ 〉

× 〈uv,k| h̄K · p̂
m0Egap

|uc,k〉, (54)

since εc,k − εv,k is close to the band gap Egap.
To go further, we note that, for small k’s, which are the

relevant wave vectors out of which Wannier excitons are
constructed, the vector 〈uv,k|p̂|uc,k〉 differs from zero due
to parity; so, for cubic GaAs-like semiconductors having a
threefold valence level with states labeled as μ = (x, y, z)
along the crystal axes, that transform like {x, y, z} in the crystal
symmetry operations, we have

〈uv,μ,0|K · p̂|uc,0〉 = Kμ〈uv,μ,0| p̂μ|uc,0〉 ≡ KμPv,c, (55)
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with the Kμ prefactor being μ independent due to cyclic sym-
metry in a cube.

Inserting the above result into Eq. (54) yields, for (k′, k)
small,

VK→0,G0=0(μ′, k′; μ, k) � 4πe2

L3

∣∣∣ h̄Pc,v

m0Egap

∣∣∣2 Kμ′Kμ

K2
. (56)

So, for K → 0, the G0 = 0 term in the Gm expansion of
the interband Coulomb scattering depends on the K direction
with respect to the crystal axes: this proves that the interband
Coulomb scattering indeed is highly singular in this limit.

B. In the R� real space

Let us now go back to the interband Coulomb scattering
given in Eq. (32) and show how this singular behavior also ap-
pears in the R� expansion of the interband Coulomb scattering
amplitude VK(k′, k) when written in terms of VK(k′, k; R�).

1. Intracell R� = 0 contribution

When K goes to zero, the contribution to VK(k′, k) that
comes from the R� = 0 term goes smoothly to its K = 0 value
that reads

VK→0(k′, k; R� = 0) = 1

N

∫∫
a3

c

d3ρ ′

a3
c

d3ρ

a3
c

e2

|ρ′ − ρ|
× w∗

0,k′ (ρ′)w0,k(ρ). (57)

It corresponds to the Coulomb interaction between two charge
distributions inside a unit cell.

2. Intercell R� �= 0 contribution

The sum of all R� �= 0 terms in the VK(k′, k) expansion
corresponds to contributions from the rest of the lattice. Using
Eq. (33), it reads

V (latt)
K (k′, k) = 1

N

∫∫
a3

c

d3ρ

a3
c

d3ρ ′

a3
c

w∗
K,k′ (ρ′)wK,k(ρ)

× e−iK·(ρ′−ρ)
∑
R� �=0

e2

|R� + ρ′ − ρ|e−iK·R� .

(58)

To calculate the R� sum, we first note that any nonzero |R�|
is large compared to |ρ − ρ′| since ρ and ρ′ are restricted to
a cell. So, we can expand 1/|R� + ρ − ρ′| in power of 1/R�.
This expansion follows from

1

|R� + ρ| = 1√
R2

� + 2R� · ρ + ρ2

= 1

R�

[
1 − 1

2

2R� · ρ+ρ2

R2
�

+ 3

8

(
2R� · ρ

R2
�

)2

+ · · ·
]
.

(59)

When used into Eq. (58), we see that the dominant terms
of the resulting 1/R� expansion come from terms in ρ′ ρ
provided that ∫

a3
c

d3ρ

a3
c

ρ w0,k(ρ) (60)

differs from zero; indeed, all the other terms of the 1/R� ex-
pansion give zero when integrated over (ρ′, ρ) in the K → 0
limit. The two dominant terms in ρ ρ′ are

1

R3
�

[
ρ′ · ρ − 3

(
ρ′ · R�

R�

) (
ρ · R�

R�

)]
. (61)

To understand why the integral (60) differs from zero
for GaAs-like semiconductors, we must remember that these
materials have a threefold valence level, its states labeled
as (μ, k) having a μ spatial symmetry. Equation (60) then
appears, for k small, as

|e|
∫

a3
c

d3ρ

a3
c

ρ u∗
μ,v,0(ρ)uc,0(ρ) = dv,ceμ, (62)

with the dv,c prefactor being μ independent due to cyclic
symmetry in a cube. This prefactor physically corresponds to
the dipole moment of the valence-conduction distribution.

When used into Eq. (58), this gives the interband Coulomb
scattering amplitude in the K → 0 limit, for (k′, k) small, as

V (latt)
K→0(μ′, k′; μ, k) � |dv,c|2

N
SK→0(μ′, μ), (63)

with SK(μ′, μ) given by

SK(μ′, μ) =
∑
R� �=0

e−iK·R�

R3
�

[
δμ′,μ − 3

(
eμ′ · R�

R�

)(
eμ · R�

R�

)]
.

(64)
This sum is highly singular in the small K, as seen from

SK=0(μ′, μ) = 0, (65a)

SK→0(μ′, μ) = 4π

3a3
c

(
3

Kμ′Kμ

K2
− δμ′,μ

)
, (65b)

which is explicitly derived in Appendix A.

3. Link with the calculation in Gm space

The above result shows that, in the small K limit, the long-
range Coulomb contribution calculated from the sum of all
R� �= 0 terms has the same Kμ′Kμ/K2 singular behavior as
VK→0,0(μ′, k′; μ, k) calculated in the Gm reciprocal space, as
given in Eq. (56). The singular behavior comes from the large
R� terms in the sum over lattice vectors while, in Gm space, it
appears through the unique G0 = 0 term.

The prefactors of the Kμ′Kμ/K2 singularity in the G0 = 0
term and in the R� �= 0 sum also are equal: indeed, according
to Eq. (56) and Eqs. (63) and (65), we do have

4πe2

L3

∣∣∣∣ h̄Pc,v

m0Egap

∣∣∣∣2

= |dc,v|2
N

4π

a3
c

. (66)

This equality follows, in a nontrivial way, from

Egap = i
h̄Pc,v

m0dc,v/|e| , (67)

as shown in Appendix B.
Using the above result, we can also show that the K → 0

limit of the Gm �= 0 sum in Eq. (51) is equal to the limit of
the intracell R� = 0 term in Eq. (57). This establishes that
the interband Coulomb scattering can indeed be calculated
within the two approaches, either short-range plus long-range
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interactions in the real space or better with respect to the
singularity, Gm = 0 plus Gm �= 0 interactions in the reciprocal
space.

V. PAST AND FUTURE

A. State of the art

The singularity of the interband Coulomb scattering in the
small wave-vector transfer limit was first pinned down in
the study of excitons. Early seminal works [9–12] on exci-
tons were devoted to finding a microscopic formalism that,
starting from a fully occupied semiconductor valence band,
would support the reduction of its lowest excited states, many
body in essence, to a two-body state, one electron and one
hole coupled by a naive Coulomb interaction, from which
hydrogenlike bound states follow naturally. In the 1960s, the
common way to describe a many-body system like N valence
electrons having one electron excited in the conduction band
was through Slater determinants in the first quantization for-
malism. Its far simpler description through particle operators
in second quantization was not yet popular. One great ad-
vantage of the operator formalism is to avoid the very many
minus signs associated with “exchange” that appear when
calculating matrix elements between Slater determinants, with
these minus signs being automatically taken care of by the
anticommutation relation between fermion operators.

In these seminal works, the Coulomb interaction given in
Eq. (2) was handled within the first quantization formalism by
calculating its matrix elements between Slater determinants
for (N − 1) electrons in a valence state and one electron in a
conduction state. One then sees that the Coulomb interaction
generates “direct” terms in which a scattered valence electron
stays a valence electron and a scattered conduction electron
stays a conduction electron. These direct terms correspond to
the intraband Coulomb scatterings that produce the Wannier
exciton binding.

One also sees that, due to the determinant form of the
many-fermion wave function, an electron which is in a va-
lence state on the RHS of the matrix element can appear in
a conduction state on the LHS—with a minus sign due to the
wave function antisymmetry: this change from valence to con-
duction state corresponds to an interband Coulomb process,
that is, an electron exchange between the two bands. This
electron exchange is definitely not an electron-hole exchange
because an electron and a hole, which is a valence electron
absence in a full valence band, are not identical fermions to
possibly suffer a quantum exchange. A possible reason for this
physically incorrect denomination is that the hole concept is
enforced into the electron Slater determinants in a way that
is both jarring and insecure [13]. Slater determinants have
been proposed as a wise way to represent the antisymmetric
wave function of indistinguishable fermions, not the wave
function of different fermions like electrons and holes. As
a result, instead of an electron exchange between valence
and conduction bands, as it is, this term has been seen as
an electron-hole exchange, which it is not. In that respect,
the Feynman diagram shown in Fig. 8, which represents a
Coulomb scattering between conduction and valence bands,
evidences that such an interband scattering does correspond to

an electron-hole pair exchange, with one pair being replaced
by another pair.

The transformation of a valence-electron absence into a
hole is tricky: one starts with (N − 1) fermions but ends with
one fermion only. Even if physical intuition leads us to accept
that the hole must have a positive charge and a positive mass,
this transformation goes along with other sign changes that
are not intuitive or even ignored, such as the sign change
(47) between valence electron and valence hole operators
that directly leads to interband Coulomb processes occurring
between spin-singlet electron-hole pairs only. In our opinion,
the only clean and secure way to speak in terms of holes is
through the operator formalism of the second quantization.

Still, it is possible, within the Slater determinants of the
first quantization, to identify Coulomb processes that only
exist for electron-hole pairs in the spin-singlet configuration.
It is moreover possible to write down the analytical expression
of the associated scattering and, through its calculation, to
show that this term is singular when the wave vector K of the
scattered electron-hole pair goes to zero, with this pair wave
vector also being the wave vector transfer of the associated
Coulomb process, as evidenced in Fig. 8. The calculation of
this singularity has been mostly performed in terms of Bloch
wave functions with periodicity written via R� vectors in the
real space. Yet, the proper way to handle periodic functions
is by turning to the Gm vectors of the reciprocal space, as
we do in this paper. The singularity then comes from the
unique G0 = 0 term. When performed in the real space, a
far heavier calculation gives the interband term as a sum over
all R� lattice vectors. The large R�’s, associated with long-
range Coulomb processes, are responsible for the singularity
in the small K limit, while the R� = 0 term, associated with
short-range processes, is regular in this limit. The commonly
quoted result for the small-K singularity is correct. Yet, as
we have not been able to find a precise derivation of this
mathematically nontrivial result in the literature, we propose
a derivation in Appendix A.

The consequences of the electron-hole exchange interac-
tion on Wannier excitons were initiated by Moskalenko and
Tolpygo [12], who introduced this interaction as a correc-
tion to the intraband Coulomb processes responsible for the
exciton binding. They correctly showed that, while the intra-
band Coulomb processes exist for whatever the carrier spins,
the interband Coulomb processes exist for excitons made of
spin-singlet electron-hole pairs only. These pioneering works
were soon followed by more studies [10,14–21], in particular,
Onodera and Toyozawa [14], Pikus and Bir [17], and Denisov
and Makarov [19]. These authors formulated the electron-hole
exchange interaction in terms of Bloch states; they divided
its expression in the R� space [14,16] through long-range and
short-range terms, and also in the Gm reciprocal space [17,19],
through the G0 = 0 term and a sum of Gm �= 0 terms, as we
do here. All these works are written within the first quanti-
zation formalism, except Ref. [19], which uses the second
quantization. In this work, the authors attributed the exciton
longitudinal-transverse splitting to the nonanalytical part of
the Coulomb exchange terms; however, the spin-dependent
phase factor appearing in the relation (47) between electron
and hole states was not given and the distinction between
singlet and triplet exciton was not explicitly stated. More
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recent works [5,22,23] also discuss excitons within the second
quantization formalism; these works mentioned, but did not
discuss, the interband Coulomb terms; they actually focused
on semiconductor optical properties; the exciton problem was
approached only through the interband polarization induced
by light in the semiconductor, so that only the bright excitons
were concerned, by construction.

We wish to stress that these previous works did not mention
the important role played by the one-body average electron-
electron Coulomb interaction V e−e in Eq. (10), which has to
be introduced to define the periodic Bloch-state basis. One
reason can be that all these works skip the very first part
of the present work on the Coulomb interaction for semi-
conductor electrons and the crucial fact that what is called
“Coulomb interaction” VCoul in a semiconductor is not the
two-body Coulomb interaction (2), but its difference with the
average Coulomb interaction, as defined in Eq. (9). The in-
troduction of this average electron-electron interaction allows
us to cleanly eliminate processes associated with zero-wave-
vector transfers, for both the intraband and interband Coulomb
scatterings, as shown here. These spurious divergent (q =
0) terms, which cancel out exactly thanks to the average
Coulomb interaction, appear in previous calculations. Fol-
lowing Mahan [6], the authors of Ref. [5] eliminated these
spurious terms in the particular case of a jellium model in
which the ions are considered as forming a uniform positive
charge background, thus neglecting the discrete lattice struc-
ture of ions in a crystal.

To conclude this short state of the art, we also wish to men-
tion the longstanding but still much debated question of the
Coulomb screening for long-range and short-range processes,
induced by the electrons that remain in the valence band
[13,15–20,24–26]. As this screening involves the excitations
of the whole valence band through virtual electron-hole pairs,
its impact on both the intraband scatterings and the interband
scatterings can only be properly derived within a full many-
body approach through the second quantization formalism.
Up to now, the problem of the Coulomb screening by valence
electrons in the presence of a bound-state exciton has been
solved by inserting the bubble processes of the random phase
approximation (RPA), dominant in the dense limit only, inside
the intraband ladder processes that are dominant in the dilute
limit of one electron and one hole. It is clear that this proposed
solution is highly questionable because it selects processes
that are dominant in two opposite limits. The important but
very difficult problem of what should be done in the case of
long-range and short-range interband processes and the naive
idea that no screening should occur inside a unit cell will be
addressed in further work devoted to Coulomb screening in a
semiconductor.

B. Interband Coulomb interaction in the exciton physics

To study the effects of the interband Coulomb interaction
on excitons in a realistic way, it is necessary to take into
account the spin-orbit interaction. This interaction splits the
(3 × 2)-fold subspace of (μ, s) holes into a fourfold subspace
and a twofold subspace [27]. In the spherical approximation
that neglects the warping [28–32], the fourfold subspace is
made of heavy and light holes that are associated with a

hole index J = ±3/2 and J = ±1/2 quantized along the
hole wave vector, with the corresponding eigenstates being
a mixture of (μ, s) holes. Obviously, this mixing is going to
hide the fact that the interband Coulomb interaction only acts
on spin-singlet electron-hole pairs.

Moreover, electron-hole pairs with the same center-of mass
wave vector K but different hole wave vectors kh interact
through intraband Coulomb processes to ultimately form ex-
citons having a center-of-mass wave vector equal to K. The
thorny problem is that the intraband Coulomb scatterings,
diagonal between μ holes, do not stay diagonal between heavy
and light holes [33]: indeed, a heavy hole can turn light under
a Coulomb scattering. This mass change prevents using the
hydrogenlike procedure to derive the exciton eigenstates be-
cause, unless the two holes are taken with the same mass, it
is not possible to isolate a relative-motion wave vector for the
electron-hole pair.

The effect of the hole mass difference on exciton having
a finite center-of-mass wave vector K is still an open prob-
lem [34]. It is necessary to first solve this major intraband
Coulomb problem before tackling the consequences of the
interband Coulomb singularity on free pairs, out of which the
excitons are formed.

The exciton physics actually splits into two regimes in
which the consequences of the interband Coulomb singularity
deserve to be reconsidered [35] for two different reasons.

(1) If the lifetime of the exciton state with wave vector
K is long compared to the time associated with the exciton
recombination into a photon, a mixed state called polariton is
formed out of a photon and a bright exciton [36]. To derive
this mixed state, the exciton-photon coupling has to be treated
exactly, i.e., not as lowest order in perturbation. The intraband
Coulomb interaction enters the polariton regime through the
formation of exciton out of free electron-hole pairs. The inter-
band Coulomb interaction also has to enter into play.

To catch it, we may note that the photon is coupled to a
bright exciton having a center-of-mass wave vector K equal
to the photon wave vector Qph. For K along the crystal
axis ez, that is, for Kz = K and Kx = Ky = 0, the interband
Coulomb interaction shifts the bright exciton having a μ = z
hole, but does not affect the excitons having a x or y hole,
as seen from the Kμ′Kμ factor in the Coulomb scattering of
Eq. (56). This Kμ′Kμ factor thus produces an energy increase
to “longitudinal” exciton with hole index z along K compared
to “transverse” exciton with hole index (x, y) orthogonal to
K. We must then remember that, due to spatial symmetry
conservation, a photon with wave vector Qph along ez is not
coupled to longitudinal excitons having a z hole, because such
a photon has a polarization vector in the (x, y) plane. As a
result, the polariton mode for photon Qph = K along ez is
made of transverse bright excitons only, with the longitudinal
excitons with hole index z along K being unaffected by the
presence of these photons.

Then comes the fact that the standard way to derive the
polariton eigenstates is to use an approximate Hamiltonian,
in which the electron-photon interaction is reduced to its
resonant linear coupling to the ground-exciton level. It is
clear that this reduction can only be valid in the vicinity of
the exciton-photon resonance. To extend the validity of the
polariton energy obtained from this approximate Hamiltonian,
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from K=0 to K infinite, that is, far from resonance, is highly
questionable. Its extension is even more problematic because
the linear electron-photon coupling diverges in the K → 0
limit [4]. As a direct consequence, the energy of the exciton
branch would then go to infinity. To get rid of this unphysi-
cal behavior properly, it is necessary to include not only all
the exciton levels but also the quadratic coupling as well as
all nonresonant electron-photon processes. Their inclusion is
dramatic because the nonresonant couplings, with one photon
created along with the creation of a photon or an exciton,
transform the one exciton–one photon problem into a many-
body problem, for which the scenario of a single longitudinal
exciton being related to the K → 0 limit of the upper polariton
branch is hard to accept.

Of course, we can choose to completely overlook this ma-
jor many-body problem through replacing the semiconductor
Hamiltonian by an effective Hamiltonian for noninteracting
bosonized excitons having transverse and longitudinal en-
ergies. It is then possible to show that, under linear and
quadratic, resonant and nonresonant photon couplings to all
exciton levels, the second polariton branch goes in the small
Qph limit to the uncoupled longitudinal exciton, within a
correction induced by the photon couplings to all the other
exciton levels. This correction, of the order of the change
of the lowest polariton branch compared to the bare photon
energy, has not been mentioned in the previous works [37,38]
dealing with this problem because these works incorrectly
drop the other exciton levels from the very first line. So, the
link between the polariton energies for small and large wave
vectors, and the singularity of the bright pair scattering in
the small K limit, responsible for their longitudinal-transverse
splitting, only are approximate.

(2) The exciton regime in which photons are absorbed to
form excitons is not any simpler. Although missed for a long
time, the exciton-photon interaction also plays a role in this
regime. Indeed, two exciton-photon interactions produce an
interband process similar to the interband Coulomb process
[39]. As a result, they participate in the energy shift suf-
fered by bright electron-hole pairs. They even play a crucial
role as they completely wash out the singular behavior of
the interband Coulomb scattering with respect to the exciton
wave vector direction. Since dark pairs do not suffer interband
scatterings, the interband Coulomb interaction, along with the
interband electron-photon interaction, produces the observed
splitting between bright and dark excitons. As a result, this
bright-dark splitting is not directly related to the so-called
electron-hole exchange.

All this shows that there is a long way from free electron-
hole pairs with holes labeled along the crystal axes, as
considered here, to excitons made of heavy and light holes
that result from the spin-orbit interaction, with nondiagonal
intraband Coulomb processes between heavy and light holes
[33]. This interesting but quite complex extension of the
present work on interband Coulomb interaction to the exciton
physics deserves further investigation.

The impact of the interband Coulomb interaction on
the exciton physics extends more broadly to semiconduc-
tor quantum wells. In direct type-I quantum wells, the
longitudinal-transverse exciton splitting depends linearly [40]
on the exciton wave vector K, due to the 1/q depen-

dence of the Coulomb interaction in two-dimensional systems
[4]. Its orientational dependence leads to the relaxation be-
tween circularly polarized exciton states, analogous to the
Dyakonov-Perel spin relaxation of the conduction electrons in
quantum wells [41]. Recently, the interband Coulomb interac-
tion has also become a subject of interest for two-dimensional
semiconductor materials. In direct-gap monolayer transition
metal dichalcogenides [42–44], the relevant conduction and
valence electrons close to the gap belong to two different
(K, K ′) valleys at the edge of the Brillouin zone that corre-
spond to each other by time reversal symmetry. These two
valleys and the strong spin-orbit interaction result in exciton
states with a rich spin-valley texture [42–44]. Spin-singlet
excitons that are made of a conduction electron and a missing
valence electron in the same K or K ′ valley, termed direct
excitons, can be coupled by the interband Coulomb inter-
action [42,43] to produce a linear-K longitudinal-transverse
splitting. However, for spin-singlet indirect excitons that are
made of a conduction electron and a missing valence electron
from different valleys [45], the G0 = 0 term in the interband
Coulomb interaction does not have any singularity.

VI. CONCLUSION

In the first part of this work, we provide an ab initio
derivation of the interband Coulomb scattering between con-
duction electron and valence hole characterized by a spin
s and a spatial index μ = (x, y, z) along the cubic crystal
axes of GaAs-like semiconductors. This interband scattering
physically corresponds to exchanging two electron-hole pairs
with center-of-mass wave vector equal to the scattering wave-
vector transfer.

The quantum approach we present here clarifies two im-
portant points related to the so-called electron-hole exchange.

(1) By introducing the notion of hole through the second
quantization formalism—which is the clean way to do it—
we readily find that the interband Coulomb interaction only
acts on electron-hole pairs that are in a spin-singlet state,
in contrast to spin-triplet pairs that do not suffer interband
processes. This mathematically follows from the sign change
that appears in Eq. (47) when turning from valence-electron
destruction operator to hole creation operator.

(2) By comparing the calculations of the interband
Coulomb scattering written in terms of lattice vectors R� and
in terms of reciprocal vectors Gm, we evidence that periodic
systems are better handled in the reciprocal space than in
the real space: indeed, the singular behavior of the interband
Coulomb scattering that scales in the small electron-hole pair
wave vector limit, as

Kμ′Kμ

K2
(68)

for a K pair that starts with a μ hole and ends with a μ′ hole,
has been established through a long-range sum over all lattice
vectors; in the reciprocal space, this singularity only comes
from the G0 = 0 term, which is far simpler to calculate than
the tricky R� �= 0 sum.

In this work, we also question the well-accepted con-
sequences of this singular interband scattering not only in
the polariton regime through a possible link with the exci-
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ton longitudinal-transverse splitting, but also in the exciton
regime through a possible link with the bright-dark exciton
splitting. We show that some aspects of this singular exciton-
photon coupling remain improperly addressed. In view of the
growing importance of excitons in quantum information tech-
nology, the present work should stimulate more fundamental
research on semiconductor excitons and their interaction with
light.

APPENDIX A: SINGULAR SUM IN EQ. (64)

We show here that, in the small K limit, the sum defined in
Eq. (64) has the singular behavior given in Eq. (65).

To do this, we consider an arbitrary set of orthonormal
vectors (x, y, z) and we take μ and μ′ as any of these three
vectors. For Rμ = R · μ, the following sum over all lattice
vectors R

SK(μ′, μ) =
∑
R �=0

e−iK·R

R3

(
δμ′,μ − 3

Rμ′Rμ

R2

)

=
∑
R �=0

e−iK·R

R3

(
μ′ · μ − 3

(R · μ′)(R · μ)

R2

)
(A1)

is singular in the K → 0 limit, that is, the value calculated for
K = 0 differs from its limiting value for K → 0.

1. Calculation for K = 0

Let us first show that the SK(μ′, μ) sum cancels for K = 0.
To do this, we introduce the cubic crystal axes (X, Y, Z) and
expand (R,μ′,μ) on these axes as

R = RX X + RY Y + RZ Z, (A2)

μ = μX X + μY Y + μZ Z, (A3)

with a similar result for μ′. This gives R · μ = RX μX +
RY μY + RZμZ . So, the product (R · μ′)(R · μ) in Eq. (A1)
reads

(R · μ′) (R · μ) = (
R2

X μ′
X μX + R2

Y μ′
Y μY + R2

Zμ′
ZμZ

)
+ (RX RY (μX μ′

Y + μY μ′
X ) + · · · ). (A4)

As a result, SK(μ′, μ) taken for K = 0 contains the following
sums over R, which, for R being a vector of the (X, Y, Z)
cubic axes, reduce through symmetry to∑

R �=0

R2
X

R5
=

∑
R �=0

R2
Y

R5
=

∑
R �=0

R2
Z

R5
= 1

3

∑
R �=0

R2
X + R2

Y + R2
Z

R5

= 1

3

∑
R �=0

1

R3
, (A5)

while cross terms are equal to zero:∑
R �=0

RX RY

R5
= 0. (A6)

As a result,

SK=0(μ′, μ) =
∑
R �=0

1

R3
(μ′ · μ − μ′

X μX − μ′
Y μY − μ′

ZμZ )

= 0. (A7)

2. Calculation for K → 0

We first note that, since SK=0(μ′, μ) = 0, the SK(μ′, μ)
sum also reads

SK(μ′, μ) =
∑
R �=0

(e−iK·R − 1)

R3

(
δμ′,μ − 3

Rμ′Rμ

R2

)
. (A8)

This shows that SK(μ′, μ) for K → 0 is controlled by large
R’s. For such R’s, the discrete sum over cubic lattice vectors
R with lattice size ac can be replaced by an integral according
to ∑

R

f (R) � 1

a3
c

∫
d3R f (R). (A9)

A convenient way to calculate SK→0(μ′, μ) is to introduce
another set of orthonormal vectors (xK, yK, zK ) with zK =
K/K and to expand (R,μ′,μ) on these vectors as

R = R(sin θ cos ϕ xK + sin θ sin ϕ yK + cos θ zK ), (A10)

μ = α xK + β yK + γ zK, (A11)

with a similar result for μ′. This gives

lim
K→0

SK(μ′, μ) � 1

a3
c

∫ ∞

0
R2dR

∫ π

0
sin θ dθ

∫ 2π

0
dϕ

e−iKR cos θ

R3
[α′α + β ′β + γ ′γ − 3(α′ sin θ cos ϕ + β ′ sin θ sin ϕ + γ ′ cos θ )

× (α sin θ cos ϕ + β sin θ sin ϕ + γ cos θ )]. (A12)

We first perform the integration over ϕ, which reduces the above equation to

lim
K→0

SK(μ′, μ) � 1

a3
c

∫ ∞

0

dR

R

∫ π

0
sin θ dθ e−iKR cos θ [2π (α′α + β ′β + γ ′γ ) − 3π (α′α + β ′β ) sin2 θ − 6πγ ′γ cos2 θ ]. (A13)
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We then set x = KR to get

lim
K→0

SK(μ′, μ) � 1

a3
c

∫ ∞

0

dx

x

∫ π

0
sin θ dθ e−ix cos θ

× π (−α′α − β ′β + 2γ ′γ )(1 − 3 cos2 θ )

� 4π

3a3
c

(−α′α − β ′β + 2γ ′γ ), (A14)

where we have used∫ ∞

0

dx

x

∫ 1

−1
dt (1 − 3t2) e−ixt = 4

3
. (A15)

By noting that γ = K · μ/K = Kμ/K , while (−α′α −
β ′β + 2γ ′γ ) = 3γ ′γ − (α′α + β ′β + γ ′γ ), we end with

lim
K→0

SK(μ′, μ) = − 4π

3a3
c

(
δμ′,μ − 3

Kμ′Kμ

K2

)
. (A16)

Note the sign change between the definition of SK(μ′, μ) and
its value for K → 0.

3. Explicit form of the singularity

The above sum depends on the K direction.
For K along a crystal axis, as Kz = K and Kx = Ky = 0,

we find that SK→0(μ′, μ) = 0 for μ′ �= μ, while, for μ′ =
μ, it takes two different values: SK→0(z, z) = 8π/3a3

c and
SK→0(x, x) = SK→0(y, y) = −4π/3a3

c .
For K perpendicular to the z crystal axis, that is, Kz = 0

and (Kx, Ky) = K (cos θ, sin θ ), we find SK→0(z, z) =
−4π/3a3

c , SK→0(x, x) = (4π/3a3
c )(3 cos2 θ − 1), and

SK→0(y, y) = (4π/3a3
c )(3 sin2 θ − 1). The off-diagonal

terms are SK→0(x, z) = SK→0(y, z) = 0 and SK→0(x, y) =
(4π/a3

c ) sin θ cos θ .

APPENDIX B: LINK BETWEEN Pc,v AND dc,v

The Pc,v term defined in Eq. (55) reads

〈uc,0|p̂|uv,μ,0〉 =
∫

d3r 〈uc,0|r〉〈r|p̂|uv,μ,0〉

=
∫

d3r 〈uc,0|r〉 h̄

i
∇〈r|uv,μ,0〉, (B1)

which, with the help of Eqs. (3), (4), and (13), can be rewrit-
ten, for r = R� + ρ, as

Pc,veμ =
∑
R�

∫
d3ρ

L3
u∗

c,0(ρ)
h̄

i
∇uv,μ,0(ρ)

=
∫

d3ρ

a3
c

u∗
c,0(ρ)

h̄

i
∇uv,μ,0(ρ). (B2)

The trick is to note that, in the above integral, ∇ can be
replaced by (ρ∇2 − ∇2ρ)/2. Since [ρ, v(ρ)]− = 0, this leads
to

h̄

im0
Pc,veμ =

∫
d3ρ

a3
c

u∗
c,0(ρ)

[
ρ,− h̄2

2m0
∇2 + v(ρ)

]
−

uv,μ,0(ρ).

(B3)
Next, we note from Eqs. (6) and (12) that

εn,0〈r|un,0〉 = 〈r|h|un,0〉 =
(
− h̄2

2m0
∇2 + v(ρ)

)
un,0(ρ)

L3/2
.

(B4)
When used in Eq. (B3), this equation readily gives

h̄

im0
Pc,veμ = (εv,0 − εc,0)

∫
d3ρ

a3
c

u∗
c,0(ρ) ρ uv,μ,0(ρ), (B5)

where the integral is just dc,v/|e|, while εc,0 − εv,0 = Egap.
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