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Multiple phonon modes in Feynman path-integral variational polaron mobility
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The Feynman path-integral variational approach to the polaron problem, along with the associated Feynman-
Hellwarth-Iddings-Platzman (FHIP) linear-response mobility theory, provides a computationally amenable
method to predict the frequency-resolved temperature-dependent charge-carrier mobility, and other experimental
observables in polar semiconductors. We show that the FHIP mobility theory predicts non-Drude transport
behavior, and shows remarkably good agreement with the recent diagrammatic Monte Carlo mobility simulations
of Mishchenko et al. [Phys. Rev. Lett. 123, 076601 (2019)] for the abstract Fröhlich Hamiltonian. We extend
this method to multiple phonon modes in the Fröhlich model action. This enables a slightly better variational
solution, as inferred from the resulting energy. We carry forward this extra complexity into the mobility theory,
which shows a richer structure in the frequency and temperature-dependent mobility, due to the different phonon
modes activating at different energies. The method provides a computationally efficient and fully quantitative
method of predicting polaron mobility and response in real materials.
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I. INTRODUCTION

An excess electron in a polar semiconductor polarizes
and distorts the surrounding lattice. This polarization then
attempts to localize the electron, forming a quasiparticle state
known as the polaron.

When the electron-phonon coupling is large, the extent of
the polaron wave function becomes comparable to the lat-
tice constant and a small polaron is formed where details of
the interaction with the atoms are important in determining
polaron properties, but the polaron itself is localized. Many
studies have investigated the properties of small polarons
[1–7], where many analytical and numerical studies have
primarily focused on the Holstein model with a short-range
electron-phonon interaction [1].

If the competition between the localizing potential and the
electron kinetic energy results in a large-polaron state, larger
than the unit cell, a continuum approximation is valid and
the details of the interaction with the atoms can be ignored,
but the polaron itself is a dynamic object. The most simple
large polaron model was introduced by Fröhlich [8], of a
single fermion (the electron) interacting with an infinite field
of bosons (the phonon excitations of the lattice). A major sim-
plification with regards to real materials is assuming that only
one phonon mode (which is the longitudinal optical mode, of
a binary material) is infrared active (thus having dielectrically
mediated electron-phonon interaction) and that this mode is
dispersionless. The reciprocal-space integrals then become
analytic with closed form. This Fröhlich model is described
by the Hamiltonian

Ĥ = p2

2m∗ +
∑

k

h̄ ω0 a†
kak +

∑
k

(Vk ak eik·r + V ∗
k a†

k e−ik·r ).

(1)

*jarvist.frost@imperial.ac.uk

Here r is the electron vector position, p its conjugate mo-
mentum, m∗ the electron effective mass, h̄ the reduced Planck
constant, ω0 the longitudinal optical phonon frequency, a†

k, ak
the phonon creation and annihilation operators with phonon
wave vector k. The electron-phonon coupling parameter is

Vk = i
2h̄ω0

|k|

⎛
⎝
√

h̄

2m∗ω0

απ

�0

⎞
⎠

1
2

. (2)

Here �0 is the unit-cell volume, α is Fröhlich’s dimensionless
interaction parameter, and other variables are as above. The
model is entirely characterized by the unitless parameter α.

Although this seems highly idealized, the α parameter is
a direct function of the semiconductor properties: an effec-
tive mass m∗ (modeling the relevant band structure of the
charge carrier), a phonon frequency ω0 (the quantization of
the phonon field), and the dielectric electron-phonon coupling
between them (which dominates for polar materials [9]):

α = 1

2

(
1

εoptic
− 1

εstatic

)
e2

h̄ω0

(
2m∗ω0

h̄

) 1
2

. (3)

Fröhlich’s Hamiltonian, though describing a simple physical
system of a single effective mass electron coupled to a single-
frequency phonon field, has resisted an exact solution. This is
a quantum field problem, as the phonon occupation numbers
can change.

One celebrated approximation is Feynman’s variational
path-integral approach [10]. This method is surprisingly
accurate [11] considering the light computational effort, and
applies for the full range of the Fröhlich α electron-phonon
coupling parameter, without having to make any weak- or
strong-coupling approximation. The method was extended
by Feynman-Hellwarth-Iddings-Platzman [12] (commonly
referred to as FHIP) to offer a prediction of temperature-
dependent mobility (in the linear-response regime) for polar
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materials, without any empirical parameters, and without re-
sorting to perturbation theory. This method was alternatively
derived and used by Peeters and Devreese [13–16]. The
textbook definition of the FHIP dc mobility is an asymp-
totic solution recovered from a power-series expansion of the
model action around a solvable quadratic trial action. The re-
sultant impedance function is well defined and analytic across
all frequencies, temperatures, and polaron couplings (α). A
generalization to finite temperatures was made by Ōsaka [17],
and the addition of an external driving force by Castrigiano
and Kokiantonis [18,19], and Saitoh [20].

Hellwarth and Biaggio [21] provide a method to replace
the multiple phonon modes of a complex material with a
single effective frequency and coupling. This approach has
been used by ourselves [22–24] and others [25] to predict
phenomenological properties of charge transport for direct
comparison to experiment.

In this paper, we first describe the Feynman variational
quasiparticle polaron approach [10], providing a consistent
description with modern nomenclature and notation. We then
show that the FHIP mobility theory [12] predicts non-Drude
transport behavior, and agrees closely with recent diagram-
matic Monte Carlo mobility predictions of Mishchenko et al.
[26] for the abstract Fröhlich Hamiltonian.

Second, we extend the method to more accurately model
complex real materials by explicitly including multiple
phonon modes. Taking a multimodal generalization of the
Fröhlich Hamiltonian we derive a multimodal version of the
Feynman-Jensen variational expression for the free energy at
all temperatures, and then follow the methodology of FHIP
[12], to derive expressions for the temperature- and frequency-
dependent complex impedance. Using the example of the
well-characterized methylammonium lead-halide (MAPbI3)
perovskite semiconductor, we provide estimates of dc mo-
bility and complex conductivity, which can now be directly
measured with transient terahertz conductivity measurements
[24].

A key technical discovery during this work is that di-
rect numerical integration of the memory function χ (�) of
FHIP [12] (required to calculate the polaron mobility), rather
than the commonly used contour-rotated integral, has more
easily controlled numerical errors for frequency-dependent
properties. This is significant as many previous attempts
[12,21,22,27] (including ourselves), numerically evaluate the
contour-rotated integral using complicated and computation-
ally expensive power-series expansions in terms of special
functions. This can be avoided entirely.

This Feynman variational method requires a relatively triv-
ial amount of computer time, providing machine-precision
answers, within the limit of the trial action, and the first-
order cumulant expansion of the actions. We show good
agreement with quantum Monte Carlo approaches, which can
systematically approach the true solution, but at considerable
computational cost; the lightweight nature of the Feynman
variational approach makes it computationally tractable when
extending to real materials. We therefore suggest the Feynman
variational method as a generally useful approach for predict-
ing transport properties of polar semiconductors, particularly
in the computational identification of new semiconductors for
renewable energy applications.

II. PATH-INTEGRAL APPROACH TO THE FRÖHLICH
POLARON

A. Feynman variational approach

The 1955 Feynman variational approach [10] casts the
Fröhlich polaron problem into a Lagrangian path and field
integral (the model action), and then integrates out the infinite
quantum field of phonon excitations. The result is a remapping
to an effective quasiparticle Lagrangian path integral, where
an electron is coupled by a nonlocal two-time Coulomb po-
tential to another fictitious massive particle, representing the
disturbance in the lattice generated by its passage at a previous
time. The density matrix ρ for the electron to go from position
r′ to r′′ within an imaginary time ih̄β is

ρ(r′, r′′; h̄β ) =
∫ r(h̄β )=r′′

r(0)=r′
Dr(τ ) exp

(
−S[r(τ )]

h̄

)
. (4)

The model action S for the Fröhlich polaron is

S[r(τ )] = m∗

2

∫ h̄β

0
dτ

(
dr(τ )

dτ

)2

− (h̄ω0)
3
2 α

2
√

2m∗

×
∫ h̄β

0
dτ

∫ h̄β

0
dσ

gω0 (|τ − σ |)
|r(τ ) − r(σ )| , (5)

and where

gω0 (τ ) = cosh[ω0(τ − h̄β/2)]

sinh(h̄ω0β/2)
(6)

is the imaginary-time phonon correlation function.
We cannot easily evaluate the path-integral for the 1/r

Coulomb potential, so Jensen’s inequality, 〈exp f 〉 � exp 〈 f 〉,
is used to approximate the effective Lagrangian by an analyti-
cally path-integrable nonlocal two-time quadratic Lagrangian
(the trial action) S0:

S0[r(τ )] = m∗

2

∫ h̄β

0
dτ

(
dr(τ )

dτ

)2

+ C

2

∫ h̄β

0
dτ

×
∫ h̄β

0
dσ gwω0 (|τ − σ |)[r(τ ) − r(σ )]2. (7)

The resulting Feynman-Jensen inequality gives a solvable up-
per bound to the (model) free energy

F � F0 + 〈S − S0〉0, (8)

where F0 is the free energy of the trial system and 〈S − S0〉0

is the expectant difference in the two actions, evaluated with
respect to the trial system

〈S − S0〉0 =
∫
Dr(τ )(S − S0)e−S0[r]/h̄∫

Dr(τ )e−S0[r]/h̄
. (9)

The process is variational, in that the C (a harmonic coupling
term) and w (which controls the exponential decay rate of
the interaction in imaginary time) parameters are varied to
minimize the right-hand side of Eq. (8), giving the lowest
upper bound to the free energy. Diagrammatic Monte Carlo
shows that this method approaches the true energy across a
wide range of coupling parameters [11,26,28].
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B. FHIP mobility

Feynman-Hellwarth-Iddings-Platzman [12] (FHIP) derive
an expression for the linear response of the Fröhlich po-
laron to a weak, spatially uniform, time-varying electric field
E(t ) = E0 exp(i�t ), where � is the angular frequency of the
field. The field induces a current due to the movement of the
electron,

j(�) = E(�)

z(�)
= e

d

dt
〈r(t )〉, (10)

where z(�) is the complex impedance function and 〈r(t )〉
the expectation of the electron position. For sufficiently weak
fields (in the linear-response regime), the relationship between
the impedance and the Fourier transform of the Green’s func-
tion G(t ) of the polaron is∫ ∞

−∞
dt G(t ) e−i�t = G(�) = 1

�z(�)
, (11)

where G(t ) = 0 for t < 0.
The electric field E (t ) appears as an addition linear term

in the Fröhlich Hamiltonian −E · r. The expected electron
position can be evaluated from the density matrix ρ(t ) of the
system,

〈r(t )〉 = Tr{rρ(t )}. (12)

Assuming that the system is initially in thermal equilibrium
ρ0 = exp(−βH ), the time evolution of the density matrix is
evaluated with

ih̄
∂ρ

∂t
= [H, ρ]. (13)

Therefore, the density matrix at some later time t is

ρ(t ) = U (t )ρ0U
′†(t ), (14)

where the unitary operators U and U ′ for time evolution are

U (t ) = exp

{
− i

h̄

∫ t

0
[H (s) − r(s) · E(s)]ds

}
,

U ′(t ) = exp

{
− i

h̄

∫ t

0
[H ′(s) − r′(s) · E′(s)]ds

}
. (15)

Here unprimed operators are time ordered with the latest times
on the far left, whereas primed operators are oppositely time
ordered with the latest times on the far right. [Technically,
the electric field E (t ) is not an operator in need of time
ordering, but it is useful to treat E and E ′ as different arbitrary
functions.]

FHIP assumes that the initial state is a product state of
the phonon bath and the electron system, where only the
phonon oscillators are initially in thermal equilibrium ρ0 ∝
exp(−h̄β

∑
k ωkb†

kbk ) at temperature T = (kBβ )−1. The true
system would quickly thermalize to the temperature of the
(much larger) phonon bath, but the linear Feynman polaron
model cannot since it is entirely harmonic. As shown by Sels
[29], it would be more correct to impose that the entire model
system starts in thermal equilibrium. This error results in
the lack of a 2β dependence in FHIP (low-temperature) dc
mobility.

We can formulate Tr{ρ(t )} as a path-integral generating
functional

Tr{ρ(t )} ≡ Z[E(t ), E′(t )]

=
∫

Dr(t )Dr′(t ) exp

{
i

h̄
[r(t ), r′(t )]

+ i

h̄

(
S[r(t ), E(t )] − S[r′(t ), E′(t )]

)}
, (16)

where S is the classical action of the uncoupled electron,

S[r(t ), E(t )] =
∫ t

0
ds

[
m∗

2

(
dr(s)

ds

)2

+ E(s) · r(s)

]
. (17)

[r(t ), r′(t )] is the phase of the influence functional [30].
The influence functional phase for the Fröhlich model
F [r(t ), r′(t )] is derived from the model action [Eq. (5)] and
is given by

F [r(t ), r′(t )] = i(h̄ω0)
3
2 α

2
√

2m∗

∫ ∞

−∞
dt

∫ ∞

−∞
ds

[
gω0 (|t − s|)
|r(t ) − r(s)|

+ g∗
ω0

(|t − s|)
|r′(t ) − r′(s)| − 2

gω0 (t − s)

|r′(t ) − r(s)|
]
, (18)

where gω0 (t ) is the real-time phonon Green’s function and is
given by

gω0 (t ) = cos [ω0(t − ih̄β/2)]

sinh (h̄ω0β/2)
. (19)

The double path integral is over closed paths satisfying the
boundary condition r(t ) − r′(t ) = 0 as t → ±∞.

The Green’s function G(t − t ′) is the response to a δ-
function electric field E(s) = εδ(s − t ) = E′(s). It can be
evaluated from the first functional derivative of the generating
functional Z[E(t ), E′(t )] with respect to E(t ) − E′(t ). We can
formulate the primed and unprimed electric fields as

E(s) = εδ(s − t ) + ηδ(s − t ′),

E′(s) = εδ(s − t ) − ηδ(s − t ′). (20)

This reduces the generating functional Z[E(t ), E′(t )] into a
generating function Z (ε, η). The Green’s function can then be
evaluated from

G(t − t ′) = − h̄2

2

1

Z (0, 0)

∂2Z (ε, η)

∂ε∂η

∣∣∣∣∣
ε=η=0

. (21)

In FHIP the generating function Z (ε, η) is approximated
by taking the zeroth- (Z0) and first-order (Z1) terms from
an expansion of the path integral around an exactly solvable
harmonic system. This system is described by a quadratic in-
fluence functional phase 0[r(t ), r′(t )] that has been derived
from the quadratic trial action S0 [Eq. (7)] and is given by

0[r(t ), r′(t )] = − iC

2

∫ ∞

−∞
dt

∫ ∞

−∞
ds

[
gwω0 (|t − s|)

|r(t ) − r(s)|−2

+ g∗
wω0

(|t − s|)
|r′(t ) − r′(s)|−2

− 2
gwω0 (t − s)

|r′(t ) − r(s)|−2

]
,

(22)
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where C and w are Feynman’s variational parameters. Z (ε, η)
is then approximated by two terms,

Z (ε, η) =
∫

DrDr′ e
i
h̄ (S[r]−S[r′]+[r,r′])

≈
∫

DrDr′ e
i
h̄ (S[r]−S[r′]+0[r,r′])

×
[

1 + i

h̄

(
[r, r′] − 0[r, r′]

)]

≡ Z0 + Z1. (23)

In FHIP and Devreese et al. [27] they find that it is more
accurate to use the complex impedance function over the
complex conductivity σ (�) [= 1/z(�)] by taking the Taylor
expansion of the impedance

�z(�) = 1

G(�)
≈ 1

G0(�) + G1(�)

≈ 1

G0(�)
− 1

G2
0(�)

G1(�), (24)

where G0 and G1 are the classical and first-order quantum
correction response functions obtained from Z0 and Z1, re-
spectively.

This expansion of the impedance gives

z(�) ≈ i

(
� − χ (�)

�

)
, (25)

where

χ (�) = 2αω2
0

3
√

π

∫ ∞

0
dt (1 − ei�t )ImS(t ) (26)

is a memory function that contains all the first-order cor-
rections from the electron-phonon interactions [Eq. (35a) in
FHIP].

Here S(t ) [Eq. (35b) in FHIP] is proportional to the dy-
namic structure factor for the electron and is given by

S(t ) = gω0 (t )[D(t )]−
3
2 , (27)

where

D(t ) = 2
v2 − w2

v3

sin(vω0t/2) sin(vω0[t − ih̄β])

sinh(vω0h̄β/2)

− i
w2

v2
ω0t

(
1 − t

ih̄β

)
. (28)

Our D(t ) is the same as D(u) in Eq. (35c) in FHIP. The
frequency-dependent mobility μ(�) is obtained from the
impedance by using

μ(�) = Re

{
1

z(�)

}

= e

m∗
� Imχ (�)

�4 − 2 �2 Reχ (�) + |χ (�)|2 , (29)

where the values of the variational parameters v and w are
those that minimize the polaron free energy in Eq. (8). In the

limit that the frequency � → 0 gives the FHIP dc mobility,

μ−1
dc = m∗

e
lim
�→0

Imχ (�)

�
(30)

since Reχ (� = 0) = 0.

C. Numerical evaluation of the memory function

In summary, the integral for the memory function is

χ (�) = 2αω2
0

3
√

π

∫ ∞

0
dt (1 − ei�t )ImS(t ), (31a)

S(t ) = cos[ω0(t − ih̄β/2)]

sinh(h̄ω0β/2)
[D(t )]−

3
2 , (31b)

D(t ) = 2
v2 − w2

v3

sin(vω0t/2) sin[vω0(t − ih̄β )]

sinh(vω0h̄β/2)

−i
w2

v2
ω0t

(
1 − t

ih̄β

)
, (31c)

where � is the angular frequency of the driving electric field,
ω0 is the angular phonon frequency, β = 1/kBT is the thermo-
dynamic temperature, and v and w are variational parameters
whose values minimize the polaron free energy. This is the
same as Eqs. (35) in FHIP, but in SI units and with an alterna-
tive algebra.

Previous work [12,27], including our own (see Ap-
pendixes), made use of the “doubly oscillatory” contour-
rotated integral for the complex memory function in Eq. (26).
The imaginary component of the memory function is
[Eqs. (47) in Ref. [12]]

Imχ (�) = 2αω2
0

3
√

π

(h̄ω0β )
3
2 sinh(h̄�β/2)

sinh(h̄ω0β/2)

( v

w

)3

×
∫ ∞

0
dτ

cos(vω0τ ) cos(ω0τ )[
ω2

0τ
2 + a2 − b cos(vω0τ )

] 3
2

, (32)

where a2 ≡ (h̄ω0β/2)2 + Rh̄βω0 coth(h̄βω0v/2), b ≡
Rh̄βω0/ sinh(h̄βω0v/2), and R ≡ (v2 − w2)/(w2v), and
where τ labels imaginary time compared to t that labels real
time in Eqs. (26). Additionally, the contour integral for the
real component of the memory function, derived by us (see
Appendix A), is

Reχ (�) = 2αω2
0

3
√

π

(h̄ω0β )
3
2

sinh(h̄ω0β/2)

( v

w

)3
{

sinh

(
h̄�β

2

)

×
∫ ∞

0
dτ

sin(�τ ) cos(ω0τ )

[ω0τ 2 + a2 − b cos(vω0τ )]
3
2

−
∫ h̄β

2

0
dτ

1 − cosh[�(τ − h̄β/2)] cosh(ω0τ )[
a2 − ω2

0τ
2 − b cosh (vω0τ )

] 3
2

}
.

(33)

The imaginary component of the memory function can be
expanded in Bessel functions (originally the derivation was
outlined in Refs. [10,27], but in Appendix B we provide an
in-depth derivation) and the real component in terms of Bessel
and Struve functions (see Appendix C for a derivation of the
expansion that we believe to be new).
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However, we found that the cost of evaluating these
expansions became large at low temperatures, requiring
arbitrary-precision numerics to slowly reach converged solu-
tions. In Devreese et al. [27], they found an alternative analytic
expansion for the real component, but similarly found it to
have poor convergence for all temperatures, opting instead to
transform the integrand to one that has better convergence.

Instead of using any of the contour integrals or power-
series expansions, we found that directly numerically inte-
grating Eq. (31) using an adaptive Gauss-Kronrod quadrature
algorithm leads to faster convergence and controlled errors.
Asymptotic limits of these contour integral expansions, espe-
cially at low temperatures, may still prove useful.

III. “BEYOND QUASIPARTICLE” POLARON MOBILITY

Mishchenko et al. [26] recently used diagrammatic Monte
Carlo (diagMC) calculations to investigate the violation of
the so-called “thermal” analog to the Mott-Ioffe-Regel (MIR)
criterion in the Fröhlich polaron model. This “thermal” MIR
criterion is perhaps better referred to as the Planckian bound
[31] under which a quasiparticle is stable to inelastic scatter-
ing. For the quasiparticle to propagate coherently, the inelastic
scattering time τinel must be greater than the “Planckian
time” τPl = h̄/kBT . For the polaron mobility μ, this requires
μ � eh̄

MkBT . This Planckian bound can be reformulated into
Mishchenko’s [26] “thermal” MIR criterion for the validity of
the Boltzmann kinetic equation, l � λ where l is the mean
free path, and λ the de Broglie wavelength, of the charge
carrier.

The antiadiabatic limit (kBT  h̄ω0) corresponds to the
weak-coupling limit (α  1), where the perturbative theory
result for the mobility is [Eq. (5) in Ref. [26]]

μ = e

2Mαω0
eh̄ω0/kBT

= e

2m∗ω0

(
1

α
− 1

6

)
eh̄ω0/kBT (kBT  h̄ω0, α  1),

(34)

where M = m∗/(1 − α/6) is the effective mass renormaliza-
tion of the polaron. In the adiabatic regime (kBT � h̄ω0), the
mobility is obtained from the kinetic equation as [Eq. (6) in
Ref. [26]]

μ = 4e
√

h̄

3
√

παM
√

ω0kBT
(kBT � h̄ω0), (35)

which is valid even when α is not small.
Figure 1 is a comparison with Fig. 2 in Mishchenko et al.

[26] of the polaron mobility at α = 2.5. At low temperatures
(kBT � h̄ω0/2), the exponential behavior matches the low-
temperature mobility in Eq. (34). As in [26], there appears to
be a delay in the onset of the exponential behavior for kBT <

h̄ω0. Likewise, the MIR criterion is violated over the temper-
ature range 0.2 < kBT/h̄ω0 < 10. At high temperatures, the
FHIP mobility [Eq. (29)] has the same 1/

√
T dependence as

Eq. (35). Figure 2 shows a similar comparison for α = 4.0,
with unpublished data provided by the authors of [26].

In Fig. 3 we compare the temperature dependence of the
FHIP polaron mobility with the diagMC polaron mobility

FIG. 1. The FHIP temperature-dependent mobility for the inter-
mediate coupling regime α = 2.5 (black, solid), as a comparison
to Mishchenko et al. [26], Fig. 2 (black dots, with Monte Carlo
sampling error bars). This electron-phonon coupling strength is
most relevant for moderately polar semiconductors. Following
Mishchenko, the blue solid line shows the antiadiabatic and weak-
coupling limit of the mobility provided by Eq. (34) [Eq. (5) in
[26]]. The green solid line shows the adiabatic limit of the mobility
provided by Eq. (35)] Eq. (6) in [26]]. The red dashed line shows
the MIR criterion. The FHIP method shows good agreement with the
limiting behavior and is within the Monte Carlo sampling error of
Mishchenko et al. [26]. Already at these relatively weak couplings,
the true mobility is well below the MIR independent-scattering cri-
terion. This calls into question the use of the Boltzmann transport
equation in simulating even moderately polar materials.

FIG. 2. The FHIP temperature-dependent mobility for the inter-
mediate coupling regime α = 4.0 (black, solid), as a comparison
to Mishchenko et al. [26], Fig. 2 (black dots, with Monte Carlo
sampling error bars). This electron-phonon coupling strength is most
relevant for strongly polar semiconductors. Following Mishchenko,
the blue solid line shows the antiadiabatic and weak-coupling limit of
the mobility provided by Eq. (34) [Eq. (5) in [26]]. The green solid
line shows the adiabatic limit of the mobility provided by Eq. (35)
[Eq. (6) in [26]]. The red dashed line shows the MIR criterion. The
FHIP mobility shows good agreement with the limiting adiabatic and
antiadiabatic behavior and is clearly away from the MIR criterion
where the Boltzmann transport equation is valid.
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FIG. 3. The FHIP temperature-dependent mobility in the strong-
coupling limit is presented as a comparison to Mishchenko et al. [26],
Fig. 3 (black dots, with Monte Carlo sampling error bars). Presented
are α = 6 (black, solid), α = 8 (black, dashed), α = 10 (black, dot-
ted). The diagrammatic Monte Carlo results (black, dots, with Monte
Carlo sampling error bars) show pronounced nonmonotonic behavior
(the hump at kBT/h̄ω0 = 8) already with α = 6, while the FHIP
model requires a stronger coupling, though we note that the α = 6
FHIP result is within the Monte Carlo error bars.

(Fig. 3 in Mishchenko et al. [26]) at α = 6. The diagMC
polaron mobility exhibits nonmonotonic behavior at α = 6,
with a clear local minimum around kBT = h̄ω0. Here we see
similar nonmonotonic behavior in the FHIP mobility with a
small local minimum appearing around kBT = h̄ω0 too. How-
ever, compared to the diagMC mobility, the local minimum of
the FHIP mobility is shallower. The onset of this minimum in
the FHIP mobility begins around α = 6, with the minimum
deepening at stronger couplings (α = 8 and 10). Similar to
the diagMC mobility, the high-temperature limit is recovered
after a maximum at kBT/h̄ω0 ∼ α which shifts with larger α.
The minimum too appears to be α dependent, occurring at
kBT/h̄ω0 ∼ 1 for α = 6 or kBT/h̄ω0 ∼ 1.5 for α = 10.

In Fig. 4 we compare the temperature and frequency de-
pendence of the FHIP polaron mobility with the diagMC
polaron mobility (Fig. 4 in Mishchenko et al. [26]) at α = 6
for temperatures T = 0.5ω0, 1.0ω0, 2.0ω0. The FHIP mobil-
ity, obtained by integrating Eq. (29), has similar temperature
dependence to the diagMC mobility but differs in frequency
response.

The FHIP mobility shows extra peaks where the first
peak is blueshifted compared to the diagMCs single peak. In
[27,32] it is shown that these extra peaks of the FHIP mobility
correspond to internal relaxed excited states of the polaron
quasiparticle. These internal states correspond to multiple
phonon scattering processes. For kBT/h̄ω0 = 0.5, the first
peak around �/ω0 ∼ 6 corresponds to one-phonon processes,
the peak at �/ω0 ∼ 10 corresponds to two-phonon processes,
and so on. This is more clearly seen by analyzing the memory
function χ (�) [Eq. (26)] at zero temperature, which similarly
has peaks at �/ω0 = 1 + nv, where n = 0, 1, 2, . . . , and v

is one of the Feynman variational parameters (cf. Fig. 5).
These peaks in the memory function correspond to the same

FIG. 4. The FHIP (solid) frequency- and temperature-dependent
mobility, presented as a comparison to Mischenko et al. [26]
(dashed). Presented is α = 6 for temperatures kBT/h̄ω0 = 0.5
(black), 1.0 (green), and 2.0 (pink).

Frank-Condon states. As the temperature increases, the first
few peaks become more prominent and broaden due to an
increased effective electron-phonon interaction. Eventually,
the excitations can no longer be resolved at high temperatures.

The Feynman variational model of the electron harmon-
ically coupled to a fictitious massive particle (cf. Sec. VI)
lacks a dissipative mechanism for the polaron such that the
polaron state described by this model does not lose energy
and has an infinite lifetime. However, in de Filippis et al.
[32], dissipation is included in this model at zero temperature.
This attenuates and spreads the harmonic peaks, obscuring
the internal polaron transitions, giving closer agreement to the
diagMC mobility at zero temperature. We have not used these

FIG. 5. The frequency and temperature dependence of the mem-
ory function χ [Eq. (26)]. The peaks correspond to the Frank-Condon
states of the polaron. For zero temperature kBT/h̄ω0 = 0.0 (red)
the variational parameter v = 4.67 such that the peaks occur after
ω0 + nvω0 = ω0, 5.67ω0, 10.33ω0, etc. At higher temperatures, the
peaks shift to higher frequencies due to the temperature dependence
of v that minimizes the polaron free energy at a given temperature.

115203-6



MULTIPLE PHONON MODES IN FEYNMAN … PHYSICAL REVIEW B 107, 115203 (2023)

methods here but they will be investigated in future work to
complement the multiple phonon model action with a more
generalized trial action.

IV. EXTENDING THE FRÖHLICH MODEL

A. Multiple phonon mode electron-phonon coupling

In simple cubic polar materials with two atoms in the unit
cell, the single triply degenerate optical phonon branch is split
by dielectric coupling into the singly degenerate longitudinal-
optical (LO) mode and double-generate transverse-optical
(TO) modes. Only the longitudinal-optical mode is infrared
active and contributes to the Fröhlich dielectric electron-
phonon interaction.

The infrared activity of this mode drives the formation
of the polaron. Much of the original literature therefore just
refers to the LO mode. In a more complex material, the full
range of infrared active modes all contribute to the polaron
stabilization, and the infrared activity of these modes is no
longer severely restricted by group theory, but are instead best
evaluated numerically. The driving force of the infrared activ-
ity is, however, slightly obscured by the algebra in Eq. (3), and
instead, this electron-phonon coupling seems to emerge from
the bulk properties of the lattice. The Pekar factor 1

εoptic
− 1

εstatic

is particularly opaque.
Rearranging the Pekar factor as

(
1

εoptic
− 1

εstatic

)
= εionic

εopticεstatic
, (36)

we can now see that the Fröhlich α is proportional to the ionic
dielectric contribution, as would be expected from appreciat-
ing that this is the driving force for polaron formation.

The static dielectric constant is the sum of the high-
frequency (“optical”) response of the electronic structure and
the lower-frequency vibrational response of the ions εstatic =
εoptic + εionic. This vibrational contribution is typically calcu-
lated [33] by summing the infrared activity of the individual
harmonic modes as Lorentz oscillators. This infrared activ-
ity can be obtained by projecting the Born effective charges
along the dynamic matrix (harmonic phonon) eigenvectors.
The overall dielectric function across the phonon frequency
range can be written as

ε(�) = εoptic +
m∑

j=1

ε j (�)

= εoptic + 4π

�0

m∑
j=1

(U · q) · (U · q)

ω2
j − �2

. (37)

Here U are the dynamic matrix eigenvectors, � is the reduced
frequency of interest, ω j is the phonon reduced frequency, �0

is the unit-cell volume, q are the Born effective charges, j
indexes the jth phonon branch, and m is the total number of
phonon branches.

Considering the isotropic case (and therefore picking up
a factor of 1

3 for the averaged interaction with a dipole), and
expressing the static (zero-frequency) dielectric contribution,

in terms of the infrared activity of a mode ε j is

ε j (0) = 4π

�0

1

3

κ2
j

ω2
j

q2/u, (38)

where κ is the infrared activity in the standard unit of the
electron charge (q) squared per atomic mass unit (u).

This provides a clear route to defining α j for individual
phonon branches, with the simple constitutive relationship
that α = ∑

j α j :

α j = 1

4πε0

ε j

εopticεstatic

e2

h̄

(
m∗

2h̄ω j

) 1
2

. (39)

This concept of decomposing α into constituent pieces
associated with individual phonon modes is implicit in the
effective mode scheme of Hellwarth and Biaggio [21], and
has also been used by Verdi [34], Verbist [35], and Devreese
et al. [36].

B. Multiple phonon mode path integral

Verbist and Devreese [35] proposed an extended Fröhlich
model Hamiltonian [Eq. (1)] with a sum over multiple (m)
phonon branches:

Ĥ = p2

2m∗ +
∑
k, j

h̄ ω j a†
k, jak, j

+
∑
k, j

(Vk, j ak, j eik·r + V ∗
k, j a†

k, j e−ik·r ). (40)

Here the index j indicates the jth phonon branch. The inter-
action coefficient is given by

Vk, j = i
2h̄ω j

|k|

(√
h̄

2m∗ω j

α jπ

�0

) 1
2

, (41)

with α j as in Eq. (39).
From this Hamiltonian, we provide the following extended

model action to use within the Feynman variational theory:

S j[r(τ )] = m∗

2

∫ h̄β

0
dτ

(
dr(τ )

dτ

)2

− (h̄ω j )
3
2

2
√

2m∗ α j

∫ h̄β

0
dτ

∫ h̄β

0
dσ

gω j (|τ − σ |)
|r(τ ) − r(σ )| .

(42)

Here gω j (τ ) is the imaginary-time phonon Green’s function
for a phonon with frequency ω j :

gω j (τ ) = cosh [ω j (τ − h̄β/2)]

sinh (h̄ω jβ/2)
. (43)

This form of action is consistent with Hellwarth and Biaggio’s
[21] deduction that inclusion of multiple phonon branches
gives the interaction term simply as a sum over terms with
phonon frequency ω j and coupling constant α j dependencies.

We now choose a suitable trial action to use with the action
in Eq. (42). We use Feynman’s original trial action with two
variational parameters, C and w, which physically represent a
particle (the charge carrier) coupled harmonically to a single
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fictitious particle (the additional mass of the quasiparticle due
to interaction with the phonon field) with a strength C and a
frequency w.

Clearly, the dynamics of this model cannot be more com-
plex than can be arrived at with the original Feynman theory,
though the direct variational optimization (at each tempera-
ture) may get closer than using Hellwarth and Biaggio’s [21]
effective phonon mode approximation.

C. Multiple phonon mode free energy

We extend Hellwarth and Biaggio’s A, B, and C equa-
tions [Eqs. (62b), (62c), and (62e) in Ref. [21]) (presented
here with explicit units)

A = 3

h̄βω0

[
log

(
w sinh(vh̄βω0/2)

v sinh(wh̄βω0/2)

)

−1

2
log(2π h̄βω0)

]
, (44a)

B = αω0√
π

∫ h̄β

2

0
dτ gω0 (τ )[D(τ )]−

1
2 , (44b)

C = 3

4

v2 − w2

v

[
coth

(
vh̄βω0

2

)
− 2

vh̄βω0

]
(44c)

to multiple phonon modes, where D(τ ) is given in Eq. (28).
Hellwarth and Biaggio’s B is a symmetrized (for ease of
computation) version of the equivalent term from Ōsaka [17],
although here we have unsymmetrized the integral in B to
condense the notation. Compared to Ōsaka, B and C are re-
lated to the expectation value of the model action 〈S〉0 and
trial action 〈S0〉0, respectively, and A is the free energy derived
from the trial partition function F0 = − log(Z0)/β. Following
the procedure of Ōsaka [17], from the multiple phonon action
in Eq. (42) we derive the phonon-mode-dependent Aj and Cj

equations

Aj = 3

h̄ω jβ

[
log

(
v sinh(wh̄ω jβ/2)

w sinh(vh̄ω jβ/2)

)

−1

2
log

(
2π h̄ω jβ

)]
, (45a)

Cj = 3

4

v2 − w2

v

[
coth

(
vh̄ω jβ

2

)
− 2

vh̄ω jβ

]
. (45b)

Similarly, we derive a multiple phonon mode extension to
Hellwarth and Biaggio’s B expression

Bj = α jω j√
π

∫ h̄β

2

0
dτ gω j (τ )[Dj (τ )]−

1
2 , (46)

where

Dj (τ ) = 2
v2 − w2

v3

sinh (vω jτ/2) sinh (vω j[h̄β − τ ]/2)

sinh(vh̄ω jβ/2)

+
(

1 − v2 − w2

v2

)
τω j

(
1 − τ

h̄β

)
. (47)

These are similar to Hellwarth and Biaggio’s single-mode
versions, but with the single effective phonon frequency ω0

substituted with the branch-dependent phonon frequencies ω j .
There are m with index j phonon branches.

Summing Aj in Eq. (45a), Bj in Eq. (46), and Cj in
Eq. (45b), we obtain a generalized variational inequality for
the contribution to the free energy of the polaron from the
jth phonon branch with phonon frequency ω j and coupling
constant α j , and two variational parameters v and w:

F (β ) � −
m∑

j=1

h̄ω j (Aj + Cj + Bj ). (48)

Here we have taken care to write out the expression explicitly,
rather than use “polaron” units. The entire sum on the right-
hand side of Eq. (48) must be minimized simultaneously to
ensure we obtain a single pair of v and w parameters that give
the lowest upper bound for the total model free energy F .

We obtain variational parameters v and w that minimize
the free-energy expression and will be used in evaluating the
polaron mobility. When we consider only one phonon branch
(m = 1) this simplifies to Hellwarth and Biaggio’s form of
Ōsaka’s free energy. Feynman’s original athermal version can
then be obtained by taking the zero-temperature limit (β →
∞).

D. Multiple phonon mode complex mobility

To generalize the frequency-dependent mobility in
Eq. (29), we follow the same procedure as FHIP, but use our
generalized polaron action S [Eq. (42)] and trial action S0

[Eq. (7)]. The result is a memory function akin to FHIP’s χ

[Eq. (26)] that now includes multiple (m) phonon branches j:

χmulti(�) =
m∑

j=1

α jω
2
j

3
√

π

∫ ∞

0
dt [1 − ei�t ]ImS j (t ). (49)

Here,

S j (�) = gω j (t )[Dj (t )]−
3
2 , (50)

where Dj (t ) is Dj (τ = −it ) from Eq. (47) rotated back to
real time to give a generalized version of D(u) in Eq. (35c)
in FHIP:

Dj (t ) = 2
v2 − w2

v3

sin(vω jt/2) sin(vω j[t − ih̄β]/2)

sinh(vω j h̄β/2)

− i

(
1 − v2 − w2

v2

)
tω j

(
1 − t

ih̄β

)
. (51)

The new multiple phonon frequency-dependent mobility
μmulti(�) is then obtained from the real and imaginary parts
of the generalized χmulti(�) using Eq. (29).

V. COMPARISON BETWEEN EFFECTIVE MODE AND
MULTIPLE MODE THEORIES

Having extended the Feynman theory with explicit phonon
modes in the model action, we must now try and answer what
improvement this makes.

Halide perovskites are relatively new semiconductors of
considerable technical interest. They host strongly interact-
ing large polarons due to their unusual mix of a light
effective mass yet strong dielectric electron-phonon cou-
pling. Recently, the coherent charge-carrier dynamics upon
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TABLE I. Parameters of the Feynman polaron model (single
effective phonon mode) as used in this work. Relative high-frequency
(εoptical) and static (εstatic) dielectric constants are given in units of the
permittivity of free space (ε0). Frequency ( f ) is in THz. Effective
mass (m∗) is in units of the bare electron mass. These data are as in
Ref. [22].

Material εoptical εstatic f m∗

MAPbI3-e 4.5 24.1 2.25 0.12
MAPbI3-h 4.5 24.1 2.25 0.15

photoexcitation is being measured, the terahertz spectroscopy
showing rich transient vibrational features [38].

Therefore, we choose to use this system as representative
of the more complex systems which could be modelled with
our extended theory. In what follows, we take the materials
data from our 2017 paper [22], which we reproduce here in
Table I.

A. Free energy

We compare the polaron free energy and variational pa-
rameters evaluated by our explicit phonon frequency method
presented in Eq. (48) to Hellwarth and Biaggio’s effective
phonon frequency scheme [scheme B in Eqs. (58) and (59)
in Ref. [21]]

κ2
eff

ω2
eff

=
m∑

j=1

κ2
j

ω2
k

, (52a)

κ2
eff =

m∑
j=1

κ2
j , (52b)

that use an effective LO phonon mode frequency ωeff and
associated infrared oscillator strength κeff derived from sums
over the phonon modes j. We apply both of these methods
to the 15 solid-state optical phonon branches of MAPbI3, of

TABLE II. Infrared activity (IR) of phonon modes in MAPbI3

taken from Ref. [37], scaled to their ground-state polaron value by the
multimodal w = 2.6792 factor for MAPbI3-e of this work (Table III).

Base frequency Polaron frequency IR activity α j

4.02 10.8 0.0817 0.0340
3.89 10.4 0.00631 0.00300
3.53 9.46 0.0535 0.0310
2.76 7.38 0.0213 0.0230
2.44 6.53 0.232 0.336
2.25 6.03 0.262 0.465
2.08 5.57 0.234 0.505
2.03 5.45 0.0623 0.142
1.57 4.20 0.0367 0.161
1.02 2.73 0.0126 0.162
1.00 2.69 0.00682 0.0910
0.997 2.67 0.0104 0.141
0.920 2.47 0.0110 0.182
0.801 2.144 0.00168 0.0400
0.574 1.54 0.00646 0.349

FIG. 6. Comparison of the polaron free energy as a function
of temperature for MAPbI3 with the single effective phonon mode
approach (solid) and the explicit multiple phonon mode approach
(dashed).

which the frequencies and infrared activities are shown in
Table II.

Using the Hellwarth and Biaggio [21] effective phonon
frequency “B” scheme, the effective phonon frequency for
MAPbI3 is ω0 = 2.25 × 2π THz and the Fröhlich alpha for
MAPbI3-e is α = 2.39 and MAPbI3-h is α = 2.68, as in our
previous work [22] (values from bulk dielectric constants).

Using Eq. (39), we calculated the partial Fröhlich alpha
α j parameters for each of the 15 phonon branches in MAPbI3,
which are given in Table II. For MAPbI3-e the partial Fröhlich
alphas sum to α = 2.66 and for MAPbI3-h they sum to α =
2.98. These 15 partial alphas α j and corresponding phonon
frequencies ω j were then used in the variational principle for
the multiple phonon-dependent free energy in Eq. (48). From
Eq. (48), we variationally evaluate a v and w parameter.

Figure 6 shows the polaron free-energy comparison. The
explicit multiple phonon mode approach predicts a higher free
energy at temperatures T < 65 K and a lower free energy
at temperatures T > 65 K. See Table III for our athermal
results, where we find new multiple-mode estimates for the
polaron binding energy Eb (at 0 K) for MAPbI3-e as Eb =
−19.52 meV and MAPbI3-h as Eb = −21.92 meV. Also see
Table IV for our thermal results at T = 300 K, where we find
new multiple-mode estimates for the polaron free energy F for
MAPbI3-e at 300 K as F = −42.84 meV and MAPbI3-h as

TABLE III. Athermal 0-K results. Dielectric electron-phonon
coupling (α), Feynman athermal variational parameters (v and w),
and polaron binding energy (Eb) for an effective phonon mode (top
rows) and for multiple explicit phonon modes (bottom rows).

Material α v w Eb

MAPbI3-e 2.39 3.3086 2.6634 −23.0 meV
MAPbI3-h 2.68 3.3586 2.6165 −25.9 meV

MAPbI3-e 2.66 3.2923 2.6792 −19.5 meV
MAPbI3-h 2.98 3.3388 2.6349 −21.9 meV
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TABLE IV. 300-K Results. Dielectric electron-phonon coupling
(α), Feynman thermal variational parameters (v and w), polaron free
energy (F , meV), dc mobility (μ, cm2 V−1 s−1), polaron effective
mass (M, m∗), and Schultz polaron radius (r f , Å) for an effective
phonon mode (top rows) and for multiple explicit phonon modes
from Table II (bottom rows).

Material α v w F μ M rf

MAPbI3-e 2.39 19.9 17.0 −35.5 136 0.37 43.6
MAPbI3-h 2.68 20.1 16.8 −43.6 94 0.43 36.9

MAPbI3-e 2.66 35.2 32.5 −42.8 160 0.18 44.1
MAPbI3-h 2.98 35.3 32.2 −50.4 112 0.20 37.2

F = −50.40 meV. These are to be compared to our previous
results in Ref. [22], which are also provided in Tables III
and IV.

Figure 7 shows the comparison in polaron variational pa-
rameters v and w. That we have different trends for the
polaron free energy and variational v and w parameters shows
that we find quite a different quasiparticle solution from our
multiple phonon scheme compared to the single effective fre-
quency scheme.

B. DC mobility

We calculate the zero-frequency (direct current, dc)
electron-polaron mobility μ in MAPbI3 using the effective
phonon mode and explicit multiple phonon mode approaches.
Both approaches have the same relationship between the mo-
bility and the memory function [Eqs. (29) and (30)], but the
effective mode approach uses the memory function χ (�)
from Eq. (26) [the FHIP [12] memory function, Eq. (35)
ibid.], whereas the multiple phonon mode approach uses our
χmulti(�) from Eq. (49) (with a sum over the phonon modes).
Figure 8 shows temperatures 0 K to 400 K . In Fig. 9 we see
that the multiple mode approach corrects the single effective
mode approach by up to 20%, with this correction maximized

FIG. 7. Comparison of the two polaron variational parameters (v
and w) for MAPbI3 in the single effective phonon mode approach (v,
solid; w dashed) and the explicit multiple phonon mode approach (v,
dots; w dot-dashes).

FIG. 8. Comparison of the temperature-dependent mobility pre-
dicted for MAPbI3 by the single effective phonon mode approach
(solid) and the explicit multiple phonon mode approach (dashed).

at T = 140 K. The multiple-mode mobility slowly approaches
the single-mode mobility towards higher temperatures. We
assume the divergence towards zero temperature to be a nu-
merical error due to the ratio of large floating-point numbers
as both mobility values diverge to positive infinity.

C. Complex conductivity and impedance

We calculate the complex impedance zmulti(�) for the po-
laron in MAPbI3 using Eq. (25), where the only difference
between the effective mode and multiple mode approaches is
in the form of the memory function χmulti(�) as described
for the polaron mobility above. The complex conductiv-
ity σmulti(�) is the reciprocal of the complex impedance,
σmulti(�) = 1/zmulti(�).

We show in Fig. 10 the real component and in Fig. 11
the imaginary component of the complex conductivity for the
single effective mode approach (top) and the explicit mul-

FIG. 9. Ratio of the temperature-dependent mobility predicted
for MAPbI3 by the explicit multiple and single effective phonon
mode approaches (solid). The multiple mode approach gives up to
20% correction, maximized at T = 140 K.
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FIG. 10. Real component of the complex conductivity for
MAPbI3 for temperatures T = 0, 10, 40, 80, 150, 300, and 400 K
starting with the black curve and finishing with the yellow curve.
(Top) Single effective phonon mode prediction. (Bottom) Explicit
multiple phonon mode prediction. The red vertical dashed lines indi-
cate the frequencies of the phonon modes.

tiple mode approach (bottom) for temperatures T = 0, 10,
40, 80, 150, 300, and 400 K (starting with the solid black
line through to the yellow solid line) and for frequencies
0 � � � 20 THz. The vertical dashed red lines show the LO
phonon modes of MAPbI3. The difference between the two
approaches is largest at low temperatures T = 0 and 10 K
where the multiple phonon approach has more structure due to
the extra phonon modes. At higher temperatures, the structure
attenuates and the two approaches show similar frequency de-
pendence of the complex conductivity at T = 300 and 400 K.
These features are further reflected in the real and imaginary
components of the complex impedance as shown in Figs. 12
and 13, respectively.

In Fig. 14 we specifically show the real and imaginary
components of the complex conductivity at zero tempera-

FIG. 11. Imaginary component of the complex conductivity for
MAPbI3 for temperatures T = 0, 10, 40, 80, 150, 300, and 400 K
starting with the black curve and finishing with the yellow curve.
(Top) Single effective phonon mode prediction. (Bottom) Explicit
multiple phonon mode prediction. The red vertical dashed lines indi-
cate the frequencies of the phonon modes.

ture T = 0 K over frequencies 0 � � � 5.0 THz for both
approaches. Again, the vertical dashed red lines show the
longitudinal-optical (LO) phonon modes of MAPbI3 used in
the calculation and are shown in Table II. The single effective
mode conductivity shows a peak in the real component at
frequencies above the effective mode frequency � � 2.25
THz. Whereas, the real component of the multiple mode con-
ductivity shows peaks at frequencies at and above the LO
phonon mode frequencies in MAPbI3. The imaginary com-
ponents of both approaches show some structure changes at
their respective LO phonon mode frequencies but are harder
to discern at zero temperature. The most prominent modes in
MAPbI3 appear at the large electron-phonon coupled modes
ω0 = 0.58, 1.00, and 2.44 THz.
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FIG. 12. Real component of the complex impedance for MAPbI3

for temperatures T = 0, 10, 40, 80, 150, 300, and 400 K starting
with the black curve and finishing with the yellow curve. (Top)
Single effective phonon mode prediction. (Bottom) Explicit multiple
phonon mode prediction. The red vertical dashed lines indicate the
frequencies of the phonon modes.

VI. SIMULATED POLARON VIBRATIONAL
MODE SPECTRA

The Feynman polaron quasiparticle has a direct mecha-
nistic interpretation. The Lagrangian consists of an effective-
mass electron, an additional fictitious particle (mass M, in
units of the electron effective mass), coupled by a harmonic
restoring force (k). This Lagrangian is given by

L = m∗

2
ṙ(t )2 + M

2
Ṙ(t )2 − k

2
[r(t ) − R(t )]2. (53)

The rate of oscillation of this mode is simply w =
√

k
M , ex-

pressed as a prefactor to the material phonon frequency. This
oscillation describes the coherent exchange of energy between
the electron and the phonon field. The phonon frequencies
are blueshifted by the electron-phonon coupling. In terms of

FIG. 13. Imaginary component of the complex impedance for
MAPbI3 for temperatures T = 0, 10, 40, 80, 150, 300, and 400 K
starting with the black curve and finishing with the yellow curve.
(Top) Single effective phonon mode prediction. (Bottom) Explicit
multiple phonon mode prediction. The red vertical dashed lines indi-
cate the frequencies of the phonon modes.

the variational parameters v and w, the spring constant is
k = v2 − w2 and the fictitious mass is M = (v2 − w2)/w2.

Following Schultz [40], the size of the polaron is esti-
mated by calculating the root-mean-square distance between
the electron and the fictitious particle, given as r f = (〈r −
R〉)

1
2 =

√
3v/(v2 − w2) ap, where the polaron radius is in

units of characteristic polaron length ap = √
h̄/(2m∗ω0).

Figure 15 shows the comparison in the polaron effective
mass M (units of effective electron mass m∗) and polaron
radius r f (units of characteristic polaron length ap) applied
to MAPbI3. At 300 K we find new estimates of M = 0.18 m∗
and r f = 0.755, ap = 44.08 Å to be compared to M = 0.37
m∗ and r f = 0.747, ap = 43.62 Å (Table IV). While the in-
troduction of multiple phonon modes barely alters the polaron
size, we note that it practically halves the polaron’s effective
mass.
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FIG. 14. Comparison between the real and imaginary compo-
nents of the complex conductivity predicted for MAPbI3 by the
single effective phonon mode approach and the explicit multiple
phonon mode approach.

The original work of Feynman [10] provides several
asymptotic estimates of this w parameter. The standard ap-
proximations often reproduced in textbooks are w = 3 for
small α coupling, and w = 1 for large α coupling. Pre-
cise work requires a numeric solution, but these limits
inform us that the internal polaron mode, as a function of
electron-phonon coupling, starts as a harmonic of 3ω0 and
continuously redshifts to the phonon fundamental frequency
ω0. These parameters as a function of α are shown in Fig. 16.

The finite-temperature Ōsaka [17] action is also described
by the Lagrangian which describes the free energy of the
polaron state and has the simple mechanistic interpretation of
the electron at position r(t ) coupled by a spring with force
constant k to a fictitious particle of mass M at position R(t ).
Practically, the finite-temperature action gives rise to a set of v

FIG. 15. Comparison of polaron effective mass M (in units of
effective band mass m∗) and Schultz polaron radius r f (in units of
characteristic polaron length ap) for MAPbI3 in the single effective
phonon mode approach (M, solid; r f , dashed) and the explicit multi-
ple phonon mode approach (M, dots; r f , dotted-dashed).

FIG. 16. Numeric Feynman variational solution with the origi-
nal athermal actions. Blue circles are the value for w, red crosses
the value for v. Also shown are the asymptotic approximations, as
presented in the original paper [10] and summarized (often with
typos) in textbooks [39]. The strong (v = 4α2

9π
− 3

2 [2 log(2) + c] − 3
4 )

and weak (v = 3[1 + 2α(1 − P(w)]/3w)) coupling approximations
for v are green lines, where C ≈ 0.5772 is the Euler-Mascheroni
constant and P(w) = 2[(w − 1)

1
2 − 1]/w ≈ 0.2761 for w = 3. The

weak (w = 3) and strong (w = 1) approximations are purple lines.

and w parameters which scale almost linearly in temperature
(Fig. 7 or see Fig. 3 in Ref. [22]). Naïve interpretation of
those values as simple harmonic oscillators would suggest
infeasible high-frequency oscillations at room temperature,
with a strong (almost linear) temperature dependence. It may
be possible to disentangle the entropic contribution in this
Lagrangian, so calculate the correct temperature dependence
of the polaron vibration.

Each of the individual dielectrically coupled phonon
modes will be scaled by this factor. The electron-phonon
coupling in the Fröhlich model is linear and proportional to
the infrared activity of the phonon mode. We can therefore
simply plot the expected phonon vibrational spectrum from
this model, multiplying the phonon frequencies by the scaling
factor w, and directly taking the intensity from the infrared
activity.

This rate of vibration is for the ground state of the polaron.
The polaron binding energies, indicating where this polaron
state is relative to the band edges, are given in Table III. The
states between here and the band edges are a continuum from
the fully bound state (where k is some factor of v and w)
to a fully unbound state (where k = 0). We can expect k to
linearly decrease as a function of polaron excitation, and so
the observed polaron vibrational modes will decrease linearly
from these ground-state values to zero at the unbound (band
edge) state.

As an example to guide experiment interpretation, we
simulate a polaron vibrational measurement. We choose the
archetype methylammonium-lead-halide perovskite material.
The gamma-point phonon frequencies and infrared activi-
ties we take from a previous set of density-functional-theory
lattice-dynamic calculations [37].
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FIG. 17. Simulated MAPbI3 polaron vibrational spectrum. Data
consist of the polaron renormalized vibrational modes (Table II),
with frequency linear, varied between 0 at the excited band-edge
state, to the fully renormalized frequency in the polaron ground state
(predicted to lie 19.517 meV below the band edge). These straight
lines are weighted by the infrared activity (from Ref. [37]), calculated
by projecting Born-effective charges along the gamma-point vibra-
tional modes. These data are then smoothed with a two-dimensional
kernel density estimator, with Gaussian widths of 0.5 THz (horizon-
tal) and 0.5 meV (vertical), to provide a guide to how a noiseless
low-temperature measurement is predicted to look with this theory.
(Top) Constant infrared activity assumed across binding energies.
(Bottom) Infrared activity assumed to attenuate to zero as higher-
lying polaron excited states are accessed.

We plot these modes as a function of energy below the band
edge (Fig. 17). The spring-coupling constant is varied linearly
between zero at the band edge to the full ground-state value
(w = 2.68). This factor scales the vibrational mode.

The resulting finite set of modes and infrared activities are
smoothed with a two-dimensional kernel density estimator,
with a Gaussian width of 0.5 THz and 0.5 meV. This is in-
tended as a simulation of spectra resolved at low temperature.

VII. DISCUSSION

We have shown that the 60-year-old FHIP [12] mobil-
ity theory reproduces much of the “beyond quasiparticle”

behavior exhibited in the recent diagrammatic Monte Carlo
calculations [26], including violation of the “thermal” Mott-
Ioffe-Regel criterion (or Planckian bound [31]) and nonmono-
tonic temperature dependence.

Additionally, we have extended the Feynman variational
approach to the polaron problem to include multiple phonon
modes in the effective model action. Compared to Hellwarth
and Biaggio’s [21] effective mode method, we see additional
structure in the frequency-dependent mobility, which has re-
cently become something that can be directly measured [24]
in the terahertz regime.

A. Violation of the Mott-Ioffe-Regel criterion versus
Planckian bound

The usual MIR criterion puts bounds on transport coeffi-
cients of the Boltzmann equations for quasiparticle-mediated
transport, where localized wave packets are formed from
superpositions of single-particle Bloch states. Beyond these
bounds, the mean-free path of a quasiparticle is of order or
smaller than its Compton wavelength, where it is no longer
possible to form a coherent quasiparticle from superpositions
of Bloch states due to the uncertainty in the single-particle
state positions.

Violation of the MIR limit is commonly observed in
strongly correlated systems at high temperatures and is of-
ten used to suggest that transport in these materials is not
described by quasiparticle physics. The “thermal” MIR cri-
terion is also a condition on the validity of the Boltzmann
description, but is subtly different to the usual MIR crite-
rion as clearly explained by Hartnoll and Mackenzie [31,41]
who refer to it instead as a “Planckian bound.” Whereas the
MIR criterion discerns the ability to form coherent particles
from the superposition of Bloch states, the Planckian bound
describes the ability of quasiparticles to survive inelastic
many-body scattering.

Despite this, here we find that the Feynman variational
method, a quasiparticle theory, predicts mobilities outside
of the Planckian bound, in good agreement with diagMC
mobility predictions. We strongly caution against the use of
semiclassical mobility theories using Bloch waves as their
charge-carrier wave-function ansatz to model polar materials.

B. Comparison of the FHIP and diagMC mobilities
and a note on dissipation

In the Feynman variational theory, we see nonmonotonic
temperature dependence in mobility. At strong coupling, there
are a range of temperatures where the temperature exponent
of the mobility is negative, which begins around T � h̄ω0 and
ends around some temperature that scales with the Fröhlich
coupling parameter α. The latter high-temperature limit marks
the transition from strongly coupled polaronic excitations to
a thermal electron state [Eq. (35)], which is reached asymp-
totically at large temperatures. Compared to the diagMC
mobility, we need to go to larger α parameters (beyond 8) to
start to see a “ski jump” rise in mobility with temperature,
whereas in diagMC this is seen already at α = 6. Although,
we note that our FHIP results lie within the majority of the
Monte Carlo error bars.
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While the temperature dependence of the FHIP mobility
agrees well with the diagMC results, the frequency depen-
dence differs greatly. This has already been investigated [32]
and is due to the harmonic nature of the Feynman trial action.
The Feynman trial action lacks a dissipative mechanism for
the polaron, such that the polaron state described by this
model does not lose energy and has an infinite lifetime. The
spectral function for this model, A(�) = −2 Imχ (�) (where
χ is the memory function), is a series of delta functions.
In [32], this is corrected by including additional dissipation
processes, whose strength is fixed by an exact sum rule. This
was achieved by directly altering the FHIP memory function,
such that the resultant spectral function is a series of Gaussian
functions. Their resultant frequency-dependent mobility has
better agreement with the diagMC mobility.

Another alternative approach to include dissipation may
be to extend the trial The Lagrangian in Eq. (53) to incor-
porate dissipation while maintaining that the resulting trial
path integral still be evaluable [42,43]. This would also enable
the direct inclusion of anharmonic phonons. Applying these
generalized trial actions will be the subject of future work.

C. Numerical evaluation of the memory function

Part of evaluating the FHIP mobility requires a numerical
integration in the “memory function” given in Eq. (26). While
this is usually done by rotating the contour of the integral
[given by Eqs. (32) and (33)] and expanding as a power series
of special functions, we found that it is far more computa-
tionally efficient to directly evaluate the original (nonrotated)
integral, using standard adaptive Gauss-quadrature methods.
Part of this investigation leads us to derive power-series
expansions for the real and imaginary components of the
memory function, which we show in the Appendixes. The
expansion for the imaginary component in terms of Bessel-
K functions has been produced before in [27], however,
we found an expansion for the real component in terms of
Bessel-I and Struve-L functions. While we ultimately did not
use these expansions in our numeric results presented here,
asymptotic evaluation of these forms may be useful for future
theoretical analysis or numerical calculations.

D. FHIP initial product state and low-temperature mobility

In Sec. II B, we briefly mentioned that in FHIP [12] they
assume a nonphysical initial state, which results in an incor-
rect low-temperature weak-coupling approximation for the dc
mobility with a spurious “2β ′′ appearing in the denominator
of the mobility,

μFHIP =
(

w

v

)3 3e

2m∗
exp(β )

2βα�
exp

(
v2 − w2

w2v

)
. (54)

This observation is important for understanding the 3/2β

discrepancy between the low-temperature FHIP dc mobility
and Kadanoff’s dc mobility [44] derived from the Boltzmann
equation

μK =
(

w

v

)3 e

2m∗
exp(β )

α�
exp

(
v2 − w2

w2v

)
. (55)

Some have argued that this discrepancy is due to taking
the incorrect order of the limits � → 0 and α → 0 [45].
An alternative form of the low-temperature dc mobility was

derived by Los [46–48] and Sels [29]. Their mobility results
differ by a factor of 3 from Kadonoff and by a factor of 2β

from FHIP:

μL =
(

w

v

)3 3e

2m∗
exp(β )

α�
exp

(
v2 − w2

w2v

)
. (56)

Sels [29] shows that the difference with Kadonoff is
because the relaxation time approximation (neglecting the
nonvanishing in-scattering term) used by Kadonoff violates
particle number conservation, whereas FHIP does not. How-
ever, the FHIP approximation relies on a nonphysical initial
state for Feynman’s polaron model, as mentioned above. Fur-
ther, Los [47,48] shows that not using a factorized initial state
of the electron-phonon system results in corrections (although
small) due to initial correlations being neglected.

In this work we do not use the low-temperature weak-
coupling approximate form of the FHIP mobility, instead, we
perform a direct numerical integration of the integral in the
memory function χ in Eq. (31).

E. Multimodal extension to the Feynman variation approach

We compared the free energy and linear response of the po-
laron evaluated from the Hellwarth and Biaggio [21] effective
phonon mode method to our explicit multiple phonon mode
method. Applied to the 15 optical solid-state phonon modes
in MAPbI3, we show that our explicit mode method predicts
slightly higher mobility for temperatures 0 to 400 K, to a max-
imum of 20% increase at 100 K. At 300 K we predict electron
and hole mobilities of 160 and 112 cm2 V−1 s−1, respectively.
This is to be compared to our previous predictions of 133
and 94 cm2 V−1 s−1 for one effective phonon mode evaluated
using Hellwarth and Biaggio’s [21] B scheme [see Eqs. (52a)
and (52b)] of 2.25 THz, as evaluated in our previous work in
Ref. [22].

More importantly, we recover considerable structure in the
complex conductivity and impedance functions as individual
phonon modes are activated. This theory provides a quantita-
tive quantum-mechanical method to predict the structure we
proposed from semiclassical reasoning in [49] (see Fig. 10).
Towards higher temperatures the effective and explicit meth-
ods show the same temperature and frequency dependence:
the quantum details are washed out.

F. Future work and outlook

There are many possible extensions of the Feynman po-
laron approach to increase the accuracy of the approximations
and to more accurately model real systems. As discussed, dis-
sipative processes in the trial action would avoid unphysical
failures to thermalize and spurious quantum recurrences, most
notable in the frequency-dependent mobility. This requires
generalizing the trial action. Recently, Ichmoukhamedov and
Tempere [43], in applying the variational path-integral ap-
proach to the Bogoliubov-Fröhlich Hamiltonian, extended
the trial action to a more general form, and also considered
higher-order corrections beyond the Jensen-Feynman inequal-
ity. While the higher-order corrections are known to be small
for the original Fröhlich model [50,51], they may be important
for more general electron-phonon interaction Hamiltonians.
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Recently, Houtput et al. [52] have extended the Fröhlich
model to anharmonic phonon modes. They show that anhar-
monicity further localizes the polaron. As MAPbI3 and other
soft polar semiconductors are highly anharmonic, extending
the mobility theory of this paper to include anharmonic cou-
plings would be of considerable utility.

Throughout this paper, we have restricted ourselves to a
single pair of v and w variational parameters. It is possible
to generalize the theory to multiple normal modes in the
quasiparticle solution, which allows for richer structure in
the mobility theory, and a closer approximation to complex
multimode materials.

The FHIP approach [12] is limited to the linear-response
regime where the applied field is considered weakly alternat-
ing. The linear-response regime is sufficient for most technical
applications, but nonlinear effects may be relevant to in-
terpreting pump-probe THz conductivity measurements. The
nonlinear extensions [53,54] of FHIP offer a theoretical route
to add this in the future.

Open-source Julia [55] codes implementing these methods
are available as a repository on GitHub [56].
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APPENDIX A: CONTOUR INTEGRATION OF THE
MEMORY FUNCTION

Following Devreese et al. [27] we derived infinite-power-
series expansions of the real and imaginary components of
Eq. (26) [or Eq. (35) in Ref. [12]] in terms of Bessel and
Struve special functions, and hypergeometric functions. The
practical computational implementation of these expansions
was made difficult by the very high precision required on
the special functions to make the expansions converge. Using
arbitrary precision numerics, a partially working implementa-
tion was developed, but it was discovered that direct numeric
integration of Eq. (26) could achieve the same result with less
computation time and less complex code.

We start by changing the contour of the memory function
as done in Ref. [12]. The memory function for the polaron
is defined to linear order in Ref. [15] as �(�) = χ∗(�)/�,
where

χ (�) =
∫ ∞

0
[1 − ei�u]ImS(u) du (A1)

is the

S(u) = 2α

3
√

π
[D(u)]−

3
2

(
eiu + 2

eβ − 1
cos(u)

)
(A2)

and

D(u) = w2

βv2
{a2 − β2/4 − b cos(vu) cosh(vβ/2) + u2

− i[b sin(vu) sinh(vβ/2) + uβ]}, (A3)

with R ≡ (v2 − w2)/(w2v), a2 = β2/4 + Rβ coth(βv/2) and
b = Rβ / sinh(βv/2), which are the same as Eqs. (47b) in
Ref. [12].

Solving for the real and imaginary parts of �(�) gives the
real and imaginary parts of χ (�):

Re χ (�) =
∫ ∞

0
[1 − cos(�u)]ImS(u) du, (A4a)

Im χ (�) =
∫ ∞

0
sin(�u) ImS(u) du. (A4b)

As both [1 − cos(�u)] and sin(�) are real we can take Im
outside the integral,

Re χ (�) = Im
∫ ∞

0
[1 − cos(�u)]S(u) du, (A5a)

Im χ (�) = Im
∫ ∞

0
sin(�u) S(u) du. (A5b)

Now we promote u ∈ R to a complex variable u = x +
iy ∈ C. The integrals then become integrals on the complex
plane,

Reχ (�) = Im
∫

�

[1 − cos(�x)cosh(�y)

+i sin(�x)sinh(�y)]S(x + iy) du, (A6a)

Imχ (�) = Im
∫

�

[sin(�x) cosh(�y)

+i cos(�x) sinh(�y)]S(x + iy) du, (A6b)

where � is our contour of integration. To motivate a choice of
contour, let us consider the form of D(x + iy) and S(x + iy):

D(x + iy) = w2

βv2
{[a2 − β2/4 − b cos(vx) cosh[v(y − β/2)]

+ x2 + y(β − y)] + i{b sin(vx) sinh

× [v(y − β/2)] + 2x(y − β/2)}}, (A7)

S(x + iy) = 2α

3
√

π

cos[x + i(y − β/2)]

sinh(β/2)[D(x + iy)]
3
2

. (A8)

Now we notice that D(x + iy) and S(x + iy) are trivially
real when y = β/2. This gives the results

D(x + iβ/2) = w2

βv2
[x2 + a2 − b cos(vx)] ∈ R, (A9)

S(x + iβ/2) = 2α

3
√

π

β
3
2

sinh(β/2)

(
v

w

)3 cos(x)

× [x2 + a2 − b cos(vx)]
3
2 ∈ R. (A10)
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From this, we choose to integrate over the contours
�1 ∈ (∞ + 0i, 0 + 0i] → �2 ∈ [0 + i0, 0 + iβ/2] → �3 ∈
[0 + iβ/2,∞ + iβ/2) → �4 ∈ (∞ + iβ/2,∞ + 0i) as
shown in Fig. 18. Since the integrands in Eqs. (A6a) and
(A6b) are analytic in this region, this closed contour integral
will be zero. [There is a pole in ImS(x + iy) at 0 + i0, but this
is canceled by the zero of the elementary and trigonometric
functions in front of it at this point.] The closing piece of the
contour lies at x → ∞ and can be neglected as S(x + iy) → 0
in this limit.

Thus, for the real part of χ (�) we have∫ ∞

0
[1 − cos(�x)]S(x) dx

=
∫ β/2

0
[1 − cosh(�y)]S(iy) d (iy)

+
∫ ∞

0

[
1 − cos(�x)cosh

(
�β

2

)
+ i sin(�x)

× sinh

(
�β

2

)]
S

(
x + iβ

2

)
dx, (A11)

and for the imaginary part of χ (�) we have∫ ∞

0
sin(�x)S(x) dx

= i
∫ β/2

0
sinh(�y)S(iy) d (iy)

+
∫ ∞

0

[
sin(�x)cosh

(
�β

2

)

+ i cos(�x)sinh

(
�β

2

)]
S

(
x + iβ

2

)
dx. (A12)

FIG. 18. The complex contour chosen to transform the integral in
Eq. (A1). No singularities lie within the closed contour so the contour
integral is zero.

We can now see more clearly why we choose to integrate
at y = β/2. Since S(x + iβ/2) is real, acting Im on these
integrals will cancel the second integral in the contour integral
for Imχ (�) (which is entirely real), and the third integral for
both Reχ (�) and Imχ (�) is simplified due to the absence of
any cross terms that would have resulted for other values of y
as S(x + iy) would have been complex. To see that the second
integral for Imχ (�) is real, we need to see if S(iy) is real.
First, we look at D(iy), which is given by

D(iy) = w2

βv2

[
a2 − β2

4
+ y(β − y) − b

× cosh

(
vy − βv

2

)]
∈ R, (A13)

and then S(iy) is given by

S(iy) = 2α

3
√

π

β3/2

sinh(β/2)

( v

w

)3 cosh(y − β/2)

{a2 − β2/4 + y(β − y) − b cosh[v(y − β/2)]}3/2 ∈ R, (A14)

so S(iy) is indeed real. Since the second integral for Imχ (�) has two complex i and S(iy) is real, the whole integral is entirely
real and so it does not contribute to Imχ (�). Unfortunately, Reχ (�) does not simplify as nicely as Imχ (�) because the second
integral is imaginary and so is still present after taking only the imaginary parts. Nonetheless, for Reχ (�) we get

Reχ (�) = Im
∫ ∞

0
[1 − cos(�x)]S(x) dx = 2α

3
√

π

β3/2

sinh(β/2)

(
v

w

)3{
sinh

(
�β

2

)∫ ∞

0

sin(�x)cos(x) dx

[x2 + a2 − b cos(vx)]3/2

+
∫ β/2

0

[1 − cosh(�x)]cosh(x − β/2) dx

{a2 − β2/4 + x(β − x) − b cosh[v(x − β/2)]}3/2

}
, (A15)

and for Imχ (�) we get

Imχ (�) = Im
∫ ∞

0
sin(�x)S(x) dx = 2α

3
√

π

β3/2 sinh(�β/2)

sinh(β/2)

( v

w

)3
∫ ∞

0

cos(�x)cos(x) dx

[x2 + a2 − b cos(vx)]3/2 . (A16)

APPENDIX B: IMχ EXPANSION IN BESSEL-K FUNCTIONS

In Devreese et al. Ref. [27] the integral in Eq. (A16) is expanded in an infinite sum of modified Bessel functions of the
second kind. Here we follow the same procedure and arrive at the same result, but provide detailed workings. Specifically, we
are interested in solving the integral ∫ ∞

0

cos(�x)cos(x) dx

[x2 + a2 − b cos(vx)]3/2 . (B1)

115203-17



MARTIN AND FROST PHYSICAL REVIEW B 107, 115203 (2023)

We start by noticing that ∣∣∣∣b cos(vx)

x2 + a2

∣∣∣∣ < 1 if v > 0 and β > 0, (B2)

so we can do a binomial expansion of the denominator∫ ∞

0

cos(�x)cos(x)

(x2 + a2)3/2

[
1 − b cos(vx)

x2 + a2

]−3/2

dx =
∫ ∞

0
dx

cos(�x)cos(x)

(x2 + a2)3/2

∞∑
n=0

(−3/2

n

)
(−b)ncosn(vx)

(x2 + a2)n dx

=
∞∑

n=0

(−3/2

n

)
(−b)n

∫ ∞

0

cos(�x)cos(x)cosn(vx)

(x2 + a2)n+3/2 dx, (B3)

where
(−3/2

n

)
is a binomial coefficient. Next, we expand cosn(vx) using the power-reduction formula

cosn(vx) = 2

2n

� n−1
2 �∑

k=0

(
n

k

)
cos[(n − 2k)vx] + (1 − n mod2)

2n

(
n
n
2

)
, (B4)

where the second term comes from even n contributions only. Substituting this into our integral gives

∞∑
n=0

(−3/2

n

)(
−b

2

)n[
2

� n−1
2 �∑

k=0

(
n

k

)∫ ∞

0

cos(�x)cos(x)cos[(n − 2k)vx]

(x2 + a2)n+3/2 dx + (1 − n mod2)

(
n
n
2

)∫ ∞

0

cos(�x)cos(x)

(x2 + a2)n+3/2 dx

]
.

(B5)
We can now combine the cosines inside of the integrals into sums of single cosines using

cos(�x)cos(x)cos[vx(n − 2k)] = 1

4
{cos(x{� + 1 + v(n − 2k)]} + cos{x[� − 1 + v(n − 2k)]}

+ cos{x[� + 1 − v(n − 2k)]} + cos{x[� − 1 − v(n − 2k)]}}

≡ 1

4

∑
z4

cos
(
xzn

k,4

)
, (B6)

where for brevity we have defined zn
k,4 ∈ {� + 1 + v(n − 2k), � − 1 + v(n − 2k), � + 1 − v(n − 2k), � − 1 − v(n − 2k)}.

Likewise,

cos(�x)cos(x) = 1

2

{
cos[x(� + 1)] + cos[x(� − 1)]

} ≡ 1

2

∑
z2

cos(xz2), (B7)

where for brevity we have defined z2 ∈ {� + 1, � − 1}. Substituting these into our expansion gives

∞∑
n=0

(−3/2

n

)(
−b

2

)n[
2

� n−1
2 �∑

k=0

(
n

k

)∑
z4

∫ ∞

0

cos
[
xzn

k,4(�)
]

(x2 + a2)n+3/2 dx + (1 − n mod2)

(
n
n
2

)∑
z2

∫ ∞

0

cos[xz2(�)]

(x2 + a2)n+3/2 dx

]
. (B8)

We now have a lot of integrals of the form ∫ ∞

0

cos(xz)

(x2 + a2)n+3/2 dx, (B9)

which is an integral representation of modified Bessel functions of the second kind,∫ ∞

0

cos(xz) dx

(x2 + a2)n+3/2 =
√

π

�(n + 3/2)
Kn+1(|z|a)

∣∣∣∣ z

2a

∣∣∣∣
n+1

≡ Bn(z). (B10)

Thus, overall we can expand Imχ (�) in a series of these Bessel functions,

Imχ (�) = 2αβ
3
2

3
√

π

sinh
(

�β

2

)
sinh

(
β

2

) ( v

w

)3 ∞∑
n=0

(− 3
2

n

)(
−b

2

)n
[ � n−1

2 �∑
k=0

(
n

k

)∑
z4

Bn
[
zn

k,4(�)
] + (1 − n mod2)

(
n
n
2

) ∑
z2

Bn[z2(�)]

]
,

(B11)

where a2 = β2/4 + Rβ coth(βv/2), b = Rβ/sinh(βv/2), and R = (v2 − w2)/(w2v). Also, zn
k,4(�) ∈ {� + 1 + v(n −

2k), � − 1 + v(n − 2k), � + 1 − v(n − 2k), � − 1 − v(n − 2k)} and z2(�) ∈ {� + 1, � − 1}.
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APPENDIX C: REχ EXPANSION IN BESSEL-I, STRUVE-L, AND 1F2 HYPERGEOMETRIC FUNCTIONS

Motivated by the expansion of Imχ (�) in Devreese et al. [27] we provide a similar expansion for Reχ (�).
We follow a similar procedure as for Imχ (�) and notice that our efforts focus on solving the integrals∫ ∞

0

sin(�x)cos(x) dx

[x2 + a2 − b cos(vx)]3/2 , (C1)∫ β/2

0

[1 − cosh(�x)]cosh(x − β/2) dx

{a2 − β2/4 + x(β − x) − b cosh[v(x − β/2)]}3/2 . (C2)

The first integral is very similar to Eq. (B1), just with a cosine swapped out for a sine. Following a similar procedure as for
Eq. (B1) gives

∫ ∞

0

sin(�x)cos(x) dx

[x2 + a2 − b cos(vx)]3/2 =
∞∑

n=0

(−3/2

n

)(
−b

2

)n
[

2

� n−1
2 �∑

k=0

(
n

k

)∑
z4

∫ ∞

0

sin
[
xzn

k,4(�)
]

(x2 + a2)n+3/2 dx + (1 − n mod2)

(
n
n
2

)

×
∑

z2

∫ ∞

0

sin[xz2(�)]

(x2 + a2)n+3/2 dx

]
, (C3)

where we now look for any special functions for which∫ ∞

0

sin(xz)

(x2 + a2)n+3/2 dx (C4)

is the integral representation. We found that∫ ∞

0

sin(xz)

(x2 + a2)n+3/2
dx =

√
π

2

�
( − 1

2 − n
)

sgn(z)|z|n+1

(2a)n+1
[In+1(|z|a) − L−(n+1)(|z|a)]

≡ Jn(z) (C5)

for n � 0 and a � 0. Here sgn(x) is the signum function, In(x) is the modified Bessel function of the first kind, Ln(x) is the
modified Struve function. Therefore, for Reχ (�) we have

Reχ (�) = 2αβ3/2

3
√

π

sinh
(

�β

2

)
sinh(β/2)

( v

w

)3
{ ∞∑

n=0

(− 3
2

n

)(
b

2

)n[ � n−1
2 �∑

k=0

(
n

k

)∑
z4

Jn[zn
k,4(�)] + (1 − n mod2)

(
n
n
2

)∑
z2

Jn[z2(�)]

]}

+ 2α

3
√

π

β3/2

sinh(β/2)

( v

w

)3
∫ β/2

0

[1 − cosh(�x)] cosh(x − β/2) dx

{a2 − β2/4 + x(β − x) − b cosh[v(x − β/2)]}3/2 , (C6)

where a, b, z4, and z2 are the same as before.
Expanding the second integral with the hyperbolic integrand is more complicated. We start by doing a change of variables

x → (1 − x)β/2 to transform the denominator into a similar form as before and to change the limits to [0, 1]:∫ β/2

0

[1 − cosh(�x)] cosh(x − β/2) dx

{a2 − β2/4 + x(β − x) − b cosh[v(x − β/2)]}3/2 −→ β

2

∫ 1

0

[1 − cosh(�β[1 − x]/2)] cosh(βx/2)dx

[a2 − (βx/2)2 − b cosh(βvx/2)]3/2
. (C7)

Now we see that for x ∈ [0, 1] ∣∣∣∣b cosh(vβx/2)

a2 − (βx/2)2

∣∣∣∣ < 1 if v > 0 and β > 0 (C8)

so we can do a binomial expansion of the denominator as before:

∞∑
n=0

(− 3
2

n

)(
2

β

)2n+2

(−b)n
∫ 1

0

[1 − cosh(�β[1 − x]/2)] cosh(βx/2) coshn(vβx/2)

[(2a/β )2 − x2]n+3/2
dx. (C9)

Then we do another binomial expansion of the remaining denominator:

∞∑
n=0

(− 3
2

n

)(
2

β

)2n+2

(−b)n
∞∑

m=0

(−n − 3
2

m

)
(−1)m

(
β

2a

)2n+2m+3

×
∫ 1

0

[
1 − cosh

(
�β[1 − x]

2

)]
cosh

(
βx

2

)
coshn

(
vβx

2

)
x2mdx. (C10)
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We can then expand the product of hyperbolic cosines in the integrand

∞∑
n=0

(− 3
2

n

)(
2

β

)2n+2

(−b)n
∞∑

m=0

(−n − 3
2

m

)
(−1)m

(
β

2a

)2n+2m+3 1

2n
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⎧⎪⎨
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(

n
n
2

)
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⎣∫ 1

0

cosh
(

βz1x
2

)
x−2m

dx − 1

2
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(
cosh

(
�β

2

)∫ 1

0

cosh
(

βz2x
2

)
x−2m

dx − sinh

(
�β

2

)∫ 1

0

sinh
(

βz2x
2

)
x−2m

dx

)⎤⎦

+
� n−1

2 �∑
k=0

(
n

k

)⎡⎣∑
z3

∫ 1

0

cosh
(

�βz3x
2

)
x−2m

dx−1

2

∑
z4

(
cosh

(
�β

2

)∫ 1

0

cosh
(

�βz4x
2

)
x−2m

dx− sinh

(
�β

2

)∫ 1

0

sinh
(

�βz4x
2

)
x−2m

dx

)⎤⎦
⎫⎪⎬
⎪⎭,

(C11)

where z1 = 1, z2(�) ∈ {� + 1, � − 1}, zn
k,3 ∈ {1 + v(n − 2k), 1 − v(n − 2k)}, and zn

k,4(�) ∈ {� + 1 + v(n − 2k), � − 1 +
v(n − 2k), � + 1 − v(n − 2k), � − 1 − v(n − 2k)}.

Now we have two integrals of the forms

∫ 1

0
cosh(zx)x2mdx,

∫ 1

0
sinh(zx)x2mdx, (C12)

which are the integral forms of the generalized hypergeometric functions

∫ 1

0
cosh(zx)x2mdx = 1F2

[
m + 1

2
1
2 m + 3

2

;
z2

4

]
=

∞∑
t=0

z2t

(2t + 2m + 1)(2t )!
, m > −1

2
(C13a)

∫ 1

0
sinh(zx)x2mdx = z

2m + 2
1F2

[
m + 1

3
2 m + 2

;
z2

4

]
=

∞∑
t=0

z2t+1

(2t + 2m + 2)(2t + 1)!
, m > −1. (C13b)

For brevity, we will define

1F c
2 (z) ≡ 1F2

[
m + 1

2
1
2 m + 3

2

;
β2z2

16

]
=

∞∑
t=0

(βz/2)2t

(2t + 2m + 1)(2t )!
, (C14a)

1F s
2 (z) ≡ βz

4m + 4
1F2

[
m + 1

3
2 m + 2

;
β2z2

16

]
=
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t=0

(βz/2)2t+1

(2t + 2m + 2)(2t + 1)!
(C14b)

so that Eq. (C11) becomes

∞∑
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(
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2 (z4) − sinh

(
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⎪⎭ (C15)

which we can reduce further by defining

Mc/s
n (z) ≡

∞∑
m=0

(−n − 3
2

m

)
(−1)ma−2(n+m+1)

(
β

2

)2m+1

1F c/s
2 (z) (C16)
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to give

∞∑
n=0
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. (C17)

Combining this with the rest of Reχ (�) gives

Reχ (�) = 2αβ3/2v3
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(C18)

So, altogether we have the expansion for the memory function

χ (�) = 2αβ3/2v3
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